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1 Introduction

Hamiltonian systems of ordinary differential equations appear in celestial mechanics to de-
scribe the motion of planets. They are also used in statistical mechanics to model the
dynamics of particles in a fluid, gas or many other microscopic models. It was known to
Liouville that the flow of a Hamiltonian system preserves the volume. Poincaré observed
that the the Hamiltonian flows are symplectic; they preserve certain symplectic area of two
dimensional surfaces. Various Symplectic Rigidity Phenomena offer ways to take advantage
of the symplicity of Hamiltonian flows.

Writing ¢ and p for the position and momentum coordinates respectively, a Hamilto-
nian function H(q,p) represents the total energy associated with the pair (¢, p). We regard
a Hamiltonian system associated with H completely integrable if there exists a change of
coordinates (q,p) — (Q, P), such that our Hamiltonian system in new coordinates is still
Hamiltonian system that is now associated with a Hamiltonian function H(P). For com-
pletely integrable systems the coordinates of P = P(q,p) are conserved and the set of (¢, p)
at which P(q,p) takes a fixed vector is an invariant set for the flow of our system. These
invariant sets are homeomorphic to tori in many classical examples of completely integrable
systems. According to Kolmogorov-Arnold-Moser (KAM) Theory, many of the invariant
tori survive when a completely integrable system is slightly perturbed. Aubry-Mather The-
ory constructs a family of invariant sets provided that the Hamiltonian function is convex
in the momentum variable. These invariant sets lie on the graph of the gradient of certain
scalar-valued functions. A. Fathi uses viscosity solutions of the Hamilton-Jacobi PDE as-
sociated with the Hamiltonian function H to construct Aubry-Mather invariant measures.
Recently there have been several interesting works to understand the connection between
Aubry-Mather Theory and Symplectic Topology. The hope is to use tools from Symplectic
Topology to construct interesting invariant sets/measures for Hamiltonian systems associ-
ated with with non-convex Hamiltonian functions.

Most of the aforementioned works on Hamiltonian systems are done when the Hamilto-
nian function is defined on the cotangent bundle of a compact manifold. A prime example
is when p, ¢ € RY, with H periodic in g-variable, so that we may regard H as a function that
is defined on T*T¢ = T¢ x R?. To go beyond the periodic case, we may take a Hamiltonian
function that is quasi-periodic with respect to ¢. In fact there is a probabilistic generalization
of quasi-periodic condition by selecting H randomly according to a probability measure P
that is invariant with respect to spatial shifts: 7,H(q,p) = H(q + a,p). As it turns out the
Hamiltonian H can be obtained from H by a scaling limit that is called Homogenization.

In this course we will explore the connection between Hamilton-Jacobi PDE, Homoge-
nization, Hamiltonian ODE and Symplectic Topology.



1.1 Hamiltonian ODE

In Euclidean setting a Hamiltonian system associated with a C? Hamiltonian function H :
R?¢ — R is the ODE

(1.1) & = Xpy(z) = JVH(z),

)

with I denoting the d x d identity matrix. Writing 2 = (g, p) with ¢,p € R?, the system
(6.1) means

where

¢=H,(q,p), p=—Hyq,p).

We write ¢ (x) for the flow of the vector field X ;. More generally, we can define Hamiltonian
vector fields on any symplectic manifold. By a symplectic manifold we mean a pair (M, w)
with M a C? manifold, and w a non-degenerate closed 2-form on M. Given a C? function
H : M — R, we define the vector field Xy = X} as the unique vector field such that

iXHw = —dH.
When w is the standard symplectic form of R?¢, namely
d
w=w:= Zd%‘/\dpz‘,
i=1
and M = R?* we have X% = JVH.

Poincaré discovered that the circulation of any closed curve does not change along a
Hamiltonian flow. More precisely, if A = p - dg and 7 : S' — R?? is a C! closed curve, then

[, o
/w(r) 0o /Fa).

This really means that if A(z) = (d¢{)_, then

By Stokes” Theorem,

w(A(@)v, A(x)w) = w(v,w), or Az)*JA(z) = J.

If fact the Hamiltonian vector field X is chosen so that an analogous identity holds for its
flow:

(dof')'w=w, or WeH () (A(z)v, A(z)w) = w,(v, w).
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Given a vector field X on a manifold M, we write ¢;* for its flow. Given C! scalar-Valued
function f: M — R, we define its Lie derivative with respect to X by

(1.2 Lxf(e) = S (o), y = (@)e(X ().
More generally, if u(x,t) = f(?/]t($)), then
u = Lxu.

From this, we learn that a function f € CY(M;R) is conserved along the flow of X iff
Lxf = 0. In the case of a Hamiltonian vector field X = Xy, the Lie derivative Lx f is the
Poisson bracket of H and f:

{Ha f} = ‘CXHf = (df>(XH> = _w(vaXH) = w<XH7Xf)'

1.2 Completely Integrable Systems

We may call a Hamiltonian ODE completely integrable if we have a sufficiently explicit
formula for its solutions. One strategy to achieve this is by finding enough conservation
laws. As it turns out, a Hamiltonian system in R?? is completely integrable if it has d

many independent conservation laws that do not interact with each other. Note that if
fi,o-o, fx : M — R are C? functions such that {H, f;} = 0,9 =1,...,k, then the set

Mp={xzeM: (f,....[x) = P},

is invariant for the flow:
re€Mp = ¢x)€ Mp.

We recall a classical result of Liouville, and Arnold-Jost.

Theorem 1.1 Assume that there are C? functions fi, ..., fs: M — R such that the follow-
ing conditions hold:

o {fi.fi} =0 foralli and j.
e For P € RY, the corresponding set Mp is compact.
e For each © € Mp, the vectors Xy, (x),..., Xy, (z) are linearly independent.

Then each such Mp is homeomorphic to a d-dimensional torus. Moreover, the motion of
Xy on Mp is conjugate to a free motion.



Remark 1.1(i) The latter claim in Theorem 1.1 means that if we think of a torus as [0, 1]¢
with 0 = 1, then the motion is given by z(t) = x + tv(mod 1), for some vector v € R%
Depending on the vector v, we may have a periodic or quasi-periodic orbit. (The latter
means that the closure of the orbit is a k-dimension torus for some k > 1.)

(ii) The set Mp is an example of a Lagrangian submanifold. This means that dim Mp = d
and w([a,= 0. The latter follows from

w(Xp, Xp,) ={fi, fi} = 0.

OJ
The sketch of Arnold-Jost’s theorem is in order. If we define ¢, : M — M,t =
(t1,...,tq) € RY by
dulz) =l 00 9],
then ¢(Mp) C Mp. On the other hand, if we pick some point a € Mp and set ¢(t) = ¢:(a),
then ¢ : R? — Mp, and the set

Y={teR?: pt)=p(0) =a},

is a subgroup of (R%, +). Since Mp is compact, this subgroup is discrete. That is, there are
vectors vy, ..., vq, such that

Z:{nlvl+---+ndvd: nl,...,ndGZ}.

Hence the quotient R?/T" is a torus and the map ¢ yields a homeomorphism ¢ : R?/T" —
Mp. Moreover, assuming that f; = H, then ¢ is conjugate to the map (ti,...,tq) —
(t1+5,...,tq). If we use the basis (vy, ..., vq) for R?, we can then show that ¢ is conjugate
to a free motion.

Writing @ for the coordinates of R?/T" = T?, we have a homeomorphism ¥p = ¢ : T¢ —
Mp. As we vary P, we obtain a map

U T = T4 x R — M.

We think of ¥(Q, P) = z as a parametrization of M. Setting H(P) = H(x) = H(¥(Q, P)),
for z € Mp, we obtain a new Hamiltonian function A : T *T¢ — R that is independent of Q).
The motion of ¢;(Q(0), P(0)) := (Q(t), P(t)) may be defined by

(th =yl oqﬁfo\ll.

We already know that Q(t) is a free motion and that P(t) = P(0). We may regard this
motion as a solution to the Hamiltonian ODE

Q=VH(P), P=0.
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In summary, we have seen that for a completely integrable Hamiltonian ODE, we can
find a change of coordinates that turns our system to free motion. That is, there exists a
diffeomorphism V¥ such that

(1.3) o =V "'ogpP oW, H=HoU,

for a Hamiltonian function H that is independent of position. Recall that both ¢ and gbfl
are symplectic. It is no surprise that the change of coordinates map W is also symplectic. As
the following Proposition indicates, a symplectic change of coordinates always transforms a
Hamiltonian system to another Hamiltonian system.

Proposition 1.1 Let (M,w) and (M',w') be two symplectic manifolds and assume thatV¥ :
M'" — M is a diffeomorphism such that ¥ x w = w'. Let H : M — R be a Hamiltonian
function on M, and let ¢ be the flow of X4,. Then

Gri=T""og 00,
1s the flow of the vector field XI“;’,/ for H=Ho V.

1.3 Kolmogorov-Arnold-Moser (KAM) Theory

We may take a small perturbation of a completely integrable system and wonder whether or
not some of the invariant tori persist. It turns out that for a small perturbation, an invariant
torus persists if the action variable V H(P) is sufficiently irrational.

Theorem 1.2 Assume that H : T? x R? — R is of the form

H*(q,p) = H°(p) + K (q.p),

with det D*Hy # 0. Then for every 7,y > 0, there exists eg = eo(7,7) > 0 such that if
VH°(p) satisfies a Diophantine condition of the form

neZ'\{0} = |n-VH(p)|>~ln|7,
the vector field Xg- has a quasi-periodic orbit of velocity VH(p), whenever || < &.
It is worth mentioning that if we set
D(v,7)={ve RY: |v-n|>~n|™" forall neZ\ {0}},

then the set D(7) = U,>0D(7, 7) is of full measure whenever 7 > d — 1. This is because, the
complement of D(v,T), restricted to a bounded set, has a volume of order O(y|n|~"!), and

S < o,
n#0
iff 7+1>d.



1.4 Generating Function

Note that a Hamiltonian vector field is very special as it is fully determined by a scalar-
valued function, namely its Hamiltonian function. As it turns out, the symplectic maps are
also locally determined by scalar-valued functions known as generating functions. To explain
this, take an w-symplectic map and observe that since U*w = w, we can find a scalar-valued
function S such that

(1.4) p-dg—P-dQ = ds.

Normally we think of S as a function of (¢, p) or (Q, P). However, it is more convenient to
think of S as a function of other pairs. For example under some non-degeneracy assumption
(for example if @Q,(q,p) is invertible so that we can locally solve Q(q,p) = @ implicitly for
p = p(q,Q)), we may regard S = S(q, Q) so that (1.4) implies

The scalar-valued functions S is an example of generating function for the symplectic map
U. Since there are other type of generating functions that we may consider for a symplectic
map, let us refere to S as a generating function of Type L

Alternatively, we may set W = p-q — S and regard W as a function of (@, p) so that
(1.4) means

Wo(@,p) =q, Wo(Qp)=P, (W, (Q,p),p) = (Q, Wol(@,p)).

The function W is another example of a generating function for the symplectic map ¥ and we
will refer to it as a generating function of Type II. Sometimes, we also consider a generating
function V(q, P) that will be referred to as generating function of Type I11.

If ¥ is the change of coordinates transformation of a completely integrable system, we
have

H(P) = H(q.p) = H(q.Wy(q, P)).

