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Important Announcement

The first midterm exam will be on February 16, not on February
18 as is indicated on the course web page and in previous
announcements. (I will change the course web page.)

You spoke; I listened.
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A Crossroads Lunch

Thursday, February 25 at 12:15PM.

This lunch is being organized by one of your classmates, who
will post on piazza to try to get a count of how many people
want to come.

The next breakfasts will be on January 27 (full), February 4,
February 12.
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A student writes:
I know that during class we had a vote of whether to
teach by either black board or power point slides. I
was wondering, is there a possibility if you can teach
in both styles like how you did today. My classmates
and I found it extremely helpful to have it taught in both
methods.

My response:

Thanks for the feedback. I’ll see whether it’s possible
to implement your suggestion. Perhaps I’ll prepare the
second lecture on slides but go to the boards much
more readily.
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In a class of 287 students, there are 186 second-year students.
Among the second-year students, eight have declared their
majors. In the entire class, 13 students have declared their
majors.

How many students in the class are either or
?

For a specific example: how many students are either (a)
undeclared or (b) second-year students?
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This question involves two concepts (and therefore should be
regarded as pedagogically suspect). The first concept is that of
a complement.

Let S be the set of students in the class (our class, actually)
and let A be the subset of S consisting of students who have
declared their majors.

The complement of A (in S) is the set Ac consisting of elements
of S that are not in A. One writes sometimes

Ac = S \ A or Ac = S − A.

The number of undeclared students in the class is
287− 13 = 274. In general:

|Ac| = |S| − |A|,

where | · | is used to denote the number of elements in a set.
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The main thing that we need to do is to relate the number of
elements of the union of two sets to the number of elements of
the individual sets and the number of elements of the
intersection. The formula is:

|B ∪ C| = |B|+ |C| − |B ∩ C|.

This is called “inclusion-exclusion” because you count up the
elements in B and in C and then “exclude” (subtract off) the
elements in the intersection because you would otherwise be
counting them twice.

In the application, B = Ac might be the set of undeclared
students and C might then be the set of second-year students.
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We have |B| = 274, C = 186. What is B ∩ C? This is the set of
undeclared second-year students:

B ∩ C = C − C ∩ A = C \ A.

Since C has 186 elements and C ∩ A has eight elements,
|B ∩ C| = 186− 8 = 178.

Thus

|B∪C| = |B|+ |C|−|B∩C| = 274+186−178 = 274+8 = 282.

Of course we can see this as follows: we count the students
who are either undeclared or second-year students by adding
the number of undeclared students (274) to the number of
declared second-year students (8).
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What if there are three sets instead of two? Suppose there are
four sets? n sets?

For three sets A, B and C, we can talk our way through the
formula

|A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C|.

The elements in the triple intersection are added in three times
and then subtracted off three times. They have to be added in
at the end so that they count exactly once.

How many integers between 1 and 100 are divisible by at least
one of the numbers 2, 3, 5?

Let A, B and C be the sets of integers in the range (1 · · · 100)
that are divisible by 2, 3 and 5, respectively. Then |A| = 50,
B = 33, etc., etc. The set A ∩ B ∩ C consists of multiples of 30
in the relevant range, so |A ∩ B ∩ C| = 3.

My answer to the question is 74. Is that right?
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Here’s another situation where the triple intersection comes in.
(I intend to explain this mainly on the boards.)

Suppose three students come up and hand me their iPhones. I
then want to return phones to students, but not necessarily to
their rightful owners. The map sending phones to people can
be modeled by a function

f : {1,2,3 } −→ {1,2,3 };

f (i) = j means that the i th phone (the one originally belonging
to student i is given to student j .

The number of such functions is 3× 3× 3 because there are
three possible recipients for each phone.
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We are interested only in functions that are one-to-one and
onto. This means that no student gets two or more phones and
that every student gets at least one phone. (The two conditions
are equivalent because the number of students is equal to the
number of phones.)

The functions like this are called permutations of {1,2,3 }.

The number of permutations of {1,2,3 } is 3! = 6.

The number of permutations of {1,2,3, . . . ,n } is n!
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Among the six permutations of {1,2,3 }, how many that the
property that f (i) 6= i for i = 1,2,3? This condition corresponds
to the requirement that no student gets his or her own phone
back.

We can calculate this by hand: f (1) can be either 2 or 3. To fix
ideas, say f (1) = 2. Then f (2) can’t be 1 because f (3) would
be forced to be 3. Thus f (2) = 3 and f (3) = 1. Similarly, if
f (1) = 3, then f (2) = 1 and f (3) = 2. Thus there are two such
functions.

The fraction of permutations of {1,2,3 } that have no “fixed
points” is 2/6 = 1/3. It is an interesting problem to calculate
this fraction when 3 is replaced by n. (See
https://en.wikipedia.org/wiki/Derangement.)

