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Friday’s Blue Bottle Coffee visit

Yesterday’s breakfast
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Announcements

No Ribet office hour on Thursday. I’ll be away, and James will
take over the lecture.

Faculty Club “pop-in” lunches on Wednesday, November 16
and on Monday, November 21, both at high noon.

Breakfast Thursday, December 1 at 9AM (new event).

Breakfast Monday, December 5 at 9AM (new event).
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Independence

In Math 10B, there is the notion of independent events in a
probability space: if A and B are subsets of Ω, then A and B are
independent if

P(A ∩ B) = P(A)P(B).

The equation is automatically true when A or B has
probability 0 because both sides of the equation are 0. So we
can and probably should assume P(A),P(B) > 0.

Then (by definition) the condition of independence can be
interpreted as the equality

P(A|B) = P(A),

where the left-hand side is the probability of “A given B.” If A
has positive probability, we can symmetrically rephrase the
condition as

P(B|A) = P(B).
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Example (10B)

We consider the (eight-element) space of outcomes of three
tosses of a fair coin; one such outcome is HTH. Consider these
two events:

A: the outcome is mixed (not TTT or HHH);
B: there is at most one T in the string.
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The first event consists of six of the eight outcomes, so
P(A) = 3/4. Similarly, there is one outcome with three T’s and
three with two T’s; thus B has four elements and P(B) = 1/2.

The two are independent if and only if p(A ∩ B) =
3
4
· 1

2
=

3
8

,
i.e., if and only if A ∩ B has three elements.

This is true because A ∩ B is the set of outcomes with exactly
one T, so A ∩ B has three elements.

I’ll miss you guys too. (I won’t be teaching 10B next semester.)
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There is a more general definition for a finite set of events A1,
A2,. . . , At : they are independent if even after reordering the
events we have

P(A1 ∩ A2) = P(A1)P(A2),

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3),

P(A1 ∩ A2 ∩ A3 ∩ A4) = P(A1)P(A2)P(A3)P(A4),

and so on.
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Random Variables

Two random variables X1 and X2 are independent if the events
X1 ≤ x1 and X2 ≤ x2 are independent for all numbers x1 and x2.
This means:

P(X1 ≤ x1 and X2 ≤ x2) = P(X1 ≤ x1)P(X2 ≤ x2)

for all x1 and x2. There’s a similar definition for the
independence of n random variables.

The probability on the left side of the equation is called
FX1,X2(x1, x2) or simply F (x1, x2); it’s called the joint cumulative
distribution function for X1 and X2. Independence then means
that

FX1,X2(x1, x2) = FX1(x1)FX2(x2)

for all x1 and x2.
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People understand independence to mean “not having anything
to do with each other.” For example, our probability space could
be the set of all possible outcomes of rolling a single die 42
times; these are strings a1a2 · · · a42 in which each “coordinate”
ai is between 1 and 6.

For each i , let Xi be the value of the i th roll, i.e.,

Xi(a1a2 · · · a42) = ai .

It is “obvious” (at least intuitively) that the set of random
variables {Xi} is independent because the different rolls don’t
depend on each other.

When I taught 10B last semester, I wondered how hard it would
be to verify the independence of the Xi with an honest check of
the definition. I’m still wondering.
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Expected values

If c is a constant (i.e., a number) and X is a random variable,
then

E [cX ] = cE [X ].

If X1, . . . ,Xn are random variables, then

E [X1 + · · ·+ Xn] = E [X1] + · · ·E [Xn].

Both statements are pretty obvious in the case when we’re
dealing with finite sums and then become true “in the limit”
when we’re dealing with continuous random variables.
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If X is a continuous random variable with f (x) as its PDF, what
can you say about cX? If c = 0, cX = 0 is discrete. If c 6= 0,
then cX is continuous, and its PDF is equal to what?

We did the computation in class and thought that the answer

might be
1
c

f (
x
c

). What do you think?
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If X and Y are random variables, is it true that

E [XY ]
?
= E [X ]E [Y ]?