This means that for each fixed P, the function ¢ — W(q, P) is a solution to a Hamilton-
Jacobi Equation (HJE) associated with H. Some care is needed here. Recall that U is a
diffeomorphism defined on T¢ x R, whereas our H is defined on R% x R?. If we wish our
change of coordinates to work globally, we need \If(Td X Rd) to be (at least topologically
isomorphic) to T? x R%. In fact if we assume that H is periodic in ¢, we may regard
H : T4 x R? — R. Thinking of T? x R, as T*T¢, we interpret W,(q, P) as a 1-form on the
torus for each P. If we write W(q, P) = ¢ - P + w”(q) and assume that w? : T¢ — R, is
periodic, then our HJE reads as

(1.6) H(q, P+ (dw"),) = H(P).

We think of af = P + dw? as a closed 1-form that belongs to cohomology class of the
constant (closed) form P.



1.5 Weak KAM Theory

In the classical KAM Theory, we consider a small perturbation of a non-degenerate Hamil-
tonian function Hy(p) that depends on p only. We have learned that the majority of the
invariant tori of unperturbed systems persist for a sufficiently small perturbation. However
some invariant tori could be destroyed after a small perturbation. In fact Arnold constructed
an example of a perturbed integrable system, in which chaotic orbits - resulting from the
breaking of unperturbed KAM tori - coexist with the invariant tori of KAM theorem. This
phenomenon is known as Arnold diffusion. A natural question is whether or not we can con-
struct a family of invariant sets (M p:Pe Rd) for perturbed systems that come from the
invariant tori of the unperturbed system and still carry some of their features. Aubry and
Mather constructed such family for the so-called twist maps (these maps are the analog of
Hamiltonian systems when d = 1 and time is discrete). The generalization of Aubry-Mather
invariant sets to higher dimensions was achieved by Mather, Mane and Fathi. They prove
the existence of interesting invariant (action-minimizing) sets, which generalize KAM tori,
and which continue to exist even after KAM tori disappearance.

Aubry-Mather Theory replace the smallness condition with Tonelli Assumption. We say
that a Hamiltonian function H : T¢ x R? — R is Tonelli, if the following conditions are true:

e H(q,p) is convex in p for each g.
e [p| 'H(q,p) — oo as |p| — oo, uniformly in gq.

According to Aubry-Mather and Mather-Mane-Fathi Theory, for each P, there exists a
constant H(P), a Lipschitz function w : T¢ — R, and an invariant measure u? for ¢ such
that

e The function w” solves the HJE (1.7).

e The support of the measure u” is a subset of

Mp ={(g, P+ (dw),) : qETd}.

Note that we only require the function w to be Lipschitz and not everywhere differentiable.
This is because the HJE (1.7) does no possess classical solutions in general. One remedy
for this is to consider certain generalized solutions. In fact if we consider the so called
viscosity solutions, then (1.7) always has at least one Lipschitz solution for each P. This was
established by Lions, Papanicolaou and Varadhan in 1987. We then modify the definition of

(1.7) Mp = {(q,P + (dwp)q) : qe T w’ differentiable at q} .



1.6 From Torus to General Closed Manifolds

We may replace the torus with any sufficiently smooth manifold M in weak KAM theory.
Now our Hamiltonian function H is a C? function on the cotangent bundle T*M. The
manifold T*M carries a standard symplectic form w = d\ with A defined as

Ag.p) (a) = Dq ((dﬂ)(q,p)a)a

where 7 : T*M — M is the projection 7(q,p) = ¢ to the base point, and its derivative
(dm)qp) @ TigpT*M — T,M projects onto tangent vectors. Recall that in the case of a
torus, we know that by a result of Lions-Papanicolaou-Varadhan, the (1.7) has at least one
solution. This existence result has been extended to arbitrary closed manifold and convex
Hamiltonian by Albert Fathi.

Theorem 1.3 Let M be a smooth closed Riemannian manifold and assume that H : T*M —
R is a Tonelli Hamiltonian. Then for every closed form «, there exists a unique constant
H(«), and a Lipschitz function w : M — R such that w satisfies

(1.8) H(q, Qg + (dv)q) = H(a),
M Viscosity sense.

Because of the uniqueness of H, it is clear that if we add an exact form to «, the value
of H does not change. Abusing the notion slightly, we may define H on the space H'(M)
of the cohomology classes of 1-forms and write H([a]) in place of H(a). Alternatively, for
each P € HY(M), we may fix a representative @’ in class P and search for a Lipschitz
wP : M — R such that o = a + dw?. Finally the invariant set M* is defined by

(1.9) Mp = {(q,éxéD + (dwp)q) : g€ M, w? differentiable at q}.

1.7 From Torus to Stochastic Hamiltonian and Homogenization

Weak KAM Theory a la Fathi is based on taking advantage of the HJE (1.7) in order to
construct interesting invariant measures for the corresponding Hamiltonian ODE. It turns
out that HJE can be used to to model certain deterministic and stochastic growths. More
precisely, imagine that we have an interface that separates different phases and this interface
is represented by a graph of function u(q,t) at time ¢. Suppose that the growth rate of this
interface depends on the position ¢, and the inclination of the interface u,. Mathematically
speaking, u satisfies a HJE of the form

(1.10) ut—l—H(q,uq(q,t)) =0,
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for a Hamiltonian function H. We think of (1.10) as the microscopic equation describing
the evolution of the interface. If a large parameter n represents the ratio between the macro
and micro scale, then

u"(q,t) = n"tu(ng, tq),
is the corresponding macroscopic height above that macro position ¢ at the macro time t.
We observe that u™ now solves

(1.11) uf + H"(g,ug (g, 1)) =0,

where
H"(q,p) = (v"H)(q,p) = H(ng,p).

A homogenization occurs if the limit
_ ~ i o
u(g,t) = lim u"(q,1),

exists whenever the limit
g9(q) = lim u"(q,0),

n—0o0

exists. As it turns out, in many examples of interest, the limit u satisfies a simpler HJE of
the form

(1.12) { i+ H(tg) =0

u(q,0) = g(q).

In fact we may use (1.7) to guess that when H is periodic in ¢, then H that appears in (1.12)
coincides with H that appears in (1.7). This is because if w” is a periodic function that
satisfies (1.7), and we choose u(q,0) = P - ¢+ w’(q) as the initial condition for (1.10), then
u(q,t) = wP(q) — tH(P), and

u(g,t) = lim u"(q,t) =P -q— tH(P),

n—oo

which solves (1.12).

We may wonder whether a weak KAM Theory can be achieved for H : R?* — R that
are not necessarily periodic. Let us write H for the space of all C'' Hamiltonian functions
H :R?>? — R and two group actions on #, namely the spacial translation and scaling; more
precisely we set

TH(q.p) = H(q+a,p),  wH(qp) = H(ngp),
for a € R? and n € R*. We certainly have

Ta © To = Ta+b, Ym © Yn = Vmn-
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We are interested to know for what Hamiltonian H € H we have weak KAM Theory and
Homogenization. Let us make a comment on bounded continuous functions K of the position
variable. For K : RY — R, we define the translation operator 7,K(q) = K(q + a) as before.
We note that if a function K is periodic in ¢, then for each p, the set

{TaH(~,p) D ac€ ]Rd},

is homeomorphic to a d-dimensional torus. In we take a function K : TV = R and take a
N x d matrix A, then the function K(q) = K (Aq) yields a quasi-periodic function. In fact
the orbit of such K,

[(K) :={r,K : a€RY,

is dense in T¥, in the following condition holds:
neZ'\{0} = An#0.

More generally we call a bounded continuous function K : R? — R almost periodic if the set
['(K) is precompect in Cy(RY) with respect to the uniform-norm.

We regard the group {Ta D a € Rd} as a d-dimensional dynamical system on H, and call
P translation invariant ergodic measure if the following conditions are met:

e For every Borel set A C H, and a € R?, we have P(1,A) = P(A).
e If a Borel set A is invariant i.e., 7,4 = A for all a € R?, then P(A4) € {0,1}.

We many wonder whether or not the weak KAM theory or homogenization are applicable to
generic Hamiltonian functions in the support of an invariant ergodic measure. The hope is
that Birkhoff Ergodic Theorem would make up for the lack of compactness that has played
an essential role when we consider a cotangent bundle of a compact manifold in 1.6.

1.8 Variational Techniques

Homogenization questions and the existence of interesting invariant measures are closely re-
lated to the existence of special orbits of the Hamiltonian ODEs. Such existence questions
also play central role in several recent developments in symplectic topology. (A prime ex-
ample is Floer Homology that was formulated by Floer in order to treat Arnold Conjecture.)
Hamilton observed that the minimizers of the action yield solutions to Hamiltonian systems
of celestial mechanics. More generally, we may reduce the existence of special orbits of (6.1)
to the existence of a critical point for a suitable action functional. More precisely, let us
write I'r for the space of piecewise C* functions x : [0, 7] — T*M, and given a Hamiltonian
function H : T*M x [0,T] — R, let us define Ay : TT — R by

(L13)  A(y) = Ah(y) = / (A~ H di) = / D (3(0) — HO/(0), )] dt.

Y
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The form M = X\ — H dt is known as the Poincaré-Cartan form. We note that if we regard
A\ = w +dt NdH as a form on T*M x R, and Xy = (XH, 1), then

ig, AN =ix, w4+ dH = 0.

Moreover, if we take a variation of a path with fixed end points: w : [0,T] x [0,0] — T*M,
with

w(t,0) =~(t), w(0,0)=w(0,0), w(T,0)=w(T,0), wt,0)=uv(t),

then

d
— Ay = lim ™" U A—/ )\}——limhlf w
d0 Joyo 70 hm0 w(, w(-,0) h—0 w([0,T]x[0,h])

h)
h T T
. -1 .
= —}lllir(l)h /o /0 W (wt,wg) dtdf = —/0 ww(%v) dt.
This in turn implies
(1.14) —0Ay(y) = (i + dH) = (i5-x0) @),

From this we learn that the critical points of A are the orbits of Xg. In fact critical values
of A solve the corresponding Hamilton-Jacobi PDE. To explain this, observe that if we write
S(Q,t) = S(Q,t; q) for the generating function of ¢ so that

o1 (¢, —54(Q.t:9)) = (Q, S0(Q, t:9)), q(0)=4q, q(t)=Q, plt)=S5(Q.tq),

then

t
5(Q.t;q) = S(q(t), 5 q) = Aq(0), p(0), 1) =/ [p(s) - d(s) — H(a(s),p(s), 5)] ds.
0
Differentiating both sides with respect to ¢ yields

Se(@,t:q) + So(Q.t;q) - ¢ = p(t) - 4(t) — H(q(t), p(t),t).

As a result,

(1.15) Si(q, Q. 1) + H (Q, Sq(q, Q,1),t) = 0,

for t € (a,b). Similarly if we set W = A+ ¢ p, and regard W (Q, t; p) as a function of (Q, p),
then

Wi(q(t),t;p(0)) = p(0) - ¢(0) +/0 [p(s) - d(s) — H(q(s),p(s), s)] ds.
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Differentiating both sides with respect to ¢ yields
Wilq(t),p(0), 1) + Wo(q(t), p(0),1) - 4(t) = p(t) - 4(t) — H(q(t), p(t), 1).
This yields
(1.16) Wi(Q,p,t) + H (Q, Wq(Q,p,1),t) =0,
because Wq(q(t),p(0),t) = p(t). In summary
e Critical points of A are orbits of Xp.

e Critical values of A are solutions of HJE.

