## Math 10A

Homework \#7; Due Tuesday, 7/17/2018
Instructor: Roy Zhao

1. Approximate the integral $\int_{0}^{4} \frac{1}{1+x^{2}} d x$ using the right endpoint rule with $n=4$ subintervals. You don't need to simplify.
2. Approximate the integral $\int_{-\pi}^{\pi} \sin (x) d x$ using the left endpoint rule with $n=4$ subintervals. You don't need to simplify.
3. Approximate the integral $\int_{0}^{3} e^{x} d x$ using the midpoint rule with $n=3$ subintervals. You don't need to simplify.
4. Approximate the integral $\int_{0}^{3} e^{x} d x$ using the trapezoid rule with $n=3$ subintervals. You don't need to simplify.
5. For each of the following integrals, determine how many subintervals are required to guarantee accuracy to within $5 \cdot 10^{-5}$ using (i) the midpoint rule, (ii) the trapezoid rule, (iii) Simpson's rule. You don't need to compute the approximation!
(a) $\int_{2}^{3} x^{2} d x$
(b) $\int_{-\pi}^{\pi} \sin (x) d x$.
(c) $\int_{1}^{5} \frac{1}{x} d x$.
6. Approximate the integral $\int_{0}^{\pi} \sin (x) d x$ to within 0.5 using the midpoint rule (by first determining how many subintervals are required to guarantee accuracy and then finding the approximation).
7. Use Simpson's rule and $n=4$ intervals to estimate the area between -1 and 1 for a $f(x)=e^{-x^{2}}$. You don't need to simplify.
8. True False Suppose that the function $f$ is strictly increasing on $[a, b]$. Then, the estimate of $\int_{a}^{b} f(x) d x$ obtained using the left endpoint rule is an underestimate.
9. True False Suppose that $f^{\prime \prime}(x)=0$ for all $x \in[a, b]$. Then, the trapezoid rule computes $\int_{a}^{b} f(x) d x$ exactly.
10. True False Simpson's rule computes $\int_{-1}^{3} x^{3}-3 x d x$ exactly no matter how many intervals are used.
