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1 Introduction

Disordered systems in quantum mechanics are modeled by Schrodinger operators with ran-
dom potentials. As a classical example, consider the Anderson model describing electron
propagation in a disordered environment. The associated Schrodinger operator is of the
form H = —A + AV, where the potential V' is random and the parameter A represents the
strength of disorder. The energy levels of the electron are given by the eigenvalues of the
operator H and due to the randomness of the potential, we are mostly interested in their
statistical properties. According to the universality conjecture for random Schrodinger oper-
ators, there are two distinctive regimes depending on the disorder strength A. In the strong
disorder regime, the eigenfunctions are localized and the local spectral statistics is Poisson.
In the weak disorder regime, the eigenfunctions are delocalized and a repulsive potential
governs the interaction between eigenvalues. In the lattice approximation of the Schrodinger
operator —A + V is replaced with a large symmetric sparse matrix with random diagonal
entries.

Wigner proposed to study the statistics of eigenvalues of large random matrices as a model
for the energy levels of heavy nuclei. For a Wigner ensemble we take a large hermitian (or
symmetric) N x N matrix [h;;] where {h;; : i < j} are independent identically distributed
random variables of mean zero and variance N~!. The central question for Wigner ensemble
is the universality conjecture which asserts that the local statistics of the eigenvalues are
independent of the distributions of the entries as NV gets large. This local statistics can be
calculated when the entry distribution is chosen to be Gaussian. The density of eigenvalues
in large N limit is given by the celebrated Wigner semicircle law in the interval [—2,2].
Joint distribution of eigenvalues away from the edges +2 has a determinantal structure and
is obtained from a sine kernel. The sine kernel is replaced with the Airy kernel near the edges
+2 after a rescaling of the eigenvalues. The largest eigenvalue obeys a different universality
law and is governed by the Tracy-Widom distribution.

It is a remarkable fact that many of the universality laws discovered in the theory of
random matrices appear in a variety of different models in statistical mechanics. A promi-
nent example is the planar random growth models which belong to Kardar-Parisi-Zhang
universality class. In these models, a stable phase grows into an unstable phase through
aggregation. The rough boundary separating different phases is expected to obey a central
limit theorem and its universal law is conjectured to be the Tracy-Widom distribution. This
has been rigorously established for two models; simple exclusion process and Hammersley
process. Another surprising example is the Riemann (-function. It is conjectured that after
appropriate rescaling, the zeros of the (-function, ((s) := > 2, n~*, lying on the vertical
line Re s = 1/2 , have the same local statistics as the eigenvalues of a Wigner ensemble .



2  Wigner Ensemble and Semicircle Law

We start with the description of our main model. Consider a N x N matrix H = Hy = [h;j]
which is either symmetric h;; = h;; € R or Hermitian h;; = Bji € C. The matrix H is
called a Wigner matriz (ensemble) if {h;; : i < j} and {h; : i} are two sets of independent
identically distributed random variables. We always assume that H is centered; Eh;; = 0 for
all 7 and j. As we discussed in the introduction, we are primarily interested in the behavior
of Hy as N — oo. Let us write )\11\7 < )\5\7 < /\% for the eigenvalues of the matrix Hy.
(When there is no danger of confusion, we simply write A; for AN.) Observe

ENT'Y XN =N'Tr H* =EN' ) |h> = E[(N = D)|hwal* + [hn]*] .
, >
To have the left-hand side of order one, we assume that
(2.1) NER;; = 1fori #j, NEh; =2,
in the case of symmetric H and we assume
2 _
(2.2) NEh;; =1

for all 7 and j in the case of Hermitian H. Note that 2Eh}, = Eh?, in the symmetric
case. This is of no significance and is assumed to simplify some explicit formulas we derive
later when all h;;s are Gaussian random variables. Under the assumption (2.1), we expect
AN = O(1) and hope that the empirical measure

1 N
= 50w,
=1

to be convergent as N — co. We have the following celebrated theorem of Wigner.

Theorem 2.1 For a Wigner matriz,

2.3 hm ~(dx) = p(dz) 4 — z2)* dzx,
(2.3) 1 py(dr) = p \/

i probability, where the convergence occurs in weak sense.

We need to develop some tools before we get to the proof of Theorem 2.1.

As our first step, we try to establish the regularity of the eigenvalues as the the matrix
varies. For this we use the standard norm [[A]| = VirA? = (3_, ; |a;;|?)1/? that comes from
the inner product < A, B >= tr(AB) = }_, ; aijbi;. Let us write A\ (A) < -+ < N(A) <

- < An(A) for the eigenvalues of a symmetric or Hermitian N x N matrix A. The following
inequality of Hoffman and Wielandt shows the Lipschitzness of A(A) = (A (A), ..., An(A)).
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Lemma 2.1 For every symmetric A and B,

ZIA (B)I < |A=B| =tr(A- B)*.

Proof. Note that since >, X\;(A)? = trA?, it suffice to show

Write Dy for the diagonal matrix which has the eigenvalues A\j(A), ..., An(A) on its main
diagonal. Without loss of generality, we assume that A = D,. We then find an orthogonal
matrix U = [u;;] that diagonalize B. We have

)

trAB = trD U DpU =Y \(A)N;(B)ug;

Z'Ij

< sup {Z Ai( B)w;; : W = [w;j] is a doubly stochastic matrix} :

It remains to show that the supremum is attained at the identity matrix. To see this, write
W for a maximizer. Inductively we show that we can switch to a maximizer W such that
wy = 1fori=1,... k. We only verify this for £ = 1 because the general case can be done
in the same way. Indeed if w;; < 1, then we can find ¢ and j such that w;;, w;; are nonzero.
Set r = min{w,;, w; } and we switch from W to W by changing only the entries at positions
11,15,¢1, and 75 by W1 = W1 + 7, W;j = W;; +1, Wi; = Wy; —r, and W;; = W;; —r. We claim
that W is also a maximizer because

ZA )(thi; — @i5) > r(M(A) = M(A)(M(B) = Ai(B)) > 0.

If w1, = 1, then we are done. Even if wy; = 1 fails, the matrix W is better than W in the
sense that W has one more 0 entry on either the first row or column. Repeating the same
procedure to W, either we get 1 on the position 11 or we produce one more 0 on the first
row or column. It is clear that after we apply the above procedure at most 2(N — 1) times,
we obtain 1 for the position 11. This completes the proof. 0

To motivate our second tool, let us mention that a standard trick for analyzing a sym-
metric/Hermitian operator H is by studying its resolvent (H — 2)~!. The trace of resolvent
is of particular interest because of its simple relation with the eigenvalues. Indeed

(2.4) SN(z) = N_ITT(HN — 2)—1 — N1 Z(/\l . Z)_l _ / pN(d.’L“)’

Tr—z
i=1
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and this is well-defined for z € C — R. We then recognize that the right-hand side is the
Stieltjes transform of the empirical measure py. This suggests an analytical way of studying
the sequence py, namely we study the asymptotic behavior of Sy as N gets large. For any
bounded measure p, define

(2.5) S, z) ::/,u(dm)

)
r —z

for = € C — R. Note that S(u, z) is analytic in z and is almost the Cauchy integral (the
factor (2mi)~" is missing) associated with the measure u defined on R . Here are some basic
facts about Stieltjes transform.

Lemma 2.2 o (i) |S(p,2)| < pu(R)/|Im z|.

o (ii) If sup, 1n(R) < 0o and lim,, o pn, = p vaguely, then lim, oo S(tn, 2) = S(u, 2)
for every z € C — R.

e (iii) We have

1
(2.6) lim —Im S(p, o + ie) da = p(da),

e—0 71

weakly.
o (i1) If S(p,z) = S(v,2) for all z € C =R, then p=v.

o (v) Iflim,, oo S(pin, 2) = S(2) exists for every z € C—R, then S(z) = S(u, z) for some
measure j and lim, . ft, = p vaguely.

Proof. The proofs of (i) and (ii) are obvious and (ii) implies (iv). As for (iii), we
certainly have

(2.7) %Im (i, o+ i€) da = (u+ C.)(da),

where C. is the Cauchy density

_ 1 e
Cg(Oé) =& 101(0[/5) = ;052——{—52

Now it is clear that for any bounded continuous f,

tig [ fus € =timg [ (74 Copdu= [ s

by Bounded Convergence Theorem and because C. is an approximation to identity.
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We now turn to (iv). Let g be any vague limit of u,. By part (i7), we have that
S(z) = S(p, z). Hence all limit points coincide and p,, — p vaguely. O

Our goal is proving Theorem 2.1 and for this we try to calculate the large N limit of
Sn(z). This would be particularly simple when the random variables h;;’s are Gaussian. In
this case the matrix H is called a Gaussian Wigner ensemble (GWE). In the case of GWE,
we first want to reduce the convergence of {Sy(2)} to that of {ESN(z)}. For this we appeal
to a suitable concentration inequality. First observe that we may represents a symmetric
Wigner matrix H as a vector H = (h;; : i < j) € RM with M = N(N + 1)/2. We then
assert that Sy(z) = F(H) is a Lipschitz function for which the Lipschitz constant can be
bounded with the aid of Lemma 2.1:

()~ PO = 37 [On(H) — 27 = ()~ )7

[Im 2|~ .
< TZ (\i(H) — Ni(H')|

D=

<|Im 2|2 (% Z()\z(H) - )\i(Hl))Q)

1/2
[Im 2|~ o 2Hm 27 /2
< WHH — || < N > (hiy = hiy) :

1<j

Hence, if we regard Sy(z) as a function F' : RM — R, then for its Lipschitz constant Lip(F),
we have

(2.8) Lip(F) < 2|Im z|~2/V/N.
We now would like to bound
(2.9) |[F(H) — EF(H)|,

for a centered Gaussian H = (h;; 11 < j) € RM | where each coordinate hi; has a variance of
order O(N1). For this we use Logarithmic Sobolev Inequality(LSI). We say that a probability
measure p satisfies LSI(a), if for every probability density function f,

(2.10) [ 1o s du<a [ 19v/Fran

By Herbst Lemma, LSI implies a sub-Gaussian tails estimate and this in turn implies a
concentration inequality.



Lemma 2.3 (Herbst) Let i be a probability measure on RM which satisfies LSI(a). Then
for any Lipschitz function F with [ F du =0,

1
(2.11) / eFdu < exp (Zat2Lip(F)2) :

Proof. First assume that F is continuously differentiable. Choose f = ' /Z(t) with Z(t) =
[ eFdp in (2.10) to assert

!/

Z 1
15 —logZ < % /t2|VF|Qethu < Jat’(Lip )"
Hence . Z(t)
0g a, . 9
a8 aNt) i gy,
a ¢ =g h)

From this and lim,_,o(log Z(t))/t = [ Fdu = 0, we deduce that log Z(t) < at*(Lip F)?/4.
This is exactly (2.11) when F' € C'. Extension to arbitrary Lipschitz functions is done by
approximations. 0]

Remark 2.1 We may apply Chebyshev Inequality to assert that if p satisfies LSI(a) and F
is any Lipschitz function, then

(2.12) M{F—/F d,qu} < exp (—ﬁ?}ﬁ)?).

From this and an analogous inequality for —F', we deduce

(2.13) 0 {’F - /F d,u‘ > r} < 2exp (_WEF)Q) .
O

On account of Lemma 2.3, we wish to have a LSI for the Gaussian measures. The
following exercise would prepare us for such an inequality.

Exercise 2.1.
e (i) Show that max,(ab —e*) = blogb — b.

e (ii) Show that for any probability density f,

/flogfduzsgp </fgdu—1og/egdu) ZSUp{/fgdu:/egdué 1}-

e (iii) Show that the function (a,b) — (v/a — v/b)? and the functional f + [ |V+/f|?du

are convex.



O
The following two classical lemmas give simple recipe for establishing LSI for many
important examples.

Lemma 2.4 If u; satisfies LSI(a;) fori=1,...,k, then the product measure 1 = pq X ... X
Wi satisfies LSI(a) for a = max; a;.

Proof. Take any non-negative C' function f(z1,...,2;) with [ fdu =1 and set

fil@i, Tiga, . mp) = /f(%a s Ty Ty Tig1y - T pa (dn) - i (dioy),

W (i, ) = paldes) X % pi(dag), @t = (da, . o)
Note that f; = f and fy11 = 1. We have that the entropy [ flog fdu equals

/flog fk+1 Z/flog Ji Z/fZ log fz+1
a Z/( f+1 )1 flE 1 0 m(da:ﬁ) fra (@™ (da™h)

= Zal/ du fidp™t = Zaz/ </‘Vi\/ﬁ2dui> dpit!
< Z [ 1V Frdu < mﬁxai); [ 9. it

where for the first inequality we used [ f;/fis1dp; = 1 and for the second inequality we used
Exercise 2.4(iii) and Jensen’s inequality. We are done. O

i

fz+1

Theorem 2.2 The probability measure y(dx) = eV @dx, x € RM, satisfies LSI(4c) pro-
vided that the second derivative D*V satisfies D*V (z) > ¢ 'I for every x.

Proof. The idea of the proof goes back to Bakry and Emery. Let us write 7% = e!* for
the semigroup associated with the generator L = A — VV - V. Note that the measure 7 is
reversible with the generator L, simply because L = —V*V, where V* = —V + VV is the
adjoint of V with respect to . Moreover,

2Iu(f,9) : = L(fg) — fLg—gLf =2V [-Vy,

i?j

Lf/f = Llog f + |Vlog /I, /Fl(f,g) dy = /Vf Vg dy = —/ng &,



Now if f is a probability density with respect to v and f; = T1.f, h(t) = [ filog fidv, then

W(t) = /(logft)Lft dy = —/Vft -Vlog fi dy = —/Fl(ft,logft) d,
W0 =~ [ (PLA Lo ) + Tulhu LA/ 50) o
— [ (Lh Llog fi = Ti(f Llog £ = Ta(fu [V og 1))
—— [ (24T (log £ Llog £+ T[T hos i)
:/(—2ftF1(logft,Llogft)+ftL\Vlogft|2)) dy
— [ a0 fulog f) = [(DV)VE- 5
>t [T ot dy == W (0),

Hence

/ VFP/F dy = —1(0) = K1) — (0) > e (h(0) — h(£)),

and this implies LSI(4c) for v provided that we can show that lim; ., h(t) = 0 for a subse-
quence. To see this, first observe that if g, = \/f;, then [gdy =1 and [;° [|Vg|* dydt <
oo. Hence for some t, — oo, we have that [ |V, |*> dy — 0 as n — co. From this, we
deduce that g;, — 1 in L?*(vy) by Rellich’s theorem. Hence f; — 0 almost everywhere along
a subsequence. Note that if we assume that f is bounded, then {f;} is uniformly bounded
in ¢t and we may use the Bounded Convergence Theorem to deduce that lim; ., h(t) = 0
for a subsequence. This implies LST in the case of the bounded f. The general f can be
treated by a truncation. For example, for every ¢, choose a smooth non-decreasing function
¢¢ such that ¢,(f) = f, for f < €, ¢o(f) =L+ 1, for f > 0+ 2, ¢ <1 everywhere, and
e(f) > (L+1)f/(€+2), for f <+ 2. Given a density function f, we set f¢ = ¢,(f) and
apply LST to f*. We then send ¢ — oo to establish LS for arbitrary f. O

As an immediate consequence of Lemma 2.5, the law of (h;; : i < j) satisfies LS1(a) for
a constant a = O(N ') in the case of a Gaussian ensemble. This allows us to give a short
proof of Theorem 2.1 in the Gaussian case.

