MATH 128A Numerical Analysis Discussion Section

Raehyun Kim*

* Department of Mathematics, UC Berkeley

Aitken's Δ^{2} Method

$$
\widehat{p_{n}}=p_{n}-\frac{\left(p_{n+1}-p_{n}\right)^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}
$$

- Accelerate the convergence of a sequence that is linearly convergent.
- Forward difference : $=\Delta p_{n}=p_{n+1}-p_{n}$
- Aitken's method can be written as

$$
\widehat{p_{n}}=p_{n}-\frac{\left(\Delta p_{n}\right)^{2}}{\Delta^{2} p_{n}}
$$

Steffensen's Method

$$
\begin{gathered}
p_{0}^{(i)}=\left\{\Delta^{2}\right\}\left(p_{0}^{(i-1)}\right) \\
p_{1}^{(i)}=g\left(p_{0}^{(i)}\right) \\
p_{2}^{(i)}=g\left(p_{1}^{(i)}\right) \\
p_{0}^{(i+1)}=\left\{\Delta^{2}\right\}\left(\boldsymbol{p}_{0}^{(i)}\right)
\end{gathered}
$$

- Accelerate the order of convergence of the given fixed point method using Aitken's method

Horner's Method

$$
P(x)=\left(x-x_{0}\right) Q(x)+b_{0}
$$

- Make given polynomial be nested form
- If we get well approximated root x_{*}, we can reduce the given polynomial

$$
P(x) \approx\left(x-x_{*}\right) Q(x)
$$

Muller's Method

$$
P(x)=a\left(x-p_{2}\right)^{2}+b\left(x-p_{2}\right)+c
$$

where $\mathrm{P}(\mathrm{x})$ goes through 3 points ($\mathrm{p} 0, \mathrm{f}(\mathrm{p} 0)$), ($\mathrm{p} 1, \mathrm{f}(\mathrm{p} 1)$), (p2,f(p2))

- One of the root of $P(x)$ will be $p 3$, namely

$$
p_{3}=p_{2}-\frac{2 c}{b+\operatorname{sgn}(b) \sqrt{b^{2}-4 a c}}
$$

Muller's Method

$c=f\left(p_{2}\right)$,

$$
\begin{aligned}
b & =\frac{\left(p_{0}-p_{2}\right)^{2}\left[f\left(p_{1}\right)-f\left(p_{2}\right)\right]-\left(p_{1}-p_{2}\right)^{2}\left[f\left(p_{0}\right)-f\left(p_{2}\right)\right]}{\left(p_{0}-p_{2}\right)\left(p_{1}-p_{2}\right)\left(p_{0}-p_{1}\right)} \\
a & =\frac{\left(p_{1}-p_{2}\right)\left[f\left(p_{0}\right)-f\left(p_{2}\right)\right]-\left(p_{0}-p_{2}\right)\left[f\left(p_{1}\right)-f\left(p_{2}\right)\right]}{\left(p_{0}-p_{2}\right)\left(p_{1}-p_{2}\right)\left(p_{0}-p_{1}\right)}
\end{aligned}
$$

- Used Lagrange polynomials (Sec 3.1)