Remark 1.1 In particular, if H is 1-periodic in ¢, T' = 1, and we define A on the space
of 1-peridic paths (loops), then the critical points of A correspond to the periodic orbits of
Xpg. Floer uses the gradient equation

(1.17) ws = —0A(w),
to prove the existence of periodic orbits by showing that

g wle)

exists. In fact (1.18) is an elliptic (or rather Cauchy-Riemann type) PDE, and one may hope
to use elliptic regularity of the solutions to obtain the compactness of path w in a suitable
Sobolev space. O

The action functional simplifies when H is convex in the momentum variable. To explain
this, let us assume that there exists a C? function L : TM — R, L = L(q,v), that is
convex in the velocity v. Moreover when H is a Tonelli Hamiltonian, the transformation
L:TM —T*M,

(1.18) L(g,v) = (¢, Lo(q, v)),
is a C! diffeomorphism with
p=Ly(gv) iff v=Hy(q,p)

(Here we identify (TqM )** with T,M.) The Lagrangian function L and the Hamiltonian
function H are related to each other by Legendre Transform

L(g,v) = sup (py(v)— H(q,p)), H(g,p)= sup (pg(v) — L(q,v)).

peTy M veTyM
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Moreover
HolL(q,v) = Ly(q,v)(v) — L(q,v).

Note that if z(t) = ¢ (a) is a solution of (6.1), then
Ao(@) — H(x) = py((dm)e()) — H(q,p) = pq(d) — H(q,p) = L(q.9)-
Hence

A(gc(.))_/0 (\o) — H(z)) dt_/o Lg.q) dt = £(q(-).

Since L is convex in v, we may find solutions to (6.1) by finding minimizers of £ that is
defined for paths ¢ : [0,7] — M with specified endpoints. By a classical result of Tonelli,
the action functional £ has a minimizer that satisfies the Euler-Lagrange equation

d

(1.19) 2 Lo(0:0) = Lq(a, 9).

We now argue that we can use the action functional to construct a generating function
for ¢If. To explain this, let us define AL : T*M — R, by

(1.20) AL (z) = Ay (%), where  ni(t) = ¢ () for t € [0,T].
We now claim that A is a generating function for ¢

Proposition 1.2 For every T' > 0 and any Hamiltonian H, we have

(1.21) AN} = ()" A — A
Proof Set .
A(z) :/ A, B(x)= /0 H (np(t),t) dt.

Take any (7(6) : 0 <6 < h) with 7(0) = 2 and 7(0) = v € T, M. Set y(t,6) = ¢ —t(7(0)),
O={y(t,0): 0<t<T, 0<6<h)},

and use Stokes’ theorem to assert

h T
h1// wy(yt,yg)dtdezhl/m:hlv )\—/ >\+/ /\—/ )\},
0o Jo e n7(0) Q) wot(:) ()
h T
h—1/ / (ix,w), (yo) dtdd = h™* U /\—/ )\+/ ((,0*)\—/\)],
0 Jo n7(0) n7(R) ()

where ¢ = ¢f. Sending h — 0 yields
—(dB)s(v) = —(dA)u(v) + ("X = X (0).
This is exactly (1.21). O
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1.9 Discrete Models

Any symplectic map 1 from a symplectic manifold to itself serves as an example of a dis-
crete analog of a Hamiltonian flow. We will be mainly interested in those symplectic dif-
feomorphism for which a global generating function exist. If the generating function is of
the first kind, i.e., (1.7) holds for some S(¢,Q). In the Euclidean setting, we may write
S(Q,q) = L(q,Q — ¢q), and if L(g,v) is bounded below and has a superlinear growth at
infinity in the velocity variable v, we call the corresponding map v a twist map and the
corresponding dynamical model is a generalization of the Frenkel-Kontorova Model. Given
a sequence q = (qo, 1, - - -, qn), we define its action by

Aq) = Z S(qi-1,qi) = Z L(qi — Gi-1,Gi—1)-
i=1 i=1

The critical points of A correspond to the orbits of 1. Because of our assumption on L, we
may use the minimizers of A to construct interesting orbits of .

Example 1.1 (Standard Map) When L(q,v) = 5|v|* — V(g), then
Q=q+P, P=p—-VV(g).
U
We may also consider a generating function V' (Q,p) = @ -p —v(Q, p) of Type III so that

(Q = vp(Q,p),p) = (Q,p — vo(Q,p)).

In other words,
Q=q+v,(Q,p), P=p—v(Q,p)
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2 Twist Maps and Their Generalizations

The origin of the twist maps goes back to Poincaré’s work on area-preserving maps on
annulus that he encountered in his work on 3-body problem of celestial mechanics. Before
embarking on studying twist maps, we give an overview of circle diffeomorphisms and their
rotation numbers.

Definition 2.1(i) Regarding S' as the interval [0,1] with 0 = 1, let f : S' — S! be an
orientation preserving homeomorphism. Its lift F' = ¢(f) is an increasing map F' : R — R
such that f(z) = F(z) (mod 1), and F can be written as F'(x) = z + G(z), for a 1-periodic
function G : R — R. We may also regard G as a map on the circle: g : S' — R, g(x) = G(z)
for z € [0, 1).

(ii) We define 7 : R — S! by 7m(x) = ¢*™. For f and F as in (i), we define its rotation
number

(2.1 p(F) = lm n™ F"(x).  plf) = m(p(F)).

n—oo

(iii) Given p €

[0,1), we write 7, for a rotation of the circle through the angle p. Its lift R,
is given by R,(z) =

x4+ p. U
Theorem 2.1 (Poincaré) Let f : S' — S! be an orientation preserving homeomorphism
and write F' for its lift. Then the following statements are true:

(1) The rotation number always exists and is independent of x.

(ii) f has a fized point iff p(f) = 0.

(iii) £p(F) > 0 iff £(F(x) — z) > 0.

(iv) Let (r,s) be a pair of coprime positive integers. Then f has a (v, s)-periodic orbit (this
means that F*(x) = F(x) + 1 for F ={(f)), iff p(f) =1/s.

(v) If p(f) ¢ Q, then the set Quo(x) of the limit points of the sequence { f™(z) : n € N} is
independent of x, and is either S' or nowhere dense.

Proof We only prove (i). By induction, we can readily show that if F'(x) = x + g(z) for a
periodic function g, then F"(z) = x + G, (x) for a periodic function G, that is simply given
by

(2.2) Gn(z) = ' G(Fz(x)) = ' g(fz(m))
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Observe that since F™ is increasing, we have
0<z<y<l = Gy —-G"(z)<y—z<L

Hence

From this we deduce

p(z) = lim n'G,(z) = lim n= ' (F,(z) — z) = lim n~ " F,(z),

n— o0 n—o0 n— o0
exists and is a periodic non-decreasing function of z. Hence p(x) must be a constant. O

Theorem 2.2 Let f and F be as in Proposition 1.1.

(i) (Denjoy) If f € C* with f" a function of bounded variation, and p = p(f) ¢ Q, then
there exists a homeomorphism h such that f = h™*or, o h.

(ii) (Herman) If f € C** with a € [0,1), and p(F) € D(7) satisfies a Diophantine condition
for some T > 2, then h is Part (i) is in C'T*.

Remark 2.1(i) Since the Lebesgue measure is invariant for r,, and ho foh ! =1, we
learn

/(hoJ)(f(m))dh(m):/de, or /Jofdh:/th.

In other words, the measure p with p[0,z] = h(z) is invariant for f. Hence Part (ii) is
equivalent to the statement that if f € C?" then the invariant measure had a density in

ce.
(ii) In terms of the invariant measure, the rotation number can be express as
p(f) = / g dp,

by (6.1).

(iii) Define F to be the set of continuous increasing functions F' : R — R such that

sup |F(z) — x| < o0.

Writing F'(x) = x + G(x), we define a translation operator that translates G:

(1.F)(z) =F(zr+a) —a=z+G(z+a).
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Let P be an ergodic probability measure on F. Then on can show that there exists a constant
p(P) such that
lim n ' F"(z) = p(P),

n—o0

for P-almost all choices of F. O

Definition 2.2(i) Let ¢ : S* x [-1,1] — S x [-1,1], be an orientation preserving homeo-
morphism. Its lift is a homeomorphism ® : R x [—1,1] — R x [—1, 1] such that

p(x) = ®(x) (mod 1),

and ® = {(p) can be written as ®(q,p) = (¢,0) + ¥(q, p), for a continuous ¥ : R x [-1,1] —
R x [—1,1], that is 1-periodic function in g-variable.

(ii) An orientation-preserving diffeomorphism ¢ : S! x [~1,1] — S' x [—1,1] is called a twist
mayp if the following conditions are met:

(i) ¢ (or equivalently its lift ®) is area-preserving.

(ii) If we define ®* by (®*(g), +1) = ®(g, £1), then +(®*(z) — z) > 0.
Our main result about twist maps is the following:
Theorem 2.3 (Poincaré and Birkhoff) Any twist map has at least two fized points.

To see Poincaré-Birkhoft’s theorem within a larger context, we interpret it in the following
way: since 0 € (p(®7), p(®")), then ¢ has at least two orbits in the interior of the cylinder
that are associated with 0 rotation number, namely fixed points. In fact an analogous result
is true for periodic orbits which may be regarded as a variant of Theorem 1.1(ii) for the
twist maps.

Theorem 2.4 (Birkhoff) Let ¢ : S! x [-1,1] — S! x [~1,1], be an area and orientation
preserving C*-diffeomorphism. If r/s € (p(®7), p(®T)) is a rational number with r and s
coprime, then ¢ has at least two (r, s)-periodic orbits in the interior of St x [—1,1].

Naturally we are led to the following question: How about an irrational p € (p(®7), p(®7))?
Can we find an orbit of ¢ associated with such p? The answer to this question is affirmative
and this is the subject of the Aubry-Mather Theorem. For any irrational p € (p(®7), p(®1)),
there exists an invariant set on the cylinder that in some sense has the rotation number p.
This invariant set g-projects onto either a Cantor-like subset of S! or the whole S*. The
invariant set lies on a graph of a Lipschitz function defined on S!'. These invariant sets are
known as Aubry—Mather sets.
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Poincaré established Theorem 2.3 provided that ¢ has a global generating function. Such
a generating function exists if ¢ is a monotone twist map. To explain Poincare’s argument,
let us formulate a condition on ® = {(y) that would guarantee the existence of a global
generating function S(q, Q) for ®.

Definition 2.3 An area-preserving map ¢ or its lift ®(q,p) = (Q(q,p), P(q,p)) is called
positive (monotone) if Q(q,p) is increasing in p for every ¢ € R. We say ¢ is negative
(monotone) twist if ! is a positive twist. O

Proposition 2.1 Let ® be a C' monotone twist map. Then there exists a C? function

S :U — R with
U={(¢,Q): Qg,—1) < Q < Q(g, +1)}
such that
Dz, —5(¢, Q) = (Q, Se(e, Q).
Moreover
(2.3) Slg+1,Q+1)=15(q,Q), Sy <0.

Proof The image of the line segment {q} x [—1, 1] under ® is a curve  with parametrization
v(p) = (Q(q,p), P(¢q,p)). By the monotonicity, the relation Q(gq,p) = @ can be inverted to
yield p = p(q, @) which is increasing in (). The set y[—1, 1] can be viewed as a graph of the
function

Q+— P(q,p(q,Q))

with @ € [Q(¢, —1),Q(q, +1)]. The anti-derivative of this function yields S. This can be
geometrically described as the area of the region A between the curve y(|—1,1]), the line
P = —1 and the vertical line {¢} x [-1,1]. We now apply ®~! on this region. The line
segment {Q} x [—1,1] is mapped to a curve 4([—1,1]) which coincides with a graph of a
function ¢ — p. Since ® is area preserving the area of ®~*(A) is S(¢, Q). From this we
deduce that Sg = —p. Here we have used the fact that ! is a (negative) twist map. This
is because if we write ®71(Q, P) = (¢(Q, P),p(Q, P)), then

RO

oY = =
( ) pqg pr P, P, -F, Q)

which implies that ¢gp = —Q), < 0.
The periodicity (2.3) is an immediate consequence of (¢ + 1,p) = ®(q,p) + (1,0);

O({q+1} x [-1,1]) = 2({q} x [-1,1]) + (1,0).
As for the second assertion in (2.3), recall that p(q, @) is increasing in Q). Hence

SqQ = —pgo < 0.