Proof of Theorem 2.1 (Symmetric Gaussian Case). Let us write sy(z) for ESy(z) where
Sn(z) = S(z,pn). By (2.8), (2.13) and Theorem 2.2,

(2.14) P{|Sn(z) — sn(z)] > 0} < 2exp (—3—12(Im 2)4N252> .



We now concentrate on the convergence of the sequence {sy}. Write G(z, H) = [g;;(z, H)] =
(H — z)~'. We certainly have

(H—2)"'+2z'=2""HH—-2)".
Hence

sn(z)=—2 '+ 2 INTEtr(HH - 2) ) = -2+ 27N ! ZEgij(z, H)h;;

1,J

B B 0gij(z, H) _ 9gii(z, H)

1 1 ij 1 i

+2'NT?Y RO N2 E E—r—
i#£j ah” 8h”

= 2t =27 'NT2Y B (g(2 H)® + gia(z, H)gyy(z, H)) — 227N ZEQ" 2 H)”
i#£]

=—2"1—zIN7? Z]E 9ii(2, H)* + gi(2, H)gj;(z, H))
=21 — zlsN(z);—l— Erry + Erry,
where we used the elementary identities
/ 2 (2)(2m0) " exp (—2/(20)) = / o f'()(270) 2 exp (—a2/(20)) |

—dGch;H) = —G(e, (k1) = (i,) or (k1) = (j, )]Gz, H),

for the third and fourth equalities, and

Erry = 2z ' (sn(2)” — ESn(2)?) = —2'E(Sn(2) — sn(2))?,
Erry = —2z 'N7?E tr(H — )72

We wish to show that Err; — 0, as N — oo for i = 1,2. From (2.14),
o 1
(2.15) |Err| < ]2\1/ 4r exp (—3—2(Im 2)2N2r2) dr = 64|z|7(Im 2) >N 2.
0
From |\; — 2|72 < (Im z)~? we deduce

(2.16) |Errg| < |2|7*(Im 2) 2N~

From this and (2.15) we deduce that if limy sy(2) = s(z) along a subsequence, then s(z)
satisfies

(2.17) s(2)* 4 zs(2) +1=0.
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This equation has two solutions of the form

(2.18) s(z) = %(—z + V22 —4).

The property (Im z)ImSy(z) > 0 for z € C—R, implies that if Im z > 0, then Im s(z) > 0.
This allows to select a unique solution of (2.17) when I'm z > 0, namely for the square root
we require Im 22 —4 > 0. It remains to identify s(z) given by (2.17) as the Stieltjes
transform of the semi-circle law. This will be done in Lemma 2.5. 0

Lemma 2.5 The Stieltjes transform of p(z)dx = 5=+/(4 — 22)* dx is given by (2.18).

Proof. On account of (2.6), we need to evaluate

1 1 1

lim —I'm s(z +ie) = lim —1Im \/(z +ig)? — 4 = lim —I'm Va2 — 4 — &2 + i2¢x.
e—0 T e—0 27 e—0 27

Write A = 22 —4 — %, § = ex, and VA + 125 = a + ib, so that > — b*> = A and ab = §.

Hence b* + Ab?> — 6% = 0, and

b2—%<—Ai\/m>.

Since b? > 0, the root with positive sign is acceptable. Note that since ¢ > 0, we take a
square root of 22 — 4 for which Im s(z) > 0. This simply requires that b > 0. Now if |z| > 2,
then for small € we also have that A > 0, and as a result lim,_,qb*> = 0. On the other hand,
if |z| < 2, then A < 0 for small € and lim._,ob* = 4 — 2%, This completes the proof. O

Remark 2.2. Wigner’s original proof of the semi-circle law involves calculating the moments
of py(dx) and passing to the limit. In fact the limiting moments are given by Catalan
numbers. To see this observe

2

1
Moy @ = / ¥ p(x)dx = (2#)122(”“)/ 2?1 — 22dx
) -1
w/2
= (2%)_122(”“)/ sin®" @ cos? 6 db.

—7/2

On the other hand, since the sequence a,, = f:{ 32 sin?" @ df satisfies

71'/2 1 71_/2 d
(p — Opg1 = / sin®* @ cos? 0 df = / — (sin®*"* 0) cos 0 df = nt1 ’

—7/2 2n+1 —r/2 do 2n + 1
we have
2n —1 2n—12n-3 1 (2n)!
Ay = Ap—_1 = "= ... =Qp = .
2n 2n 2n—2 2 (27n!)?

11



Hence,

2n)!
219 "= 2 —122(n+1) an+1 — ( )
(2.19) Man = (27) m+1  (nt1l)(n)?

That is, ma, is the nth Catalan number. From (2.19) and mg,+; = 0 we deduce that if
|z] > 2, then

[e.e] [e.@]
—z_l/ E 22y p(x)de = —27! E 2"y,

With some work, we can see that this sum coincides with (2.18). O

Proof of Theorem 2.1 (General Symmetric Case). Step 1. As our first step, we argue
that for a small error, we may assume that h;; = 0, for all 7 and that for a constant ¢, we
have |h;;| < ¢/ V/N, for all i and j. To see this, let us write H’ for the matrix we obtain from
H by replacing h;; with 0 and h;; with

[hijn (\/N|hij| < z) - ng] / (W@) ,
where
me = EVNhyL(VNIhy| < 0), 0f =E (VNhy 2 (V| < 0) - mg)2 |

We write Sy (z) = N~ Yr(H' — 2z)~!. By Lemma 2.1,

S (O(H) = A <Zh +Z[ y (hw]l (VN|hy| < ) — mg)agl)r.

( i#£]

From this we deduce
E (Sn(2) — Sy(2))* < (Im 2)™*E (N_l Z |Ai(H) — Ai(H’)|>

< N- 1E{Zh +EY [hy — (hiL(VN|hy| g)—me)%l)]?}.

i#j

Hence,
(2.20) E (Sn(z) — Sﬁ\,(z))2 <2N'+E VL — (Bll(|ﬁ| <) — mg)ae_l)}z.
Note that the right-hand side goes to 0 if N and ¢ — oo.

12



Step 2. Recall that G = (H — 2)~' = [g;;(H)] and we are interested in ), g; when
Im z > 0. Let us find a formula relating g;;(H) to g;(H®) where H® is the matrix we
obtain from H by deleting the i-th row and column. Let us write G for (H®) — 2)~!. First
we derive a formula for gi;. Indeed, writing (hi1, a;) for the first row of H and (g11,b,) for
the first row of G and using (H — 2)G = I leads to the system of equations

(hi1 — 2)g11 + a1 - by =1,
gnat1 + (H(l) — z) bt1 = 0.

To solve this system for g;1, we first use the second equation to assert that b* = —gy; (H @ _
z)~ta' and using this in the first equation yields

—1
g = (hn —Z— G1G(1) : al)
In general,

(2.21) Gii = (hm’ —z—a;GY- az’)_l ;

where we are writing a; for the i-th row of H with h;; deleted. By Step 1, we may assume
that h;; = 0 for all i. hence

(2.22) Sx(z)=-N"'3" (2 + 0GP a)

Step 3. Tt is clear that for our goal we need to argue that a;G® - a; is close to Sy. In
fact we first try to show that a;G® - a, is close to trG. This is not surprising at all; if we
write E; for the expected value with respect to the variables (h;; : j < i), then since a; is
independent of G,

EiaiG(i) S = Z gl(c?EihikhiE = Zgl(clk)]Elthk = N"'trGY = S](\?(z).
k,0#i ki

Recall that Im z > 0 and we can readily show that Im S](\z})(z) > Im z > 0. Hence
@ | -1
24+ Sy () >Umz) .

On the other hand, since H® is diagonalizable by a orthogonal matrix U®, the matrix G
is diagonalizable by the matrix V = (U®). Denote the eigenvalues of H® by p1, ..., pn_1.
Write D for the diagonal matrix which has (u; — 2)~! for the entries on the main diagonal.
We have G = V*DV, which implies

a;GY - a; = (a;V) D(a;V) = Z(“Z — 2)"hw?,

%
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where w;’s are the components of the vector a;V. From this, we can readily deduce
, -1
’z—l—aiG(’) -ai| > (Im ).

Putting all pieces together we learn

-1

(= + a; G - ai)_1 - (z + S](\Z,)(z)> < (Imz)"%|a;GY - a; — S](\?)(z) = (Imz) 2| By,
where ' '
Ei = G,Z'G(l) Ay — S%)(Z),
Hence
, -1
(2.23) Sn(z) + Ny (z + 5}@(2)) < (Im 2Ny |E).

Note that we can write E; = Err; + Err}, where

Err; = Z 9 harhag,
[y,

Erri=" " gq (hj, = N7").
ki

Further, using Eh;; = 0 and the independence of h;, k # ¢, from G,

E(Erm) =28 3 (gkl) hachie)? = 2N°E Y (gk,) <2NTEY (g,Efp)Q

k00 kA0 kO£ kO£

<ONTE tr (HD — 2)7* < 2(Imz2) >N,

E(Err)* =E Z (gk,z) (R, — N~ ) <cN’E Z (gkk> <ei(Imz) 2N
k#i, k£l ke#i, k£l

From this and (2.23) we deduce
(2.24) E (SN(z) + N1 Z (z + S}@(z)) ) < cy(Imz) *N~L.

Step 4. It remains to show that we can replace S](\Z}) with Sy in (2.23) for a small error.

Note that Sy = trG and SV = trG® with G and G of different sizes. Let us write H®
for a matrix we obtain from H by replacing its i-th row and column with 0. We also write

14



G = (H® — ). We can readily show that in terms of eigenvalues, the matrix H® has
the same cigenvalues as H® plus a 0 eigenvalue. As a result

(2.25) SU - N“1rGO| < N~HImz| ™

Moreover, by Lemma 2.1,

N7HtrG® —trG| < [Imz|'N™* Z
J

Aj(H) = A (ﬁ(i)ﬂ

< [Imz|™! [N‘l > () = (ﬁ(i)»z]

J
1/2
< [Imz|™ (2]\7—1 Zh?j) :
JFi
Therefore )
E <N_1|tré(i) — trG|> <2(Imz)*N~'.

From this, (2.25) and (2.3) we deduce that if s(z) is a limit point of Sy (z), then s(z) satisfies
s(2) + (2 +5(2)) 7 = 0.
From this we deduce that s is given by (2.18). This completes the proof. O
Exercise 2.2.
e (i) Verify Lemma 2.1 for Hermitian matrices.

e (ii) Establish Theorem 2.1 in the case of Hermitian Wigner ensembles.

3 Gaussian Ensembles GOE and GUE

In this section we derive an explicit formula for the eigenvalues in the case of a Gaussian
Wigner ensemble. Using this formula, we can find the law governing the correlation and the
gap between eigenvalues in the large N limit.

Consider a symmetric Gaussian Wigner ensemble H = [h;] = N-Y2H. The law of
hij = N_l/2ilij is given by

(2m) "2/ Ne N 2apy; = (2m) 26~ 2Ry,
V2(2r) Y2/ Ne VA dh, = v/2(2r) " 2e A dh,,,
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in the case of ¢ # j and ¢ = j respectively. This leads to the formula

PJIV(dH) _ 2_N/2(27T)_N(N+1)/4NN(N+1)/4 exp (—NtTH2/4) H dhw
1<j
(3.1) = 27 N/2(Qm) TNINHD/ oxpy (—trﬁ2/4> H dh;,

1<j

for the law of H = N~'/2H. We note that the measure Py (dH) is invariant with respect
to an orthogonal conjugation U'HU, with U any orthogonal matrix. For this reason the
measure dP}; is known as a Gaussian orthogonal ensemble or in short GOE.

In the Hermitian case, the diagonal entries h;; = N -1/ 2711-1- are real and distributed as

(2m) "3/ Ne N 2dhy, = (2m) 26~ i 2 dhy;,

and off-diagonal entries h;; = x;; + iy;; = N‘l/QiNlij = N~Y2(%;; + i) with ]Eq:fj = ]Eyfj =
1/(2N), E|h;|? = 1/N are distributed according to

(m) " Ne Nl R dny; = () te My,

where by dh;; and dﬁij we mean dz;;dy;; and dZ;dj;. As a result, the law of H = N~V/2H
is given by

P3(dH) = 2 N2a N NN exp (= NtrH?/2) [ [ dhs;
i<j
(3.2) = 2N N*/2 oxpy (—trﬁ[2/2> H dhij.

i<j

We note that the measure P4, (dH) is invariant with respect to an unitary conjugation U*HU,
with U any unitary matrix. For this reason the measure dP% is known as a Gaussian unitary
ensemble or in short GUE.

Exercise 3.1. Consider the inner product < H,H' >= 2%, hj;hi; + >, hiihj; on the
space of symmetric/Hermitian matrices. Given an orthogonal /unitary matrix, define the
linear operator 7' by T'(H) = U*HU. Show that T is an isometry for < -,- >. From this
deduce that the Lebesgue measure ], ;dhy; is invariant under the map 7. (This implies

that P2 is invariant under an orthogonal /unitary conjugation.) O

Since any symmetric (respectively Hermitan) matrix H can be expressed as UDU" with
D diagonal and U orthogonal (respectively unitary), we may try to find the joint law of
(D,U) when H is a GOE (respectively GUE). First we need to come up with a unique
representation H = UDU*. This is easily done if we know that the eigenvalues of H are
distinct. We then insist that the entries on the main diagonal of D are given by A\ (H) <
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- < Ay(H). Once this is assumed on the eigenvalues, we almost have a unique choice for
U because the columns of U are the eigenvectors. As we will see later, we can arrange for U
to have nonzero entries and if we assume that all diagonal entries are positive, then we have
a unique choice for U. Here is our main theorem in this section.