Not always. For a simple example, flip a coin one time and let
X = 1 if we get H and X = 0 if we get T. Let X = Y . . . . The

LHS is
1
2

, while the RSH is
1
2
· 1

2
=

1
4

.
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A theorem

If X and Y are independent, then

E [XY ] = E [X ]E [Y ].

For discrete random variables, the proof comes about by
manipulating sums in a straightforward way. You can see the
computation, for example, on page 4 of computer science
course notes that I found by googling. (The second author
received her PhD from UC Berkeley. Go Bears!)
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Variance

If X and Y are independent then Var[X + Y ] = Var[X ] + Var[Y ].
To verify this, we can replace X by X − E [X ] and Y by
Y − E [Y ]. This changes nobody’s variance and makes E [X ],
E [Y ] and E [X + Y ] all equal to 0. Then

Var[X + Y ] = E [(X + Y )2] = E [X 2] + 2E [XY ] + E [Y 2]

= E [X 2] + 2E [X ]E [Y ] + E [Y 2]

= E [X 2] + 0 + E [Y 2] = Var[X ] + Var[Y ].

We used the independence when we equated E [XY ] and
E [X ]E [Y ].
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Identically distributed random variables

We say that a bunch of random variables Xi are identically
distributed if they have the same CDFs (equivalently: if they
have the same PDFs). This means that P(a ≤ Xi ≤ b) is the
same for all the different i .

We are especially interested in the situation where all the
random variables are (1) independent and (2) identically
distributed. If you type “iid” into google, the suggested
completion is iid random variables.
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Now suppose that X1, . . . ,Xn are i.i.d. random variables. Then

Var[X1 + . . .+ Xn] = nσ2,

where σ is the common std. deviation of all the Xi . Therefore

Var
[

X1 + . . .+ Xn

n

]
=
σ2

n

because of the general formula Var[cX ] = c2 Var[X ].

Set X =
X1 + . . .+ Xn

n
; it’s the average of the Xi . Then X has

variance
σ2

n
and has standard deviation equal to

σ√
n

.

Kenneth A. Ribet Probability



The interpretation of this formula is supplied by
Prob-Stat.pdf:

. . . for large n, the average X is much “less random”
than each individual random variable X1,X2, . . . ,Xn.
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Law of Large Numbers

See Wikipedia for a perfectly lucid discussion with some
examples.

For the rest of this discussion, we imagine a sequence of i.i.d.’s

X1,X2, . . . ,X47, . . .

and write
X n =

X1 + . . .+ Xn

n
.

Thus X n is the X of the previous slide, but now we’re
considering an infinite sequence of random variables and take
the average of the first n Xis for each n. We are thinking n→∞
and have the idea that the X n become so little random that they
converge to the obvious constant random variable.

The obvious constant is µ = the common expected value of all
of the Xi .
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The Law of Large Numbers states that indeed:

X n −→ µ

as n approaches∞.

The only question is what that means.

The Wikipedia page talks of the “weak” and “strong” laws and a
discussion of the difference between the two.
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Here’s the strong law:

P( lim
n→∞

X n = µ) = 1.

This is what (I think) it means:

For each point ω of the probability space Ω, we can consider
the sequence of real numbers X n(ω). Does that sequence
converge to µ as n→∞? Maybe yes, maybe no.

Let A ⊆ Ω be the set of ω for which the answer is “no.” Then A
is small in the sense that P(A) = 0.
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Central Limit Theorem

We continue with a sequence Xi as in previous slides and
introduce the averages X n as on previous slides. These
random variables still have average µ = the common expected
value of the Xi ; the standard deviation of X n is

σ√
n

, as we saw

some minutes ago. We introduce for each n:

(X n − µ)
√

n
σ

.

These random variables have been rigged so as to have
mean 0 and standard deviation 1. . .

. . . just like the standard normal variable, which has PDF equal

to
1√
2π

e−x2/2.
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The theorem

For real numbers a and b with a ≤ b:

P

(
a ≤ (X n − µ)

√
n

σ
≤ b

)
−→ 1√

2π

∫ b

a
e−x2/2 dx

as n→∞.

The theorem is often paraphrased by the statement that the

variables
(X n − µ)

√
n

σ
are becoming more and more like a

standard normal variable.
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