
Math 10A
August 30, 2016
Prof. Ken Ribet

Announcements. Chapter 1 of the textbook is available to you via bCourses.
The Cal Student Store has ordered more copies.

Wiley: “I know that the Follett store across the street from the Cal store will
be receiving an additional order of the Schreiber texts tomorrow (the standard
version at the custom price). I don’t have tracking for the Cal store yet, but it’s
likely that they will arrive tomorrow too.”

Only a few students from last semester’s 10B course have offered their books for
sale. The demand from this class vastly outstrips the supply, but I hope to coax
out a few more copies from the sophomores.

Richard Bamler has sent me some “handouts” that illustrate interesting func-
tions, especially in the context of biology. I’ll add them to bCourses as well.

Lecturing technique. On Tuesday, August 30, I plan to lecture using the chalk-
boards. There won’t be any slides or “documents” (for the document camera).
After the lecture, let me know what you think of that mode of communication.
I’m writing these notes with some incidental remarks that might have made their
way to the slides for the lecture—if there were any.

Sequences. The book says that a sequence is a real-valued function defined on
the set of natural numbers. You should be a tiny bit careful about the phrase
“natural numbers.” In North America, it is most common to refer to the set of
positive integers { 1, 2, 3, . . .} as the set of natural numbers. Outside of North
America, most authors include 0 as a natural number. But, more importantly, a
sequence (an) can well have a 0th term even people are skittish as including 0 as
a natural number. Also, some sequences are defined only for a finite number of
values of n. For example, we could let an be the elevation (in meters) above sea
level of Floor n of Evans Hall. In this example, there’d be an a0 (for the ground
floor) and an a−1 for the basement. There’d be an an for n = 1, . . . , 10 but no
a11 (or anything beyond).

Visit https://oeis.org for an online oracle that identifes a sequence for you
if you type in the first few terms. In spring, 2013, I was lecturing in Math 55
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with an open laptop and told my students about the On-Line Encyclopedia of
Integer Sequences. I decided to trick OEIS by typing in the street numbers for
stops on a certain New York City subway line. To my amazement, the oracle
wasn’t tricked at all—it identified the subway line!

On page 87, the textbook mentions “difference equations”; these are situations
where a sequence is defined recursively. For example, the famous Fibonacci
sequence is defined by decreeing that the first two values of the sequence are 0
and 1 and that further values are computed from previous values by the rule

an+2 = an+1 + an.

There is a fairly long section on difference equations in Math 10B.

In the textbook, the authors consider only difference equations in which each
value of the sequence is computed from the previous value (i.e., from only one
previous value) by some algorithm. This can be written as the formula

an+1 = f(an),

where f is some function.

Here’s an interesting example: we start with a1 = 1 and define

an+1 =
1

2

(
an +

2

an

)
for n ≥ 1. The sequence begins 1, 1.5, 1.41666666666667, 1.41421568627451,
1.41421356237469, 1.41421356237309 and 1.41421356237309 . Note that

√
2 ≈

1.41421356237310. It looks as if the sequence is converging to the square root
of 2. (Spoiler: it is!)

As the book explains (p. 93), an equilibrium for the difference equation an+1 =
f(an) is a number a such that f(a) = a. If you start with a1 = a, then the
sequence (an) is constant: all of its values are equal to a. In the example that
we just considered,

√
2 is an equilibrium for the equation because 2/

√
2 =
√

2:
the average of a1 and 2/a1 will be equal to a1 if a1 =

√
2.

You can find equilibrium points for an+1 = f(an) by looking for numbers a that
satisfy a = f(a).
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Sums. Very often, sequences are defined as “partial sums”; for example, we
might have

an = 1 +
1

2
+

1

3
+ · · ·+ 1

n
or

bn =
1

2
+

1

4
+

1

8
+ · · ·+ 1

2n

for n ≥ 1. The word “partial” is appropriate because of the allusion to the
corresponding infinite series

∞∑
j=1

1

j
,

∞∑
j=1

1

2j
.

These series are given meaning by defining them to be the limits (if they exist)
of the sequences an and bn defined just above.

Limits, did we say “limits”? In discussing a sequence before, did we using the
phrase “converging to”?

Limits. Faced with a sequence (an), we might want to figure out what happens
for n very big. What is the limit of an as n tends to infinity? A simple principle
is that lim

n→∞
1
n = 0. You can get a lot of mileage out of this fact. For example,

you’ll discover that

lim
n→∞

3n4 + 5n2 + 17n + 9

96n4 + 39
=

3

96

by dividing numerator and denominator of 3n4+5n2+17n+9
96n4+39 by n4 and looking at

the behavior of all the individual terms. You’ll want to use the fact that a limit of
a sum is the sum of the limits and that similar statements are true for products
and quotients. Most students have a pretty good intuitive understanding of
what’s going on; the important piece of advice I’ll give you is to keep calm and
have confidence that you can figure out the correct answer.

On the other hand, you’ll need more experience before figuring out limits like

lim
n→∞

(
1 +

1

n

)n

, lim
n→∞

n
√
n.

In the first limit, the base
(
1 + 1

n

)
is approaching 1, making you think that the

limit will be 1; on the other hand, the exponent is getting big, making you think
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that the limit will be large. In fact, the limit is a number around 2.718, which
we’ve defined to be e, so it’s not 1 and not infinity. In the second limit, the fact
that we’re taking the nth root of a “number” makes you think that the limit will
be close to 1; recall that the nth root of a fixed number like 49 approaches 1 as
n → ∞. On the other hand, we’re taking the nth root of a bigger and bigger
number, so it’s not really clear what’s going on. As we’ll see later, l’Hôpital’s
Rule helps us clarify limits in which forces are competing to raise and lower the
limit.

The next thing to look at is a limit like

lim
x→a

f(x),

where f is some reasonable function like x2. To say the limit is L is to say that
f(x) is getting close to L as x approaches a. In 99% of the situations when there
is an f(a), the function f(x) gets close to f(a), and that’s the answer: L = f(a).
In the remaining 1% of the situations, either there is no f(a) or there is an f(a)
that has been defined malevolently.

In some sense, differential calculus is about that 1%. However, it’s about the
1% where there is no f(a) but there ought to be an f(a), and you can figure out
what it is. A quintessential example is given by

lim
x→1

x2 − 1

x− 1
.

We will discuss this type of example because it occurs all over the place when
we compute derivatives.

Derivatives. The derivative of a function f at a point a is the slope of the line
tangent to the graph of y = f(x) at the point (a, f(a)). We think of the tangent
line as the “limiting case” of the secant line that connects (a, f(a)) to (b, f(b))
where b is a number close to a. As b→ a, the secant line approaches the tangent
line, and the slope of the secant line approaches the slope of the tangent line.

Thus a derivative is a limit.
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