Math H110

Professor K. Ribet

Homework assignment #12, due November 14

• I'd like to ask you to do the following problem, which George Bergman is assigning to his Math 110 students. It amounts to establishing the diagonalizability of real self-adjoint operators without moving up first to the field of complex numbers. To set the stage, we consider a non-zero inner-product space V of finite dimension n over the field **R** of real numbers. We know very well what V looks like; indeed, if we choose an orthonormal basis of V, then V becomes isomorphic to \mathbf{R}^n in such a way that the inner product on V becomes the standard inner product. Without much loss of face, we can suppose if we want that $V = \mathbf{R}^n$ and that the inner product is the standard one. In particular, the set $S := \{x \in V | ||x|| = 1\}$ is a non-empty closed and bounded set—it's nothing other than the unit (n-1)-sphere when $V = \mathbf{R}^n$. Notice that every non-zero vector in V may be written uniquely as the product of a non-zero real number and an element of S.

Calculus tells us that every continuous real-valued function on S achieves a maximim value on S. In particular, if $T: V \to V$ is a linear map, the function $s \mapsto \langle s, T(s) \rangle$ on s achieves a maximum at some point p of S.

(a) Suppose that x and y are points on S such that $\langle x, y \rangle = 0$. Show that $\cos(t) \cdot x + \sin(t) \cdot y$ lies on S for all $t \in \mathbf{R}$.

(b) Choose p in S as above, i.e., so that $\langle p, T(p) \rangle \geq \langle s, T(s) \rangle$ for $s \in S$. Take $y \in S$ with $\langle p, y \rangle = 0$ and consider $f(t) := \langle \cos(t) \cdot p + \sin(t) \cdot y, T(\cos(t) \cdot p + \sin(t) \cdot y) \rangle$. This function has a maximum at t = 0, and therefore f'(0) = 0. Re-write this equation as a relation involving inner products.

(c) Now suppose that T is self-adjoint. Show that we have $\langle p, T(y) \rangle = 0$ in the situation of (b). Let W be the 1-dimensional subspace of V that is spanned by p and let W' be the space of vectors that are orthogonal to p. Show that W' is T-invariant (i.e., that $T(x) \in W'$ for all $x \in W'$) and then conclude that W is T-invariant. Notice that this means that p is an eigenvector!

(d) Parlay the argument of (c) into an inductive proof that V has an orthonormal basis of vectors that are eigenvectors for T.

• §6.5: 4, 15, 16, 17, 31, 32

Here's a discussion of Problem 16 on page 394, which some students asked me about last week. When they came into my office, I had no clue how to find an example. Let Fbe **R**, the field of real numbers. Let V be the space of polynomials over **R** in t and t^{-1} . Such polynomials are finite sums $\sum a_i t^i$, where the a_i are real numbers and the indices iare integers. We think of them as "infinite sums" taken over the set of all integers i in which only finitely many of the terms are actually non-zero. Notice that some of the ifor which a_i is non-zero may be negative integers. A basis of V is the set of monomials $1, t, t^{-1}, t^2, t^{-2}, \ldots$ We define an inner product on V by $\langle \sum a_i t^i, \sum b_i t^i \rangle := \sum a_i b_i$. This is just a harmless-looking variant of the standard inner product on Euclidean space \mathbb{R}^n . Note again that the sum defining the inner product is formally an infinite sum but that there are only finitely many non-zero terms in in! Let $U: V \to V$ be the linear map "multiplication by t^{n} ; this map has an evident inverse, namely multiplication by t^{-1} . Also, it's clearly unitary as we see from the definition of the inner product on V. Now let $W \subseteq V$ be the subspace consisting of the usual polynomials in t (ones with no negative powers of t). This space is clearly invariant under U since multiplication of a polynomial by t yields another polynomial. The subspace W^{\perp} is the space generated by $t^{-1}, t^{-2}, t^{-3}, \ldots$, i.e., the space of polynomials with only negative powers of t. This space is not stable under U; for example, $U(t^{-1}) = 1$ is not in W^{\perp} .