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Linear first order ODEs

Last time we looked at first order ODEs. Today we will focus on
linear first order ODEs. Here are some goals:

Being able to recognize a linear first order ODE.
Being able to solve one.
Having some idea how such equations might arise in the
life sciences. [This is homework for all of us.]

For the first point, all you need to know is the formula giving the
most general linear first order ODE:

y ′ + p(t)y = q(t).

Here y = y(t) is the unknown function of t for which we solve,
while p(t) and q(t) are given functions of t .
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Come on down to office hours! See you soon.
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Special cases

If p = 0, then y ′ is given and y =
∫

q(t)dt is an integral of q.
For example, if q(t) = cos t , we might write y(t) = sin t + C.

If q = 0, the equation is homogeneous. Writing
dy
dt

+ p(t)y = 0
and fooling around (doc camera or white board), we get the
solution

y = Ce−
∫

p(t) dt .

What’s remarkable is that there’s a more general formula like
this in the case where q is not necessarily 0.
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To motivate the “trick” that makes things work, let’s look again
at the solution y = Ce−

∫
p(t) dt to the homogeneous problem.

It’s this statement about y :

ye
∫

p(t) dt = a constant ⇐⇒ d
dt

(
ye

∫
p(t) dt

)
= 0.

Still in the homogeneous problem, we went from the ODE to be
solved, namely y ′ + py = 0, to the statement that ye

∫
p(t) dt has

derivative 0. How was this possible?
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The key is to differentiate ye
∫

p(t) dt . Note that

d
dt

(
e
∫

p(t) dt
)
= e

∫
p(t) dtp(t).

Hence

d
dt

(
ye

∫
p(t) dt

)
= ye

∫
p(t) dtp(t) + y ′e

∫
p(t) dt ,

which is
e
∫

p(t) dt(y ′ + yp(t)).

This explains why y ′ + yp(t) = 0 if and only if ye
∫

p(t) dt has
derivative 0.
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The whole point now is that it’s fruitful to multiply the equation
y ′ + py = q by an integral e

∫
p(t) dt even in the

non-homogeneous case q 6= 0. Given a first order linear ODE,
we fix a function e

∫
p(t) dt (without worrying about the usual

constant of integration) and call it an integrating factor. The
“textbook” calls this integral I(t), so let’s do that.

Starting with y ′ + py = q, we get I(t)y ′ + I(t)py = I(t)q; as we
just saw, the LHS is the derivative of yI(t). Hence the original
ODE becomes

(yI(t))′ = I(t)q,

which is something that we can solve quite easily:

y =
1

I(t)

∫
I(t)q(t)dt .
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Example

This example was taken from a UC Davis web page:

ty ′ + y = t2 + 1.

The first thing to do is to divide by t :

y ′ +
1
t

y = t +
1
t
.

In our notation, p = 1/t and q = t + 1/t . The integrating factor
is

e
∫ 1

t dt = eln t = t .

This means that we should multiply the ODE by t ; when we do
so, we get back the original equation

ty ′ + y = t2 + 1.
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We recognize now that ty ′ + y is the derivative of ty ; we might
have noticed that right away, but then many might protest that
this insight was an un-motivated trick. We are able to solve the
equation at this point:

ty =

∫
t2 + 1 dt =

t3

3
+ t + C.

Thus

y =
t2

3
+ 1 +

C
t
.

If we knew now that y(1) were 0 (just to pick a number at
random), we’d be able to find C: C = −4/3.
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We turn now to Wikipedia for a second example:

y ′ + by = 1;

here, b is a non-zero constant. This example can be treated by
more than one method because it’s a linear DE with constant
coefficients. Here’s how we’d do it if we were not thinking about
integrating factors:

Step One: Solve the corresponding homogeneous equation
y ′ + by = 0. As we saw earlier (“Special cases”), the solution is
y = Ce−bt .

Step Two: Find some solution to the non-homogeneous
equation. A solution comes to mind: take y to be the constant
1/b.

Step Three: Add the two parts together. We get

y = Ce−bt +
1
b
.
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From the perspective of today’s discussion, we solve the
problem by taking I(t) = ebt , so that the solution to the equation
is

y = e−bt
∫

ebt · 1 dt = e−bt
(

C +
1
b

ebt
)
,

which is the same solution that we found on the previous slide.
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One more example

Solve the initial value problem

y ′ − 2ty = 3t2et2
, y(0) = 5.

