
Math H113 Professor K.A. Ribet
Final Exam May 16, 2003

Please put away all books, calculators, electronic games, cell phones, pagers, .mp3 players,
PDAs, and other electronic devices. Please write your name on each sheet of paper that
you turn in; don’t trust staples to keep your papers together. Explain your answers in full
English sentences as is customary and appropriate. Your paper is your ambassador when
it is graded.

These solutions were written quickly by Ken Ribet. Sorry if they’re a little terse. They’re
perhaps best described as sketches of solutions.

1. Let H be a subgroup of a finite group G. For each g in G, consider the subset
Sg := H(gHg−1) of G; this is the subset HK where K = gHg−1. Show that H is normal
in G if and only if all the sets Sg have the same size.

In general, the order of HK is
|H||K|
|H ∩K|

. To say that the Sg have the same size is to say

that all the intersections H ∩ gHg−1 have the same size. When g = 1, the intersection
is H; in general, the intersection is contained in H. The intersections have the same size
exactly when gHg−1 contains H for all g. This comes down to the statement that H is
normal in G.

2. Let p and q be distinct primes. Show that every group of order p2q has a normal Sylow
subgroup. [You can assume that p2q is different from 12, since we studied groups of order
12 in class.]

Let P and Q be p- and q-Sylow subgroups. The number of conjugates of P divides q and
is 1 mod p. If it’s 1, where done. Suppose otherwise; then the number of conjugates is q
and we have q ≡ 1 mod p. The number of conjugates of Q divides p2 and is 1 mod q. It
can’t be p because p is smaller than q. If it’s not 1, then it’s p2 and we have p2 ≡ 1 mod q.
This means that q divides p2 − 1 = (p + 1)(p − 1). Clearly, q does not divide p − 1, as
was said already: this is because p is smaller than q. Since q is a prime, it follows that q
divides p + 1. We must then have q = p + 1 because p is smaller than q. This leads to
the conclusion that p = 2 and q = 3; 2 and 3 are the only two consecutive prime numbers.
The case p = 2, q = 3 requires a further argument, but we gave it in class, as I said in the
statement of the problem.

3. Let G be a finite abelian group. Suppose that the intersection of all non-identity
subgroups of G is a non-identity subgroup of G. Prove that G is isomorphic to Z/pnZ for
some prime p and some positive integer n.

If x and y are non-identity elements of G, then their orders cannot be relatively prime; if
the orders were relatively prime, then the cyclic groups 〈x〉 and 〈y〉 already would have
trivial intersection, contrary to the assumption. It’s tempting here to invoke Cauchy’s



theorem to the effect that G has an element of order p for each prime p dividing |G|. This
theorem clearly implies that only one prime can divide the order of G; say this prime is p.
The idea now is that G should be the cyclic subgroup generated by x if the order of x is
the largest order of elements of G. This statement clearly follows from the following one,
which we will prove by induction on n: Suppose that x and y are elements of G of order pn

and pi, respectively. Assume that we have i ≤ n. Then y is a power of x. This statement
is true when n = 1 because, by hypothesis, G contains at most one subgroup of order p.
Working by induction (and writing G additively now!), we can write py as a multiple of px,
say py = t · px. Then y − tx has order dividing p, so it’s a multiple of x. We get, finally,
that y is a multiple of x, which is what we needed.

4. Let A be a non-empty set and let G be a subgroup of the group SA of permutations
of A. For a ∈ A, let Ga = { g ∈ G | ga = a }. Show that Gga = gGag−1 for g ∈ G, a ∈ A.
If G acts transitively on A, show that

⋂
g∈G

gGag−1 = {1} for each a ∈ A.

Further, if G is an abelian subgroup of SA that acts transitively on A, show that Ga = {1}
for all a ∈ A. Prove that |G| = |A| in this case.