Kenneth A. Ribet January 21

https://en.wikipedia.org/wiki/Derangement


We can re-do the calculation by inclusion–exclusion:

Let A be the set of permutations f that take 1 to 1, i.e., are such
that f (1) = 1. Let B be the set of permutations that take 2 to 2;
let C be the set of permutations that take 3 to 3. Then
A ∪ B ∪ C is the set of permutations with at least one fixed
point. If |A ∪ B ∪ C| can be computed to be 4, then there are
6− 4 = 2 permutations with no fixed point. In the formula

|A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C|,

the double intersections and triple intersections consist only of
the identity function. Hence the right-hand side is

2 + 2 + 2− 1− 1− 1 + 1 = 6− 3 + 1 = 4,

as expected.
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For two sets, we add and then subtract. For three sets, we add,
subtract and add. For four, we add, subtract, add and subtract.
You can imagine the general picture. You can see it on slide 32
of the Combinatorics textbook.
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Pigeonhole Principle

There are lots of ways to say this. First of all, pigeonholes are
mailbox slots. Imagine placing a stack of letters into
pigeonholes. The principle is: If there are more letters than
pigeonholes, at least one pigeonhole has to get two or more
letters.

Mathematically, if we have a function f : S → T , where S and T
are finite sets, and if |S| > |T |, then there are two different
elements of S with the same image in T . In other words, there
are s, s′ ∈ S, s 6= s′, such that f (s) = f (s′).

Another way to state the conclusion: There is an element t of T
for which the equation f (x) = t has two or more solutions in S.

Yet another formulation: if f : S → T is a function between finite
sets that consistently takes different elements of S to different
elements of T , then |T | is at least as big as |S|.
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Here’s a concrete conclusion: In this class, there must be two
different students who student ID numbers end with the same
three digits. Here S is the set of students in the class T is the
set of integer strings from 000 to 999, and f : S → T is the
function that takes s to the last three digits of s’s SID.

In fact, two SIDs in the class are 25706010 and 25984010.

This was a major screwup on my part because there are 1000
such strings but only 287 students. The pigeonhole principle
does not apply. The situation is instead like that for birthdays.
(See the next slide.)
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Since there are fewer than 366 students in the class, the
Pigeonhole Principle does not guarantee that there are two
students with the same birthday. However, you probably have
heard of the Birthday Paradox: it’s actually extremely likely that
two of you have the same birthday. Since you are all roughly
the same age, it’s even highly likely that two of you were born
on the very same day.

You can all email me your birthdays. I’ll collate and write to
groups of you who have the same birthday. Few of you have
done this. So far there has been no collision!
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Rosen: Show that for every integer n there is a
positive multiple of n that has only 0s and 1s in its
decimal expansion.

Let n be a positive integer. Consider the n + 1 integers 1, 11,
111,. . . ,111 · · · 1, where the last integer in the series has n + 1
digits. Imagine dividing each integer in this series by n: we get
a quotient and a remainder. The remainder is an integer
between 0 and n − 1, so there are only n possible remainders.

Pigeonhole: two of the integers in the series must have the
same remainder on division by n. As a result, the difference of
those two integers will have remainder 0 on division by n. In
other words, the difference will be a multiple of n. If we make
the difference by subtracting the smaller of the two numbers
from the larger, we get a positive integer that’s a multiple of n.
The difference will have only 1’s and 0’s in its decimal
expansion.
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A numerical example

Suppose that n = 7. Then 1111110 (six 1’s followed by one 0)
is a multiple of 7; in fact it’s 7× 158730.

Generalization: If p is a prime number different from 2 and 5,
the p-digit number 11 · · · 110 is a multiple of p. To see this, you
need something called Fermat’s Little Theorem, which you’ll
find in most discrete math textbooks.

Kenneth A. Ribet January 21



Several of you have asked for more explanation as to how the
pigeonhole principle is being applied in this situation.

First of all, the key principle is that a function f : S → T between
two finite sets is not 1-1 if S has more elements than T . Not
being 1-1 means that there are two different elements of S that
have the same image in T . Using more symbols, we can say:
there are s, s′ ∈ S with s 6= s′ and f (s) = f (s′).

In our situation, S is the set of numbers 1, 11, . . . , 11 · · · 1;
there are n + 1 of these numbers. T is the set consisting of 0,
1, 2, 3,. . . n − 1. Thus S has more elements than T , which has
n elements. The function f takes an integer 1 · · · 1 to its
remainder on division by n.
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A homework problem

“Let S be a set of six positive integers whose maximum is at
most 14. Show that the sums of the elements in all the
nonempty subsets of S cannot all be distinct.”
There are 6 elements of S, so S has 26 = 64 subsets, including
the empty set. (We write |2S| = 64.) Thus there are 63
non-empty subsets.

To each non-empty subset T of S, we associate the sum of the
elements of T . The sum is at least 1 and at most
9 + 10 + 11 + 12 + 13 + 14 = 69. Thus the sums lie in a set
with 69 elements. Since 69 ≥ 63, we have no way to use the
Pigeonhole Principle.

There is an amazing trick, however. We ignore the set S itself
and consider only non-empty proper subsets T of S. There are
62 of these subsets. Since T has at most 5 elements, the sum
of the elements of T is at most 10 + 11 + 12 + 13 + 14 = 60.
Because 60 < 62, we now win. . . . This is quite subtle.
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Maybe not: the entire set S has a sum that cannot be
duplicated by a proper subset. In the same vein, the empty set
has a sum (0, by definition) that cannot be duplicated by a
non-empty subset. Thus it makes 100% sense to remove these
two extreme sets from consideration.

The wording of the problem forces us to ignore the empty set,
but we should realize quickly that the full set S will analogously
be of no use to us.
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