Theorem 3.1 o (i) With probability one with respect to P , all eigenvalues are distinct
and all eigenvectors have nonzero coordinates. Hence, wzth probability one with respect
to P, there is a unique representation H = UDU* with D = diag[\ (H), ..., Ay(H))],
M(H) < - < AN(H), U = [wyl], with wij # 0, u; > 0 for all i and j and U is
orthogonal (respectively unitary) if 8 = 1 (respectively 8 = 2). The space of such
matrices U s denoted by ng.

e (ii) In the representation H = UDU* of part (i), the variables D and U are inde-
pendent. The law of U is given by taking the unique normalized Haar measure of the
space of orthogonal (respectively unitary) matrices when B = 1 (respectively f = 2),
and projecting it onto the space Uy . The law of (M (H),. .., An(H)) is given by

(3.3)  Zn(B) 'L < - < AN)A, AW exp< BNZA2/4> [

where

A, dw) = TOw = M),
i<j
is the Vandermonde determinant and Zn(B) is the normalizing constant and is given
by

(3.4) Zn(B)! = (2m) N/ (27 5) D/A+N/2 zrN/24+N(N-1)8/4 H (gﬁﬁ//QQ))

Here I'(s) = [;~ a*te "dux.

Remark 3.1. What Theorem 3.1 says is that
PUAH) =y (d)y, . .., dA\y)V3(dU),

with g% given by (3.3) and (3.4), and vy(dU) the Haar measure of the space of uni-
tary/orthogonal matrices. Since trH? = Y, A, the non-trivial claim of part (ii) is the
equality

N
[ dhi; = CnvB) 1 < - < AN)IAG, AP ] dhi va (dU),

i<j i=1
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for a constant C'y. We note that when § = 1, the left hand side is the Lebesgue measure of
RN(NFD/2 whereas pu} is a measure on a manifold of dimension N(N — 1)/2. O
First we show that the eigenvalues are distinct almost surely for a GUE or GOFE. To
have an idea, let us examine this when N=1. In this case, we simply need to make sure that
the quadric equation
N — (h11 + ha2) A + hyrhoy — ’}112|2 =0,

has two distinct solutions. For this the discriminant must be non-zero. That is,
(h11 + ha2)? + 4| h1o|* — 4hi1has # 0.

In the case of GOE, we have (hiy, hos, h12) € R and the discriminant vanishes on a two
dimensional surface which is of zero Lebesgue measure. Hence almost surely eigenvalues
are distinct. We want to generalize this argument for general N. For this we will define
a discriminant that is a polynomial in the entries of H and vanishes if and only if H has
non distinct eigenvalues. This immediately implies that almost surely the eigenvalues are
distinct because of the following straight forward fact.

Exercise 3.2. Let p(z1,...,x)) be a nonzero polynomial of k variables. Show that the zero
set of p is of zero Lebesgue measure in R¥. 0
We are now ready to prove

Lemma 3.1 The set of symmetric matrices H = (hy; = i < j) € RVNWFD/2 ith distinct
eigenvalues is of full Lebesque measure.

Proof. Consider the characteristic polynomial p(\) = det(H —\) = ay AN +- - - +a; A\ +ao.
the coefficients a;s are all homogeneous polynomials of the entries of H. The matrix H
has distinct eigenvalues iff p(\) and ¢g(A) = p'(A) = b, A™ + -+« + tA + by, m = N — 1,
b; = (j + 1)aj11, have no common eigenvalue. We define the discriminant of p by

Dp)=a" JI =)
1<i<j<N
and this can by as the determinant of a Sylvester matriz. More precisely,

D(p) = (-1)NNV=D2R(p,q)

where the resultant R(p, q) is the determinant of the Sylvester matrix S(p, ¢) and vanishes iff

p and ¢ have a common root. In fact R(p, q) is a polynomial in the coefficients of p and ¢ and

hence a polynomial in entries of H. We now apply Exercise 3.2 to deduce the lemma. U
We are now ready to give the proof of the first part of Theorem 3.1.

Proof of Theorem 3.1(i). Write H = UDU" with D = diag[M\(H),...,An(H)], \i(H) <
-+ < Ay(H), and U an orthogonal matrix. Note that the columns u!,... u" of U are the
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eigenvectors of U. We would like to show that for every r, all components of the vector u"
are nonzero with probability one.

Pick an eigenvalue A = \.(H) and set A = H — A\. Write B for the adjoint of A. Since
H is symmetric, the adjoint of A is the same as the cofactor of A and its entries are given
by by; = (—1)"7 det A% where A¥ is the matrix we obtain from A by deleting the i-th row
and the j-th column. We certainly have

AB = [Ab', ... AbN] = (det A)I =0,

where b',...,b" denote the columns of B. Hence Ab' = 0 for all i and since A = ), is an
eigenvalue of multiplicity 1, we deduce that for every i, there exists a scalar ¢; such that
b = c;u”. We wish to show that u;. # 0 for all i and for this it suffices to show that b; # 0.
But b;; = det(H® —)\,) = 0 means that the matrices H and H* have a common root. This
is equivalent to asserting that the resultant R(H, H) = 0. This is a nonzero polynomial
in the entries of H. Hence, using Exercise 3.2, we learn that b;; = 0 occurs only for a set
of matrices H of zero Lebesgue measure. Thus almost surely all entries w;; are nonzero.
Finally, since each column u”" is an eigenvector, we can arrange to have u; > 0 and this
condition uniquely determines U. U

To derive (3.3) and (3.4), we need to study the Jacobian of the map H — (D,U).
For this, let us first parametrize the space of unitary (respectively orthogonal) matrices >
(respectively U') in a smooth fashion. Let us write U7 (respectively U}) for the set of unitary
(respectively orthogonal) matrices U = [u;;] such that w;; # 0. We also write U? for the set
of U = [u;;] € U/ such that u; > 0 for all 4. Evidently U/ is an open subset of 4® and
dim#? = BN(N —1)/2. We now give a smooth parametrization for a nice subset of U} .
To this end, let us define the map T' : U# — RANWVN=D/2 by T(U) = (uy/uy : i < 7). This
map gives such a smooth parametrization we are looking for. For this, let us consider a nice
subset U5 of 42 on which T is injective. To be more precise, set UZ to be the set of matrices
U = [uy;] € Uy such that det|u;;]f;_, # 0, for every k € {2,3,..., N}. We have the following
lemma.

Lemma 3.2 e (i) The map T : U — RFNN=D/2 is injective with smooth inverse.
o (ii) T(UY) is of full measure in RENWN=1)/2,

e (iii) The matriz U € U” in the representation H = UHU* belongs to L[f with probability
one with respect to P

Proof of (i). We only discuss the case § = 1 because the proof in the case of 5 = 2 is
identical. We need to learn how to determine (u;; : ¢ > j) from our knowledge of I'(U).
Write v;; := u;;/w;;. Note that we only need to determine (v;; : @ > j) because the condition

2
> ; uy; = 1 means
-2 2 2
u;” =1+ E v+ E Vij-

Juu<j Ji>j
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To determine (u;;/u; : @ > j) from I'(U), we use the fact that the rows of U are mutually
orthogonal. This can be achieved inductively. Suppose that we already know (v;; : 1 <
r,1 < j < N) and we wish to determine (v;; : i =r+ 1,1 < j < N). Since I'(U) is known
by assumption, we also know t (v;; : i =+ 1,4 < j). Hence we only need to determine r
many unknowns, namely (v;; : ¢ = r+ 1,7 > j). This is done by setting up a system of r
linear equations. The fact that the r 4+ 1-th row is orthogonal to the first r rows of U yield
the desired equations. In order to have a solution to these equation, we need

(3.5) det|v;l; ;= = <H u“> det|ug]; j—y # 0.

This is the case because U € Z/{gﬁ . Evidently, the inverse is smooth.

Proof of (ii). Note that v = (v;; : i < j) € T(UY) if vy is nonzero and (3.5) is valid. We
note that all v;; with ¢ > j can be expressed as a ratio of two nonzero polynomials of v and
that the left-hand side of (3.5) can be expressed as a ratio of two non zero polynomials of v.
Hence we may apply Exercise 3.2 because to assert that the range of I' is of full measure.

Proof of (iii). We are going to formulate a property about H which implies (iii) and
is proved in just the same way we showed that the unitary matrix in the statement of
Theorem 3.1(i) has nonzero entries. More precisely, given a matrix A of size N x N, and
r < N, write N, for the set of subsets I C {1,..., N} of size r and M = N!/[r!/(N — r)!]
for the number of such subsets. We then define a M x M matrix A, (A) = [det A; ;] with
I,J € N,. Evidently A,(A4*) = A.(A)* and that A, of the identity matrix is the identity
matrix. Also, if D = diag[\y,...,An] is a diagonal matrix, then A,(D) is diagonal with
the I entry given by the product of A\; over ¢ € I. A celebrated formula of Cauchy-Binet
asserts that A.(AB) = A.(A)A,.(B). Hence our representation H = UDU™* implies that
A.(H) = A (U)A.(D)A(U)*. Note that this is the analogous representation of the sym-
metric/Hermitian A, (H) because A, (U) is unitary and A, (D). As in the proof of Theorem
3.1(i), we can find a polynomial of entries of A,(H) that vanishes iff A,(H) does not have
distinct eigenvalues or A, (U) has a zero entry. Since the entries of A, (H) are polynomials
of entries of H, we end up with a polynomial of enries of H which vanishes if A,.(H) has a
zero entry. We are done. U

Proof of Theorem 3.1(ii). Step 1. Set X = {X = (A,..., ) : A1 < -+ < Ay}, and
let us write H' for the space of symmetric matrices and H? for the space of Hermitian
matrices. Define ® : X x U8 — HP by ®(\,U) = Udiag[)\y, . .., \n]U*. The pullback of the
measure P under @ is denoted by Q% (dX, dU) = Q% (X, dU)uy(d)). Since the measure P
is invariant with respect to the conjugation H — W HW?™ we deduce that the conditional
measure @5 (A, dU) is invariant with respect to the left multlphcatlon U r—> WU. Hence the
conditional measure QB (A, dU) must be the normalized Haar measure 'yN of U®. By the
uniqueness of the Haar measure, we learn that Q5 (dX, dU) = v%(dU)ux(d)). Note that by
part (i) of the theorem, we know that VJBV is concentrated on matrices U of nonzero entries,
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ie. ’yfv (Uy) = 1. Let us write 7 : Z/lf — Z/{QB for the projection onto Z/{QB . More precisely, given

a matrix U € L{f , we may multiply each column u' by a unique number ¢; with |¢;| =1

to produce 7(U) € L[2 The push forward of « [JN under 7 is denoted by VN Evidently if ®
denotes the restriction of ® to the set X x Uy, then vy (dU)uy(d)) is the pullback of P,

with respect to the injective transformation P .

Step 2. We now study the measure piy(dA). Define U : RN x D(US) — HP by T(A,v) =
[(v) *diag[\y, ..., An]T(v)"™, where T is as in Lemma 3.3 and v = (v;; : i < j). If we write
H = [h;j] = Y(A, v), then

N
[ dhi; = Cnv(B) (A < -+ < An) [ det DA, V)| T ] dhi 2 (dv),

i<j i=1

where 7y is the pullback of vy under the map I'. Hence

pn(dA) = Cy(B) 'L(A; < -+ < Ay) </ |det DU (A, )| ﬂ@(d@) Hd/\i

To complete the proof, it suffices to show
(3.6) det DU(A,v) = AN f(v),

for some function f, and that the normalizing constant is given by (3.4). To achieve this,
let us directly calculate

dH = ” d)\ iy d
. Z 8vkl Ukl

Note that when 8 = 2, then vy are complex numbers. We certainly have
dH = (dU)DU* + UD(dU*) + U*(dD)U, or U*(dH)U = U*(dU)D + D(dU*)U + dD.
From this and (dU*)U + U*(dU) = 0, we deduce
U*(dH)U = AD — DA+ dD, or dH = U[AD — DA+ dD|U* =: UBU",
where A = U*<dU) = [aij]. But AD — DA = [am()\z - /\])] SO, dhw = Zk,l uikbklﬂjl with
bii = d\; and b;; = a;;(\; — ;) when ¢ # j. Note that a;; is a 1-form independent of X for
each 7 and j. Moreover, since A* + A = 0, we have that a;; = —a;;. When 3 = 1, as we

calculate the N;<;dh;;, we simply get

A AN dX\ A a,
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where « is a N(N — 1)/2-form in v with coefficients independent of A. In fact « is simply
f(v) Nicj aij, for a function f. When 8 = 2, we first write h;; = ki; + ikj; with k;; and kj;
the real and imaginary parts of h;;. Now

(/\Zdh”> A </\1<jdk1j) (/\Z<Jdk’, ) A(A)2 /\iil d>\z A a,

where a is a N(N — 1)-form in v with coefficients independent of A. Here we are using
the fact that as we take the real and imaginary part of a, the factor \; — \; is repeated.
This completes the proof of the Theorem except for the proof of (3.3). We establish (3.3) in
Lemma 3.3 below. 0

Remark 3.2. The quick way of verifying (3.6) when § = 1 is by observing that since
hij = >, Witk A\g, the partial derivative 0h;; /0Ny is independent of A and that the partial
derivative Oh;j/0v, is linear in A. As a result, det DW(A, v) is a polynomial in A of dimension
at most N (N — 1)/2 with coefficients which may depend on v. On the other hand if \; = J;
for some ¢ # j, then det DV (A, v) must vanish. To see this, observe that if det DW(A,v)
does not vanish for such A, then by Inverse Mapping Theorem, W(A,v) would be invertible
near such A and this is not the case. Hence the polynomial A(X) must divide det DW(A, v).
Since this is of dimension at most N(N — 1)/2, we are done. This argument does not work
when 3 = 2; we would get that A(X) must divide det DW¥(X, v) but we need A(X)? to divide
det DU(A,v). O

Lemma 3.3 We have

57 %/_‘” /_‘” A exp <_Z)\§/2> Hd)\i: N/2H Flg’//Q2 .