20



O

A partial converse to Proposition 2.1 is true, namely if a function S satisfies (??), then
it generates a map ¢ which is area preserving. We don’t address the behavior of ¢ on the
boundary lines and for simplicity assume that S is defined on R2.

Proposition 2.2 Let S be a C? function satisfying (2.3). Then there exists a C'-function
U such that

(i) ®(¢+1,p) = ®(q,p) + (1,0)

(if) W(g, —5(q,Q)) = (Q, Sq(q, Q))
(iii) det®’ = 1.

Proof Since S,g < 0, the function @ — —S,(¢, Q) is increasing. As a result, p = —S,(¢q, @)
can be inverted to yield @ = Q(q,p). We then set

P(q,p) = Sq(q,Q(g,p)) and @(q,p) = (Q(g,p), P(q,p)).

Evidently (ii) is true and (i) follows from (ii) and (??) because S,(¢+1, Q+1) = S,(¢q, @), and

Solg+1,Q+1) = 5¢(q, Q). It remains to verify (iii). For this, set S(q.p) = S(¢,Q(q.p)).
We have

S’q =S¢+ SqQq = —p+ PQy,
Sp = S0Q, = PQ,.
Differentiating again yields
o= —1+ PQq + PQqgp,
Spq = PyQp + PQpq-
Since S € C?, we must have S'qp = Spq, which yields P,Q, — P,Q, = 1, as desired. O

We now show how the existence of a generating function can be used to prove the existence
of fixed points.

Proof of Theorem 2.3 for a monotone twist map Define L(q) = S(q,q). We first
argue that a critical point of L corresponds to a fixed point of ®. Indeed, if L'(¢°) = 0,
then S,(¢°% ¢°) + Sg(¢°, ¢°) = 0. Since ®(¢°, —S,(¢% ¢°)) = (¢°, Sq(¢°, ¢°)), we deduce that
D(q°, 1) = (¢°,4°) for y* = —S,(¢°, ¢°) = Su(¢° ¢°). On the other hand, by (??), we have
that L(¢ + 1) = L(q). Either L is identically constant which yields a continuum of fixed
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points for W, or L is not constant. In the latter case, L has at least two distinct critical
points, namely a maximizer and minimizer. These yield two distinct critical points of ®.
O
We may wonder whether a similar strategy as in the above proof can be used to Prove
Theorem 9.2 when ¢ is a monotone area-preserving map. Indeed if ® is a monotone twist
map, then we can associated with it a variational principle which is the discrete analog of
the Lagrange Variational Principle, as can be seen in the following proposition.

Proposition 2.3 Let ® be a monotone twist map with generating function S. Given q and
Q € R, define

[y

n—

L(Q;Q?Ql;‘ha---a‘]k—l) = S(qj7qj+1)7

<.
Il
o

with qo = q, and g, = Q). Then the following statements are true.

(1) The point (q1,q2, - - -, qr—1) s a critical point of L(-;q, Q) iff there exist py, p1, ..., pr such
that Q)J(qj,p]) = <Qj+17pj+1) fOTj = 1727 BRI k—1.
(ii) The point (qo,q1,G2,---,qs—1) 1S a critical point of

s—2

K(q1. g2, s) = S(qee1, 00 + 1) + Y _ S5, qj+1)

J=0

if and only if there exist po, p1, D2, - - - Ds—1 such ®I(q;,p;) = (¢j+1,pj+1) forj=0,...,s—1,
with qs = qo + 7.

Proof We only prove (ii) because (i) can be proved by a verbatim argument. Let (qo, ..., qs—1)
be a critical point and set ¢s = qo + . We also set p; = —5,(q;,¢j+1). The result follows
because if P; = Sg(q;, gj+1), then

qu =p; — Pj

for j=0,1,2,...,5s — 1 and V(q;, p;) = (¢j+1, ). 0

Given a Hamiltonian function H : M x R — R on a symplectic manifold (M, w), we may
wonder whether or not the corresponding Hamiltonian vector field Xy = X has T-periodic
orbits for a given period T. Arnold’s Conjecture offers a non-trivial lower bounds on the
number of such periodic orbits. To convince that such a question is natural and important,
let us examine this question when the Hamiltonian function is time-independent first. We
note that for the autonomous Xy we can even find rest points (or constant orbits) and
there is a one-one correspondence between the constant orbits of Xy and the critical points
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of H. We can appeal to the following classical theories in Algebraic Topology to obtain
sharp universal lower bounds on the number of critical points of a smooth function on M

where M is a smooth closed manifold. Let us write Crit(H) for the set of critical points of
H:M—R

(i) According to Lusternik-Schnirelmann (LS) Theorem,
(2.4) tCrit(H) > cl(M),

where ¢/(M) denotes the cuplength of M.
(ii) According to Morse Theory, for a Morse function H,

(2.5) (Crit(H) = 3 (M),

where (M) denotes the k-th Betti’s number of M.

According to Arnold’s conjecture, the analogs of (2.4) and (2.5) are true for the non-
autonomous Hamiltonian functions provided that we count 1-periodic orbits of Xy instead
of constant orbits. For the sake of comparison, we may regard (2.4) and (2.5) as a lower bound
on the number of O-periodics orbit when H is O-periodic in t. In Arnold’s conjecture, we
replace 0-periodicity with 1-periodicity. Note that if H is 1-periodic in time, then ¢/1 (z) =
o (z) for all t iff ¢ (z) = 2. To this end, define

(2.6) Per(H) :={z e M: ¢'(z) =z} = Fiz(¢}).

Arnold’s Conjecture: Let (M,w) be a closed symplectic manifold and let H : M x [0, 00) —
R be a smooth Hamiltonian function that is 1-periodic in the time variable. Then

(2.7) tPer(H) > cl(M).
Moreover, if ¢ := ¢ is non-degenerate in the sense that det(dy — id), # 0 for every

x € Fiz(yp), then
2.9 Per(H) > 3 6 ().

O

We now describe our strategies for establishing Arnold’s conjecture under some additional

conditions on M: A natural way to tackle Arnold’s conjecture is to study the set of critical
points of Ay : I' = R, where I' is the space of 1-periodic x : R — M and

(2.9) AH(x(-)):/w—/O H(x(t),1) dt,
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where w : D — M is any extension of z- : S' — M to the unit disc D. (Note that since
w is closed, the right-hand side of (2.9) is independent of the extension.) We may try to
apply LS and Morse Theory to the functional Ay in order to get lower bounds on §Per(H).
Of course we cannot apply either Morse Theorem (2.5) or LS Theorem (2.4) to Ag directly
because I' is neither compact nor finite-dimensional. However in the case of the torus or
when M is a cotangent bundle, we may reduce the problem by using generalized generating
functions. In fact, one can show that ¢7 has a type II or III generating functions (as we
discussed in Subsections 1.8 and 1.9) provided that ¢ is sufficiently small. We then use the
group property of the flow to write

=0l = o ouy,

where each 1; has a generating function. This can be used to build a generalized generating
function for ¢ a la Chaperon. We may establish Arnold’s conjecture with the aid of general-
ized generating functions in some cases. We note that when M = T??, then the symplectic
map o = & : T2 — T? has a lift & : R? — R4 such that ® — id is periodic. Motivated
by Arnold’s conjecture, we may wonder where or not any symplectic diffeomorphism of T?¢
possesses fixed points and a non-trivial lower bound can be given for the number of its fixed
points. This is not the case in general as a non-zero translation on a torus has no fixed point.
However note that there is an additional feature of such ¢ = ®¥ that we have not discussed
and will play an essential role for our purposes, namely since

d(z) —x :/0 JVH (¢ (z),t) dt,

and regarding T?? as [0, 1)%?, we have

(2.10) /W (®(z)—x) dx:/olj/TQdVH(QStH(x),t) da dt:/olj | VH @) dode=0.

Arnold’s conjecture was established by Conley and Zehnder when M = T??. In fact an
equivalent formulation goes as follows.

Theorem 2.5 Let ¢ : T? — T2 be a symplectic diffeomorphism such that its lift ® satisfies

(2.11) / (®(z) —z) dz =0
T2d
Then ¢ has at least 2d + 1 fized points.

A variant of Theorem 2.5 can be proved when the periodicity of ® — id is replaced with
almost periodicity, or even when ® — id is selected randomly according to a translation
invariant probability measure.
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Definition 2.4(i) Let us write # = H(R??) for the space of C? Hamiltonian functions
H :R* x R — R. For each a = (b,c) € R? x R?, we define

(eH)(q,p,t) = H(q+b,p), (n.H)(q,p;t) = H(q,p+c,t), (0aH)(q,p,t) = H(q+b, p+c,t).

(ii) We write C* for the set of C! maps ® : R?? — R?*®. We set F(®) = & — id, where id
denotes the identity map. We write S for the set of symplectic diffeomorphism ® : R?¢ — R?
and set S = F(8). For a € R*, the translation operators 6, : R* — R*® and 6,, 6/, : C* — C"
are defined by

Oo(z) =2 4+a, Ow=wob, 0 =F'lob,olF,

for x € R?® and w € C'. Note that for ® € C',
(0,®)(z) =0_4,0P0b, = D(z+a)—a.
(iii) Let @ be a symplectic diffeomorphsim with

®(q,p) = (Qq.p), P(q,p)).

We say that ® is exact if for every p € R, the map q — Q(q, p) is a diffeomorphism of R?.
We write ¢(Q, p) for the inverse:

Qap) =@ & q¢=4Q,p)
We also set P(Q p) (cj(Q p) ) and
= (4(Q.p), P(Q,p)),  2(Q,p) = (P(Q,p),d(Q,p)).
U

Proposition 2.4 (i) ¢% = 0_, 0 ¢ 00, = 0. ¢". In particular, if H is 1-periodic, i.e.,
0.H = H, for alln € Z*, and ® = ¢I!, then F(®) is also 1-periodic.

(ii) For every eract ®, and a € R?, we have
0,® = 0,0
In particular, if F(®) is 1-periodic, then so is ]-"(:13)

(iii) Assume that ® € S is exact. Then there exists a C? function W : R* — R such that
o =VIV.
(iv) If w = F(®) is 1-periodic, with

/ w(z) de =0,
T2d

W(Q,p) =Q p—w(@Q,p),

for a function w that is 1-periodic.

then
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Proof(i) This is an immediate consequence of the fact that if y(-) is an orbit of Xy, z, then
() =0_,y(-) = y(-) — a is an orbit of Xy.

(ii) Let use write
¥'(q.p) == (0.9)(0,p) = (Q'(¢,p), P'(a.p)),  ¥(Q.p) = (¥(Q.p), P'(Q.p)).
This implies

Qla+bp+c)-b=0Q < {(Q,p) =g
Qlg+bp+c)=Q+b & (Q+bp+c)=q+b.

Hence ¢(Q,p) = ¢(Q + b,p+ ¢) — b. On the other hand

P(Q,p) = P'(d(Q,p).p) = P((Q,p) + b,p+c) —c
:P(@(Q+b,p+c),p+6) —czp(Q+b,p+c) —c,

as desired.

(iii) Since @ is symplectic, we have
d(P-dQ+q-dp)=d(P-dQ —dp-G) =d(P-dQ —dp-q) = 0.
Hence, there exists a function W = W(Q, p) such that
dW = P -dQ + ¢ - dp.

