Math 10A Homework #11; Due Tuesday, 7/31/2018Instructor: Roy Zhao

1. True	False	If $y' = f(t)$, then the slope field will have the same slopes lined up vertically.
2. True	False	Euler's method can never give the exact answer for $y(t)$.
3. True	False	The DE $y' = 3y^2 - y$ will have a slope field with the same slopes lined up horizontally.
4. True	False	In order to use Euler's method on $y' = 2y - y^2$, we need to calculate the derivative of $2y - y^2$ to find the tangent line.

5. Match up the following four equations with the four slope fields A, B, C, D.

(a)
$$\frac{dy}{dt} = \sin t$$

(b) $\frac{dy}{dt} = t \sin y$
(c) $\frac{dy}{dt} = \sin y$
(d) $\frac{dy}{dt} = y \sin t$

v

y

GRAPH A GRAPH C t GRAPH B

6. Match up the following four equations with the four slope fields E, F, G, H.

(a)
$$\frac{dy}{dt} = y(1-y)(1+y)$$

(b)
$$\frac{dy}{dt} = \sin t$$

(c)
$$\frac{dy}{dt} = \sin(t+y)$$

(d)
$$\frac{dy}{dt} = t/10 + y$$

- 7. Use a calculator and Euler's method with h = 0.5 to compute the approximate value of y(2) with $y' = \frac{y^2 + 2ty}{3 + t^2}$ and y(0) = 0.5.
- 8. Use a calculator and Euler's method with h = 0.5 to compute the approximate value of y(2) with $y' = 2t + e^{-ty}$ and y(0) = 1.
- 9. For each of the following differential equations, find and classify the equilibria and sketch some solutions.

(a)
$$y' = 1 - y^2$$

(b) $y' = y(5 - y) - 6$

(c) $y' = y(2-y)(1-y)^2$ (d) y' = y(2-y) - 8