Proof. The left-hand side of (3.7) equals

}E&ﬁ/ / ViH(l——)[ A

1! al
BERT N/2+BN(N-1)/4 + B
= lim (20) N!/ |A(A)| 111(1
= lim (26)N/2HAN(N=1)/420 - NFAN(N /25 (0+1,0+1,B),
{—00

where Sy is the Selberg integral:

(3.8) Sn(a,b,B) = / / IA(A |5H/\“ Y1 = X))
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According to a celebrated result of Selberg,

ﬁ P(at (i = 1)B/DT (b + (i — 1)8/2T(i8/2)

(3.9) Sn(a,b, ) = Cla+b+ (N +i—2)3/2)T(8/2)

i=1
Hence, the left-hand side of (3.7) equals

N . .
lim (20)N/2H5N(N=1)/492- N+6N(N-1)/2 H F(F(ﬁ + 14 (i —1)5/2)*I'(:8/2)

2€+2+ (N+i—2)8/2)T(8/2)

l—o0

Note that by Stirling’s formula
li T —nlogn+n n —1.
Jim P(mjem s [

T((+1+ A2 (04 1+ A)PH1+Ae=2448,/5, /57
F(2¢+2+B) (20+2+ B)2€+2+B\/_
 paslLE A/ DI o248y or
[1+ B/(% + 2)]2f+2+3 NG
~ V2V2r B

as ¢ — oo. Therefore, the left-hand side of (3.7) equals

As a result

i—1 N+i—2)8/2—1
lim (20)N/2HBN(N—1) /420 N+EN (N~ 1/2H V2V2rl IO (i /2)

{—00

paie L(5/2)

From this we can readily deduce (3.7).

4 Correlations and Edge Distributions for Gaussian

Ensembles

In this section, we first derive an explicit formula for the r-point correlations of Gaussian
ensembles and use this formula to find the gap distributions in large N limit. We treat GUE
first because our formulas would be simpler when 5 = 2. For our purposes, let us look at the
eigenvalues T = (z1,...,2x5) = VNA of H = v/NH and we do no longer insist on ordering

of the eigenvalues. So the law of Z with respect to GUF is given by

fn(dx) = (Zy) T A(x exp( Zx2/2) Hdml,
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where the normalizing constant is simply given by

N-1
(4.1) Zy = N12m)V> I ] n!

n=0

In our first result, we derive an explicit formula for the marginals of iy and even give a

new proof of (4.1). To discover such a formula, recall that A(zZ) = det[z]~ 1]%:1 and by

adding multiples of the i-th columns to the j-th columns for i < j, we learn that A(z) =
det[P7~! ()], for any collection of monic polynomials P; such that the degree of P; is j.

Hence, for any collection of positive constants (c; : j € N), we may write
N-1 LN\ 2
2 —22/4
E 2 det [ Py (z;)e %/ ] .
eXP( n > (H > ( et [ Pimlee ij=1

For the (z1,...,x,) marginals, we wish to integrate out the variables z,1,...,zy. To have
a simple outcome, perhaps we set

bi(x) = ¢ Pix)e /1,

so that

(4.2) % exp ( Zx2/2> (H c: ) (det [4;— 1(:13'2)]?7;1)2,

and require

(4.3) /wi(a:)wj(:z:)d:z: =0, if i # j, /wg(x)dm _
Equivalently
(44) / Py(x)Pi(w)e e =0, if i £ j, & = / P2(z)e "/ dz.

Hence, we may try to find an orthogonal basis for LQ(e_“fz/ 2dz) consisting of the polynomials
{P,:i=0,1,...}. In fact the first condition in (4.4) is satisfied if

(4.5) /Pi(x)xje_$2/2dx =0, for j <.

This would be the case if P;(z)e *"/2 is an exact i — th derivative of a function and the
celebrated Hermite polynomials given by

, d 2
4.6 Pz — _17, x2/2+ —z*/2
(46) (@) = (-1 L
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certainly satisfy (4.5). Moreover
(4.7) ¢ = /HQ(x)e_’”Qﬂdx = /H(x)xie_”2/2dx =gl /e_IQ/zdx = iV2r.

We are now ready to state our first result.

Theorem 4.1 The r-dimensional marginals of fin are given by pg\r,) (z1,...,2,) [[i; dz; with

(48) p(NT)<£IZ'1, R ) ( det [Z wk 1 wk 1 .%J)]
ij=1
(When r =1, we simply have that pg\l,)(arl) = N 'K%(z1), where Ky(z) = Z]kvzl 2 (x).)

Proof. From (4.2)

N
p%)(xlv"-axr Z/ / / eXp <—ZZIZ’Z2/2> H dI’g

l=r+1
Z” / / det (V1 (z;)] = 1) H dzy
l=r+1
N N
(4.9) Z” / / Z 0)e(T) H¢a(i)—1($i)¢7(i)—1(ﬂci) H dxy,
o, TESN i=1 l=r+1
where Sy denotes the set of permutations of {1,..., N}, e(o) is the sign of the expression

Hz‘<j(0<i) —0o(j)), and

N-1 -1
(4.10) AEAS (H cf) .

=0

We note that if o (i) # 7(¢) for some i > r, the dz; integration would be 0 in (4.9); otherwise
the integral is 1. Hence the nonzero contributions in (4.9) come from pairs (o, 7) such that

o(i) =7(i) for i >r, and {o(1),...,0(r)} ={7(1),...,7(r)}.

For such a pair, let order the elements of {c(1),...,0(r)} as a; < ...,q,. Note that if we
fix oy < -++ < «,, then the restriction of ¢ and 7 can be regarded as two permutations o’
and 7’ and the there are (N — r)! choices for the the restriction of o or 7 to the complement
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of {a1,...,a,}. As a result,

R D SIND DIk ) | COERTATE

1<ap<--<ar<N o/, 7'€Sy =1
(N —r)! 2
(411) = Z—Kf Z (det [¢a3—1($2)}1] 1) .
1<a1<-<ar<N
Let us write A = [1;_1(z;)]};=;. Recall that by Cauchy-Binnet’s formula
(4.12) A (AAY = A (A)A,(A) =: B.

In fact for the index set I = {1,...,7}, we have b;; = > ;(det Ar;)?, where the summation
is over all index sets J C {1,..., N} of size r and recall that A;; = [a;j]icr jes. But this sum
is exactly (4.11). From this and (4.12) we deduce

(413) pﬁ@(l’l, e, Ty ) — ( Zl/ det [Z wk 1 wk 1 QIJ)] .
1,j=1

It remains to verify Z3, = N!. This is obvious because in the calculations (4.9) and (4.11)
we could have chosen r = 0 and integrate out all variables. For r = 0, the left hand side of
(4.11) is simply 1 and the right-hand side is N!/Z%;, completing the proof of (4.8). O

Remark 4.1. In our proof of Theorem 4.1, we managed to give a new proof of (4.1). In
fact (4.1) is an immediate consequence of Z3, = NI, (4.10) and (4.7). O
To analyze the r-point correlations of GUE in large N limit, we need to study the kernel

= i Yi() P (y) = (2m) 712 i(/f!>‘1Pk(x)Pk(y)e—<x2+yz>/4,

that is the kernel associated with the projection onto the span of {i1,...,¢¥n_1}. Let us
state some useful properties of Hermite polynomials.

Lemma 4.1 o (i) Poy(2) = 2Py(z) — Pl(2).
o (ii) 2Py(x) = Por(2) + kP ().
o (iii) P!(z) — xPl(z) = —kPy(z).
o (iv) (Christoffel-Darbous Formula) For x # y,

Nz_:l Bi(x)Pe(y) _ Py(x)Py-a1(y) — Pnv-a(2) Py (y)
Kl (N =1z ~y) |

k=0
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Proof. (i) This follows from differentiating de=*"/2/dz* = (=1)F P (z)e *"/2,
(i1) Let us write < f > for [ f(x)e=*"/2dx. Since Py is an orthogonal basis for L?(e*"/2dx),
we have

(4.14) wPur) =3 = ""’f k}();zg(i) ~ By(x).
l

By (4.5), the only nonzero terms are when ¢ = k — 1, k, k + 1. Again by (4.5),

< 2P (2)Py_i(2) > =< Py(2) (x Py (x)) >=< Pp(x)* >,
< ka(JI)Pk+1(LL’) > =< Pk+1(.l‘)2 >,
< xPy(x)Py(x) > =0,

where for the third line we used the fact that P? is even. From this (4.14) and and (4.7) we
deduce (ii).

(¢7i) From (i) and (ii) we deduce that Pj(z) = kPy_1(z). On the other hand, from
differentiating (i),

Py (z) — xP[(x) = Py(x) — P4 (z) = Py(z) — (k + 1)Py(z) = —kPy(x).

(1v) Note that Ky(z,y) is the projection kernel for the space spanned by {tg, ..., ¥n}
and behaves like the J-function as N — oco. Hence Ky becomes singular when x = y in
large N limit. Let us multiply Ky by x —y and use (ii) to get an expression in terms of the
Hermite polynomials. Indeed by (ii), the expression (x — y)Py(z) Py (y)/(k!) equals

(KD [Pey1(2) Pi(y) + kPye1(2) Pe(y) — Preir () Pr(@) — kPy1(y) Pr()] = Xpop1 — X,

where
Xp+1 = (k!)_l [Pri1(2) Pe(y) — Pryi(y) Pr()] -
This completes the proof of (iii). O

Remark 4.2. From part (iii) we know that P is the eigenfunction of the Ornstein-Uhlenbeck
operator L = d?/dz?* — xd/dx associated with the eigenvalue —k. In fact vy is also an
eigenfunction for the Schrodinger operator d?/dz* — z%/4 associated with the eigenvalue
—k — 1/2. Here is the reason,

2

"z) =t | P (z) — %Pk(x) —zPl(z) + z_Pk(x)} =— (k + %) () + %m;(x)

4
U
Lemma 4.1 (iv) yields
(4.15) Kn(z,y) = VNX@UN 1) = v (@)¥n(y)
T —y
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when x # y. The limit of this as y — x yields
(4.16) Kn(z,2) = VN (U (@)dy-1(z) = oy (@)in(a))

But z; = vV N; are unnormalized eigenvalues and if we expressed our marginals in terms of
A)i’s we obtain

P (e, ) dey ey = NTPp(VNAL .V NA)AA, . dA,

(4.17) = Mdet NI/QKN(\/N)\Z»,\/N)\]»)]

N dXq...d)\,.

ij=1
Let us focus on eigenvalues near the energy F = 0. Since the typical distance between two
consecutive eigenvalues is of order O(N™!), we may multiply the eigenvalues by N to get
a; = N\; = V/Nz;. In terms of Qaq,...,QN,
p%)(q;l, oo x)dry .. dr, = N*T/Qp%)(ozl/\/]\f, . ,ar/\/ﬁ)dal ...doy,
(V-

(418) = —'T)!det Nﬁl/QKN(Oéi/\/N, &]/\/N)]

Nl dOél c. dOér.

T
ij=1
For r-correlations, we are interested in observables that involve exactly r» many particles.
Since there are exactly N(N —1)...(N —r + 1) many r particles, we consider

“ N
pgv)(ah-'-,oér):m]v 2p(n/VN,... o /VN)

= det [Nfl/zKN(Oéi/\/N, Oéj/\/ﬁ)] '

ij=1
Hence we need to study the large N limit of

T

(4.19) P (a, ..., ap) = det [KN(ai,aj)] ,

t,j=1

where

_ \/NwN(OQ/\/NWNA(Oéz/\/N) - 2/JNfl(041/\/N)¢N(042/\/N) ’

4.20 K
( ) N(ala Oég) ay — Qo

when oy # ay. Moreover,
(4.21) Kn(a,a) = ¥y(a/VN)dx1(a/VN) = dy_i(a/VN)in(a/VN).

Theorem 4.2 yields the correlations in /N large limit.
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Theorem 4.2 For every r > 2, the r-dimensional marginals densities ]55\7;) converge to

r

Y

(4.22) p(r)(ozl, o) = det [K(ai, ozj)]

where K (aq, o) = sin(m(oq — )/ (m(on — a2)).

Theorem 4.2 is an immediate consequence of Lemma 4.2.

Lemma 4.2 We have limy_o Ky = K, locally uniformly, where Ky was defined in (4.20)
and K was defined in Theorem 4.2.

Proof. First observe that if f(z) = N'*)n(2z/v/N) and g(z) = N'Y*)n_,(z/v/N), then

(4.23)  Kn(ay, ) = gloy / f'(taq + (1 — t)ag)dt — / g (tag + (1 —t)ay)dt.
On the other hand, we may use Lemma 4.1(i) to write

V(@) = —S0u(@) + V- @)

This would allow us to replace all the derivatives in (4.23) with expressions involving ’s.
Hence for the Lemma, we only need to study the asymptotic behavior of N4 (z/ VN ) for
k= N,N —1,N — 2. This will be carried out in Lemma 4.3. 0

Lemma 4.3 We have

11m )N1/4 Yn(z/VN) — COS(:}U—%)‘:O,

locally uniformly, where n = N — £ for a fized .

Proof. First note

(-1

dx™

dn

—x2/2: -1
e (=1)"—=

/(270 1/2 —mg —&2 /2d§ / 27r 1/2(Z€>n —ix.£ —gQ/ng.

N4, () VN) = (2m) 734 (nl) 712 /N N4 / (i€)ne VN =€ 2
— (2) 3/ () V2 AN) /2434 /(if)ne_ixfe_]v§2/2d€
~ (27r)—3/4(N!)—1/2NN/2+3/4/ <§€_§2/2>Ni"§”_Ne_”’5d§
~ (2m)'eMPN / (5e52/2>Nz'”§"Neixad§
= (2m) 1NN / <§€_§2/2>NR6 (i"ei¢) gV,
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where we used ¢*/N & 1 for the third line, the Stirling’s formula N1 ~ NN+1/2c-N\/or
for the last line and use the fact that ¢, is real for the last line. We now argue that the
integrand is an even function of £. To see this, observe that if

f(&) = Re (i"e‘mg) = cos (x§ — n77r> ,

then f(—¢) = (—=1)"f(£). As a result, the function f(£)£" is even and
N1/477ZJ7L(ZE/\/N) ~ 2(27r)_leN/2N1/2 /000 ({e‘52/2>Ncos (x§ — %T) N,

(4.24) =N [T ROV Ge,

where , nr
F() = €772 G&) = cos (wg — T ) &7V,

Note that n — N = —/ is constant and the function G is independent of N. We now apply
the Laplace’s method to find the asymptotic of (4.24). Note that max F = ¢~ /2 and it is
achieved at £ = 1. Near £ = 1, the function F(£) = exp(log & — £€2/2) looks like

o1/2p- (61?2
Since G(1) = cos(zi — (nm)/2), we deduce
/ FNG(&)dE ~ e N2 cos (:v - n_7r> / e NED de ~ /me N/ cos <m — n_7r) N2,
0 27 Jig-ss 2

This and (4.24) complete the proof. O

Theorem 4.2 deals with the eigenvalues near the origin. More generally we may look
at the eigenvalues near an energy level E. For E € (—2,2), we expect to have the same
scaling. Since the gaps between particles are inversely proportional to the density, it is more
convenient to rescale as

Mo T YVET

where p(E) = (27)~'v/4 — E2. Since, dv; = N~Y2p(E)"'da;, we define

Nio=E+

(r) ) o N! —r/2 _r (r)( (o7} (o7
a, ..., B)=———N FE VNE+ ——,..., VNE + ————
Py (e ) (N =)t PLE) Py p(E)VN

N P o o ] :
=det | N/ p(E) K (mE+p<E)\/N’\/NE+p(E)\/N>]i]:1

The generalization of Theorem 4.2 in this case is Theorem 4.3.
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Theorem 4.3 Assume that E € (—2,2). For every r > 2, the r-dimensional marginals

densities ﬁ%)(-; E) converge to

(4.25) P, ... o) = ()" Hdet [K (o, a;)];

ig=1"
where K (o, ag) = sin(a; — ag)/(ag — ag).