As a result, VIW = .
(iv) We write & = .7-"(:13), and Vuw = (wp, wg), so that

(Wo(Q,p), Wo(Q,p)) = (@ — wy(Q,p), p — wo(Q,p))
= (Q,p) — Vw(Q,p) = (Q,p) + >(Q, ).

By (ii) we know that Vw = —w is a periodic function. We wish to show that w is also a
periodic function. The periodicity of w is equivalent to

/ w(z) doe = —/ Vuw(z) dr = 0.
[071}2d [071]2d

To verify this, observe that if
A= (B,C)= / w(x) du,
[071]2d
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then there exits a C? periodic function v(Q, p) such that © — A = —Vu, or

P(Q.p)=C+p—v9(Q,p), d§=DB+Q—1,(Q,p).

On the other hand, by assumption,

0 2/ w(q,p) dqdpz/ (Q(q,p) — q, P(q,p) — p) dgdp
[071]2d [0’1}2d

_ / (
[0,1]24
_ / (
[0,1]24
= (
[

/Wd vp(Q.p) = B, C = vg(Q,p) det (I —vgp(Qp)) dQdp

Q—
Q

(Q,p), P(Q,p) — p) dgdp
—§(Q,p), P(Q,p) — p) det (4o(Q,p)) dQdp
)

= (—-B,0C) +/[ o JVu(Q,p) det (I+va(Q,p)) dQdp.
0,1]2
We are done if we can show

(2.12) /{0 L V@p) et (1 +00y(@.p) dQp =0

O

Proposition 2.5 Let ® i =1,...,k, be k exact symplectic diffeomorphisms with generating
functions WH(Q,p) = Q -p —w'(Q,p),i =1,...,k, respectively. Let & = ¥ o ... o0 d!,
(1) Define

k

W(Qp:€) =D Wgipi- Zqz pi

=1

k
=q1pot szel (@ —qi1) — Zwi(qz‘apiq)
i=2 i=1
k k
=Q-p+ Z(pi—l —po) (¢ — gi-1) — sz(qz‘,pz‘—ﬂ
=2 i=1

= Q -p+1;(62,p;€)-
where py = p,qr = Q, and § = ((h»Pl» s 7(]k—17pk—1)- Then
(2.13) We(@Q,p:6) =0 = o(W,(Q,p;8),p) = (Q, Wo(Q,p;§)).
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Moreover (Q,p) is a fixed point of ® iff for some &, we have Vw(Q, q; &) = 0.
(ii) Given x = (2o, .., k1), To = (0, P0), - -»Tk—1 = (qr—1, Pr—1), define

k
Ak(x) = Z qzapz 1 Z% Di
i=1
k .
= Z (pi—l (g — qi-1) — wZ(Qiapi—l)))
i=1

with To = x1, = (qu, pr). (In other words, A* is defined for k-periodic sequences.) Then any
critical point x of A* yields an orbit ®;(x;_1) = x;,1 = 1,..., k. In particular xo = 1}, s a
fixed point of P.

Proof(i) If we write §;_1 = W), (Qiypi—l)a and p; = Wy (Qiapi—l)a then @’ (@i—bpz‘—l) = (qz‘,ﬁi)-
On the other hand, fori =1,... k-1,

Qz(Q b; 6) — Di, sz(Qapv 6) = (jz — G,
Wo(Q,p; &) = W;(ql,p), Wo(Q,p; &) = W5(Q, pr)-

From this, we can readily deduce (2.13).
(ll) Observe that if we set Cji—l = Wp (Qi;pi—l)a and ]5, = WQ (q%pi—l); then

Al;i (x) = pi — i A];Z. (X) = ¢ — @,
Ag () = pr —pi, AR (%) =G0 — a0

fori =1,...,k — 1. Hence at a critical point we have ®;(x; 1) = z; for i = 1,... k. This
completes the proof. O

Proof of Theorem 2.5 (Sketch) For some sufficiently large k, we can find exact symplectic
diffeomorphisms ®%,i = 1,..., k, such that ® = ®* 0. ..o ®'. By Proposition 2.5(ii), there is
a one-to-one correspondence between ® fixed points xy and critical points x = (zg, ..., Tg_1).
Observe that when F(®) is periodic of 0 average, then w!, ... w* are periodic. On he other

hand, since z;, = x in the definition of A*, we may write

k

Ar(x) = Z [(pi—1 —po) - (¢ — gi-1) — wi(qi,pi_l)}-

i=1
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This implies that if we set z; = x; — 2,1 = (¢}, p}), and z = (21, ..., 2x_1), then we can write

k k
1
-Bz-z:= i—1"\4 — qi-1) = — i — Di-1) " qi
S Bz 2 zgpl(q gi1) Z;p pi1) - ¢
k k
= Z(pi—l —po) (¢ — gi1) = — Z(pz —pi-1) (4% — @)
i=1 i=1
k k
=Y Wi+ G == g+ + )P
i=1 i=1

where B = [B;;]F-1,, with each B;; a (2d) x (2d) matrix. We may express B as

1,j=17
0 C
o-[5% 0]

with both C' and D invertible. Hence B is non-singular. Moreover, since for each m € Z2?,
Ak(‘TO +m, .. T+ m) = Ak(a:Oa s 7xk71)7

we can write

1
Ak(X) = EBZ -7+ 11](1‘0, Z)7

for a bounded C? function (g, ) that is periodic in xy. writing y = (zo,z), and B(y) for
A we may regard B as a function on T?? x R?**~1) We may study the set of critical points
of B by analyzing the corresponding gradient flow y = —VB(y). Equivalently,

(2.14) 7z = Bz + w,(x,2),  To= Wy, (T0,2).

Note that if @ = 0, then T?¢ x {0} is the the set rest points for the flow associated with
(2.14). In fact 0 is a hyperbolic (saddle-like) critical point for z = Bz. In (2.14) we have a
rather compact perturbation of z = Bz.

Writing v, for the flow of (2.14), we set

Fz{y:%M%WM<W}-

O

Let us study an example of a map which is not quite a twist map but still possesses a

global generating function and Theorem 2.4 may be applied to guarantee the existence of its
periodic orbits.

29



Example 2.1 (Billiard map in a convex domain). Let C' be a strictly bounded convex
domain in R? and denote its boundary by I'. Without loss of generality, we assume that the
total length of I' is 1. First we describe the billiard flow in C'. This is the flow associated
with the Hamiltonian function H(g,p) = 3|p|* + V(q) where

0 ifgeC
Vig) =
(@ {oo ifg ¢ C.

Here is the interpretation of the corresponding flow: A ball of velocity = starts from a
point a € C and is bounced off the boundary I'" by the law of reflection. This induces a
transformation for the hitting location and reflection angle. More precisely, if a trajectory
a+tv, t > 0 hits the boundary at a point v(¢) and a post-reflection angle 6, then we write v(Q)
and © for the location and post-reflection angle of the next reflection. Here ¢ is the length
of arc between a reference point A € I" and 7(¢) on I' in positive direction, and 6 measures
the angle between the tangent at y(¢q) and the post-reflection velocity vector. We write 1)
for the map (q,0) — (Q,0) with ¢,Q € S* and 0,0 € [0, 7]. It is more convenient to define
p = —cosf so that in the (¢, p) coordinates, we have a map ¢ : S! x [-1,1] — S! x [-1,1].
As before, we write ® for its lift. We claim that ® is a monotone area-preserving map; it is
not a twist map because the twist conditions on the boundary lines p = +1 are violated. We
show this by applying Proposition 9.4. In fact the generating function is simply given by

S(q,Q) = =Iv(g) = (Q)];

because
_ _ 0@ =@ o
Sl Q) = /(@) — (9] o) g
PR S -

Note that if © € (0, ), then sin©® > 0, and © is decreasing in ¢ which means that Sp, <
0. Here of course we are using the strict convexity. As for the boundary lines, we have
®(q,—1) = (q¢,—1), ®(¢,1) = (¢ + 1,1). Note that S(q,Q) is defined for (¢, Q) satisfying
Q € [q,q+ 1]. Also note that ® has no fixed point inside R x (—1,1). It is not hard to show
that p~ = p(¢~) =0 and p™ = p(p*) = 1. O

Exercises(i) Show that if f is an orientation preserving homeomorphism with p(f) = 0,
then f has a fixed point.
(ii) Let b : R — R be a positive 1-periodic function and write ¢; for the flow of the ODE
# = b(z). Find the rotation number of this ODE by evaluating the following limit:
1
tliglot (¢u(z) — ).
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Also, find a strictly increasing function K : R — R such that
Kogio K1

is a free motion on R.

(iii) Define 7,b(z) = b(x +a), and write B for the set of uniformly positive Lipshitz function
b: R — R. Let P be a 7-invariant ergodic probability measure on B. For each b, write
¢1(z;b) for the flow of the ODE & = b(z). Show that

tlim t_l(qbt(x; b) — x),

exists P-almost surely, and evaluate the limit.

(iv) Verify (2.12). O
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3 Hamilton-Jacobi Equation and Its Discrete Variant

We have discussed two types of generating functions. They have led to two types of action
functionals. In Chapter 2 we learned how the critical points of the action functional yield
the orbits of the corresponding dynamical system. In this chapter we focus on the critical
values of the action functional. We also examine how the stochasticity can play a role. We
may choose the generating function randomly according to a probability law, or add some
noise to the dynamics. We first focus on Type I generating functions:

3.1 Frenkel-Kontorova Model

Imagine that we have a sequence of symplectic maps (<I>Z~ NS N) such that each ®; has a
Type I generating function S%(q, @), so that

®;(q, S(q, Q). q) = (Q,55(a.Q)).
We may define a dynamical system with orbits (xg, z1,...,Zp,...) with the rule
xn, = ®i(xg), or x,=,0-0P(z9).

If &; = ® is independent of 7, then we have an autonomous dynamical system with x, =
®"(xp). This dynamical system is equivalent to a second order dynamical system in ¢
components. By this we mean that if (x,, : n=0,1,...) is an orbit with x; = (¢;, p;), then
(gn : mn=0,1,...) is an orbit of the dynamical system with the rule ¢, = F), (qn,g, qn,l),
where F}, is defined implicitly from

(3.1) SN qn-2, Gn—1) + SE(Gn-1,n) = 0.

Moreover, given ¢ and @, we can find an orbit (qo,...,q,), with g0 = ¢,¢, = Q, iff
(ql, e ,qn_l) is a critical point of

Sn(Qla -3y Aqn-1549, Q) = ZSZ(QZ—lqu)
i=1

For the construction of invariant measures, we may consider the following variation: given a
continuous function g : R — R, consider

S™ (g0, q1s- -, @n-159; Q) = g(q0) + S"(q1, - - -, 4n-1: %0, Q).

Given g and @), a critical point of S (qo, Qs s Gn-1;7; Q) yields an orbit (x, ..., x,) of our
dynamical system with properties

po=—5"(00,01) = Valq), pn=5"(q1,Q).
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As we mentioned in Chapter 2, it is more convenient to write S(q, Q) = L(¢, @ — ¢), and in
the case of g-periodic Hamiltonian, the function L(g,v) is periodic in ¢q. Because of examples
we have in mind, it is quite natural to assume that

(3.2) lim inf inf |v| ' L(q, v) = oo.

|[v]—o0 ¢

Note that this condition is satisfied for a standard map associated with L(q,v) = |[v|*/2 —
V(q), for a bounded C' function V. Assuming (3.2) is valid for each S, we define two
operators

(3.3) (Tig)(Q) = inf (9(q) + S0 Q). (Tig)(q) = inf (9(Q) = S(q,Q)),

on the space A of Lipschitz functions g : R — R. Note that if S(g, Q) is a generating
function for @, then S’(¢q, Q) = —S(Q, q) is a generating function for ®~!. More or less going
from 7 to T is a matter of reversing the direction of time. (With some modifications, we can
replace R? with a Riemannian manifold M for what follows.) We will see later that T;g € A
when g € A. Observe

un(Q) == (771 o---oT)(9)(Q) = inf (Q(QO) +Sn(Q1, e 7Qn71;QO7Q)) .