The integrating factor is I(t) = e−t2
. When we multiply the

equation by I(t), we kill off the annoying term et2
on the RHS.

The general solution turns out to be y = et2
(C + t3). Plugging

in t = 0, we find that C = 5.

Details on doc camera or white board.
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Dinner tonight

I’ll be at Crossroads Dining Commons
tonight for dinner at 6:30PM.

Please consider joining the group!

[Five-minute break]
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Partial fractions

This is a new topic. The aim here is to be able to integrate
“rational functions,” which are quotients of polynomials. For
example, how can we integrate

x4 + 3x2 + 1
x3 + 2x2 + 2x + 1

=
x4 + 3x2 + 1

(x2 + x + 1)(x + 1)
?

This is a curve-ball question because we will answer such
questions only when the denominator has been factored into
linear and quadratic factors over R; the quadratic factors are
required to have negative discriminants (i.e., no real roots).
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Step One: polynomial division

The first step is to divide the denominator into the numerator,
getting a quotient and remainder. For example:

x4 + 3x2 + 1 = (x − 2)(x3 + 2x2 + 2x + 1) + 5x2 + 3x + 3.

Then the fraction may be written as a polynomial (which we
integrate) plus a rational function where the numerator has
lower degree than the denominator. For example:

x4 + 3x2 + 1
x3 + 2x2 + 2x + 1

= x − 2 +
5x2 + 3x + 3

x3 + 2x2 + 2x + 1
.
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Step Two: separation into partial fractions

We take the rational function that remains after division and
separate it into “partial fractions” (bite-sized pieces). For
example

5x2 + 3x + 3
x3 + 2x2 + 2x + 1

=
−2

x2 + x + 1
+

5
x + 1

.
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Step Three: integration

The bite-sized pieces can be integrated by techniques from
“freshman calculus,” which maybe were in Math 10A? For
example: ∫

5
x + 1

dx = 5 ln |x + 1|+ C

and ∫
−2

x2 + x + 1
dx = −4

3

√
3 arctan

(
1
3

√
3(2 x + 1)

)
.
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The main focus is on the algebra in Step Two: how do we know
that

5x2 + 3x + 3
x3 + 2x2 + 2x + 1

=
−2

x2 + x + 1
+

5
x + 1

?

We are supposed to know secretly that there are constants A,
B and C so that

5x2 + 3x + 3
x3 + 2x2 + 2x + 1

=
Ax + B

x2 + x + 1
+

C
x + 1

.

One can prove this, but we’re not giving the proof here.
However, if you believe that A, B and C exist, you can actually
find them.
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Multiply by the denominator x3 + 2x2 + 2x + 1 in the
expression

5x2 + 3x + 3
x3 + 2x2 + 2x + 1

=
Ax + b

x2 + x + 1
+

C
x + 1

,

getting the polynomial identity

5x2 + 3x + 3 = (Ax + B)(x + 1) + C(x2 + x + 1).

We can substitute x = −1 to kill off the first summand; we’ll get
5 = C. Then

5x2 + 3x + 3 = (Ax + B)(x + 1) + 5(x2 + x + 1).

Compare coefficients of x2; you get that A = 0. Plug in x = 0;
you get that 3 = B + 5, so B = −2.
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Let’s suppose that we wanted to decompose

6x2 + 22x + 18
(x + 1)(x + 2)(x + 3)

as a sum of partial fractions. We’d write

6x2 + 22x + 18
(x + 1)(x + 2)(x + 3)

=
A

x + 1
+

B
x + 2

+
C

x + 3

and multiply to get

6x2+22x+18 = A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2).

Set x = −1 to get 2 = A · 1 · 2, so A = 1. We find similarly that
B = 2 and C = 3 (I hope!).
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One more example: find A, B and C if

9x2 − 4x − 16(
x2 − x − 1

)
(x + 3)

=
Ax + B

x2 − x − 1
+

C
x + 3

.

The first operation is to multiply so as to get

9x2 − 4x − 16 = (Ax + B)(x + 3) + C(x2 − x − 1).

Put x = −3 to get 77 = 11C, so that C = 7. Then

9x2 − 4x − 16 = (Ax + B)(x + 3) + 7(x2 − x − 1).

Compare coefficients of x2 to get 9 = A + 7, so A = 2. Try
x = 0; this gives −16 = 3B − 7, so B = −3.
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