Note that Theorem 4.3 becomes Theorem 4.2 when E = 0 because p(0) = 7—!. To prove
Theorem 4.3, define

ay.ay: B) = “IN-2K Y % )
Kn(aq.a0; E) = p(E)"'N~'2K (\/NEJFP(E)\/N,\/NEer(E)m)

We now need to show

Lemma 4.4 Assume that E € (—2,2). We have limy_,oo Ky (+; E) = K, locally uniformly,
where K was defined in Theorem 4.5.

As in the proof of Lemma 4.2, it suffices to show

Lemma 4.5 Assume that E € (—2,2). We have

i 1/4 I _ Ty 2
J&%‘N wn(\/ﬁE+p(E)\/ﬁ> p(E)cos(ac 2)’ 0,

locally uniformly, where n = N — £ for a fized (.

If we try to mimic the proof of Lemma 4.3, we run into a difficulty because of the
appearance of the factor exp(iNEE/p(FE)). More precisely, The function F' in (4.24) now

takes the form
56*52/2€iNE£/p(E).

For such a function F', the method of Laplace is no longer available and we need to apply the
so-called steepest descent to handle an oscillatory F'. Before explaining this method, let us
discuss the behavior of eigenvalues near the edge for which the same method may be used.

We now turn to the eigenvalues correlation near the edges. By Semicircle Law we expect
to have

N [? 2
ﬁ{)\i:)\iZQ—e}%—/ V4 — x2dr = ——Ne3/2.
2 Jo_ . 3T

To have finitely many eigenvalues in (2 — £, 00), we choose ¢ = O(N~%/2). This suggests
setting \; = 2+ &/ N~%/3 or ; = 2v/N + o/ N~/6 and looking at

p%)(xl, ooz )dry . de, = N_T/ﬁp%)(Q\/N + ANV VN 4 o NTYO)dd . de,

(N —r)

| r
(4.26) =y det NYSKN(2VN + afN7V8 2V/N + o, N7V/0) L dol, ... deo.
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Again since we are interested in observables of any r particles, we consider

P, al) = N7 VN + o N7V 2V/N + ol N716)
= det [I%N(a;,a;)}

ij=1
where )
Ky(ay,a0) = N"VSKN(2VN + oy N7V 2V N + ap N7V9).

Theorem 4.4 For every r > 2, the r-dimensional marginals densities }5%) converge to

i,7=1

(427) p*(T‘) (ala s 7ar) = det [K<az7 Oéj)]r )

where . . A () Aila
K(ay, ) = Aifen) Al (az) = Al{en) Al 2).

a1 — Q9
and Ai(z) =7t [7 cos(t?/3 + xt)dt is the Airy function.

The main ingredient for the proof of Theorem 4.4 is Lemma 4.6 below.

Lemma 4.6 For every positive C,

1 ‘Nl/” (2 N L)—A' ‘:0.
g | (V) it

Here by Ai(z) we mean
1 ¢ .
lim —/ e~ /3=t gy
—

Observe that if z € R, then

1 ¢ ' 1 ¢ 1/t
lim — / e~ g = Jim — / cos(—t3/3 — zt)dt = lim = [ cos(t3/3 + zt)dt,
l—o0 2T v l—o00 27 ) {—o0 T 0

which is the definition we gave previously for the Airy function.
Proof of Theorem 4.4. Using Lemma 4.1(i) and (ii), we have that Py = NPy_;. As a
result

U(@) = = Sun(e) + VNG ().

From this we learn

Ko as) = ¢N(a1)¢§v(ajz :z:(az)wfv(al) B %1#]\/(041)1#1\/(042),
KN(OéhO@) = AiN(al)Ai?V(Ozz : ij(%)AiMal) a 2]\?2/3AZ'N(0‘1)AZ'N(CV2)~
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where

Ain(a) = N2 (2VN + aN~10)

We are done if we can show

lim Aiy = Ai, lim N~ YA/, = A7,
N—oo N—o00
locally uniformly. Since Ain and A: are entire function, it suffices to establish the first limit
and this is the content of Lemma 4.6. U
As we mentioned earlier, for the proof of Lemma 4.3, the Laplace’s method does not
apply and we need to appeal to the method of steepest descent. The same comment applies
to the proof of Lemma 4.6. Before embarking on the proof of Lemma 4.6, let us explain
what the method of steepest descent is and why is needed here. Recall that if we have two
real-valued functions F' and G and N is large, then the main contribution in the integral
[;eNFGdE, comes from points £ € I at which F' takes its largest value. To simplify the
presentation, let us assume that the maximum of F' in [ is achieved at a single point &, in
the interior of I and that F”(&y) < 0. Then the method of Laplace is applicable and yields

(4.28) / N Gde ~ eNFEN 2 (—NF" (&) 2G(&).

1

Now imagine that the function F' = A + iB that appears on the left-hand side of (4.28) is
complex valued. Our first guess would be that the main contribution in this integral comes
from points & at which the amplitude |ef'| = e” takes its maximum value. Near such a point

€0,
F(&) ~ (&) +iB'(€)(E ~ &) + 5 (A"(&) +iB"(&)) (€ - &)

Hence

gt [ (o)~ FEE)] fomn| 52 (e 2)

= G(&) exp [N (F(fo) - B;(SE)Q)} (_%@0)1/2

where ag = A" (&) + iB"(&), we have taken the standard branch of square root, and have
used the fact that Re ay < 0 (see Exercise 4.1 below). Note that if B'(&,) # 0, then the
phase ¢?, changes the exponential term eV¥(¢0) and it is not clear that the integral near &,
is giving the dominant contribution. This problem would not arise if B'(§,) = 0 i.e. & is a
stationary phase point. If F' happens to be an analytic function, then it is more convenient
to think of the integral as a contour integral with the contour given by a parametrization
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of I. For our purposes, we assume that I = (—o0,00). The point is that now the condition
A'(&) = B'(&) = 0 simply means that F’'({y) = 0 and near &,

F(§) ~ F(&) + 5F"(€0)(€ ~ &)

The only problem is that if we insist on finding a point &, at which F’(§;) = 0, the point &,
may not lies on the real axis. On the other hand, we may apply Cauchy’s formula to deform
our contour 7 to pass through &, and we try to choose our deformed contour so that the along
this contour Laplace’s method applies and the main contribution comes from the &;-nearby
points. This method is also called saddle point method because if we set z = v +iy = £ — &,
then 22 = 2% — y? 4+ i2zy and 0 is a saddle critical point for the functions z? — y? and
2zy. So, in principle, we try to deform our contour to pass through a saddle point and
we do this so that along v, the phase stays stationary as much as possible while amplitude
reaches its largest value. Since F' is analytic, the level sets of Re F' are perpendicular to
the level sets of Im F. So, moving along I'm F' = ¢ near £ would do the job. In other
words, we start with a nearby valley of ReF’, move along a level set of Im F' to reach &
and continue along a steepest descent path to keep the phase stationary. To have a simple
example, imagine that we want to study the large N limit of [7 e =*dz. The analytic

function F(z2) = i2? = —2xy + i(2? — y?) has its only critical point at 0.

Exercise 4.1 Let a and zy be two complex numbers with Re a > 0. Show

/ " emalerarizge |27
e a

where we take the standard branch of square root for \/a. Hint : Write the integral as an

integral over a line in C that passes through 29\/a and makes the angle arg /a with the

x-axis. Then use Cauchy’s theorem to replace this line with the z-axis. 0
Proof of Lemma 4.6. As in the proof of Lemma 4.3, for w = 2N'/? + zN~1/6,

¢N(w) _ —i(27r)_3/4(N!)_1/26w2/4 §N€§2/2—w5d5.

—100

Two large exponents appear in the integrand, N and w. Since they are not of the same
order, we try to replace the contour of integration iR with the tilted line L = {w( : ¢ € iR}.
Note that w has a large real part and iw € L. So, the line L makes a small angle with the
imaginary axis. Now if we apply Cauchy’s formula, for such a replacement we need to make
sure that

lim [ eNeS/2wlde =0,

l—00 Sg
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where Sy is the line segment {Fy + (££)i : 0 < y < ¢} where [ is the tangent of the angle
between L and the imaginary axis and [ is small when N is large. This follows from the
fact that for a constant cy,

Bt
/ éNe€2/2—w€d§‘ < (V20)¥ / e Zrent gy ),
S 0
as ¢ — oco. Hence

(4.29) @ZJN(UJ) = _Z'<27r)—3/4(N!)—1/2€w2/4wN+1/ CN6w2(g2/2_<)d<'

—100

Since w? = 4N+O(N~'/3), we see that the integrand is now of the form exp[N R({)+O(N?/3)]
for the function R(¢) = log ¢ +2¢? —4¢. Since R'(¢) = (2¢ —1)?, the function R has a single
critical point 1/2 and our contour iR does not pass through this critical point. We once
more apply Cauchy’s formula to replace iR in our integral with iR + 1/2. This is possible
because by Re w > 0, the integration over the line segment {£/i + z : 0 < z < 1/2} goes to
0 as ¢ — oo. As a result

) ico 1 N
Un(w) = —i(2m) AN TH2m By N / (g+§) e (024

—100

— _Z'(27T)—3/4<N!)—1/26—w2/8 <%>N+l/ (C n 1)Ne(“’/2)2(<2/2_0d<’

—100

)

= —i(2m) AN 2w (%)NH / /2P FO N log(140) g

—100

where F(¢) = log(1 +¢) + ¢%/2 — ¢ and N' = N — (w/2)? = O(N~'/3). Note that now the
only critical point of F'is 0 and the contour iR does pass through this critical point. Note
that by Stirling’s formula,

N+1 N+1
N-1/2 —w?/8 (E) ~ —1/4 1/4( z ) (_ z >
(N)~=e 5 (2m)" /N 1+ SN oxp ( ~5 a7
~ (2m) VAN

uniformly over z satisfying |z| < C. As a result,

(4.30) NY24 5 (w) ~ Nl/3% /Zoo (/2P F(Q+N"log(14+0) g
T J_ico

Note that Re F(it) = 3(log(1+t*) — t*) is negative and attains its maximum value at ¢ = 0.
But Im F(it) = tan~'t — t is nonzero and results in an oscillatory integral. As the saddle

35



point method suggests, we now try to deform the contour iR to n so that along n, F' is
real and negative. For example try a curve v which solves the equation F(vy(t)) = —t for
t > 0. This would replace iR". For the rest iR, we use —%. Let us first find such a
curve . Observe that near 0, the function F' looks like ¢3/3 — ¢*/4 + .... If we take the
wedge W = {pe? : 0 € [r/3,7/2]}, then F behaves nicely on the boundary of W. In fact,
F(it) = —it?/3 —t1/4+ ..., Re F(it) < 0 is negative for ¢t > 0 and I'm F(it) is also negative
with Im F(it) +t bounded by 7/2. Also observe that F(te’™3) = —3/3 + t*e™/3 /4 4 .
lies fully in the second quadrant. We wish to show that the function F'(¢) + ¢ has a unique
root in the wedge W. To see this take a large r and look at the set W, ={a € W : |a| < r}.
We note that since for large ||, the function F is almost ¢?/2, the function F' maps the
circular boundary of W to an almost circular arc that crosses R™. From all this, it is not
hard to deduce that the boundary of F(IW) winds around points in the interior of F'(W)
once. In particular, for every ¢ > 0, and sufficiently large r, the boundary of F(WW) winds
around —t once. Since F' is analytic, this winding number equals the number of roots of
F +t. Hence, there is a unique solution v(¢) with F'(v(t)) = —t. In fact for the same reason,
F~! is well-defined and analytic in the interior of F'(W). So, v(t) = F~'(—t) is an analytic
function for ¢ > 0. It is not hard to see that « is continuous at 0 and (0) = 0 because
F(¢) = 0 has only one solution ¢ = 0. Moreover, since |F(¢)] = O(|¢|?) for large z and
F(¢)=(*/3+ ... near 0, we learn

(4.31) Y(t) = O(tY?), ast — oo, y(t) = ™3(3t)3 + O(tY3), as t — 0.

Since the contour v lies inside W, we can readily show that the integration over :R* in
(4.30) can be replaced with . The proof is very similar to what we used in the beginning
of the proof. Hence

It — NU/3 / = eW/D?F(O+N"1og(1+0) g~ — N1/3 / h e~ (WP 4y ()N (t)dt
0 0
- N_w/ e (WRIN(L (8 N))Y A (8N dt.
0

Observe that since F'(v(t)) = —t, we have that v/ = —y~2(1 + 7). From this and (4.31) we
deduce,

(4.32) V() =0t ?), ast — o0, A(t)=e™3(3t)73 + O(t"?), ast — 0.
Using (4.30) and (4.31) we learn
(4.33) (1 +~(t/N)N ~ exp (—2(3t)/2e™/3) . N7234/(t/N) ~ e™/3(3t) /3,

To pass to the limit, we use dominated convergence; observe that for large N,

e—(w/2)2t/N‘ <e V1 N“2B|y(t/N)| < ¢ max (t—2/37N—1/6t—1/2) <o (75—2/3+ 1),

1log(1 + y(t/N)| < cit AN"V3 |1+ ~(t/N)|N < =",
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for constants ¢; and cy. This allows us to pass to the limit N — oo to deduce
I~ /Oo exp (—t — 2(3t)/3e™/3 +im /3) (3t)"*/dt.
0

Replacing ¢ with s3/3 yields

(4.34) It = /OO exp (—s/3 — zse™3 +ir/3) ds.