40+ dn—1

We regard
un:ﬁ(un—l)a Uo = g,

as a discrete variant of the (time inhomogeneous) HJE, where g is the initial data. Similarly,
Uy = ﬁt(ulfn)y tp = g,

is a discrete HJE with final condition up = g. In particular, when St = S is independent of
i, we simply have u, = T"(g), and u,, = T"(g), where

(34) w(@):=(T9)(Q) = int (9(a) +8(¢,Q)), lq) = (Tg)(q) = sup (9(Q) —S(q,Q)).

Given @, let us write ¢ = ¢(Q) for a minimizer in (3.4). If g is differentiable at ¢ and
u is differentiable at @, then we have Vg(q) + S,(¢,Q) = 0, and if we write A(q; Q) =

g9(q) + S(q,Q), then

Vu(Q) = Ay(q, Q) Dg(Q) + Aq(q,Q) = Sq(q, Q).

As a result,

®(q,Vy(q) = (Q, Vu(Q)).
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In particular, if 7(U) = U + ¢ for a constant ¢, then VT (U) = VU and we learn that if
Gr(U) ={(¢q,VU(q)) : U differentiable at ¢},
then
(3.5) o~ (Gr(U)) C Gr(U).
Similarly, given ¢, if we write @ = Q(q) for a maximizer in (3.4), then
(g, Valg)) = (@.Vy(q)).

provided that g is differentiable at ) and @ is differentiable at ¢. In particular, if we find U
such that 7(U) = U + ¢, for a constant ¢/, then VT (U) = VU, and

(3.6) o(Gr(0)) € Gr(U).
This and (3.5) suggests that we should look for the HJE of the form
(3.7) TW)=U+¢, TO)=U+¢,

for suitable constants ¢ and ¢/, and use the solutions to construct invariant sets for ®.

To have some concrete regularity estimate let us assume that L(q,v) = S(¢,q + v) has a
super linear growth at infinity.

Assumption 3.1 There exists constants cg,c; and 6 > 0, > 1 such that
(3.8) inf L(q,v) > d|v|* — ¢y, supL(q,0) <y,
g q

sup sup [L(q + 2,v) — L(g, v)| < c2(0)[2].

q |v|<e

Proposition 3.1 Assume that (3.8) holds and that |g(¢') — g(q)| < £|¢' — q| for all q,q'.
Then

(3.9) (To)(@) = nf_ (9(0) +5(¢,Q)), [u(@)—u@]<"Q" - Q]

¢:|Q—q|<l

1

Jor € =co+c+ (6710 +1))*, and 0" = {4 c»(0).

Proof Observe
9(q) + S(¢, Q) > 9(Q) — £1Q — ¢| +0|Q — g|* — co.

Hence

9(Q) +5(Q.Q) < g(q) + 54, Q),
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if co+ ¢1 < 8|v|* — L|v|, for v = Q — q. Note 6|v|* — L|v| > |o if [v] > (671 (¢ + 1))ﬁ This
implies the identity in (3.9).
If u(Q) = g(q) + L(q, @ — q) for some Q with |[Q —¢| < £, then for ¢ = ¢+ Q" - Q,

u(@Q) < g(d) + L(d,Q —q) < g(q) + L(q, Q — q) +£|Q" — Q| + c2(¢)|Q" — Q)
=u(Q) + ({ + () |Q = Q),

as desired. O

3.2 Type II and III Generating Functions

If we consider a symplectic map with generating function W(Q,p) = @ - p — w(@Q, p), then a
candidate for the action is

Alg,p; Q) = A(z; Q) = 9(q) + W(Q,p) —q-p=g(q) +(Q —q) - p— w(Q,p).

Given @, at any critical point z = z(Q) = (¢, p) of A we have

0=A,q,p;Q) =Vg(q) —p, 0=A4,(¢,3;Q)=W,Q,p)—q,
Aqg,p; Q) = Au(7;Q)(Dx)(Q) + Wo(Q,p) = Wo(Q, p).

This means that for u(Q) = A(z; Q) at the critical point,

®(q,Vy(a)) = (Q. Vu(@)),

provided that g is differentiable at ¢ and w is differentiable at (). In the case of Type
I generating function, we simply take the minimum of the action because the action is
bounded blow. This is no longer the case for Type II generating function. For example if
® is a symplectic map, then w is periodic, and if g is also periodic, then A is a periodic
perturbation of the quadratic function A°(z; Q); = (Q —q) - p. Hence A is neither is bounded
from below nor above. The best we can hope for that given @, the function A(z;@) has a
critical point which is of the same type as the type 0 is for A%(z; Q). Now imagin that we
come up with a universal way of selecting a critical value of A no matter what ¢ is. This
critical value yields an operator

V(9)(Q) = Az; Q) = A(=(Q); Q)

where x(Q) is our selected critical point. If we can find a function U such that V(U) = U +c¢,
for a constant ¢, then ®~!(Gr(U)) C Gr(U).

More generally, assume that ® = &, o --- o ®; and each & has a generating function
W (g, pi—1) = ¢+ pi—1 — w'(q;, pi—1). Then ® has a generalized generating function of the
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form

W (qi, po; €) = W (qr, Po; 41, P15 - - -+ Qi—1, Pi—1)
k k
=q1 Po+t sz‘—1 (@ — gim1) — Zwi(pi—h a)-
=2 i—1
Recall

We(ae,po;€) =0 = ®(Wpy(qk, p0; &), p0) = (@ W, (ais D0 €), Do)

Given an initial data g, we set

A ar) = Alar,p1s - @15 6-15 a1) = 9(q0) — Po - @0 + W (qw, po; )
k

= g(CIo) + Z (pzel : (Qi - Qzel) - wi(pifla q7,))

=1
We then have
Ao(a;€) =0 = po=Vg(w), ®(q0.p0) = (& Vur(ar)),

where ug(qr) = A(qr; &' (qx)), is the value of the action at the critical point £'(gx). If we set
Vi(9)(qr) for this critical value, and U is chosen so that Vi (U) = U + ¢, for a constant ¢,
then we have ®~'(Gr(U)) € Gr(U).

Observe that if W'(q, P) is a Type II generating function for ®~!, then it is a Type III
generating function for ®. Motivated by this, let us choose a generating function V' (¢, P) =
q- P —wv(q, P) of type III, so that

(¢, Vy(g, P)) = (V(a, P), P).
Again
AQ, Piq) = A(X;q) =9(Q) — Q- P+ V(g P)=9(@Q) + (¢ — Q) - P —v(g, P),
is the action, and at a critical point Ax(X;q) = 0, we have
P=Vg(Q), Q=Vr(g,P), Vi(g)=np,

where R

u(g) = V(9)(a) = A(X(q); 9);
is the corresponding critical value. Again if for some U, we have that 17([7 ) =U+e¢, for a
constant ¢, we learn that ®(Gr(U)) € Gr(U).
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3.3 Gibbs Measures

There is a viscous variant of the discrete HJE that is related to orbits (or rather realizations)
of a Markov chain. Instead of minimizing 8", we define a probability measure on M™~! that
favors states q" = (qu1,...,qn—1) of lower energy S8™. More precisely, we define a Gibbs
measure P, (+;q, Q) on M" ! as

n—1

P(dq") = Zu(q. Q)" exp ( — BS™(q";¢.Q)) [ [ v(da:).

i=1

where £ is a positive scalar, v(dq) is a reference measure (for example a volume form associ-
ated with a metric when M is a Riemannian manifold), and Z is the normalizing constant:

n—1

Zn(q, Q) Z/Mn1 exp (— 88™(q"; 4, Q))HV(in)'

=1

For simplicity, let us assume that S* = S for all i. Now, if we attempt to normalize our
measure inductively, we need to evaluate n = 2, we need to calculate

Z(01-2:Q) = [ o0 (= 3502 0u0) ~ BS(-1,Q) vldin).
M
which depends on ¢,,. Dividing the integrand by Z(¢,_2, @) would alter S. To avoid this,
observe that if we replace S(q, @) with S(q, Q)+ u(Q) — u(q), then the corresponding Gibbs
measure would not be affected (it only changes the normalizing constant). Motivated by
this, we define

Rah)()(@) = [

M

e PSERp(Q) v(dQ), R5(h)(9)(Q) :/ e P5@n(g) v(dg).

M

Note that with respect to the inner product

(kY = / Wk dv,
M

we can readily show that Rj is the adjoint of Rs. A generalization of Perron-Frobenius
Theorem offers a way of modifying S so that we can normalize our measure inductively: For
simplicity, let us assume that M = R? v is the Lebesgue measure and that (2.3) holds.

Theorem 3.1 The largest eigenvalue Ny = ePrs of Rg is positive and Ny satisfies Ng > [N
for any other eigenvalue X'. Moreover Xj is simple, and there exist functions ug,uy : M — R
such that

Rg (65“3) = eProebus, R5 (6_5“2) = ePsemPus,
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Motivated by Theorem 3.1, we set

~

S(4:Q) = S(q,Q) — (up(Q) —us(@) + As,  p(q,dQ) = exp (— BS(q,Q)) v(dQ).

By Theorem 3.1, the kernel p(q,dQ) is a probability measure for each ¢. Using this kernel,
we may define a Markov chain q = (g9, q1, ..., qn, - .. ) such that

Pq(qn €A | qo, - - - aQR—l) :/p(Q’rl—ladQTL)a do = ¢,
A

for every measurable set A C M. Here P? is a probability measure on the set of sequences
q with ¢o = ¢q. Hence

Pq(% €A, ... qn € An) :/ / HP(Qi—17in)
Ay A

n =1
- / / exp <— Zﬁé’(qi_l,qi))> Hl/(dql-).
Ay n i=1 i=1
Writing P4 (dgqy, . . ., dg,) for the n-dimensional marginal of P?, we deduce

Pn(de'--?dQn—l;(Za Q) :P%(dqbadQn | n = Q)

Also, if we define

~

Ts(g) = B " log R (),
then R
Up = 723(”77,—1)7

is a discrete analog of viscous HJE. Note that

lim 75(g) = 7 (9).

B—00

In the same vein, we set
Ta(g) = =B " log Rj(e=%),
then
Up = Tg(Un-1),

is a discrete analog of viscous backward HJE. Note that

lim T3(g) = T (9)-

B—00
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Moreover, the eigenfunctions e’“#, and e P45, can be used to find an invariant measure
for our Markov Chain. For this, observe that if we have an invariant measure of the form
u(dq) = Z=te" dq, then we must have

@ _ / M Dp(g, dQ) = HWQNI R (h5u) (Q)

. — p— * . .
This means "7 = ¢7“s. Hence for an invariant measure, we may choose a measure of the

form
p(dq) = 7 1ePlus—up)(q) dq.

We note

(310) T(UB) = Upg + )\5, T(UE) = u}; — )\5,

which is in line with (3.5) and (3.4) as we solved the corresponding HJE (3.7).
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4 Homogenization

Let us write £ for the set of maps S : RY x R? — R such that the map L(q,v) = S(¢, ¢+ v)
satisfies Assumption 3.1. We also write € for the set of C'! functions F' : R — R? such that
G(q) = F(q) — q is bounded. For the question of homogenization, we define an operator that
turns a microscopic height function ¢ : R¢ — R to a macroscopic height function. Its inverse
does the opposite:

(Tng)(q) =n"'g(ng), (T,'9)(q) = ng(n'q).

