
Math 110

First Midterm Examination
February 16, 2010

2:10–3:30 PM, 10 Evans Hall

Please put away all books, calculators, and other portable electronic devices—
anything with an ON/OFF switch. You may refer to a single 2-sided sheet
of notes. For numerical questions, show your work but do not worry about
simplifying answers. For proofs, write your arguments in complete sentences
that explain what you are doing. Remember that your paper becomes your only
representative after the exam is over.

Problem Your score Possible points
1 5 points
2 12 points
3 6 points
4 7 points

Total: 30 points

1. In R3, express (3, 18,−11) as a linear combination of (1, 2, 3), (−2, 0, 3) and (2, 4, 1).

This was a standard numerical problem of the type that most of you know how to do. The
coefficients are: −49/5, 3 and 47/5. I apologize for the fractions: I intended the answers to
be whole numbers and must have mistyped.

2. Label each of the following statements as TRUE or FALSE. Along with your answer,
provide an informal proof or an explanation. For false statements, an explicit counterexample
might work best. In interpreting the statements, take v to be a vector, a to be a scalar, β
to be a basis of V , etc., etc.

Each part was worth 2 points. We gave out one point for the correct T/F answer and one
point for the explanation.

a. If av = v, then either a = 1 or v = 0.

This is true, but a lot of you didn’t give a good reason. Since v = 1 · v, as proved in class,
the equation av = v may be written (a− 1) · v = 0. If the scalar a− 1 is non-zero, we may
divide by it (i.e., multiply by its inverse) and get v = 0. In other words, if a isn’t 1, v is 0.
This means that we have a = 1 or v = 0, or both.
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b. If A and B are real 3× 3 matrices, the formula T (M) = AM −MB defines a linear map
M3×3(R) → M3×3(R).

This is true because of the distribution relations for matrix multiplication. For example, to
see that T (M + M ′) = T (M) + T (M ′), we have to expand out A(M + M ′) + (M + M ′)B
and rearrange terms.

c. If V is spanned by a set of 6 distinct vectors, all bases of V have exactly 6 vectors.

This is false. For example, the 1-dimensional R-vector space R = R1 is spanned by the 6
distinct elements 1, 2, 3, 4, 5 and 6, but all bases of this space have one element!

d. If W is a subspace of a finite-dimensional vector space V and w1, . . . , wm form an ordered
basis of W , then every basis of V includes w1, . . . , wm.

This, again, is silly. Take W to be the subspace of R2 generated by (1, 0), so that (1, 0) is
a basis of W . You can find lots of bases of R2 that do not contain (1, 0). One such basis
consists of (1, 1) and (0, 1).

e. In L(F 6, F 4), one may find linear transformations T for which the dimensions of N(T )
are 2, 3, 4, 5 and 6.

This is true. Just make up 6 × 4 matrices of 0s and 1s with exactly i linearly independent
columns, where i takes each of the values 0, 1, 2, 3 and 4.

f. If m = dim(V ) and n = dim(W ), then [T ]γβ is an n×m matrix. (Here T is a linear map
V → W .)

Well, this is just true, by definition of [T ]γβ. There was a nearly identical question in the
homework, but the HW answer was “false.” I exchanged m and n and made the statement
true instead!

3. Suppose that V is an F -vector space with at least three vectors. Let w be a vector in V .
Prove that V is spanned by the set S = { v ∈ V | v 6= w }.

This caused a lot of trouble, sorry. The span of S certainly contains all vectors in S. There’s
only one vector in V that isn’t in S, namely w. Therefore, to prove that the span of S is all
of V , we just have to prove that w is in the span! For every v in the vector space, we have

w = (w − v) + v.

This will write w in the span of S provided that the two summands v and w − v are in S.
To have v in S, we need to have v 6= w. To have w − v ∈ S, we need to have v 6= 0. Since
V has more than two vectors, there is a v ∈ V different from both 0 and w. Take such a v
and we’re home.
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4. Let f(x) be a polynomial of degree n with real coefficients. Prove that the n + 1
polynomials

f(x), f ′(x), f ′′(x), . . . , f (n)(x)

are linearly independent. Conclude that they span Pn(R).

For the first statement, there are several correct proofs. One way to proceed is to realize that
the last (i.e., nth) derivative is a non-zero constant because f(x) has degree n. Hence the
set consisting of the last vector f (n)(x) is linearly independent. The vector f (n−1)(x) then
has degree 1, so it can’t be a multiple of the vector f (n)(x). Thus the two vectors f (n)(x)
and f (n−1)(x) form a linearly independent set. We proceed in this manner, incrementing the
number of vectors in the set that we are proving to be linearly independent. At one stage
we have seen that f (n)(x), f (n−1)(x), . . . , f (n−i)(x) make a linearly independent set and ask
whether the larger set f (n)(x), f (n−1)(x), . . . , f (n−i)(x), f (n−i−1)(x) is also linearly indepen-
dent. If not, then f (n−i−1)(x) will be a linear combination of f (n)(x), f (n−1)(x), . . . , f (n−i)(x).
You can see that this is impossible because the degree of f (n−i−1)(x) is larger than the degrees
of the polynomials f (n)(x), f (n−1)(x), . . . , f (n−i)(x).

Maybe a better way to proceed is to start with

a0f(x) + · · ·+ anf
(n)(x) = 0 (1)

and to prove in turn that each of the ai is 0. Note that all derivatives of f(x) after the nth
derivative are 0. If we differentiate (1) n times, all terms but the first disappear; we get
a0f

(n)(x) = 0. Since the nth derivative is non-zero (it’s in fact a non-zero constant), we get
a0 = 0. Hence the first term in (1) is really a1f

′(x). Now differentiate (1) n−1 times instead
of n times; we get a1f

(n)(x) = 0, so a1 = 0. We continue in this fashion, knocking off the
terms one by one. At the end of the game, (1) has only one term left: it reads anf

(n)(x) = 0.
We get an = 0, so all coefficients are 0, as was required.

For the second statement, which was worth two points, you just have to say that the polyno-
mials f(x), f ′(x), f ′′(x), . . . , f (n)(x) are known to be linearly independent by the first part.
There are n+1 of them, and n+1 is the dimension of Pn(R). By a corollary to the theorem
that many of you knew the number of, the linearly independent set

{ f(x), f ′(x), f ′′(x), . . . , f (n)(x) }

is actually a basis of Pn(R).
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