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The aim is to have the slides guide the discussion and for most
of the math work to be done on the chalkboards.

Also, problems that appear on the slides will be followed by
long pauses.
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Mathematical induction

Several students have asked me about mathematical induction
(usually just called “induction” for short). Here is a summary:

The positive integers are the numbers 1, 2, 3,. . . .

In many countries the natural numbers are the numbers 0, 1,
2,. . . .

In North America, some people think that the natural numbers
are the same thing as the positive integers. Others prefer to
have the natural numbers begin with 0. I like to include 0 and
will try to remind you of that whenever it might be an issue.
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Well ordering

Mathematical induction depends on the following fact (known
as the well-ordering principle):

Every non-empty set of positive integers has a smallest
element.

See https://en.wikipedia.org/wiki/
Well-ordering_principle for some discussion.
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In induction, you have a proposition of mathematics that has a
“paramter” n in it, for example the statement:

The sum of the first n positive integers is n(n+1)
2 .

The proposition can be called P(n). The principle of induction
is that to prove P(n) for all n, you need prove only:

P(1) (the “base case”)
P(k) −→ P(k + 1) for all k ≥ 1.

Heuristically, if you know this, you can use the implication to
deduce P(2) from P(1), then use the implication to deduce
P(3) from P(2), then use it again to deduce P(4), and so on
and so forth. “We continue in this matter.”

Induction nails down the logic that justifies this reasoning.

Kenneth A. Ribet January 28



Why induction works

Assume that we have established P(1) and that P(k) implies
P(k + 1) for all k . Then the claim is that P(n) is true for all n.

To see this, we consider the set S of positive integers n for
which P(n) is false. If S is empty, P(n) is true for all n. If not, S
has a least element—call it `. Then P(`) is false but P(n) is true
for all positive integers n less than `. Since P(1) is true, ` 6= 1.
Thus `− 1 is a positive integer. Because ` is the smallest
integer for which the proposition is false, P(`− 1) is true.
Taking k = `− 1 and using P(k)→ P(k + 1), we see now that
P(`) is true. This is a contradiction, so it must be the case that
S is empty, i.e., that P(n) is true for all n.
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To prove P(k) −→ P(k + 1), one assumes P(k) and shows that
one can deduce P(k + 1). Thus in induction proofs, one often
writes:

“Assume P(k). . . .”

This is mega-confusing to the unititiated: why is one assuming
what one wants to prove?!

Fortunately, we are the initiated.
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A first example

Consider:

P(n): the sum of the first n positive integers is
n(n + 1)

2
.

The statement P(1) is true because the sum of the first one
positive integer(s) is 1, which agrees with 1·2

2 .

To prove P(k)→ P(k + 1), we assume P(k) and try to deduce
P(k + 1). The statement P(k) says that the sum of the first k
positive integers is k(k+1)

2 . This clearly implies that the sum of
the first k + 1 positive integers is k(k+1)

2 + (k + 1). Using
algebra, we check that this expression coincides with (k+1)(k+2)

2
and thereby deduce P(k + 1).
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A more serious example

We let P(n) be the statement:

(x + y)n = xn + nxn−1y +

(
n
2

)
xn−2y2 + · · · yn,

i.e., the binomial theorem for exponent n. The statement P(1)
is OK: it says that (x + y)1 = x1 + y1. The main work is to show
that P(k) implies P(k + 1).

We assume P(k) and use this assertion to write

(x + y)k+1 = (xk + kxk−1y +

(
k
2

)
xk−2y2 + · · · yk )(x + y).

Then one uses the Pascal triangle identity to check that the
coefficient of xk+1−iy i in the product is

(k+1
i

)
, as required.
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Some questions

A. How many ways are there to deal hands of seven cards to
each of five players from a standard deck of 52 cards?

B. In how many ways can a photographer at a wedding arrange
6 people in a row from a group of 10 people (where the bride
and the groom are among these 10 people) if:

1 The bride must be in the picture?
2 both the bride and groom must be in the picture?
3 exactly one of the bride and the groom is in the picture?

C. How many ways are there to seat six people around a
circular table where two seatings are considered the same
when everyone has the same two neighbors without regard to
whether they are right or left neighbors?
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For the card problem, consider that the five players have been
numbered arbitrarily. There are

(52
7

)
ways to give the first player

her cards,
(45

7

)
ways to give the second player his cards, and so

on. Thus I think that the answer is:(
52
7

)(
45
7

)(
38
7

)(
31
7

)(
24
7

)
.
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For the wedding problem, it’s an extra wrinkle that the people
have to be arranged in a row. For each of the sub-problems, if
there are N ways to choose the group of 6, there are 6!N ways
of choosing the group and then ordering the six people in a line.

If the bride must be in the picture, she occupies one place and
there are

(9
5

)
ways to choose the other five people in the group

out of the nine remaining people.

If both the bride and groom are in the group, there are
(analogously)

(8
4

)
ways of choosing the other four people.

If either the bride or groom, but not both are in the picture: first
decide if it’s the bride or groom in the group—there are two
ways to do that. Then choose the remaining five people from
the eight people who are not from the married couple. Here
N = 2

(8
5

)
.
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Here’s a check: I said that there are 2
(8

5

)
ways to choose the

group with the bride or group but not both; also there are
(8

4

)
ways of choosing the group if both the bride and groom are
there. Clearly, there are

(10
6

)
ways to choose the group if we

don’t care who exactly is in it and
(8

6

)
ways to choose the group

with neither the bride nor groom. We must therefore have(
10
6

)
=

(
8
6

)
+

(
8
4

)
+ 2

(
8
5

)
.

Do we?

210 ?
= 28 + 70 + 2 · 56.

Yes, this seems to work.
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For the table problem, we can first think about the problem
where left–right does matter. We sit down one person—Alice,
say—at a seat and then have five choices for Alice’s neighbor
to the left, four choices for the neighbor to the left of the
neighbor, and so on. Thus there are 5! choices for the seating
arrangement if we care about handedness. If we don’t, we can
do a single flip, changing left to right everywhere (and vice
versa).

I therefore believe that the answer is 5!/2.
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