We think of g as an initial macroscopic height function. Its growth is governed microscopi-
cally by the operator 7 or 7. The macroscopic height function after one macroscopic time
step is given by

un = Tr(s)(9) = (gn oTg o F?Ll) (9)-
A homogenization occurs if the limit
Jim un(q),

exists for every Lipschitz function g. We may write

un = sup [g(n"'g,) —n7 (S(ng, @) + S(q,q2) + -+ S(dn-1,00))]

Sn(q,Q) = inf n7'(S(ng,q1) + S(q1,q2) + -+ + S(gn-1.7Q))

= inf (T0S) (g, @1) + (ToS) (@1, 62) + - - + (TS) (gn-1, Q).

One approach for establishing the homogenization is based on the following intuition that
we partially discussed in Chapter 3: If for some C*' U € A, we have '?(U) = U + ¢, then
<I>(q, VU(q)) = (Q, VU(Q)) The relationship between ¢ and @ = F'(q) is that @ is a critical
point of A(Q;q) = U(Q) — S(q,Q). So, F(q) is implicitly given by

(4.2) VU(F(9)) = Sqla, F(4))-

A

Hence for such U, the set Gr(U) is invariant for ®. Moreover, the g-component of the flow
associated with the restriction of ® to the set Gr(U) is given by F : R? — R%.
The homogenization maybe achieved in three steps that we now sketch:
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Step 1 (Lower Bound) Motived by the flow F' of (4.2), we pick any F' € Q with F(q) =
q + G(q). We select ¢; = F'(go) with g9 = ng in (4.1). Note

n—1 n—1
nlgn=qg+n Y G(F'(w), D S(gn4i) ZSF (F'(q
i=0 i=0

where ST(q) = S(q, F(q)) = L(q,G(q)). We certainly have

(4.3) un(q) > g (q +n! EG(Fi(qo))> —n! 2_: SY(F'(qo))

We wish to find the limit of the right-hand side of (4.3). For example, when L(gq,v) is
periodic in ¢, we choose F to be a lift of a map f : T — T¢. Then G is also periodic, which
implies that ST is periodic. Now if we pick any ergodic invariant measure for F', then we
have

n—1 n—1
(4.4) nh_)nolon ZG (F*(90)) /G dy, Jl_}lgon ZSF (F'(q0)) = /LG dy,
=0

almost surely for 1 almost choices of gg. From this we obtain

liminfu, > g (q+/G d,u) — /LG dp.
n—oo

This being true for any such pair (F, u), we deduce

(4.5)  liminfu, > sup [g (q +/G du> - /SF du] = sup [9(q +v) — L(v)],

nreo (F,p)

where the first supremum is over the pair (F, u) such that p is an ergodic invariant measure
for that map F', and

(46) 1) = ot { [ S F@) wtan): [0 - ) wlan) =}

(Fop

Step 2 (Upper Bound) Given any p € R? and any continuous function u : R — R, we define

H(p;u) = sup (uw(Q) —u(q) +p- (Q —q) — 5(¢,Q)).

q,Q

We write U for the set continuous u : R? — R, such that

lim |u| " u(q) = 0.

lg]—o0
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We then use any u € U to produce an upper bound for u,:

un(q) < sup [g(n"'qn) — (07 'qn —q) - p — 0" (u(gn) — u(ng))] + H(p;u)

q1ye-es qn

= sup (9(Q) = (Q—q) - p—n" (u(nQ) — u(ng))) + H(p; w).
As a result,

(4.7)  limsupu, < inf inf {sup (9(Q) — (@ —q) - p—n" (u(nQ) —u(ng))) + H(p; u)] :

n—o00 poueld | @

If we can interchange inf with sup, we obtain

lim sup u,, < sup [g(@) — inf ((Q —q)'p— inzg H (p; u))]
Q p U

n—oo

(4.8) = sup [9(Q) — L(Q — q)),

where

L(v) =sup (p-v—H(p)), H(p)= inf H(p;u).

p ueU

Step 3 ([: = L) To establish homogenization, it remains to show that the upper and lower
limits of Steps 1 and 2 coincide. This may be achieved by an introduction of a Lagrange
multiplier, and an application of Minimax Principle. Indeed, if we write H for the Legendre
Transform of L:

A~ A

H(p) := sup (p S — L(v)),
then we can write

~

H(p) = sup (/ ((F(q) —q)-p—S(q, F(Q)))M(dQ))

(Fyp)

— supsup inf ( [ (@ -0 - st F@)utda) + [ (wF @) - u(o) u(dQ)>

F u€eCy

= inf supsup (/ ((F(9) —q)-p— S(q, F(q)))p(dg) + / (u(F(q)) — u(a)) M(dQ))

ueCy g u

= inf sup sup ((F(q) —¢q) -p— S(q, F(q)) + u(F(q)) —u(q) )

ueCy, g q

= inf Sup sup (Q—q)-p—S(¢,Q) + u(Q) — ulq)) = H(p).
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Here Cy = Cy(RY), is the space of bounded continuous functions. O

Motivated by the above discussion, we now state our homogenization result. We start
with the periodic case.

Theorem 4.1 Let S(q,Q) = L(q,Q—q) with L(q,v) periodic in q and satisfying (??7). Then
for every Lipschitz function g, we have

(4.9) lim T, 0 7" 0 T (g) = sup (9(Q) — L(Q — q))-

n—oo Q
Here L the Legendre transform of H, given by
(4.10) H(p) = infsup (p- (Q — q) + u(Q) — u(q) — S(¢,Q)),

7,Q
with the infimum over periodic continuous functions u : R? — R.

We may also establish a homogenization when S is selected randomly according to an

ergodic T-invariant measure. Before we state the main result, we remark that in the formula
(4.1), we compared S(q, Q) with

w(q, Q) =p-(Q —q) +u(Q) —u(q),

which should be regarded as a discrete analog of a 1-form. Think of w(q, Q) = w'(¢,Q — q)
as a function that acts on velocities ) — ¢ at the base point ¢. Note that our w'(q,v) is
periodic in ¢, but not linear in () — ¢ because it is not defined on the tangent fiber at ¢ as
in the continuous setting. Though it is a discrete 1-form because we can “integrate” it over
T? sequences q = (qo, - - -, Gn):

i
L

w(q) := w(Gis Git1)-

i

Il
=)

Now if u : R? — R is periodic, then the form u(g, Q) := u(Q) — u(q) is an example of an
exact form because u(q) = 0 for any periodic sequence (whenever ¢, — qo € Z%.) However
the form p(q, Q) = p- (Q — q) is not exact but closed because p(q) depends only on the end
points qo and ¢,.

In the random case, the torus T¢ is replaced with the space S.

Definition 4.1(i) Given , co, 1, ¢2,¢3 > 0, and o, f > 1, we write S for the set of continuous
S :R? x R? — R such that

inf S(Quq + U) Z §|U‘a — Co, sup S<Q7Q) S (1,
q q

sup 15(¢+2,Q +2) = 5(q, Q)] < a2,
q,

sup (¢, Q +2) = S(¢, Q) < csl2l|Q — g+ 27"
q,
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(ii) For measurable functions u: R = R, L: S x R - R, S : R? x R? and a € R?, we set

Tau(q) = u(g +a),  Tallgv) = Llg+a,v), (7,5)(q,Q) =95(¢+a,Q+a).

OJ
We have a 7'-invariant probability measure on S. If for example S(q, Q) = L(q,Q —
q), with L(q,v) periodic in ¢, then we take a probability measure that is concentrated on
{7,S : q € R?}. This set is closed with respect to the uniform topology, and topologically
homeomorphic to T¢. In fact the only 7/-invariant measure on this set is isomorphic to
the Lebesgue measure on T¢. Though if we take a quasi-periodic S, and consider the set
{8 q¢€ R?}, it is no longer closed and its closure would be homeomorphic to T for
some N € N. Given S € §, we may define the operator

T(9)=Tlg;8) = sup (9(Q) — S(4.Q)),

as before. Recall that our homogenization proof was based on the existence of a function
u:R? = R, and F: RY — RY, with F(q) = G(q) + g, such that

sp (p-(Q—q) +u(@) —ulg) — S(q,Q)) = H(p),
(4.11) Se(a, F(q)) + Vula) +p = S4(¢, G(q) + a) + Vu(q) +p = 0.

We note that if we can replace S with 7.5, u with 7,u, and G with 7,G, our equations
in(4.11) are still valid. This suggests finding u(q) = u(q; S) and G(q) = G(g; S), such that

w(q;7.8) =ulg+a;5),  Glg;7.5) =Glg+a;9).

In fact, if we define 4(S) = u(0;.5), then u(q,S) = fL(TéS). Equivalently, we may look for
functions R
t:S—>R, G:S8—RY

such that u(q) = @(7,S) and G(q) = G(TQS) satisfy (4.11). Given p € R?, we may wonder
whether or not there exists a continuous 4 : S — R, and a constant H(p) such that

(4.12) sgp (p-(Q—q) + ﬁ(TéS) — ﬁ(T;S) —5(¢,Q)) = H(p).

It turns out that (4.12) does not have a solution if we go beyond the periodic case. Instead,
we need to consider functions of the form wu(g; S) that are in some sense acts like an exact
form in the discrete setting.

Definition 4.2 A measurable function u : R x S — R is an ezact form if the following
conditions hold:
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(i) w(Q —q;7.8) = u(Q; S) —u(g; S), for all (¢,Q,S) € R? x R*S.

(iii) For some r > d, and every ¢ € R?, [ |u(g; S)|" P(dS) < oc.

(i

We write U for the set of exact forms. OJ

)
(ii) wu(q;S) is Lipschitz continuous in gq.
1)
v) u(0;S) = 0, and for every ¢, we have [ u( P(dS) = 0.

Remark 4.1 Note that the first and the last properties are satisfied if u(g, S) = h(TéS ) —h(S)
for some function h : S — R. We also note that (i) is equivalent to the following property:
If qo, ..., qx is any sequence with ¢y = qx, then

k
ZU(%H - %T;ZS) = 0.
i=0

O

Theorem 4.2 Let P be an ergodic T'-invariant measure on the set S. Then for every Lipschitz
function g, (4.9) holds for L, the Legendre transform of H. The function H is given by

(4.13) H(p) = inf supess Sup (p-q+ulg;S)—S5(0,9)).

ueld ¢
As a preparation, we establish a variant of Proposition 3.1 for w,.

Proposition 4.1 Assume that g is Lipschitz with Lipschitz constant £. Then we can restrict
the supremum in (4.1) to those @ such that

(4.14) Q—ql</l, 0<8,(q,Q) +co < ey,
with ¢ is as in Proposition 3.1 and cjy = §"/07%) + (1 —a™1) .
Proof Note that by (3.8),

Sn(q,Q) > on~ " (Ing — @™ + -+ - + |gn—1 — nQ|*) — co
> |n"t((ng —q1) + -+ (go1 —1Q))|" = o
=dlg — Q" —
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This allows to repeat the proof of Proposition 3.1 and deduce the first inequality in (?7).
On the other hand, if the supremum in (4.1) is attained in @, then

0<9(Q)—9(q) = Sn(q, Q) < Q — q|* — Sp(q, Q)
< 5M(Su(q, Q) + o) = 5u(4, Q)
<(1—a )6V + a7 (Su(q, Q) + co) — Sulq, Q)

This implies the second bound in (4.14). O
The main ingredients for the proof of Theorem 4.1 are the following existence and regu-
larity of exact forms and an application of Subadditive Ergodic Theorem.

