GSI name: Roy Zhao

Linear Regression and Correlation

Concepts

1. We have

$$
a=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}(x-\bar{x})^{2}}, b=\bar{y}-a \bar{x},
$$

where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is the average of the x values and $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ is the average of the y values.
The correlation coefficient of a set of points $\left\{\left(x_{i}, y_{i}\right)\right\}$ is given by

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} .
$$

Another way to represent that the correlation coefficient is the cosine of the angle between the two vectors $\vec{x}=\left(x_{i}-\bar{x}\right)$ and $\vec{y}=\left(y_{i}-\bar{y}\right)$. So, we can write

$$
r=\frac{\vec{x} \circ \vec{y}}{|\vec{x}||\vec{y}|} .
$$

It is always between -1 and 1 by Cauchy-Schwarz.
Another way to write this is in terms of the sample covariance and sample standard deviation. They are defined as

$$
\operatorname{cov}(x, y)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n}, \sigma_{x}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}}, \sigma_{y}=\sqrt{\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n}} .
$$

Then another formula is

$$
r=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}, a=r \frac{\sigma_{y}}{\sigma_{x}} .
$$

Examples

2. Suppose you want to know whether performance on Quiz 1 is correlated with performance on Quiz 13. You randomly choose 5 students' quiz scores and get the following values.

Student	Quiz 1	Quiz 13
A	7	9
B	12	11
C	6	5
D	11	10
E	4	5

Calculate the correlation coefficient r as well as the line of best fit.

Solution: First we need to find the sample standard deviation where x is the Quiz 1 scores and y is the Quiz 13 scores. In order to find the sample standard deviation, we first need to calculate the sample average (\bar{x}). In this case, we will get $\bar{x}=8$. The average of the Quiz 13 scores also gives us $\bar{y}=8$. To keep track of the calculation, the following chart is helpful.

	$x_{i}-\bar{x}$	$y_{i}-\bar{y}$
A	-1	1
B	4	3
C	-2	-3
D	3	2
E	-4	-3

It is very important that you keep track of whether each entry is positive or negative (for calculating covariance). Then we can get σ_{x}^{2} by averaging the squares of the first column.

$$
\sigma_{x}=\sqrt{\frac{1}{5}\left[(-1)^{2}+4^{2}+(-2)^{2}+3^{2}+(-4)^{2}\right]}=\sqrt{\frac{46}{5}} \approx 3.03
$$

A similar calculation will give us that $\sigma_{y}=\sqrt{\frac{32}{5}} \approx 2.53$.
To get the sample covaraince, we average the product of each row.

$$
\operatorname{cov}(x, y)=\frac{1}{5}[(-1) \cdot 1+4 \cdot 3+(-2) \cdot(-3)+3 \cdot 2+(-4) \cdot(-3)]=7
$$

Finally we can simply calculate the correlation coefficient with the formula:

$$
r=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}} \approx \frac{7}{3.03 \cdot 2.53} \approx 0.913
$$

This confirms what we thought with our initial picture. There is a fairly strong positive linear relationship between scores on Quiz 1 and scores on Quiz 13.
First we calculate the slope a of the line of best fit.

$$
a=r \frac{\sigma_{y}}{\sigma_{x}}
$$

For our example,

$$
a \approx 0.913 \cdot \frac{2.53}{3.03} \approx 0.762
$$

Finally, we can calculate the y-intercept in our line of best fit by noting that $\bar{y}=a \bar{x}+b$ and solving for b, since we know the other 3 variables. Here we get $8=0.762 \cdot 8+b$, so $b \approx 1.901$. So our line of best fit is $y=0.762 x+1.901$. So if someone get 9 on Quiz 1, we would guess a score of about 8.76 on Quiz 12. Our large r-value gives us a pretty high confidence that this is an accurate guess.

Problems

3. True FALSE The line of best fit always exists.

Solution: If there is only one point or all the points have the same x value, then the line of best fit will not exist.
4. True FALSE If you only have two data points with different x values, then the correlation coefficient r is either 1 or -1 .

Solution: There is always a line between two points with different x values. But, if the line is horizontal the r coefficient will not always exist.
5. TRUE False The correlation is always between -1 and 1 inclusive.
6. True FALSE If the correlation between two sets of data is -1 , then y is proportional to x^{-1}.
7. TRUE False If we shift the data (by for instance adding 5 to all of the y values), then the correlation does not change.
8. True FALSE For two random variables X, Y, we have $\operatorname{Cov}(10 X, 10 Y)=\operatorname{Cov}(X, Y)$.

