
This is the End

Kenneth A. Ribet

UC Berkeley

Math 10B
April 28, 2016

Kenneth A. Ribet April 28

Social Events

Tomorrow at 12:30PM: Faculty Club lunch
(just show up).
Wednesday, May 4, Field trip to the Big C.
(Meet 2PM at the south end of the Foothill
parking lot.)
May 6, 8:30AM: Faculty Club breakfast. This
is a new event—send email to sign up (limit
20 people).
May 6, 12:30PM: Faculty Club lunch (just
show up).

Kenneth A. Ribet April 28

Don’t leave early

After our discussion of dynamic programming,
I’ll attempt to orchestrate a class photo:

everyone come to the front, and we’ll grab
someone from outside to snap a photo.

Kenneth A. Ribet April 28

Final Exam, May 9

It’s here (F295 Haas).
It’s a 3-hour exam that begins at 11:30AM (not 11:40AM)
on Monday, May 9. (Didn’t I mention the date somewhere
already?)
You can bring one two-sided sheet of notes. No devices,
calculators, watches. . . .
Don’t you love bullet points?
The exam will be harder than the midterms (by your
request, as communicated by the GSIs).
It covers everything we have done together.
It will probably stress the last third of the course ever so
slightly.

Kenneth A. Ribet April 28

Course evaluation

Course evaluations for this class are open.
“Although students received an invitation email
and reminders along the way, previous research
demonstrates that a personal reminder from the
instructor and an explanation of how evaluations
are used to inform your teaching can make a
positive impact on response rate and quality.”

Kenneth A. Ribet April 28

RRR Week

This class will meet as usual on Tuesday and
Thursday at 2:10PM in this room. With luck,
GSIs will be on hand on Tuesday to conduct a
review. Please prepare questions for Thursday.

If you don’t see me at 2:10 on Tuesday, we will
probably have United Airlines to blame. I will be
away on Monday and on Tuesday morning.

I will hold office hours as follows next week:
Thursday 10:30–noon,
Friday 10:45–12:15 (lunch to follow).

Kenneth A. Ribet April 28

Dynamic programming

According to Wikipedia, dynamic programming is

a method for solving a complex problem by breaking it
down into a collection of simpler subproblems, solving
each of those subproblems just once, and storing their
solutions—ideally, using a memory-based data
structure. The next time the same subproblem occurs,
instead of recomputing its solution, one simply looks
up the previously computed solution, thereby saving
computation time at the expense of a (hopefully)
modest expenditure in storage space.

The Wikipedia page gives a large number of examples where
dynamic programming is useful. Our “textbook”
Dynamics.pdf provides a simplified account of the
Needleman–Wunsch algorithm. The general problem is one of
sequence alignment.

Kenneth A. Ribet April 28

https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Sequence_alignment

In the problem, we are trying to compare two finite sequences
of letters

a1a2 · · · am, b1b2 · · · bn,

where each a and b is taken from the alphabet {A,C,G,T }.

The rule is that we are allowed to “expand” either sequence by
adding blank characters. The aim is to insert blank characters
(if necessary) so as to maximize the number of indices i such
that ai = bi ∈ {A,C,G,T }.

The “textbook” gives the example of the two strings

GCTA, GTAG.

The second string can be expanded to G_TAG, which then
agrees with GCTA in three places. It is 99% clear by inspection
that three places of agreement is the best that we can do in this
example.

Kenneth A. Ribet April 28

What about the general case?

Actually, the Needleman–Wunsch algorithm was published by
Saul B. Needleman and Christian D. Wunsch in 1970.

Kenneth A. Ribet April 28

The strings a and b are presumably of different length. We are
allowed to add spaces at the beginning and/or end of either
string (as well as in the middle of either). Adding places at the
beginning of a, for example, can be viewed as sliding a along b.
Thus we are aligning a alongside b. The number of places of
agreement is then the score of the resulting alignment.