0

Since F'(¥(t)) = —t, for the integration over iR~, we use § and reverse time. As the result,

I~ — N3 / D WP FO log(14+0) J¢ — _ N—2/3 / b e~ /2PN (L 4 5(t/NY)N' S (£/N)dt

- 0

100

=~ / exp (—s°/3 — zse T3 — ir/3) ds.
0

From this, (4.30) and (4.32) we conclude

1 o0 . )
(4.35) NY2yn(w) =~ 2—/ e~ /3 [exp (—zsem/3 - i7r/3) — exp (—zse_m/s — i7r/3)] ds.
i Jo
It remains to show that the right hand side is the Airy function. First introduce a contour
C' that consists of two rays emanating from the origin and making angles +7/6 with the
imaginary axes. The contour C' is oriented so that the imaginary part goes from —oo to oo
as we move along C. Clearly the right-hand side of (4.35) equals
1 €C3/3*ZCdC'
271 C

We note that this integral is absolutely convergent. We may deform the contour C' to iR.
However the resulting integral is no longer absolutely convergent convergent and as a result
the right-hand side of (4.35) equals

1 [ 1 [ e
lim — / e P d¢ = lim — / e~/ gy
—L

l—o00 271 ) l—o0 27T

Remark 4.3. As we have seen in the proof of Lemma 4.6,

1
(4.36) Ai(z) = — [ 34,
271 C
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where C' is a contour that consists of two rays emanating from the origin and making an-
gles £7/6 with the imaginary axes. Since this integral is absolutely convergent, we can
differentiate under the integral sign to obtain

1 3 ]. d 3
Ai" - 2 ¢ /szcd — 2 Aj _/ ¢ /37z(d .
i"(2) 27m'/cc e ¢ = zAi(z) + i CdCe ¢

Hence
(4.37) Ai"(2) = zAi(z).

O

Proof of Lemma 4.5. Set w = v/NE + x/v/N. For simplicity, we assume that n = N.
Recall (4.29) and again replace the contour iR with iR + 1/2 to assert

N+41 [io0
() = —i(2m) AN e (F) [ g petrerog,

—100
as in the proof of Lemma 4.6. We write,

Y (w) = —i(2m) AN e (%)NH / ¢+ )N B RO g

—100

where R(¢) = log(¢ + 1) + (E/2)?(¢*/2 — (). we note that R’ has exactly two simple roots
at :|:Zt0 with to = \/4 — EQ/E Set

X(¢) = (¢ + 1)New/2*/2=0)

and observe y
| X (&ity)| = (t2 + 1)N/26*(w/2) 13/2

Moreover, by Stirling’s formula,

w

—i(QW)_3/4(N!)_1/26_w2/8 (2 T >N+1

)X Grito) & —(2m) " (B/2)N Y (14
~ —(2mi)"Y(E/2)NY4,

As a result,

EVN o [ /B ()
Ny (w) & ———| X (Lito)| 1/ (¢ + DN B Lo/ BT g,

271

—100

Exercise 4.2.
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e (i) Use Laplace’s method to establish Stirling’s formula I'(s) ~ (27)"'/2s° /2%, as
5 — 00.

e (ii) Use saddle point method to establish Lemma 4.5. Hint: Use (4.29) and observe
that the corresponding function R(¢) = log ¢ + E?(¢*/2—(¢) has two simple roots when
E € (—2,2). (This explain the different scaling in Lemmas 4.5 and 4.6.)
O
As our last topic in this section, we try to find the law of the largest eigenvalue. The
tightness of the rescaled last eigenvalue follows from a result of Ledoux:

Lemma 4.7 There exist positive constants Cy and Cy such that for every t,

(4.38) lim sup Py (max Ai >2+ tN*2/3> < e G0t

N—oo

Py (max A > 26tN72/3> < (O e 200t
1

We postpone the proof of Lemma 4.7 for later.

Since the joint distribution of eigenvalues is given by a determinant and the size of our
matrix gets large, Fredholm determinant should be relevant. Let us review a well-know
formula for determinant that is even meaningful for trace-class operators and behaves well
as N gets large.

Lemma 4.8 For a N x N matriz A = [a;],

N-1
(4.39) det(I —A) =1+ (-1 Y detfaga,lf;_.
k=1 1<ap<--<op <N
Proof. By direct expansion
N
det(I — A) = Z e(o) H(&; (i) — Qio(i))
gESN =1
N k
=1+ (0 3 e > I dew]laa
k=1 oc€SN 1< <-<ap<N i#aq,...a s=1
N k
=14+> (-8 ) > elo)(o(i) =i, for i # ai, ... ) [ [ taeian
k=1 1<ap<-<ap<N oc€SN s=1
N k
AP COUNED DD D (] | (e
k=1 1<a; <-<ap<N TES} i=1

N
=1+ (=) Y detfaga, ),
k=1

1<ai<--<ap<N
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Theorem 4.5 For everyt,

2/3
A}l_I)I;O]P)N(maX)\ <24+tN™ />—1+Z i / / det o, ] 7,_7 1Hda

Proof. Recall A; =2+ ajN~%/3 or z; = 2V/N + o/N~"/°. Evidently
Py (max A <2+ tN_2/3> =Py (maxxi <2V/N + tN—1/6> .

Pick a large positive ¢’ and set w = 2¢/N +tN~/6 and v’ = 2v/N + t'N~V/6. By Lemma
AT,

(4.40) A}im ‘IP’N (maxxi < w) — Py (x; ¢ (w,w') fori=1,..., N)‘ < = Cot’,
— 00 (2

On the other hand, we use Theorem 4.1 to assert that the expression

(4.41) Py (z; ¢ (w,w'),i=1,...,N)

equals

N
TN /ww /ww] e(o)e(r) g%(i)l(%)%(i)l(xi)d:ﬁi

o, TESN

(1.42) [w > £(0) T i)t )

oceSN =1

%% H/;)% Doty (2)d

N
= det |:/[ : ¢i_1($>wj_1($)dilf:| .

2,7=1
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From this, [;1; = d;;, and Lemma 4.7, we dduce that the expression (4.41) equals

det 51'3‘ — ’ wi— ($)¢j_ ([L’)dl’]
[ /w 1 1 i,j=1
N W
=1+ Z(—l)k Z det [/ ¢ai—1($)¢aj—1(x)d$]
k=1 1<a;<<ap<N w
N
S

k=1

N
k

1,j=1

/ /w (det Wail(ﬂfj)]f,jl)z ﬁ da;

1<O¢1< <ak<N ]:1

N ’U} U}
Z k/ / det [Kn(z4, ;)] i 1dej,
k=1

where for the third equality, we applied the calculation (4.42) in reversed order and for the last
equality we used Cauchy-Binet’s formula and the fact that if A = [);_1(;)]}Y_,, then AA" =

[Kn (25, 2)]N_,. (Compare with (4.12).) The change of variables #; = 2v/N 4 o,N~/6,

4,7=1
i=1,...,N and (4.40) yield that the expression (4.40) equals

(4.43) 1+Z - / /det KN o, ]]H 1Hda

As in the proof of Theorem 4.4, we know that limy_. Kn = K locally uniformly. We want
to use this to pass to the limit term by term in (4.43). For this, we need to bound each term
of the sum. By Hadamard’s inequality (see Lemma 4.9 below),

/ / det KN o, j} Hda < (' —t)F max |Ky(a,b)|"k*2.

a,be(t,t’]

From this and the fact that Ky — K locally uniformly as N — oo, we deduce

/ / det KN o, J} 1Hda < eFER2,
ij=

This would allow us to replace Ky with K in (4.43) as N — oo because Y, e k*/2/(k!) < oo
From this and (4.40) we learn

2/3
]\}I_I;I(I)OIP)N (max)\ <2+tN /> 1+Z k! / / det za ] ’Lj 1Hda

+ Error( ",

41



where |Error(t')] < e=©". We finally need to send ¢’ to infinity. To replace the upper limit
in the integrals with oo, we need to make sure that K(a,b) decays sufficiently fast for large
values of a and b. This will be carried out in Lemma 4.10 below. U

k

)

Lemma 4.9 (Hadamard) For a k x k matriv A = [a;;], with columns a*, ... a
k
det Al < a'l < k*? max |a;;].
e 4] < [Tl < 7 ma

Proof. Without loss of generality, we may assume that |a’| = 1 for i = 1,..., k. Write
t1,...,t for the eigenvalues B = [b;;] = A'A. Since b;; = |a;|?,

k
(det A)> = det B = Hti < (KMt 4+ tk))k = (k'tr B)k — 1.
i=1

Hence,

k
| det A| < [ ] la'|-
=1

Finally observe that |a’| < vEmax;,; |a;|. O
Lemma 4.10 For every a > 0,

sup |I~(($, y)|(:1:_1/2 + y_1/2)64(x3/2+y3/2)/3 < 0.

z,y>a

Proof. We have

K(ay,ap) = Aiar) Ai'(ap) — Ai'(on) Ai(as)

Q1 — Q2

_ Ai(ay) — Ai(ozg)AZ,,(OQ) B Ai(al)A@"(QQ) — Ai'(ay)

a1 — Qg a1 — Q2

= Ai' () /01 Al (tag + (1 — t)ag)dt — Ai(ay) /01 Ai"(tag + (1 — t)aw)dt.

Hence we need to bound Ai, Ai" and Ai”. For this, it suffices to show that as x — oo,

(4.44) Ai(z) %(471_)71/2%71/46,%953/2’
(4.45) Al (2) ~(4m) 25V o302
(4.46) A" (z) %(4@—1/2]:3/46,%333/2.
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We only establish (4.44) because the proofs of (4.45) and (4.46) are similar. (Also (4.44)
implies (4.46) by (4.37).). For (4.44), recall
: L[ ¢/s-ac
Ai(z)=— [ e dcg.
2m Jo

where the contour C' consists of two rays emanating from the origin and making angles 4+ /6
with the imaginary axes. The contour C' is oriented so that the imaginary part goes from
—00 to 0o as we move along C'. A change of variable { = \/zn yields

Ai(x) = @ ez3/2("3/3_”)dn.
211 C
On the portion of C' with positive imaginary part, n° = (te'™/3)> = —t3. So we expect to
have a decay of order O(e*’rg/Q). Hence, let us make a change of variable n = a4 1 to obtain

Ai(z) = e VT [ o rat) g
271 ol

9

where C" is C shifted from the origin to —1. Write C’ = C + C5 where ] is the portion of
C that lies on the right side of the imaginary axis. C is parametrized as o = +i\/3+te*/3.
One readily checks

Re(a?/3 4+ a?) = —t3/3 — 5t°/4 — 3t — 3.

Hence,

Y

o0

_.3/2\/T 3/2(,3 2 _4.:3/2\/ T _9..3/2 1 _4.3/2

e~ \/__ s (a® /34« )dOc <e 4z £ e 3z tdtg e 16 4z
211 Jen T Jo

for a positive constant ¢;. On the other hand, we may deform Cs to the interval [—\/gi, \/gz]
to assert

_a:3/2 1 x3/2(063/3+042) J— —$3/2 1 \/g —x3/2(it3/3+t2)
Ve 5 e da = /xe o e dt
T Jcy TJ-v3

1 V/3a3/4
—/323/4
— —x3/2 —
~ o 1/46 x (2ﬁ) 1,

by the dominated convergence theorem. This completes the proof of (4.44). O
It remains to prove Lemma 4.7.
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Proof of Lemma 4.7. Stepl. First observe that it suffices to prove the second inequality
n (4.38). This inequality is established with the help of Chebyshev’s inequality;

(4.47) Py (max A > 26N 3) < 27 ANTE, §
Let us write Qk)
ExN— ME = T An(k
N Z (k+ 1)(k!)? w (k)

so that limy_,o Anx(k) = 1 by Semi-circle Law and (2.19). In fact we will show that for a
positive constant cy,

(4.48) An (k) < e@F N7
Assuming this for now and using (4.47), we obtain

(2k)!

tN—2/3 —2k —2tN—2/3k nr_cok® N—2
On the other hand by Stirling’s formula,

(k+ DR ™ Vavk(k+1)  J/akd?

This and (4.49) imply

_iN—2/3 —2/3 3A7—2 _
Py (max)\i > 2¢ N ) < 2Nk R NTE N | =3/2
(2

Choosing k = [N?/3] in this inequality yields the second inequality in (4.38).
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Step 2. It remains to establish (4.48). We first derive a formula for the moment generating
functions of the eigenvalues. In view of Theorem 4.1 and (4.16),

N
]ENN—I Zet\/ﬁ)\i — /p%)(x)emdx

i=1

=N [ @1 (0) — vl @)
=7 [ @) — ol ) e
=7 [ (i) = o))

= [ dnlayona(@)eds

1 2
= | Py(x)Py_i(x)e ™ /?Hody
t\/ﬁm/ v )

et2 /2
/27N

et2 /2
B tv/ 27 N

where we used integration by parts and Remark 4.2 for the third and fifth equality. On the
other hand, by Lemma 4.1 (i) and (ii), we know that P/(z) = kP;_;. Hence

Py(z+1t) = i (]/j) t* Py _x(z),

k=0

/PN(x)PNl(x)e(xt)zﬂdx

/ Py (x4 t)Py_1(z + t)e " ?dz,

by Taylor’s expansion. As a result,

/PN(x 1) Py (x4 t)e ™ 2dx = \/%i(zv — k)! (]]X) (]Z__ll)t%‘l.

Replacing t with ¢/v/N yields,

-1 al th _ t2/ (2N) - 1 (N k) 2k 2
(4.50) EyN~'Y e = 1+ DN *| = By(t/N),
j= k=1
where By(t) = e/?Cx(t) with
N— 1
LN k),
=1 t".
* kz:; k O
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Step3. Observe that for k > 1,

(td—2 + (t+ 2)1 — (N — 1)> th = k(k+ D)t — (N — k& — 1)t~

2 dt
Hence
(tj—; + (t + 2)% — (N - 1)) Cy(t)=1- N+ ]:2; (v _(llc)_“l')(!];f! — k)tk—l
= (N=1)..(N—k=1),
— (k + 1)1k!
e N1 .(N=k) e,
2 (k= 1)k
= N-1)...(N—k-1),
£ (k + 1)Ik!
=0.
As a result,

td2 +2d —(N+t/4) | By(t) =0
a2 "t M

Writing By (t) = Yo axt® yields

(451) (]{] -+ 1)(l€ + 2)ak+1 — Nay — ak,1/4 =0, 2a;— Nag=0,

for k > 1. By (4.50) and the definition of Ax(k),

By(t/N) =Y N7Fqu =% (Aﬂt?k.
k=0

— (k+ 1)!k!
Therefore,
Nk
=—————An(k).

= Gy v )

This and (4.51) imply a formula of Harer and Zagier:
k(k+1

(4.52) AN(]{?—i-l) :AN(:I{Z)—l- (4];7: )AN(]{?— 1).

