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Office hours

Monday 2:10–3:10 and Thursday 10:30–11:30 in Evans

Tuesday 10:30–noon at the SLC

Welcome to March!
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Meals

March 2, 6:30PM dinner at Chengdu Style
Restaurant—send email to reserve your place
March 3, 8AM breakfast—full
March 4, 12:30PM pop-up Faculty Club lunch—just show
up!
March 18, 8AM breakfast—send email to reserve your
place
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Some variance calculations

If Ω = {T,H } and X (T) = 0, X (H) = 1, then E [X ] = p, where p
is the probability of a head. It follows (board or doc camera)
that Var[X ] = p(1− p). We write σ2 for Var[X ], by the way.

Now imagine the binomial distribution attached to n successive
coin flips, and let X be the usual variable that counts the
number of heads. Trick: we think of X as X1 + · · ·+ Xn, where
Xi is 1 or 0 according as the i th coin flip is a T or H.

Cheat: we admit (without checking the definition in detail) that
the variables X1, X2,. . . , Xn are independent. We do this
because the various coin flips have nothing to do with each
other.
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It follows from the linearity of expected value that
E [X ] =

∑
E [Xi ] and from the independence of the Xi that

Var[X ] =
∑

Var[Xi ]. On the other hand, each Xi is a simple
Bernoulli variable with expected value p and variance p(1− p).
Thus:

E [X ] = np, Var[X ] = np(1− p).

Now let
X :=

X1 + · · ·+ Xn

n
,

so X represents the fraction of the time that our coin landed on
heads. It is immediate that

E [X ] = p, Var[X ] =
p(1− p)

n
=
σ2

n
.
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When we flip a coin n times, the number of heads divided by n
is “expected” to be p; as n→∞, the fraction in question is
close to p with high probability.

As an example, let’s flip a fair coin (p = 1/2) n times. The
probability that there are k heads is 1

2n

(n
k

)
. If we plot this

number as a function of k , the graph looks more and more
spiked as n gets big.
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Flat

The distribution of X when n = 1
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Curved

The distribution of X when n = 10
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Note that
(10

5

)
= 252, so that

(10
5

)
/210 is about 0.246.
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Spiking

The distribution of X when n = 100
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Spiked

The distribution of X when n = 1000
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In this story, we started with a Bernoulli random variable X
(“heads or tails?”) and considered the average of a large
number of copies. We could re-do the story with any random
variable X as long as the Xi continue to be independent copies
of X . In stat lingo, the Xi are independent, identically distributed
random variables.

The Law of Large Numbers states roughly that X approaches
the expected value of X ( written µ, typically) as n→∞.

The correct way to state the Law is to note that the probability
space Ω is growing as n→∞. In our coin-flipping example, it
has 2n elements when there are n flips. In the limit, Ω acquires
a probability structure that is built from the structures on its
finite pieces. The law states that the set of ω ∈ Ω for which
X (ω)→ µ is an event whose probability is 1.
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Central Limit Theorem

According to the “textbook,” Math 10A veterans will not be
surprised by the introduction of

Z := (X − µ) ·
√

n
σ
.

Subtracting µ from X gives you a random variable with mean 0;
multiplying by

√
n
σ scales the variable so its variance is 1.

In the examples that we’ve done pictorially, p = 1/2, σ2 = 1/4,
so σ = 1/2. We are taking the values of X , which ranged from
0 to 1 and shifting them by subtracting 1/2, thereby getting
numbers between −1/2 and +1/2. We are then multiplying by
2
√

n, so the values range between ±
√

n.
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The Central Limit Theorem states that Z is approximately
normal for large n. The “textbook” refers to outside sources,
and I’ll do the same. There’s something that I need to explain,
at least to myself. If you plot together the “bell curve” 1√

2π
e−x2/2

and the probability distribution Z , you’ll see that Z looks miuch
less tall than the bell curve (= normal curve).
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This needs some explanation. We will focus on the case of n
flips of a fair coin:

The plot of Z runs horizontally from −
√

n to
√

n and includes
n + 1 points. If we were to estimate the area under the plot,
we’d add together the areas of rectangles whose widths would
be 2
√

n · 1
n , in view of the fact that the n + 1 points divide an

interval of length 2
√

n into n sub-intervals. The heights of the
rectangles would be the various probabilities associated with
the distribution of Z ; these probabilities sum to 1. Thus our
estimate for the area would be 2

√
n · 1

n · 1 = 2√
n .

