Math 10A

Homework \#13; Due Tuesday, 8/7/2018
Instructor: Roy Zhao

1. True False An eigenvector can be the zero vector.
2. True False To find the eigenvectors of a matrix, we need to find the eigenvalues first.
3. True False If λ is an eigenvalue of A, then λ^{2} is an eigenvalue of A^{2}.
4. True False To find an eigenvalue, we set $\operatorname{det}(A-\lambda I)=0$ because we want a nonzero solution to $(A-\lambda I) \vec{v}=\overrightarrow{0}$.
5. Find the eigenvalues and eigenvectors of the following matrices:
(a) $\left(\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right)$
(b) $\left(\begin{array}{cc}2 & 3 \\ 0 & -1\end{array}\right)$
6. Find the eigenvalues of $\left(\begin{array}{ccc}3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3\end{array}\right)$.
7. Solve the equation $\vec{y}^{\prime}=A \vec{y}$ with $A=\left(\begin{array}{cc}1 & 2 \\ 6 & -3\end{array}\right)$ and $\vec{y}(0)=\binom{1}{-1}$.
8. Find the general solution to $\vec{y}^{\prime}=A \vec{y}$ with $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$.
9. (a) Verify that $\vec{y}_{1}(t)=\binom{2 e^{2 t}}{5 e^{2 t}}$ and $\vec{y}_{2}(t)=\binom{e^{t}}{3 e^{t}}$ are solutions to $\vec{y}^{\prime}=A \vec{y}$ where $A=\left(\begin{array}{cc}7 & -2 \\ 15 & -4\end{array}\right)$.
(b) What are the eigenvalues and eigenvectors of A ?
10. Suppose that $\vec{y}_{1}(t)=e^{-3 t}\binom{1}{1}$ and $\vec{y}_{2}(t)=e^{t}\binom{1}{-1}$ are solutions to $\vec{y}=A \vec{y}$. What are the eigenvalues and eigenvectors of A ?
11. The characteristic polynomial of recurrence relations are related to the characteristic polynomial of a matrix. We will show this with this problem. Consider the recurrence relation $a_{n}=a_{n-1}+2 a_{n-2}$.
(a) What is the characteristic polynomial of the recurrence relation?
(b) Let $\vec{v}_{n}=\binom{a_{n-1}}{a_{n}}$. Find a matrix A such that $A \vec{v}_{n-1}=\vec{v}_{n}$.
(c) What is the characteristic polynomial of the matrix A found above? How does your answer compare to your answer from (a)?
12. The characteristic polynomial of second order DEs are related to the characteristic polynomial of a matrix. We will show this with this problem. Consider the DE $y^{\prime \prime}-y^{\prime}-2 y=0$.
(a) What is the characteristic polynomial of the DE? What is the general solution to the DE ?
(b) Let $\vec{y}(t)=\binom{y(t)}{y^{\prime}(t)}$. Find a matrix A such that $\vec{y}^{\prime}=A \vec{y}$.
(c) What is the characteristic polynomial of the matrix A found above? How does this compare to your answer from (a)?
(d) Find the general solution to $\vec{y}^{\prime}=A \vec{y}$. How does this general solution compare to your answer from (a)?
13. True False The matrix $A^{T} A$ is always a square matrix.
14. True False If we use more data points, the overall error may increase yet the line may be a better predictor.
15. The following data is the HIV concentration in the blood of 5 individuals before and 6 months after a specific treatment for HIV infection.

Before	7.4	5.1	6.9	7.2	1.4
After	3.7	2.6	3.4	3.6	0.7

1. Find the line of best fit in terms of $y=a x+b$.
2. Given your value of a, is this treatment successful?
3. Use your line of best fit to make a prediction for the blood HIV levels of a patient 6 months later if he starts at a concentration of 6.0 .