Final Step. From (4.52) we deduce that Ay (k) is increasing in k and

An(k+1) = Ax(k) + %AN(/% -1 < (1 + k(z\;l)) An(k).
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As a result,

<1 (1+ ) <o (21451,

From this, we can readily deduce (4.48). This completes the proof of the Lemma. U

5 Dyson Brownian Motion

In this section we study the matrix-valued process Hy(t) = H(t) = [h;;(t)] where (h;;(t) : i >
j) are independent Brownian motions and H (t) is either symmetric or Hermitian for every t.
In the symmetric case, Exhy;(t)> = tN~! for i # j and Exh;(t)? = 2¢N~'. In the Hermitian
case, Exh;;(t)> = tN~" and for i # j, hy; is a complex-valued Brownian motion with Re h;;
independent from Im h;;, and ExRe h;(t)? = ExIm h;(t)? = tN~'. We refer to the
process H(t) as the Dyson Brownian motion (DBM). Dyson derived a stochastic differential
equations for eigenvalues and eigenvectors of H. Before embarking on this derivation, we
recall two fundamental facts from Stochastic Calculus. In what follows all processes are
assumed to be continuous in time ¢. Given a filtration F;, we say an adapted process X ()
is a (local) semimartingale if X (t) — X (0) = M(t) + A(t) where both M and A are adopted,
M is a (local) martingale and A is a process of bounded variation. Given a martingale, we
write [M](t) for the unique process of bounded variation A(t) such that M(t)> — A(t) is a
martingale. If M and M are two martingale, then [M, M] = 4~'([M + M] — [M] — [M]) so
that MM — [M, M] is a martingale. If X and X are two semimartingales with martingale
parts M and M, then we define [X, X] to be [M, M]. Here are two fundamental results from
stochastic calculus:

Proposition 5.1 e (i)(Ito) Given a (local) semimartingale X = (X1,...,X,) and a C*?

function f, we have

df(X(t)) = VF(X(t))- Z i, (X () X5, X;](8).

1]1

o (ii)(Ito) Let B(t) = (Bi(t),...,By(t)) be a standard Brownian motion, and assume

that continuous functions a(t,x) = (ay(t,x), ..., aq(t,x)) and o(t,xz) = [o5;(t, x)]¢,_,
satisfy

sup |a(t, ) — a(y,t)] < cole —yl,  sup [lo(t,2) — oy, )| < colw —yl,

0<t<T 0<t<T

sup \a(t,x)| < C0(|I‘ + 1)7 sup HO’(t,Q?)H < CO(‘x| + 1)7

0<t<T 0<t<T
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for a constant cq. Then the stochastic differential equation
dX =a(t,X)dt + o(t,X)dB,
has a unique solution in [0,T].

o (iii)(Levy) Let M = (M, ..., My) be a continuous martingale with [M;, M;](t) = 0;;t.
Then M is a standard d-dimensional Brownian motion.

We now carry out some formal calculation to derive Dyson’s formula for the eigen-
values and eigenvectors of H. Write H = UDU* where U is orthogonal /unitary and
D = diag[\, ..., \y] is a diagonal matrix with \; < --- < Ay. For our formal calcula-
tions, let us pretend that H ~— (U,\) is smooth. Define a martingale H by H(0) = 0,
and

(5.1) dH = U*(dH)U.
Let us consider the symmetric case first so that
dilij = Z Upitydhy = Z Upi U ANy, + Z (upitty; + wiitiy;) dhyg.
k] k k<l
From this and Ito’s formula we learn

d[iLij, Bi/j/](t) = N_l (2 Z Ui U j Ufeg? U1 + Z(ukiulj + uliukj)(uki/ulj/ + uli/ukj/)> dt
k

k<l

—1
=N ( E Ui U j Uk U+ E (wpiwgjugy g + Uliukjuli’ukj’)) dt
k k<l

-1
+N ( E Ui U j Ui Uk jr + E (wpiwgjug ugy + Uli“kj“ki/“lj/)) dt

k k<l
= N_l E ukiuljuki/ulj/dt + N_l E ukiuljuli/ukj/dt.
k,l k,l

As a result,

~

(52) d[ilij, hi/j/](t) - Nil ((Sii’éjj’ + (5@'/(2’1/) dt

From this and Levy’s theorem (Proposition 5.1(ii)), we deduce that H(t) is also a DBM. In
summary,

(5.3) dH = U(dH)U*,
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where H is DBM. On the other hand, since U and A are semimartingales, and H = UDU*,
we know

N

(5.4) dH = (dU)DU* + UD(dU*) + U(dD)U* +

Z )\k uzka Ujk ]

Here we used Ito’s formula as in Lemma 5.1(i) for the function f(z1,xe,x3) = z12273:

ij=1

d(X1X5X3) = XoX3d X1+ X1 Xod X5+ X1 X3d Xo + X1d[ X, X3]+ Xod[ X3, X1+ X3d[ X1, X,

where X, Xy, X3 are of the form u, u;i, \p. Note that from Section 2 we know that A is
independent of U, so the bracket of an entry of U with an eigenvalue is 0. From (5.3) and
(5.4) we deduce

U.

ij=1

(5.5) dH = U*(dU)D + D(dU*)U +dD + U*

Z Akd[uika ujk]
k

On the other hand, since U*U = I,

(5.6) U*(dU) + (dU*)U +

Zd[uki,ukj]] = 0.

k ij=1

The entries of the matrix U*(dU) = Adt + dV are semimartingales with A = [a;;] of finite
variation and V' = [v;;] a matrix-valued martingale. Taking the martingale parts of the both
sides of (5.6), we learn that V' is skew-symmetric. We now take the martingale parts of the
both sides of (5.5) and use skew-symmetry of V' to deduce that when i # j,

diLij = )\jd’l}ij + )\idvji = ()\J — /\Z)dl)z] or dvij = (/\] — )\i)_ldilij.

We now try to determine A. From (5.6) we know

N
§ d uk’za Uk ] .
tj=1

On the other hand, since dU = UAdt + UdV,

(A+ A%)dt =

dlugi, wrg] = d | > upedvg, Z U vy
¢

(5.7) Z U2 (N — No)72dt — (i # )N Suggugg (N — \) 2t
0:044
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As a result,

(5.8) A+ A = — [(SijN—l Z(Ag - /\Z-)‘Q] :

i ii=1

Later we will show that in fact the matrix A is symmetric and hence

(5.9) A= —% [5@' > (- )\z’)2] :

Gl i1

In summary, the matrix U solves the stochastic differential equation

(5.10) dU = UAdt + UdV,

with V* 4+ V =0, dvij = (A; — \i)~'dhij, whenever i # j, and A is given by (5.9).
We now try to determine an equation for A. By ,(5.10)

d[uik, ujk] =d [Z uigdvgk, Z Ujgdvgk] = Nil Z Uiguj'g()\k — )\g)iZdt.
)4 )4

C0£k

From this we deduce
N N

(5.11) U | Meduir, ] U=N"! laij > M — Ai)—Ql dt.
k i _

k:k#i

ij=1 ij=1

From this, (5.5) and (5.9) we learn

dhi; = 2a0 + d\i + N7 A\ — i) 7t
ki

Hence,
dhi =N (A= \)tdt + dh.
ki
On the other hand, if we take the finite-variation parts of off-diagonal entries of both sides
of (5.5), we obtain
0= aij)\j + aji)\i7

because the matrix of (5.11) is diagonal. Since by (5.8), the matrix A + A* is also diagonal,
we deduce that a;; = 0 if ¢ # j, confirming the claim (5.9).
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Exercise 5.1 Let H be a DBM and define a matrix-valued process K by dK = dH — Kdt/2.
Choose an orthogonal /unitary matrix U so that U*KU = D where D is diagonal. We
write Ay < --- < Ay for the eigenvalues of K. define H and K by dH = U*(dH)U
and dK = U*(dK)U. Show that H is a DBM and that dK = dH — Ddt/2. Show that
dU = UdV + Adt with V' and A as before. Derive

1 . 1 "
(5.12) d\i = D (= M)t — hidt + dhi;

ki
for the evolution of \. OJ

We are now ready to state and prove Dyson’s theorem. For Theorem 5.1, we consider a
general DBM where H(0) is simply a symmetric/Hermitian matrix.

Theorem 5.1 Let H(t) be a DBM. Then the eigenvalues and eigenvectors of H(t) satisfy

(5.13) d\ = N3 (= N) Lt + dh,
k:k#£i
(5.14) dU = UAdt + UdV,

where A is given by (5.8) and V = [v;;] is a skew-symmetric matrixz satisfying dv;; = (A\; —
Ni)~tdhy; fori # j, with H a DBM.

Proof. This is our strategy: we first prove the existence of a (unique) solution to (5.13)
and (5.14). We then use A and U to construct H by H = UDU*. We then show that in
fact the resulting H is DBM. Since we already know what the law of the eigenvalues and
eigenvectors of the constructed H are, we deduce that the equations (5.13) and (5.14) are
correct.

Step 1. First we assume that the eigenvalues of H(0) are distinct and construct a unique
solution to the equation (5.12). To do so, first we replace the drift with a smooth function;
define 1. by ¥.(r) =r 1 if |r| < e and ¥.(r) = e ?r if || > . Consider the equation

(5.15) dhi = N7'> " (N = Ap)dt + dhy.
k:ki

By Ito’s theorem, the equation (5.14) has a unique solution. This solution is denoted by
A°(t). Let 7(¢) be the first time, [\;(t) — A5| = ¢ for some i # j. Note that A*(¢) does solve
(5.12) so long as t < 7(g). For the same reason, if ¢ < &', then 7(¢) > 7(¢’). Hence, if
7 = lim._,o 7(g), then we have a unique solution to (5.12) up to time 7. As a result, we only
need to show that 7 = co almost surely.

As before, let us write § = 1 in the symmetric case and § = 2 in the Hermitian case.
Observe that A is a diffusion with the generator

L=(BN)"(A=-VIW-V),
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where
W) = =8 log|xi =\l
i#]
(Here and below by a summation over i # j we mean a summation over unordered distinct
pairs of 7 and j, so alternatively we can take the summation over i < j.) To show that 7(¢)
is large for small ¢, we use strong Markov property

tAT(€)
(5.16) Exf(A(t A T(2)) = Ex F(A0)) + Ex / F(A(s))ds,

for a function f that is bounded below and we have an uniform upper bound for £f. We
start from the quadratic function q(X) = |A[%;

(5.17) LqA) =2/B+2N""> XN(\—N\) ' =2/8+N—1.

i#]
The function g doesn’t do the job for us because it is not large at the stopping time 7(¢).
However the potential W is large at 7(g). Moreover

LWA) =R+ (1-5)Y (Z(Ai - Aj>1> ,

7 Jij#i

where

R=Y (h=X)7=)] (Z(Ai - >\j)_1>

i#] i JijFi
=Y =) = )
i£j#k
=270 3T [y = AT G = AT e = A) T O = )]
i£j#k
==27" > (=) =)
i#j#k

From the equality of the third term with the last term we learn that R is 0 and as a result,

(5.18) LW =(1-5)) (Z(Ai - Ajrl) <0,
i J:j#

Finally we set f = N(q+4N) + 7'W. From (5.17) and and (5.18) we deduce
(5.19) Lf<N(2/8+ N —1).
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On the other hand, we use the elementary fact 2 + 4 > 2log(1 + |z|), to assert

FO) 22N S log(1-+ )~ St~
' i#]
>Zlog (1T+ XD+ M) Zlogp\
i#]
> Z (—log A =AD"
i#]
Using this and (5.19) for (5.16) yield

tAT ()
[loge| Py (r(e) <) < Enf(A(EAT(e)) < f(A0)) +EN/O F(A(s))ds
< f(X(0))+tN(2/8+ N —1).

Hence,
Py (7(e) <t) < [f(A(0)) +¢N(2/8+ N — 1)] [loge|™".

As a result,
Py(r(e™) < ti.0) =0,

and this in turn implies
lim7(e) =0,

e—0
almost surely.

Step 2. Using the constructed A of the first step, we solve the equation (5.14) with the
initial condition U(0) that is orthogonal/unitary and satisfies U(0)*H (0)U(0) = D(0) with
D(0) a diagonal matrix. We note that the Brownian motions we use in (5.14) are independent
of those used to construct A, and that in the interval [0, 7(£)] all the |\; — A;]~" are bounded
by e7!. As a result, (5.14) has a unique solution in the interval [0, 7(¢)].

We claim that U(¢) is orthogonal /unitary for ¢ > 0. To see this, observe that if B = U*U,
then U*dU = BdV + BAdt. On the other hand

dB = d(U*U) = U*(dU) + (dU*)U +

Z d[uki, ng]] )

ij=1
and since
Z dlugi, ugg) = 1( = HNTD D g, (A Tt — (i £ HNTY uggugg (A — i)t
k004 k
HNTEY 7 bee(Ae = A2t = (i # N by (A — Ai) 7,
004G

93



as in (5.7),and V +V* =0, B* = B, A* = A, we deduce

dB =BdV — (dV)B + (BA + AB)dt

+ N1 =) Z bue(Ne = M) ™2 = 1(i # J)biy (N — M) 72| dt.

O£

This stochastic differential equation has B = I as a solution. By uniqueness, B(t) = [ in
[0, 7(g)] for every € > 0. Thus U*(t)U(t) for every t.

We now set H' = UDU* where D = diag[)1,...,\n|. Evidently H'(0) = H(0). We
define H' by dH' = U*(dH')U, H'(0) = 0. We wish to show that H = H’. Observe that the
equations (5.4) and (5.5) are all valid for H' and H'. From this and U*dU = dV +Adt, we can
readily deduce that h;; = h’ for i # j. We also use (5.10) and (5.13) to deduce that h; = h.,.

Hence H = H'. From this we learn that H’ is DBM. Since dH' = U(dH"\U* = U(dH)U*,
we deduce that H' = H. This completes the proof when the eigenvalues of H(0) are distinct.
Step 3. Let H(t) be a DBM with H(0) any symmetric matrix. We claim that H(J) has
distinct eigenvalues for any 0 positive. This is because by parabolic regularity, the law of
H(8) = [hi;(6)]i; is absolutely continuous with respect to the Lebesgue measure [[,; dhi;.
Since the set symmetric matrices for which with non-distinct eigenvalues is of 0 Lebesgue
measure, the matrix H(J) has distinct eigenvalues almost surely for any § positive. If Q(e, )
denotes the set of matrices H whose eigenvalues satisfy |A\; — A;| > ¢ whenever i # j, then
on this set, the process A(t) satisfies (5.13) for ¢ > ¢ almost surely. Since Pxn(Q(e,6)) — 1
as € — 0, we deduce that the process A(t) satisfies (5.13) for ¢t > § almost surely. Finally we
send 6 — 0 to complete the proof. O
We note that the invariant measure for DBM takes the form [, |\ — NPT dn.
For our purposes we prefer to work with the Ornstein-Uhlenbeck variant of DBM that was
introduced in Exercise 5.1. We note that the diffusion (5.12) has a generator of the form

(5.20) Lf=(BN)" (A-VV.-V),

where now V' is given by
(5.21) V) = BN/ — 83 log [h — Al
i£]

The invariant measure for the generator £ takes the form Zy'e™Vd\ which is exactly the
Gaussian ensemble. In the next section, we will see how this can be used to establish the
universality of the Wigner ensemble.

