Math 10A Homework #6; Due Friday, 7/13/2018 Instructor: Roy Zhao

- 1. Check that $F(x) = \sin(x) x\cos(x)$ is an antiderivative of $f(x) = x\sin(x)$. Find all of the antiderivatives of f.
- 2. There is only one antiderivative of x^2 on $(-\infty, \infty)$ that is 3 when x = 0. Find it.
- 3. Suppose that f is a function for which f'(x) = 2x + 1 and f(0) = 3. What is f(1)?
- 4. You're filling a bucket of water. The rate at which you pour water into the bucket t seconds after you start is r(t) = 1 + t liters/second for $0 \le t \le 5$. If the bucket is completely full after 5 seconds and started out empty, what is the capacity of the bucket?
- 5. True False If F is an antiderivative of f on (a, b), then F'(x) = f(x) for all $x \in (a, b)$.
- 6. True False If F is an antiderivative of f on (a, b), then F(x) + 3 is also an antiderivative of f on (a, b).
- 7. True False Every function is its own antiderivative.
- 8. True False To calculate the definite integral $\int_{-5}^{5} \sqrt{25 x^2} \, dx$, we must find an antiderivative of $\sqrt{25 x^2}$ and use the FTC to evaluate it at the ends of the interval [-5, 5].
- 9. True False We can only split an integral along its interval as in $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$ only when c is between a and b.
- 10. Evaluate each of the following integrals using the fundamental theorem of calculus.

(a)
$$\int_{-1}^{1} x^{2} - x \, dx$$

(b) $\int_{0}^{2} (\sqrt{x} - 1) \, dx$
(c) $\int_{1}^{2} (\frac{1}{x^{2}} + e^{x}) \, dx$
(d) $\int_{0}^{1} \frac{dx}{1 + x^{2}}$
(e) $\int_{0}^{\pi/2} \sin(x) \, dx$
11. Compute $\frac{d}{dt} \int_{1/t}^{t^{3}} e^{-x^{2}} \, dx$

- 12. What is $\frac{d}{dx} \int_0^{f(x)} f(t) dt$? 13. True False $\frac{d}{dx} \int_0^1 f(t) dt = f(x)$.
- 14. True False $\int_0^1 f'(x) \, dx = f(1) f(0).$
- 15. True False If f and g are two functions, then

$$\int_a^b \frac{f(x)}{g(x)} \, dx = \frac{\int_a^b f(x) \, dx}{\int_a^b g(x) \, dx}.$$

16. Let $f:[0,3] \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le 1\\ 1 & \text{if } 1 \le x \le 2\\ 3 - x & \text{if } 2 \le x \le 3 \end{cases}$$

Compute $\int_0^3 f(x) dx$ by drawing the graph and using formulas from geometry.

17. Given that

$$\int_0^2 f(x) \, dx = 3, \qquad \int_0^5 f(x) \, dx = 9, \qquad \int_1^5 f(x) \, dx = 7$$

find

(a)
$$\int_{0}^{1} f(x) dx$$

(b) $\int_{0}^{2} 3f(x) dx$
(c) $\int_{1}^{2} (2f(x) + 1) dx$

18. True False If $0 \le f(x) \le 10$ for all $x \in [0, 1]$, then $0 \le \int_0^1 f(x) dx \le 10$.

19. Compute

(a)
$$\int 2dx$$

(b) $\int (5x+3)^6 dx$

(c)
$$\int 2t^2(t^3+1)^3 dt$$

(d) $\int \sqrt{3x+2} dx$
(e) $\int t^2(t^3+7)^{-1/2} dt$
(f) $\int \sin(2x-1) dx$
(g) $\int \sin^5(x) \cos(x) dx$
(h) $\int \frac{\sin(x)}{\cos^4(x)} dx$
(i) $\int_1^9 \frac{(\sqrt{x}+1)^3}{\sqrt{x}} dx$
(j) $\int_0^1 (x+1) \sin(x^2+2x+1) dx$
(k) $\int_1^9 (1+\frac{1}{t})^4 \frac{1}{t^2} dt$

20. Label each of the following as even, odd, both or neither.

(a)
$$f(x) = |x|$$

(b) $|\cos(x)|$
(c) $f(x) = \sin(x^3)$.
(d) $f(x) = x^2 \sin(x)$
(e) $f(x) = x^2 + 1$
(f) $x^2 + x$
(g) $f(x) = \arctan(x)$
21. Compute $\int_{-4}^{4} x^3 \cos(x) \, dx$.

22. Compute

(a)
$$\int xe^{x} dx$$

(b) $\int x \cos x dx$
(c) $\int xe^{-4x} dx$
(d) $\int e^{x} \sin x dx$

(e)
$$\int_{1}^{e} \ln x \, dx$$

(f)
$$\int_{1}^{e} \frac{\ln(2x)}{x^{2}} \, dx$$