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First some announcements

The next midterm will be on Thursday, here, in 48 hours.

One two-sided sheet of notes, just like last time.

Comments and questions: see piazza.

James: “I’ve announced a review session on Piazza: tomorrow
night 6–7:30 in 2 Leconte. The capacity is only 100 (that’s the
best I could get!) so get there early. If you can’t get in, have a
friend take notes for you. Possibly someone could post detailed
(and legible) notes on Piazza afterward."
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The next breakfast will be on Thursday, November 3 at 8:30AM.
There are about a dozen people signed up, so there are
roughly eight more slots.

To sign up, send me email.

Also, let’s not forget the pop-in lunch on Friday at 12:30PM. The
Faculty Club has chicken vindaloo as its curry this week.
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The syllabus calls for us to discuss more examples of
differential equations (“dynamics”) today and for us to have a
75-minute introduction to multivariable calculus one week from
today.

Nah.

Instead, I’ll talk about integration today. I’ll also call for
questions.

Next week we’ll start our discussion of probability.
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I still think that it’s worth discussing the fact that the area under
the curve y = e−x2

is
π

2
. Let’s try again. . . .
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Set A(t) =
(∫ t

0
e−x2

dx
)2

. The assertion to be established is

A(∞)
?
=
π

4
, i.e., lim

t→∞
A(t) =

π

4
.

Let

B(t) =
∫ 1

0

e−t2(1+x2)

1 + x2 dx .

The method of proof is to show that A(t) + B(t) has derivative
equal to 0 (identically).
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If you believe this, then you’ll agree that A(t) + B(t) is a
constant. Taking t = 0, you see that the constant is

π

4
because∫ 1

0

1
1 + x2 dx =

π

4
.

Since lim
t→∞

B(t) is pretty obviously 0, we must have

lim
t→∞

A(t) =
π

4
,

as desired.
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In other words, we have to show A′(t) = −B′(t). We do that by
computing separately the derivatives of A and B.

First, A: The fundamental theorem of calculus gives

A′(t) = 2
(∫ t

0
e−x2

dx
)
· d

dt

(∫ t

0
e−x2

dx
)

= 2e−t2
∫ t

0
e−x2

dx .

In the integral on the right, put u =
x
t

, x = tu, dx = t du. The
integral with respect to u runs from 0 to 1, and a short
computation shows

A′(t) =
∫ 1

0
2te−t2(1+u2) du.

Equivalently,

A′(t) =
∫ 1

0
2te−t2(1+x2) dx ;

we just changed the letter of the alphabet in the integration.
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Recall that

B(t) =
∫ 1

0

e−t2(1+x2)

1 + x2 dx .

To differentiate B with respect to t , all we have to do is

differentate the integrand
e−t2(1+x2)

1 + x2 with respect to t and then

integrate the result with respect to x .

However, the derivative of
e−t2(1+x2)

1 + x2 with respect to t is clearly

−2te−t2(1+x2). This is exactly the negative of the function that
you integrate to get A′(t). Hence A′(t) = −B′(t), which is what
we wanted.
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