UC Berkeley Math 10B, Spring 2016: Homework 10

Due April 20

Matrix algebra

1. Let

$$A = \begin{pmatrix} -1 & 2 & 0 \\ 3 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 1 & 1 \\ -1 & -2 & 1 \end{pmatrix}$$
$$C = \begin{pmatrix} 3 & -1 \\ 0 & 2 \\ 1 & -1 \end{pmatrix}, \quad D = \begin{pmatrix} 4 & 0 \\ -1 & 2 \end{pmatrix}.$$

Compute the following quantities or explain why they are undefined:

(a) $A - B$	(b) $2B^T$	(c) AB	(d) BA	(e) $A - C$
(f) $A^T C$	(g) CA	(h) $-D$	(i) DC	(j) CD

2. Consider the two matrices

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & x \\ y & 1 \end{pmatrix}$$

Find all real values of x and y such that A and B commute, i.e., such that AB = BA.

- 3. Consider the vectors a = (1, -2, 2), b = (2, 1, 0), and c = (-1, -1, 1).
 - (a) Find the norms |a|, |b|, and |c|.
 - (b) Find the inner products $a \cdot b$, $a \cdot c$, and $b \cdot c$.
- 4. Which pairs of vectors $a = (a_1, a_2)$ and $b = (b_1, b_2)$ satisfy $|a \cdot b| = |a||b|$? In other words, when does equality hold in the Cauchy–Schwarz inequality for two vectors in \mathbb{R}^2 ?

Inverses and determinants

- 5. Consider the matrix $A = \begin{pmatrix} 3 & -5 \\ 1 & -2 \end{pmatrix}$.
 - (a) Find the inverse A^{-1} .
 - (b) Compute $A^{-1}A$ and AA^{-1} and confirm that $A^{-1}A = AA^{-1} = I$.
 - (c) Use A^{-1} to solve the linear system Ax = b where $b = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.
 - (d) Compute Ax and confirm that Ax = b.
- 6. Compute the inverses of the following matrices, or explain why the inverse does not exist:

(a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}$ (d) $\begin{pmatrix} 3 & 5 \\ 0 & 2 \end{pmatrix}$ (e) $\begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix}$

7. Compute the determinants

	1	0	2		4	-3	2		6	7	-2
(a)	0	3	1	(b)	1	-3	1	(c)	-2	-3	1
	4	1	1		9	1	0		7	7	$1 \mid$

(d) |cI|, where c is a scalar and I is the n-by-n identity matrix

8. (a) Show that the matrix
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & -2 & -1 \\ 3 & 1 & 2 \end{pmatrix}$$
 is invertible.
(b) Show that $A^{-1} = \begin{pmatrix} -3 & -2 & 2 \\ -5 & -4 & 3 \\ 7 & 5 & -4 \end{pmatrix}$.
(c) Use A^{-1} to solve the linear system $Ax = b$, where $b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

9. Show that $(A + B)^T = A^T + B^T$. More specifically, for any two matrices A and B, if one of $(A + B)^T$ and $A^T + B^T$ exists, then the other exists and the two are equal.