We have an action of a group G on a set A. The group Ga is the stabilizer of a, a group
that we studied a lot. We proved the equality Gga = gGag−1 in class, probably more than
once. I hope that you all recalled the proof in your answer. The point of this is that, for

each a, the intersection
⋂
g∈G

gGag−1 may be viewed as the set of elements of G that fix

all ga. When the action of G on A is transitive, this is the set of elements of G that fix
everything, i.e., that act trivially on A. Because G here is a subgroup of SA, an element
of G that fixes all of A is the identity element. In the case where G is abelian, gGag−1

is the same thing as Ga, so the intersection is just Ga. This implies that Ga = {1}, as
required; in words, we can say that non-identity elements of G fix no elements of A. Take
a ∈ A, which is possible because A is non-empty. The map G → A given by g 7→ ga is then
injective because of what we said about non-identity elements not fixing anything. It’s
surjective because the action of G on A was supposed to be transitive. So it’s a bijection
and we get the equality |G| = |A|.

5. Consider the evaluation homomorphism ϕ : R[x] → C that sends each polynomial
f(x) to the complex number f(2 + 3i). Find a generator for the kernel of ϕ. If f vanishes
on 2 + 3i, it vanishes on 2 − 3i as well. Hence, as a complex polynomial, it is divisible
both by x − (2 + 3i) and x − (2 − 3i). By unique factorization, it will be divisible by
p(x) := (x−(2+3i))((x−(2−3i)) = x2−4x+13 in C[x]. This suggests that the kernel of ϕ
is (p(x)), the ideal generated by p(x) in R[x]. To see this, we let α = 2+3i and note that α
is a root of p but not of any non-zero polynomial of degree ≤ 1 over R. If f is a polynomial
with real coefficients, we divide f by p and get an equation f(x) = q(x)p(x) + r(x) with r
of degree less than 2. Because p(α) = 0, f(α) = 0 if and only if r(α) = 0, which happens
if and only if r(x) = 0. Thus the kernel of ϕ consists of the multiples of p.
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6. Let n be a positive integer, and let p be a prime number that divides 2n + 1. If m is
an odd positive integer, show that p does not divide 2m − 1. Since p divides 2n + 1, p is
not 2, so we can consider 2 mod p as an element of (Z/pZ)∗. In this group 2n = −1, an
element of order 2. Since the order of any power of 2 divides the order of 2, 2 has even
order in (Z/pZ)∗. This means that 2m can never be 1 in (Z/pZ)∗ if m is an odd number.
That’s exactly what was to be proved.

7. Is an irreducible element of an integral domain necessarily prime? (Give a proof or a
counter-example.)

We know that the answer is “no” because we’ve seen examples in class. The whole point
of our discussions of irreducibility was to prove in certain circumstances (e.g., for a PID)
that irreducible elements are prime.

If R is a commutative ring with 1, it is true that the intersection of two maximal ideals of
R is a prime ideal? (Proof or counter-example.)

This is kind of silly. In Z, the intersection of the maximal ideals (2) and (3) is the ideal
(6), which is not prime.

If R is a commutative ring with 1, is it necessarily true that 1 − x is a unit if x9 = 0?
(Proof or counterexample.)

It’s true. The element 1 + x + · · ·+ x7 + x8 is the inverse of 1− x.

8. Let n ≥ 3 be an odd integer. Show that the dihedral group D2n of order 2n has exactly
(n + 3)/2 conjugacy classes.

Find a finite group G and a subgroup H of G so that H has more conjugacy classes than G.

Let D = D2n. This group has a cyclic subgroup C of order n. The elements of D outside
of C are of order 2 and they’re all conjugate to each other. The identity element of D
makes up its own conjugacy classes. So far, we’ve seen two conjugacy classes. The n − 1
non-identity elements of C form (n−1)/2 conjugacy classes in D: conjugation by elements
of D outside of C induces the inversion map x 7→ x−1 on C, so that each x ∈ C is conjugate
only to itself and to its inverse. The number of conjugacy classes is 2 + (n − 1)/2, which
is the same number as (n + 3)/2. Now C is abelian, so it has n conjugacy classes. Thus C
has more conjugacy classes than D as soon as n is bigger than (n + 3)/2. This happens,
e.g., when n = 7.
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