We want to compare the plot of Z with the bell curve; the area
under the bell curve is 1. Accordingly, we expect the plot of Z to
be roughly 2√

n as tall as the bell curve. In particular, the

maximum height of the Z plot should be around 2√
n ·

1√
2π

.
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For example, when n = 10, the maximum height of the Z -plot is
around 0.246, as we saw earlier. According to Sage, the value
of 2√

n ·
1√
2π

when n = 10 is 0.252313252202016.

For n = 100, 2√
n ·

1√
2π
≈ 0.08. That looks pretty much like the

height of the dotted curve that we saw two slides back.
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As I explained in class, it was a failure on my part not to include
a graph showing the exponention curve together with the
discrete plot that has been scaled up so that the y -axis is
stretched by a factor of

√
n

2 . Here is that happens when
n = 100:
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This is a pretty good fit!! The results for n = 1000 and
n = 10000 are similar and perhaps even more dramatic.
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We now have a complete attitude adjustment where we
imagine trying to learn about X through sampling. For example,
we might know that X corresponds to the flip of a biased coin
and would like to know p, the probability of a head. We do lots
of coin flips and compile data. The Xi are the same as before
(so that Xi refers to the i th coin flip). The actual flips of our coin
generate values of the functions Xi , and we write xi for these
actual values. Thus the xi are numbers, whereas the Xi are
functions on the probability space.

Jargon: a statistic is a function g of n variables. Then
g(X1, . . . ,Xn) is a function on the probability space; it’s a
random variable. The quantity g(x1, . . . , xn) is a number. More
jargon: a point statistic is a function g that can be used to
estimate the mean, variance or standard deviation of X .
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Example: the function X is a statistic that estimates the mean
of X . If flip a coin 1000 times and observe 678 heads, we would
estimate that the coin is biased with p = 0.678.

This blows my mind: the statistic

1
n − 1

n∑
k=1

(Xk − X )2

estimates Var[X ]. This is upsetting since Var[X ] = E [(X − µ)2]
and since expected values are estimated by taking averages
with n in the denominator. So why do we have n − 1? It’s
because

E [
n∑

k=1

(Xk − X )2] = (n − 1) Var[X ],

as we’re about to see.
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One point is that X is not E [X ] = µ, but only an estimate for µ.
Moreover, X = X1+···+Xn

n involves the various Xk in its definition.
As a result, the difference Xk − X is a combination of the Xi for
which the coefficient of Xk is n−1

n and the coefficients of the
other Xi are all −1

n . This proves nothing–so far–but presages a
somewhat lengthy computation in which n − 1s are likely to pop
up.

Following the “textbook," we will subtract µ from X , X and the
Xi . This makes their expected values all equal to 0 instead of µ
and does not change the differences Xk − X or the variance
of X . Also, we note for distinct j and k that
E [XjXk ] = E [Xj ]E [Xk ] by independence. The right-hand
expected values are both 0, so E [XjXk ] = 0. The takeaway is
that squares of sums will be sums of squares, when taking
expected values—cross terms won’t contribute.
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The next comment is that E [X 2
j ] = Var[X ] for all j . That’s

because the variables Xj are all distributed like X . The upshot
is that the quantity to be computed, E [

∑n
k=1(Xk − X )2], is just

C · Var[X ], where C is the sum of the coefficients of the various
X 2

j that appear when you write out
∑n

k=1(Xk − X )2. It’s easy to
make mistakes calculating (as you’ll see if I try to do this in front
of you with the document camera), but you should get
C = n − 1 if you persevere and don’t get spooked by the
subscripts.
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