We can mentally imagine truncating a so that it stops at aj and
b so that it stops at bi . (If j is less than m or i is less than n, this
makes the problem shorter and presumably easier.) The
optimal (i.e., largest) score for an alignment of a1 · · · aj with
b1 · · · bi will be denoted Mij .

If there is no truncation, then j = m, i = n. We seek to compute
Mnm.

Kenneth A. Ribet April 28

The alignment that we are after—the “one” with optimal
score—need not be unique. For example, we can get the score
“1” from G A and A G in two ways: we can align the two Gs
vertically or align the two As vertically:

_ G A
A G _

or
G A _
_ A G.

Kenneth A. Ribet April 28

A key point is that there is a recursive relation among the
various Mij . If you know the numbers for small indices, you can
compute them for larger indices:

Suppose you want to align a1 · · · aj with b1 · · · bi . If the
alignment has aj above bi , then Mij = Mi−1,j−1 + S(i , j), where
S(i , j) is 0 if aj 6= bi and is 1 if aj = bi . If not, then the rightmost
element of a is to the right of the last element of b, or vice
versa. If aj sticks out to the right of bi , then aj is irrelevant.
Similarly, if bi protrudes to the right of aj , then bi is irrelevant.
Hence Mij is the maximum of these three numbers:

Mi−1,j , Mi,j−1, Mi−1,j−1 + S(i , j).

This makes sense even if i or j is 1—we just let M(i ,0) = 0 for
all i and do the same for M(0, j).

Kenneth A. Ribet April 28

So far, so good. However, the mere fact that a function is
recursively defined does not mean that it is easy to compute.
One can say in fact that dynamic programming is a technique
for computing recursive functions by storing intermediate
results in an intelligent way.

As Wikipedia explains, the recursive definition of the Fibonacci
sequence makes it onerous to compute even for small indices.
The fifth Fibonacci number is the sum of the fourth and third;
the fourth is the sum of the third and second; the third is the
sum of the second and first,. . . . If you don’t pay attention, you’ll
write the fifth Fibonacci number is an eight-term sum and the
nth number will be a sum with 2n−2 terms. When n is large,
there’s hell to pay.

Kenneth A. Ribet April 28

The Needleman–Wunsch algorithm finds an optimal alignment
of two sequences using two tables (= matrices): a scoring
table, which holds numbers, and a traceback table, which holds
arrows that keep track of where the numbers came from.

I will illustrate the algorithm (on the document camera) in two
examples.

The sequence a1 · · · an will be called “A” and the sequence
b1 · · · bm will be called “B.”

Kenneth A. Ribet April 28

For reference, here is how we deduce the sequences at the
end from the traceback table:

→ means that we write down the last unused letter of A
above a blank (for B);y means that we write down the last unused letter of B
below a blank (for A);
↘ means that we write down the last unused letter of A
above the last unused letter of B.

We take letters of A and of B from right to left.

Kenneth A. Ribet April 28

Example 1

This example comes from the online “textbook”:

Sequence A = G C T A .

Sequence B = G T A G .

Kenneth A. Ribet April 28

The algorithm produced

G C T A _
G _ T A G.

There are three matches after alignment, and the optimal score
is 3.

Note that we are scoring ‘1’ for each match and ‘0’ for
everything else. We could have different scores for each of
these possibilities:

a match,
a mismatch: two different letters,
a letter lined up with a blank.

The algorithm works whenever scores are assigned to the three
possibilities.

Kenneth A. Ribet April 28

The second example comes from Lior Pachter’s second MT
(earlier this month):

Sequence A = G A T T A C A .

Sequence B = A T A T A A C.

Kenneth A. Ribet April 28

When I did this at home, I ended up with

G A T _ T _ A C A
_ A T A T A A C _,

which has five matches.

An important comment is that the path to the optimal score is
not unique (in general). In this example, it seems that there
were quite a few cells in the traceback array where there were
two arrow choices. Accordingly, it is plausible to me that there
could be more than one path back from the southeast corner of
the traceback array to the northwest corner.

Kenneth A. Ribet April 28

