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Office hours

Tuesday 10:30—noon at the SLC

Welcome to March!
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Meals

@ March 2, 6:30PM dinner at Chengdu Style
Restaurant—send email to reserve your place

@ March 3, 8AM breakfast—full

@ March 4, 12:30PM pop-up Faculty Club lunch—just show
up!

@ March 18, 8AM breakfast—send email to reserve your
place
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Some variance calculations

IfQ={T,H}and X(T) =0, X(H) =1, then E[X] = p, where p
is the probability of a head. It follows (board or doc camera)
that Var[X] = p(1 — p). We write ¢ for Var[X], by the way.
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Some variance calculations

IfQ={T,H}and X(T) =0, X(H) =1, then E[X] = p, where p
is the probability of a head. It follows (board or doc camera)
that Var[X] = p(1 — p). We write ¢ for Var[X], by the way.

Now imagine the binomial distribution attached to n successive
coin flips, and let X be the usual variable that counts the
number of heads. Trick: we think of X as Xj + - - - + Xj, where
Xi is 1 or 0 according as the jth coin flipisa T or H.
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Some variance calculations

IfQ={T,H}and X(T) =0, X(H) =1, then E[X] = p, where p
is the probability of a head. It follows (board or doc camera)
that Var[X] = p(1 — p). We write ¢ for Var[X], by the way.

Now imagine the binomial distribution attached to n successive
coin flips, and let X be the usual variable that counts the
number of heads. Trick: we think of X as Xj + - - - + Xj, where
Xi is 1 or 0 according as the jth coin flipisa T or H.

Cheat: we admit (without checking the definition in detail) that
the variables Xj, Xo,..., X, are independent. We do this
because the various coin flips have nothing to do with each
other.
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It follows from the linearity of expected value that
E[X] = >_ E[Xj] and from the independence of the X that
Var[X] = >_ Var[Xj]. On the other hand, each X; is a simple
Bernoulli variable with expected value p and variance p(1 — p).
Thus:

E[X] = np, Var[X]=np(1—p).

Now let
Y = 4)(1 + n +Xn7

so X represents the fraction of the time that our coin landed on
heads. It is immediate that

. o2
E[X]=p, Var[X]= p(1np) =
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When we flip a coin n times, the number of heads divided by n
is “expected” to be p; as n — oo, the fraction in question is
close to p with high probability.

As an example, let’s flip a fair coin (p = 1/2) ntimes. The
probability that there are k heads is o (7). If we plot this
number as a function of k, the graph looks more and more
spiked as n gets big.

Kenneth A. Ribet



The distribution of X when n = 1
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The distribution of X when n= 10

0.25 °

0.2

0.2 0.4

0.6 0.8 1

Note that () = 252, so that ('?) /2'° is about 0.246.
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Spiking

The distribution of X when n = 100
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Spiked
The distribution of X when n = 1000
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In this story, we started with a Bernoulli random variable X
("heads or tails?”) and considered the average of a large
number of copies. We could re-do the story with any random
variable X as long as the X; continue to be independent copies
of X. In stat lingo, the X; are independent, identically distributed
random variables.

The Law of Large Numbers states roughly that X approaches
the expected value of X ( written p, typically) as n — oc.

The correct way to state the Law is to note that the probability
space  is growing as n — oo. In our coin-flipping example, it
has 2" elements when there are n flips. In the limit, Q acquires
a probability structure that is built from the structures on its
finite pieces. The law states that the set of w € Q for which
X(w) — p is an event whose probability is 1.
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Central Limit Theorem

According to the “textbook,” Math 10A veterans will not be
surprised by the introduction of

Subtracting . from X gives you a random variable with mean 0;
multiplying by @ scales the variable so its variance is 1.