Solution: We have $\operatorname{Cov}(10 X, 10 Y)=10 \cdot 10 \operatorname{Cov}(X, Y)$.
9. Is there a relationship between the amount of antibody A and antibody B in a sick patient? You take antibody A and B counts per milliliter from 4 patients (in reality you will have a much, much larger sample size).

Patient	Antibody A	Antibody B
A	120	100
B	95	110
C	115	130
D	110	80

Calculate the correlation coefficient and line of best fit.

Solution: Note that $\bar{x}=110$ and $\bar{y}=105$. Then we can make the small chart.

	$x_{i}-\bar{x}$	$y_{i}-\bar{y}$
A	10	-5
B	-15	5
C	5	25
D	0	-25

So we can calculate:

$$
\begin{aligned}
\sigma_{x} & =\sqrt{\frac{1}{4}(100+225+25+0)}=\sqrt{\frac{350}{4}} \approx 9.35 \\
\sigma_{y} & =\sqrt{\frac{1}{4}(25+25+625+625)}=\sqrt{\frac{1300}{4}} \approx 18.03 \\
\operatorname{cov}(x, y) & =\frac{1}{4}(-50-75+125+0)=\frac{0}{4}=0 \\
r & =\frac{2.5}{9.35 \cdot 18.03} \approx 0.015
\end{aligned}
$$

We can calculate the line of best fit to get $y=105$. However, with an r value 0 , we should generally expect Antibody A and Antibody B to be not correlated, so we shouldn't use this line to try to make predictions.
10. The formulas for the slope and y intercept of the line of best fit come from MLE. Suppose that error is normally distributed. This means that if we predict $y=a x_{i}+b$, then the probability of actually getting y_{i} follows the PDF

$$
\frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(y_{i}-y\right)^{2} / 2 \sigma^{2}}=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(y_{i}-\left(a x_{i}+b\right)\right)^{2} / 2 \sigma^{2}} .
$$

Use MLE to show that $\hat{b}=\bar{y}-a \bar{x}$.

Solution: We calculate $L\left(\theta \mid\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$ below

$$
\begin{aligned}
L\left(\theta \mid\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) & =P\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \mid b=\theta\right) \\
& =\prod_{i} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(y_{i}-\left(a x_{i}+\theta\right)\right)^{2} / 2 \sigma^{2}} \\
& =\frac{1}{\sigma^{n} \sqrt{2 \pi}^{n}} e^{-\sum\left(y_{i}-\left(a x_{i}+\theta\right)\right)^{2} / 2 \sigma^{2}}
\end{aligned}
$$

Now taking the log gets rid of the exponent and taking the derivative and setting it equal to 0 gives

$$
\begin{aligned}
0 & =-\sum \frac{\partial}{\partial \theta} \frac{\left(y_{i}-a x_{i}-\theta\right)^{2}}{2 \sigma^{2}} \\
& =\sum \frac{2\left(y_{i}-a x_{i}-\theta\right)}{2 \sigma^{2}}
\end{aligned}
$$

So $\sum\left(y_{i}-a x_{i}-\theta\right)=\sum\left(y_{i}-a x_{i}\right)-n \theta=0$ and so

$$
\theta=\hat{b}=\frac{1}{n} \sum\left(y_{i}-a x_{i}\right)=\bar{y}-a \bar{x} .
$$

11. Now with $b=\bar{y}-a \bar{x}$, do MLE to show that $\hat{a}=r \frac{\sigma_{y}}{\sigma_{x}}$ the formula that we use for a.

Solution: We calculate $L\left(\theta \mid\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$ below

$$
\begin{aligned}
L\left(\theta \mid\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) & =P\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \mid a=\theta\right) \\
& =\prod_{i} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(y_{i}-\left(\theta x_{i}+(\bar{y}-\theta \bar{x})\right)\right)^{2} / 2 \sigma^{2}} \\
& =\frac{1}{\sigma^{n} \sqrt{2 \pi}} e^{-\sum\left(\left(y_{i}-\bar{y}\right)+\theta\left(\bar{x}-x_{i}\right)\right)^{2} / 2 \sigma^{2}}
\end{aligned}
$$

Now taking the log gets rid of the exponent and taking the derivative and setting it equal to 0 gives

$$
\begin{aligned}
0 & =-\sum \frac{\partial}{\partial \theta} \frac{\left(\left(y_{i}-\bar{y}\right)+\theta\left(\bar{x}-x_{i}\right)\right)^{2}}{2 \sigma^{2}} \\
& =\sum \frac{2\left(\bar{x}-x_{i}\right)\left(\left(y_{i}-\bar{y}\right)+\theta\left(\bar{x}-x_{i}\right)\right)}{2 \sigma^{2}}
\end{aligned}
$$

Simplifying gets the result.

