MATH 128A Numerical Analysis Discussion Section

<u>Raehyun Kim</u>*

* Department of Mathematics, UC Berkeley

2022/09/14

Raehyun Kim MATH 128A Numerical Analysis DIS

Announcement

• Quiz #1

- Published on the gradescope MATH 128A 102/103
- Regrade request is available until Sep. 20
 - 6. Find $\max_{a \le x \le b} |f(x)|$ for the following functions and intervals.
 - a. $f(x) = 2x/(x^2 + 1)$, [0, 2]
 - **b.** $f(x) = x^2 \sqrt{4} x$, [0, 4]
 - c. $f(x) = x^3 4x + 2$, [1, 2]
 - **d.** $f(x) = x\sqrt{3-x^2}$, [0, 1]

Use the Bisection method to find solutions, accurate to within 10^{-5} for the following problems.

a.
$$3x - e^x = 0$$
 for $1 \le x \le 2$
b. $2x + 3\cos x - e^x = 0$ for $0 \le x \le 1$
c. $x^2 - 4x + 4 - \ln x = 0$ for $1 \le x \le 2$ and $2 \le x \le 4$
d. $x + 1 - 2\sin \pi x = 0$ for $0 \le x \le 0.5$ and $0.5 \le x \le 1$

- Order of Convergence
 - Modified Newton's method
 - Another measurement
- Accelerating Convergence
 - Aitken's Δ^2 Method
 - Steffensen's Method
- Lagrange Interpolation Polynomial

•
$$p_{\mathrm{n},i}(x_j) = \delta_{i,j}$$

- Order of Convergence
 - Modified Newton's method
 - Another measurement
- Accelerating Convergence
 - Aitken's Δ^2 Method
 - Steffensen's Method
- Lagrange Interpolation Polynomial

•
$$p_{\mathrm{n},i}(x_j) = \delta_{i,j}$$

Order of convergence

- p : Exact root p_n : Numerical root (nth step)
- $e_n \coloneqq p p_n$ (error at nth step)

•
$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^{\alpha}} = \gamma$$

- $\alpha = 1$, $\gamma < 1$: linear convergence
- $\alpha = 2$: quadratic convergence (γ depends on e_0)

Order of convergence

- Fixed point iteration (Thm 2.8/2.9)
 - Converge linearly if
 - FPI(g(x)) converges to fixed point p
 - g(x) is continuously differentiable with 0 < |g'(p)| < 1
 - Converge at least quadratically if
 - FPI(g(x)) converges to fixed point p
 - g'(x) is continuously differentiable with g'(p) = 0

Order of convergence

• Bisection method : Linear, $\gamma = 1/2$

 Newton's method : Quadratic (if the root is simple. O.w. merely linear)

• Secant method :
$$\alpha = \frac{1+\sqrt{5}}{2}$$

Modified Newton's method : Quadratic

Newton's method

• f(x) is continuous and differentiable

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• Converging very fast.

Q. What if f'(p) = 0?
 A. Can not guarantee fast convergence.
 Indeed, it merely linearly converges.

Modified Newton's method

• f(x) is continuous and differentiable

• multiplicity m of root x

• Simply
$$f(a) = f'(a) = \dots = f^{(m-1)}(a) = 0$$

•
$$x_{n+1} = x_n - \frac{mf(x_n)}{f'(x_n)}$$

Quadratic convergent

Modified Newton's method

• f(x) is continuous and differentiable

• multiplicity m of root x

• Simply
$$f(a) = f'(a) = \dots = f^{(m-1)}(a) = 0$$

•
$$x_{n+1} = x_n - \frac{f(x_n)f'(x_n)}{f'(x_n)^2 - f(x_n)f''(x_n)}$$

Quadratically convergent but impractical

- Order of Convergence
 - Modified Newton's method
 - Another measurement
- Accelerating Convergence
 - Aitken's Δ^2 Method
 - Steffensen's Method
- Lagrange Interpolation Polynomial

•
$$p_{\mathrm{n},i}(x_j) = \delta_{i,j}$$

Aitken's Δ^2 Method

$$\widehat{p_n} = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

- Accelerate the convergence of a sequence that is linearly convergent.
- How to use?

Calculate p_n until the error is \sqrt{Tol} and apply Aitken's Δ^2 Method. Profit!

Steffensen's Method

$$p_{0}^{(i)} = \{\Delta^{2}\} \left(p_{0}^{(i-1)} \right)$$
$$p_{1}^{(i)} = g \left(p_{0}^{(i)} \right)$$
$$p_{2}^{(i)} = g \left(p_{1}^{(i)} \right)$$
$$p_{0}^{(i+1)} = \{\Delta^{2}\} \left(\boldsymbol{p_{0}}^{(i)} \right)$$

 Accelerate the order of convergence of the given fixed point method using Aitken's method

- Order of Convergence
 - Modified Newton's method
 - Another measurement
- Accelerating Convergence
 - Aitken's Δ^2 Method
 - Steffensen's Method
- Lagrange Interpolation Polynomial

•
$$p_{\mathrm{n},i}(x_j) = \delta_{i,j}$$

Lagrange polynomial

• Polynomials s.t. $p_{n,i}(x_j) = \delta_{i,j}$ for given $\{x_j\}_{j=0,..,n}$

$$p_{n,i}(x) = \prod_{\substack{j=0\\j\neq i}}^{n} \frac{x - x_j}{x_i - x_j}$$

Interpolation result

$$Q(x) = \sum f(x_i) p_{n,i}(x)$$