
Math H110 Professor K. Ribet
Homework assignment #12, due November 14

• I’d like to ask you to do the following problem, which George Bergman is assigning to
his Math 110 students. It amounts to establishing the diagonalizability of real self-adjoint
operators without moving up first to the field of complex numbers. To set the stage, we
consider a non-zero inner-product space V of finite dimension n over the field R of real
numbers. We know very well what V looks like; indeed, if we choose an orthonormal
basis of V , then V becomes isomorphic to Rn in such a way that the inner product on V
becomes the standard inner product. Without much loss of face, we can suppose if we
want that V = Rn and that the inner product is the standard one. In particular, the set
S := {x ∈ V | ‖x‖ = 1 } is a non-empty closed and bounded set—it’s nothing other than
the unit (n − 1)-sphere when V = Rn. Notice that every non-zero vector in V may be
written uniquely as the product of a non-zero real number and an element of S.

Calculus tells us that every continuous real-valued function on S achieves a maximim value
on S. In particular, if T : V → V is a linear map, the function s 7→ 〈s, T (s)〉 on s achieves
a maximum at some point p of S.

(a) Supppose that x and y are points on S such that 〈x, y〉 = 0. Show that cos(t) · x +
sin(t) · y lies on S for all t ∈ R.

(b) Choose p in S as above, i.e., so that 〈p, T (p)〉 ≥ 〈s, T (s)〉 for s ∈ S. Take y ∈ S
with 〈p, y〉 = 0 and consider f(t) := 〈 cos(t) · p + sin(t) · y , T (cos(t) · p + sin(t) · y) 〉. This
function has a maximum at t = 0, and therefore f ′(0) = 0. Re-write this equation as a
relation involving inner products.

(c) Now suppose that T is self-adjoint. Show that we have 〈p, T (y)〉 = 0 in the situation
of (b). Let W be the 1-dimensional subspace of V that is spanned by p and let W ′ be
the space of vectors that are orthogonal to p. Show that W ′ is T -invariant (i.e., that
T (x) ∈ W ′ for all x ∈ W ′) and then conclude that W is T -invariant. Notice that this
means that p is an eigenvector!

(d) Parlay the argument of (c) into an inductive proof that V has an orthonormal basis
of vectors that are eigenvectors for T .

• §6.5: 4, 15, 16, 17, 31, 32

Here’s a discussion of Problem 16 on page 394, which some students asked me about last
week. When they came into my office, I had no clue how to find an example. Let F
be R, the field of real numbers. Let V be the space of polynomials over R in t and t−1.
Such polynomials are finite sums
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i, where the ai are real numbers and the indices i
are integers. We think of them as “infinite sums” taken over the set of all integers i in
which only finitely many of the terms are actually non-zero. Notice that some of the i
for which ai is non-zero may be negative integers. A basis of V is the set of monomials
1, t, t−1, t2, t−2, . . .. We define an inner product on V by 〈
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i,
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i〉 :=

∑
aibi. This is

just a harmless-looking variant of the standard inner product on Euclidean space Rn. Note
again that the sum defining the inner product is formally an infinite sum but that there are
only finitely many non-zero terms in in! Let U : V → V be the linear map “multiplication



by t”; this map has an evident inverse, namely multiplication by t−1. Also, it’s clearly
unitary as we see from the definition of the inner product on V . Now let W ⊆ V be the
subspace consisting of the usual polynomials in t (ones with no negative powers of t). This
space is clearly invariant under U since multiplication of a polynomial by t yields another
polynomial. The subspace W⊥ is the space generated by t−1, t−2, t−3, . . ., i.e., the space of
polynomials with only negative powers of t. This space is not stable under U ; for example,
U(t−1) = 1 is not in W⊥.


