- 1. True False The composition of two continuous functions, assuming that it is well defined, is always continuous.
- 2. Write down the equation of the line that passes through the points (1,2) and (5,7).
- 3. Compute the derivative of each of the following functions.
 - (a) 3
 - (b) x^4
 - (c) $3x^2 + 1$
 - (d) $\frac{1}{x^2}$
- 4. Let f(x) = |x|. Compute the following two limits.

$$\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} \quad \text{and} \quad \lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h}.$$

What does this tell you about the derivative of f at 0?

- 5. Calculate the following limits using the definition of a derivative.
 - (a) $\lim_{h \to 0} \frac{(x+h)^2 x^2}{h}$
 - (b) $\lim_{h \to 0} \frac{\tan(x+h) \tan(x)}{h}$
 - (c) $\lim_{x \to \pi/3} \frac{\sin(x) \sin(\pi/3)}{x \pi/3}$
 - (d) $\lim_{x \to 1} \frac{\ln x}{x 1}$
 - (e) $\lim_{x \to 0} \frac{\sin(x)}{x}$
- 6. True False The derivative of the function f at the point a tells you the slope of the curve y = f(x) at the point (a, f(a)).
- 7. True False If the derivative of the function f at the point a is negative, then f(a) is negative.
- 8. True False If f'(0) = 0, then the function f is a constant function.
- 9. True False If f'(a) > 0 and g'(a) > 0, then (f + g)'(a) > 0.

- 10. True False The derivative of $\frac{1}{f(x)}$ is $\frac{1}{f'(x)}$.
- 11. True False A function may be continuous at a x = 1 but not differentiable there.
- 12. Find the equation of the line tangent to y = f(x) at the given point a.

(a)
$$f(x) = \frac{1}{2 + \cos(x)}, a = \pi$$

(b)
$$f(x) = e^x - 1, a = \ln(3)$$

(c)
$$f(x) = \frac{1}{2x}, a = -4$$

(d)
$$f(x) = \sqrt{x}, a = 9$$

- 13. Compute the derivative of each of the following functions.
 - (a) $\cos(x)$
 - (b) $x \ln(x)$

(c)
$$\frac{1}{1-x}$$

(d)
$$\frac{3x^3+1}{4x^2-2}$$

(e)
$$\cos(\tan(3x))$$

(f)
$$\tan(x^2)$$

(g)
$$\csc(x)$$

(h)
$$\sin(x)\cos(x)$$

- 14. Sketch the graph of a continuous function whose derivative is positive on the interval (-2, -1), is zero on the interval (-1, 1) and is negative on the interval (1, 2).
- 15. Using the graph below, indicate the values at which the derivative of the function f is undefined. Then, write the values f'(-1.5), f'(-0.5), f'(2) in increasing order. No justification is necessary.

- 16. True False Every function is differentiable.
- 17. True False If a function is differentiable on (0,1) and on (1,2), then the function is differentiable at 1.
- 18. True False If f and g are differentiable, then (fg)'(x) = f'(x)g'(x).