Math 10A

Homework \#6; Due Friday, 7/13/2018
Instructor: Roy Zhao

1. Check that $F(x)=\sin (x)-x \cos (x)$ is an antiderivative of $f(x)=x \sin (x)$. Find all of the antiderivatives of f.
2. There is only one antiderivative of x^{2} on $(-\infty, \infty)$ that is 3 when $x=0$. Find it.
3. Suppose that f is a function for which $f^{\prime}(x)=2 x+1$ and $f(0)=3$. What is $f(1)$?
4. You're filling a bucket of water. The rate at which you pour water into the bucket t seconds after you start is $r(t)=1+t$ liters/second for $0 \leq t \leq 5$. If the bucket is completely full after 5 seconds and started out empty, what is the capacity of the bucket?
5. True False If F is an antiderivative of f on (a, b), then $F^{\prime}(x)=f(x)$ for all $x \in$ (a, b).
6. True False If F is an antiderivative of f on (a, b), then $F(x)+3$ is also an antiderivative of f on (a, b).
7. True False Every function is its own antiderivative.
8. True False To calculate the definite integral $\int_{-5}^{5} \sqrt{25-x^{2}} d x$, we must find an antiderivative of $\sqrt{25-x^{2}}$ and use the FTC to evaluate it at the ends of the interval $[-5,5]$.
9. True False We can only split an integral along its interval as in $\int_{a}^{b} f(x) d x=$ $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ only when c is between a and b.
10. Evaluate each of the following integrals using the fundamental theorem of calculus.
(a) $\int_{-1}^{1} x^{2}-x d x$
(b) $\int_{0}^{2}(\sqrt{x}-1) d x$
(c) $\int_{1}^{2}\left(\frac{1}{x^{2}}+e^{x}\right) d x$
(d) $\int_{0}^{1} \frac{d x}{1+x^{2}}$
(e) $\int_{0}^{\pi / 2} \sin (x) d x$
11. Compute $\frac{d}{d t} \int_{1 / t}^{t^{3}} e^{-x^{2}} d x$.
12. What is $\frac{d}{d x} \int_{0}^{f(x)} f(t) d t$?
13. True False $\frac{d}{d x} \int_{0}^{1} f(t) d t=f(x)$.
14. True False $\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$.
15. True False If f and g are two functions, then

$$
\int_{a}^{b} \frac{f(x)}{g(x)} d x=\frac{\int_{a}^{b} f(x) d x}{\int_{a}^{b} g(x) d x}
$$

16. Let $f:[0,3] \rightarrow \mathbb{R}$ be given by

$$
f(x)=\left\{\begin{array}{l}
x \quad \text { if } 0 \leq x \leq 1 \\
1 \quad \text { if } 1 \leq x \leq 2 \\
3-x \quad \text { if } 2 \leq x \leq 3
\end{array}\right.
$$

Compute $\int_{0}^{3} f(x) d x$ by drawing the graph and using formulas from geometry.
17. Given that

$$
\int_{0}^{2} f(x) d x=3, \quad \int_{0}^{5} f(x) d x=9, \quad \int_{1}^{5} f(x) d x=7
$$

find
(a) $\int_{0}^{1} f(x) d x$
(b) $\int_{0}^{2} 3 f(x) d x$
(c) $\int_{1}^{2}(2 f(x)+1) d x$
18. True False If $0 \leq f(x) \leq 10$ for all $x \in[0,1]$, then $0 \leq \int_{0}^{1} f(x) d x \leq 10$.
19. Compute
(a) $\int 2 d x$
(b) $\int(5 x+3)^{6} d x$
(c) $\int 2 t^{2}\left(t^{3}+1\right)^{3} d t$
(d) $\int \sqrt{3 x+2} d x$
(e) $\int t^{2}\left(t^{3}+7\right)^{-1 / 2} d t$
(f) $\int \sin (2 x-1) d x$
(g) $\int \sin ^{5}(x) \cos (x) d x$
(h) $\int \frac{\sin (x)}{\cos ^{4}(x)} d x$
(i) $\int_{1}^{9} \frac{(\sqrt{x}+1)^{3}}{\sqrt{x}} d x$
(j) $\int_{0}^{1}(x+1) \sin \left(x^{2}+2 x+1\right) d x$
(k) $\int_{1}^{9}\left(1+\frac{1}{t}\right)^{4} \frac{1}{t^{2}} d t$
20. Label each of the following as even, odd, both or neither.
(a) $f(x)=|x|$
(b) $|\cos (x)|$
(c) $f(x)=\sin \left(x^{3}\right)$.
(d) $f(x)=x^{2} \sin (x)$
(e) $f(x)=x^{2}+1$
(f) $x^{2}+x$
(g) $f(x)=\arctan (x)$
21. Compute $\int_{-4}^{4} x^{3} \cos (x) d x$.
22. Compute
(a) $\int x e^{x} d x$
(b) $\int x \cos x d x$
(c) $\int x e^{-4 x} d x$
(d) $\int e^{x} \sin x d x$
(e) $\int_{1}^{e} \ln x d x$
(f) $\int_{1}^{e} \frac{\ln (2 x)}{x^{2}} d x$