In the examples that we’ve done pictorially, p = 1/2, 02 = 1/4,
so o = 1/2. We are taking the values of X, which ranged from
0 to 1 and shifting them by subtracting 1/2, thereby getting
numbers between —1/2 and +1/2. We are then multiplying by
21/n, so the values range between +/n.
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The Central Limit Theorem states that Z is approximately
normal for large n. The “textbook” refers to outside sources,
and I'll do the same. There’s something that | need to explain,
at least to myself. If you plot together the “bell curve” ﬁe—xz/z
and the probability distribution Z, you'll see that Z looks miuch
less tall than the bell curve (= normal curve).
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This needs some explanation. We will focus on the case of n
flips of a fair coin:

The plot of Z runs horizontally from —+/n to v/n and includes
n+ 1 points. If we were to estimate the area under the plot,
we’'d add together the areas of rectangles whose widths would
be 2v/n- 15 in view of the fact that the n+ 1 points divide an
interval of length 2\/n into n sub-intervals. The heights of the
rectangles would be the various probabilities associated with
the distribution of Z; these probabilities sum to 1. Thus our
estimate for the area would be 2y/n- 1.1 = 2

T
We want to compare the plot of Z with the bell curve; the area
under the bell curve is 1. Accordingly, we expect the plot of Z to
be roughly % as tall as the bell curve. In particular, the

maximum height of the Z plot should be around % : \/%
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For example, when n = 10, the maximum height of the Z-plot is
around O 246, as we saw earlier. According to Sage, the value

of -2 7n F when n =10 is 0.252313252202016.
For n = 100, % : \/% ~ 0.08. That looks pretty much like the

height of the dotted curve that we saw two slides back.
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As | explained in class, it was a failure on my part not to include
a graph showing the exponention curve together with the
discrete plot that has been scaled up so that the y-axis is

stretched by a factor of @ Here is that happens when
n=100:
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This is a pretty good fit!! The results for n = 1000 and
n = 10000 are similar and perhaps even more dramatic.
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We now have a complete attitude adjustment where we
imagine trying to learn about X through sampling. For example,
we might know that X corresponds to the flip of a biased coin
and would like to know p, the probability of a head. We do lots
of coin flips and compile data. The X; are the same as before
(so that X; refers to the ith coin flip). The actual flips of our coin
generate values of the functions X;, and we write x; for these
actual values. Thus the x; are numbers, whereas the X; are
functions on the probability space.

Jargon: a statistic is a function g of n variables. Then
g9(Xi,..., Xp) is a function on the probability space; it's a
random variable. The quantity g(xi, ..., X») is @ number. More
jargon: a point statistic is a function g that can be used to
estimate the mean, variance or standard deviation of X.
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Example: the function X is a statistic that estimates the mean
of X. If flip a coin 1000 times and observe 678 heads, we would
estimate that the coin is biased with p = 0.678.

This blows my mind: the statistic
1< -
P > (X — X)?
k=1

estimates Var[X]. This is upsetting since Var[X] = E[(X — 1)?]
and since expected values are estimated by taking averages
with nin the denominator. So why do we have n— 17 It’s
because

E[Z (Xx — X)?] = (n— 1) Var[X],

as we’re about to see.
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One point is that X is not E[X] = pu, but only an estimate for 4.
Moreover, X = Xi+4%n jnyolves the various X in its definition.
As a result, the difference X — X is a combination of the X; for
which the coefficient of Xj is ”—;1 and the coefficients of the
other X; are all —15. This proves nothing—so far—but presages a
somewhat lengthy computation in which n — 1s are likely to pop
up.

Following the “textbook," we will subtract ;. from X, X and the
X;. This makes their expected values all equal to 0 instead of
and does not change the differences X, — X or the variance

of X. Also, we note for distinct j and k that

E[X;X«x] = E[Xj]E[Xk] by independence. The right-hand
expected values are both 0, so E[X;Xx] = 0. The takeaway is
that squares of sums will be sums of squares, when taking
expected values—cross terms won'’t contribute.
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The next comment is that E[ij] = Var[X] for all j. That’s
because the variables X; are all distributed like X. The upshot
is that the quantity to be computed, E[>_;_;(Xx — X)?], is just
C - Var[X], where C is the sum of the coefficients of the various
X? that appear when you write out > ¢ _; (Xx — X)?. It's easy to
make mistakes calculating (as you’ll see if | try to do this in front
of you with the document camera), but you should get

C = n— 1 if you persevere and don’t get spooked by the
subscripts.
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