1. True False Two vectors are perpendicular if and only if their dot product is 0 .
2. True False We can add and subtract matrices only if they have the same size.
3. Let

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
-1 & 2 & 0 \\
3 & 0 & 1 \\
2 & 1 & -1
\end{array}\right), B=\left(\begin{array}{ccc}
0 & 2 & 0 \\
0 & 1 & 1 \\
-1 & -2 & 1
\end{array}\right), C=\left(\begin{array}{cc}
3 & -1 \\
0 & 2 \\
1 & -1
\end{array}\right), D=\left(\begin{array}{cc}
4 & 0 \\
-1 & 2
\end{array}\right), \\
\vec{v}=\left(\begin{array}{ll}
3 & -1
\end{array}\right), \vec{w}=\left(\begin{array}{ll}
4 & 2
\end{array}\right), \vec{u}=\left(\begin{array}{lll}
3 & -1 & 5
\end{array}\right), \vec{r}=\left(\begin{array}{c}
4 \\
2 \\
-7
\end{array}\right) .
\end{gathered}
$$

Now compute the following or say why they are undefined:
(a) $A-B, A+B, B-D, \vec{r}-\vec{w}$
(b) $A^{T}, C^{T}, D^{T}, \vec{v}^{T}, \vec{r}^{T}$
(c) $2 B, 7 \vec{w}, 2 \vec{u}+3 \vec{w},-D$
(d) $\vec{v} \bullet \vec{w},|\vec{v}|,|\vec{w}|,|\vec{u}|,|\vec{r}|, \vec{r} \bullet \vec{u}, \vec{v} \bullet \vec{u}$
(e) Find the angles between the vectors \vec{v} and \vec{w} and the vectors \vec{r} and \vec{u}.
(f) $\vec{v} \vec{w}, \vec{w} \vec{v}, \vec{v} \vec{u}, \vec{r} \vec{u}$ (viewing the vectors as matrices)
(g) $A \vec{r}, C \vec{v}, D \vec{r}, B \vec{r}$
(h) $C D, D C, A B$
4. True False It is possible to find an inverse to a 2×3 sized matrix.
5. True False The determinant of a matrix A will determine whether the system $A \vec{x}=$ \vec{b} will have a unique solution or not, but cannot distinguish between systems with no solutions and infinitely many solutions.
6. True False The system $A \vec{x}=\overrightarrow{0}$ will never have no solutions, even $\operatorname{if} \operatorname{det}(A)=0$.
7. Let

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
-1 & 2 & 0 \\
3 & 0 & 1 \\
2 & 1 & -1
\end{array}\right), B=\left(\begin{array}{ccc}
0 & 2 & 0 \\
0 & 1 & 1 \\
-1 & -2 & 1
\end{array}\right), C=\left(\begin{array}{ccc}
0 & 2 & 3 \\
-1 & 1 & 5 \\
3 & -1 & -12
\end{array}\right) \\
D=\left(\begin{array}{ll}
2 & -3 \\
3 & -4
\end{array}\right), E=\left(\begin{array}{cc}
4 & 0 \\
-1 & 2
\end{array}\right), F=\left(\begin{array}{cc}
2 & -3 \\
6 & -9
\end{array}\right), \vec{b}_{1}=\binom{4}{-4}, \vec{b}_{2}=\left(\begin{array}{c}
4 \\
2 \\
-7
\end{array}\right)
\end{gathered}
$$

(a) Calculate the determinants of A, B, C, D, E, F.
(b) Calculate D^{-1}, E^{-1}, F^{-1}
(c) Write the systems of linear equations that correspond to $E \vec{x}=\vec{b}_{1}$.
(d) Which of the following systems of equations will have a unique solution?

$$
A \vec{x}=\vec{b}_{2}, \quad B \vec{x}=\vec{b}_{2}, \quad C \vec{x}=\vec{b}_{2}, \quad D \vec{x}=\vec{b}_{1}, \quad E \vec{x}=\vec{b}_{1}, \quad F \vec{x}=\vec{b}_{1}
$$

8. Compute the following determinants below:

$$
\left|\begin{array}{ccc}
4 & -3 & 2 \\
1 & -3 & 1 \\
9 & 1 & 0
\end{array}\right|, \quad\left|\begin{array}{ccc}
6 & 7 & -2 \\
-2 & -3 & 1 \\
7 & 7 & 1
\end{array}\right|
$$

9. True False If a row like $(00 \cdots 0 \mid 1)$ appears during Gaussian elimination, then there are no solutions.
10. True False If a row like $(00 \cdots 0 \mid 0)$ appears during Gaussian elimination, then there are infinitely many solutions.
11. True False If the augmented matrix $(A \mid \vec{b})$ is reduced into $(I \mid \vec{c})$ for some vector \vec{c} by Gaussian elimination, then $A \vec{c}=\vec{b}$.
12. Use Gaussian elimination to reduce the following augmented matrices:
(a) $\left(\begin{array}{ccc|c}2 & 1 & 8 & 1 \\ -1 & 1 & -1 & 0 \\ -2 & 5 & 4 & 1\end{array}\right)$
(b) $\left(\begin{array}{lll|l}4 & 5 & 0 & 2 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 3 & 0\end{array}\right)$
(c) $\left(\begin{array}{ccc|c}3 & 2 & 5 & 2 \\ 2 & 0 & 1 & 5 \\ 0 & 0 & 4 & -4\end{array}\right)$
13. Use Gaussian elimination to find the solution to the following system of equations:

$$
\left\{\begin{array}{l}
2 x+3 y-z=0 \\
x+2 y+z=3 \\
x+3 y+3 z=7
\end{array}\right.
$$

14. Use Gaussian elimination to find the inverse of the matrix $\left(\begin{array}{ccc}1 & 2 & -1 \\ -3 & 1 & 2 \\ -2 & 2 & 1\end{array}\right)$.