Exercise 5.2.

e (i) Verify Theorem 5.1 when A satisfies (5.12) instead of (5.13).
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e (ii) Note that near the boundary n; = X\;11 — A; = 0 of the domain Ay = {A: )\ <
-+ < Ay}, the operator £ has the form

2

d d
L=2(BN)"'— +2(Nn,) '— + '

1

where £’ is a non-singular operator near the boundary n; = 0. Motivated by this
consider the Bessel process
d> d
=27 — — B2x) ! —
A dx? (22) dx’
and show that if initially z(0) > 0, then z(¢) never crosses 0 if and only if 8 > 1. Hint:
Use a function similar to f of Step 1 of the proof of Theorem 5.1.
O

6 Universality

Recently universality for Wigner ensembles has been established by two different methods.
First approach has been initiated by Erdos, Schlein and Yau and based on DBM and LSI.
The second approach was employed by Tao and Vu and analyze the differentiability of the
eigenvalues as a function of the matrix H. This section is devoted to the first approach.
Theorem 6.1 appeared in [ESY]. This Theorem is the analog of Theorem 4.3 for non-Gaussian
ensembles.

Theorem 6.1 Assume that E € (—2,2). For every r > 2, let ]A)SG)(-;E) denote the -
dimensional marginals densities of a Wigner ensemble H as in Theorem 4.3. Assume that
the probability density of the entries of H have a sub-exponential decay. Then the averaged
correlation function

1 a

% ﬂﬁ%)(al, o0 E+a)da
converges to
(6.1) PN an, ... ) = (r) " det [K (oy, o))

ij=1"

as N — oo, where K(ay, ay) = sin(a; — as)/(ag — ag).

We first start with a variant of Theorem 2.2 that works for the domain Ay = {A: A\ <
-+ < An}. Let us write S(f) = S.(f) = [ flog fdu for the entropy with respect to the
measure u and D(f) = D, (f) = 4 [ (VV/F)?du = [(V )2 dp.
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Theorem 6.2 Assume that the function V' is given by
VI(A) =V(A) + AR,

where V is as in (5.21), A : RY — R is a C? function, and the second derivative D*V’
satisfies D*V'(x) > ¢ I for every x. Then the probability measure p(d\) = Z 1™V Na,
X\ € Ay, satisfies LSI(4c). Moreover, if A = A —VV'-V and g, = e'g, then
(6.2) %&gt} < - /(DQV’)Vgt Vg g, du.

Needless to say that the proof of Theorem 6.2 is almost identical to the proof of Theorem
2.2 except that some care is needed when we integrate by parts. For Theorem 6.2, we
need to make sure that the no contribution is coming from the boundaries \; = \;11, ¢ =
1,..., N, each time we integrate by parts. Since the difference between Theorem 2.2 and 6.2
is technical, let us delay its proof for now and see how it can help us with the issue of the
universality. In the view of Theorem 4.3, what we need to show for Theorem 6.1 is that for
a large N, Wigner ensemble can be replaced with a Gaussian ensemble. From now on, we
refer to H(t) of Exercise 5.1 or a solution of (4.12) as DBM’. Note that for GOE or GUE
we already know that Theorem 6.1 is true by Theorem 4.3, and that H(t) approaches a
Gaussian ensemble in the large ¢ limit. Basically we want to prove Theorem 6.1 for a Wigner
ensemble H(0) whereas we already know it is true for H(oco) in a DBM’. An important
observation is that for the finite dimensional marginals near an energy level E, we only need
to compare the law A locally with a Gaussian ensemble. Even though the global equilibrium
is approximated for a large t, it is plausible that a local equilibrium is reached much faster.
It fact Erdés et al in [ESY] show that such a local equilibrium is already reached at a short
time of order N~¢ for some € > 0. They then show that H(N~¢) is sufficiently close to H(0)
so that the conclusion of Theorem 6.1 is valid for a general ensemble under a mild condition
on the law of its entries. Before embarking on the details of the work [ESY], let us outline
the steps of the proof.

e (i) We switch from the potential V' to a new potential V' = V' 4+ A which confines the
eigenvalues to a small neighborhood to those values predicted by the semi-circle law.
This new potential induces a new infinitesimal generator £’ and a reversible diffusion
X'(t) which reaches its equilibrium measure ¢/ much faster than DBM'.

e (ii) Via Bakry-Emery type result and LSI, we use (i) to show that the law of X'(¢) is
sufficiently close to its equilibrium measure p’ for a time of order N¢ so that for the
marginals of eigenvalue gaps Aj,; — A; we can switch to y'.

e (iii) We show how a universality for the finite dimensional marginals of eigenvalue gaps
Ny — A leads to a similar universality result for the original DBM’ process A(t) with
t = N~¢, for some positive £ > 0.
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e (iv) We show how a universality for gap distributions imply the universality for finite
dimensional marginals.

e (v) Finally we show that for N large, the corresponding marginals of the variables A(0)
and A(N~¢) are close.

Let us first review what Theorem 6.2 offers in the case of a global equilibrium. To this end,
let us assume that the law of A(0) is given by

foA) i (dXN) = Zy(8) 7 fo(X)e P Nan,

with V' = V3 as is (5.21). Hence the variable A(t) is distributed according to fydu’,, where
f+ satisfies
dfy

o= Lf0. O = fo

with £ given by (5.20). We have

D’V(A)o-v=2""8NJo]> + B> (A= A)20f =2 (A — Ap) oy

1#£] i#£]
(6.3) = 27BN + 8> (A = A) (0 — v;)*
i#£]

Hence, 17, satisfies LSI(2/(N3)):
S(g) < 2(NB)~'D(g),

for every density function g. This gives a very fast convergence to the equilibrium measure
if we take a diffusion with generator A = A — VV - V. But for our DBM’, the process
is slowed down by a factor (3N)~! More precisely, if g = €™, then f; = g(sn)-1; because
L= (BN)'A. In fact from

d5(f:)

L =D,

we learn
S(fe) < e *S(fo),

which shows that if we choose t >> 1 independently of N, then a global equilibrium is
already reached.
We recall a celebrated inequality of Csisza and Kullback.

Lemma 6.1 For every pu-probability denisty g,

(f1a- 1!du)2 < 25,(9).
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Using Lemma 6.2, we can assert

/ o — Uy < e (25(fo)) 2.

The Bakry-Emery’s argument also yields

dD(f)
dt

<0.

As a result,

(S(fiy2) = S(f2) < =5(fi)2)-

RN
-

SDU®) < [ Dif)ds =

t/2

Hence
D(fy) < (2t)"'e™*S(fo).
It is worth mentioning that the inequalities (6.2) and (6.4) also yield

o0 oM [T o (G- %)th‘lduN dt < D(fy).

i#]

We now embark on the proof of Theorem 6.1 by articulating the first step we briefly
described in the outline of the proof. Roughly, we have a situation that can be compared with
a metastable system associated with a potential that has many unstable local equilibriums.
If the system is already in one of the unstable well and stays there for a while, we may
as well replace the potential with a convex one that coincides with the original one inside
that particular well. While the system is in the well, there is no difference between the
original potential and the modified potential. The advantage of this replacement is that for
the new potential we may apply our LSI trick to get a bound on the distance between the
non-equilibrium state and the corresponding local equilibrium.

According to Theorem 2.1, the density of eigenvalues is given by p of (2.3). We wish to
confine the eigenvalues to those values that can be constructed from p very accurately. More
precisely, choose numbers v; < --- < yy such that

Yi+1
(6.5) / plx)dr = N1~y =2.
Vi

We note that the empirical measure associated with the deterministic sequence {7;}¥; ap-
proximates p with a small error of size O(N~'). More precisely, if I'(x) = N~'|{i : 5 < z},
then

(6.6) @) - [ | <
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for every . We now choose a potential V' =V + A with

N

(6.7) AQ) = N6 (A=)

=1

We now consider a diffusion X' () generated by £ = (NB)~Y{(A — VV'- V). What the ad-
ditional potential does in practice is confining each eigenvalue \; to a (random) interval of
size O(8) about the value ;. Let us write p/y(dX) = (Z) te™""dA, where Z4 is the nor-
malizing constant. Set S'(g) = S,/ (g) and D'(g) = Dy (g). As an immediate consequence
of Theorem 6.2, we have the following bounds:

Lemma 6.2 Let g, = e'* gy. Then
S'(ge) < 7S (90),

/|9t —1duly < e (25'(90))",

(6.8) D'(ge) < (2t) e 1S (gy),
g 0o\ .,
(BN)~ / /; i)~ <8i aij) g; " duly dt < D(go).

For Step (ii), we now want to use Lemma 6.2 to prove a universality-type result for
gap distribution for a measure dv = godp/y for which the entropy S’(g) and the entropy
production D’'(g) is uniformly bounded.

Lemma 6.3 For every smooth function J : R" — R of compact support, there exists a
constant Cy = Cy(J) such that for every o > 0,

’/ )(g0 — 1)dply

‘](A) - N Z ‘](N(/\l - )‘i+m1)7 SRR N<>\'i+mr—l - /\i—l-mr))a

< C@N 1/2(D/( ) )1/2+OO(S/(90))1/26—a5—2’

where

formiy <mg < ...,m,.

Proof. By Lemma 5.1,

(6.9) /|j||ga —1|duly < coe™ (25" (90)) ">,
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To ease the notation, we write 0; for differentiation with respect to A\;. We also write Jj,
j=1,...,r for the derivative of J with respect to its k-th argument. We have

‘/j (ga - gO) d:u/N = = ‘(5]\])1/ /Zalj 81'95 d,u/N ds
0 i
7" N—r

Z Jk - z+m1)7 v 7N<)\i+m,.,1 - /\i+mr))<ai+mkgs - ai+mk+1gs) d/JJ/N dS .

k=1 i=1

JL' g, dpy ds

We simplify the notation by writing
Jli = Jk(N<)‘l - )‘i+m1)7 ce N()‘i+mr71 - )‘i+mr))7

and apply Schwartz Inequality to obtain

r N-—r 1/2
'/ 90 duN 5N /Z E(Jli)z()\i—i_mk N /\i+mk+1)2gs d//N ds
r N-—r 1/2
/ /Z Z itmyJs — 7‘+mk+lgs)()\l+mk - /\H-mkﬂ) 2 _1 d/LN ds
k=1 i=1

< et N7V2(D'(go)a)'/?,

where we used (6.8) and the fact that J is of compact support. From this and (6.9) we
deduce the Lemma. U

We now turn to Step (iii) of the outline. Namely, we wish to obtain the gap distribution
of A(t) for small ¢ in large N limit. Writing f; duy = f{ dp'y for the law of A(t), we would
like to bound S’(f/) and D’(f]) so that we can apply Lemma 6.3 for gy = f}.

Lemma 6.4 If

)

A = sup /Z(Az — %) fedpn
t -

then

(6.10) S'(f) < e TS (fo) + 2NGHA,  D'(f]) < ABNt'S'(f]5) + 12N?6 1A,

Proof. The main ingredient is a formula of Yau [Y] that we first derive. We would like
to have an expression for the time derivative of S’(f/). This is the relative entropy of the
measure fiduy with respect to du'y. More precisely, if

(X)) = zy' exp <—N5_2 Z(Az - %‘)2> :
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then we can write
S'(f7) Z/ftlogft' dpn = /ftlog% djun =/<b(ft,w) dpi,
where ¢(a,b) = alog(ab™). We note that ¢ is a convex function. We now have
S (fy) = /&fft Ga(ft,¥) dun = /Eft Ga(ft, V) dpy
= [ 128 6u(f0 ) + L6 () dux — [ L0 6u(fuw) di

—(BN)" / Vfi - Voulfunth) + Vi - Vou(for )] dun — / £ ol fis ) diin
v 12
7

where for the last equality we used the calculation

V- Voafe, ) + VU - Voo (fi, ) = V(i) - V()™ =V -V = VAP .
On the other hand,

= v eontsw) dus = [ L8 duy = [ €5 disy+ 25757 /Z — )32 dyy
=277 [ 0, — )30 dyy

AN D) 2N [ 3 S2On =y

(BN _ / L0 b fisth) dpiw,

As a result,
(6.11) oS (f)) < —27YBN)'D'(f])) + 28N A.

From this and LSI
S'(ff) <27'*NTID'(f)),

we deduce
9,5 (f)) < =B 10728 (f)) + 28NS A.

This immediately implies the first inequality in (6.10). For the second inequality in (6.10),

first observe
20y =2 [ |v4]

F WPy = D(fi) — 2 / VP fuduy.
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From this and (6.11) we deduce
(6.12) 08" (f) < —27YBN)'D(f,) + 68 N5 *A.

We integrate both sides of (6.12) from ¢/2 to t to assert
t t
D) < [ D(fi)ds < 28NS'(fij) + AN At,

t/2

where we use the monotonicity of D(f;) that is a consequence of Theorem 6.2. From this

D(f}) = / \V% Fridpy < 2D(f) + 2 / VO dun,

we deduce
D'(f]) <4BENS'(f]5) + 12N*6 At.

This implies the second inequality in (6.10). O

We now discuss Step (iii) of the outline. Namely how an average of the correlation as in
Theorem 6.1 can be expressed as an average we encountered in Lemma 6.3. First observe
that by definition,

1 a
(6.13) 2—/ /J(ozl,...,ar)ﬁ%)(al,...,ar;E—f—a)da,
a —a
equals
1 E+a
| [ X IWAEN ~ B NaE) A, — BNl dN)dE
i1 in i
By symmetry we may assume that i; < --- < 4, and by rewriting ¢; =4, io = t+mq,...,%, =
i+m,_y with 0 <my <my <--- <m,_;, we may rewrite (6.13) as > .,, X(m), where

) = [ [ S AN OB NN ) oo N s, 2= N, )N (NE

E—a
with
~ 7!
S, up) = o J(p(E)ur, p(E)(uz = w), -, p(B)(ur = ur-1)),
Mr:{m:(ml,...,mr_l)ENT_l:0<m1 <mg < -e- < Myp_q}
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