Theorem 4.3 For every u € U,

(4.15) lim [q["'u(q; S) =0,

lg|—o0

P-almost surely.

Theorem 4.4 For every p, there exist a constant f](p), and uw € U such that

A~

(4.16) sup (p-q+u(q,S) —S(0,q)) = H(p).

Theorem 4.5 For each v, the limit

(4.17) L(v,8) = lim n™'S,(0,v),

n—o0

exists P-almost surely. Moreover i(v) = f/(v, S) is independent of S, and conver in v.

Proof Observe that if .
S;L<Q7 Q) = inf Z S(% QiJrl);
=0

q1s--+ dn—1 %
with gy = ¢, ¢, = @, then we have the following subadditivity:
S/

m+n

(a,c) < S (a,b) + S,,(b,c).
As a result, if we pick v € R, and set
T=r1, F,S)=5,(0nv),

then
Frnin(S) < Fu(S) + E,(T™S).

46



Note that PP is T-invariant but may not be ergodic. Nonetheless we may apply Kingman
Subadditive Frgodic Theorem to assert that the limit

(4.18) L(v,S) := lim n~15/(0, nv),

n—oo

exists P-almost surely, and that

/ L(v,S) P(dS) = inf / n~'S" (0, nv) dP.

n

Moreover, using the ergodicity of P and the subadditivity of S’, we can show that L is
independent of S and convex in v. U

Proof of Theorem 4.3 (Step 1) To ease the notation, let us write

We note that if S € S, with constants 9, ¢y, ¢1, ¢o, c3, then then SP € S for constants
&, ¢y, €,y s (o, B will not change.) For example

SP(q,Q)>p-(Q—¢q)+d|Q —q|* —co > —|Q — qllp| +'|Q — q|* — ¢4 > —c1 — co,

where &' can be chosen to be §/2, and ¢, = ¢ + ¢/|p|=-1 for a constant ¢ = ¢//(c, ). From
now on we assume that p = 0.
Pick A € (0,1), and define h* : S — R, by

h)\(S) = — Hlf ZS(C]mCIn-H))‘na
=0

q1,92;-..-
n=

with gy = 0. We then have

WM7S) == inf > S(gn, i) A",
=0

q1,92;-.-
n=
with gy = ¢. Moreover,

sup ()\h’\(TC;S) —5(0, q)) = hM9).

q

Equivalently,

Hence if u*(¢; S) = h*(7,S) — h*(S), then

(4.19) sgp (MMg; ) = S(0,9)) = (1 = X)ANS).
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We claim that for a subsequence, the limits
(4.20) u(g; ) = limuM(g; S),  H(p; S) = lim(1 — \)R(S),
A—1 A—1

exist and they are the desired v and H we are searching for. We note that if the limits in
(4.28) exit, then

(4.21) w(@Q —q;7,9) = w(@; ) — ulg; S),
H(p;7,S) — H(p; S) = lim (1 — A\)u’(g; ) = 0.

From the latter and the ergodicity of P, we deduce that H is independent of S. The former
implies that Property (i) of an exact form is satisfied.

(Step 2) Evidently (1 — A\)h*S) > —S(0,0) > —c;, by choosing 0 = gy = ¢; = ... in the
definition of A*. From this and S(q, Q) > —cy we deduce

(4.22) —c; < (1=NhMS) < co.
We now examine u*. From (4.27) and (4.29) we learn

X (g; ) < 5(0,9) + co.
Hence

At g; S) = —xut (= ¢;70S) > —S(q,0) — co.

Proof of Theorem 4.2 (Stepl) Observe that if VS =T, 0 TP o' = ﬁz(s), then

! !
(4.23) Ve = 0V30r, or VmSor,=71,0V5

This means
(4.24) unla) = u(a) = (V9) (@) = (Vi (749 ) (0)

From this, we learn that for any % : R? — R,

/1 /H 020)(0) — (o] aa] Pias) = [ | /[]

:/ {/[—M]d |(V5 (749)) (0) — u(q)| dq} P(dS).

(" 79)) (0) = uta)| o] P(a5)

This means that for a local L' convergence of u,(q) = (V5g)(q) to a deterministic function
u, we only need to show the existence of the limit for ¢ = 0.
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(Step 2) Let us simply write u,(S) for (V7g)(0). Set
u(S) = liminf u,(S).

n—oo

We claim that P-almost surely, the function u(S) is constant. By the ergodicity of P, it
suffices to show that u(7.S) = u(S), for every a € R% Indeed by (4.24),

tn(7,5) = sup (9(Q - n~la) = Sa(n"'a,Q)) = sp (9(Q) = S (na,Q)) +0(n™"),
where

Sn (n_la, Q) = inf n_l (S(CL, ql) +eoet S(Qn—2a Qn—l) + S(Qn—la TLQ)) )

q1se-es dn—1
and S, (n"'a,Q) < ¢3 by Proposition 4.1. In particular

cs >n'S(a,q) > ona—qi|* —n"le.
This leads to

la — q1| < 67V %nes 4 ¢o)V°.

This implies

[S(a,q1) = S(0,q1)| < clal(jgi| + 1) < 't
which in turn implies

1S, (7 a, Q) — Sa(0,Q)| < dnt/t.

From this we deduce that u(7.5) = u(S), as desired.

(Step 3) Given G : S — R, we may set F(q) = ¢ + G(7,5), and choose a sequence of the
form g, = F"(0). Observe that if f(S) = fc(S5) = 755, L(S) = LE(S) = 5(0,G(9)), then

(4.25) S(0,1) + -+ S(gn-1,4) = LE(S) + -+ + LE(f"71(9)).
These identities can be readily verified by induction on n. We now set © to be the set

of measurable pairs (G’, ,0), é,p : § — R such that the probability measure Q(dS) =
p(dS) P(dS) is an invariant measure for f = fo. We write O,, for the set of measurable

N

pairs (G, p) € O such that the measure Q is also ergodic. By Ergodic Theorem, the limits

¢“(S) :== lim n'q,, LE(S) = lim n™" (LE(S) +-- -+ LE(f*1(9))),

n—o0 n—o0

exists Q-almost surely, and
(4.26) ¢ = /G dQ, LY= /LG dQ.
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As a result,
(4.27) u(S) > g(q%) — L€,

Q-almost surely. Since P << Q, we learn that (4.27) is also true P-almost surely.

(4.28) w(S) > sup  (g(q%) — LY) = sup (g(v) — L(v)),
(G,p)EOecr v

P-almost surely. Here
L(v) = inf{/LGp dP: (G,p) € O, /Gp dP = v} :

(Step 4) If we choose ¢g(Q) = p- @, and write u” for the corresponding u, then for every pair
(G, p) € O, we have )
uP(S) > p-q(S) — LY(S).

Since uP(S) is P-almost surely constant, we learn,

/gp dIP:/gP d@z/[p-qG<S>—EG(S)] @(dS):/G d@—/LG )

As a result,
/gdeP’Z sup (/Gd@—/LGd@>.
(G.p)e®

Hence, P-almost surely,

(4.29) uP(S) > sup (/G dQ — /LG d@) :

(G.p)€®

Exercise(i) Show that L defined by (4.26) is independent of S and convex in v.
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5 Viscosity Solution verses Variational Solution

Let ® : R? — R?? be a symplectic map with generating function W(Q,p) = Q -p — w(Q, p).
In Chapter 3 we learned that if ¢ is a C! function, and

k

A(Go,Pos - - Gn1, Pu1i @i 9) = 9(q0) + > (piz1 - (@5 — Gi-1) — w(pi1, @),
=1

then a critical point of A yields an orbit z; = (q;, p;) = ®(20),i = 1,...,n, with py = Vg(qo)-
Motivated by this, let us define

n

Wh (o) = Z (i1 - (@i = @im1) —w(pio1, @),

i=1

where z;(q;, p;) = ®(x¢) for i = 1,...,n. In other words, W, (zo) denotes the action at time
n of an orbit that starts from xy. We then set

Falg) = {(Q.9(q) + Wa(2,Vy(q))) : ¢ € R, ©"(¢,Vy(q)) = (Q.P)}.
We may extend the definition of F,, to Lipschitz g.

Definition 5.1(i) Given a Lipschitz function ¢ : R? — R, we write dg(q) for the set of
vectors p such that there exists a sequence g such that Vg(gx) exists, and

g= lim ¢, p= lim Vg(g).
k—o0 k—o0

The convex hull of the set dg(q) is denoted by dg(q).

(ii) Given a Lipschitz function g, we set

Fulg) = {(%:9(@0) + Wa(q0,20)) a0 € R%, po € 9g(q0), ®"(q0.po) = (qn7pn)} :

(iii) By a variational solution associated with ®, we mean a collection of operators V, =
VS5 :A— A, n €N with the following properties:

° ]A/n(g +c) = \7n(g) + ¢ for each n and every constant ¢ € R.
e For g,¢ € A with g < ¢, we have )7n(g) < 17n(g’).

e For every g € A, and n € N,

{(q,ﬁn(g)(q)) g€ Rd} C Fulg)-
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0

Likewise, we may define a variational solution of the HJE (1.10). Recall that for ~ :

0,t] — R? with v(s) = (q(s),p(s)), and a C' Hamiltonian function H : R?*¢ — R, the
action is defined by

A(y) = Al () = / -4 — H(x)] ds.

Definition 5.2(i) We set ¢ 4(a) for the restriction of the flow ¢{'(a) to the interval [0, 1].
Given a € R??, we define

A (a) = A (¢10,4(a))-

(ii) Given a Lipschitz function g, we set

Filg) = {(CI(t)ag(QO) + An(q0,p0)) + qo € R? py € 99(q0), ¢fl(CI0,po) = (q(t),p(t))}.

(iii) By a wvariational solution associated with ®, we mean a collection of operators Vi A—
A, t € [0,00) with the following properties:

oV, is identity, and ]2(9 +c) = ﬁ(g) + ¢ for each t and every constant ¢ € R.
e For g,¢ € A with g < ¢, we have )Z(g) < ﬁt(g’).

e For every g € A, and t € [0, 00),

{(%ﬁt(g)@)) L q€ Rd} C Filg).
When H is independent of ¢, then F; can simply be described as

Filg) = {(qHVH( ),9(q) +t(p- VH(p) — H(p))) : ¢ € R, pedglq)}
= {(Q 9@ +p- (Q—q —tH(p)): QeR?, Q—q=1tVH(p), pedglq)}
(5.1) = {(Q, Athg)) Q € RY, 0€ 0, A(z;Q;59)}

where A’(q,p; Q3 9) = A'(2:Q39) = g(q) +p- (Q — q) — tH(p).
Before examining some examples in dimension one, we define a type of discontinuity of
ug, is will play an essential role as we compare variational solutions with viscosity solutions.

Definition 5.3 We say that a pair of momenta (p—,p™) satisfies the Oleinik Condition if
either p~ > p*, and the graph of the restriction of H to [p~, p*] is above the chord connecting
(p=,H(p~)) to (p*, H(p")), or p~ < p*, and the graph of the restriction of H to [p—,p*] is
below the chord connecting (p~, H(p~)) to (p™, H(p™)). O
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Example 5.1 Assume that d = 1 and that H is independent of q. Set K(p) = pH'(p)—H (p).
Then

Filg) = {(q¢+tH'(p),g9(q) +tK(p)) - ¢€R, pedg(q)}.

For example, if g(¢) = p~qll(¢ < 0)+pTql(qg > 0), with p~ > p*, then Fi(g) = F, UFPUF,
where

{(a+tH'(p7),p q+tK(p)): ¢q<0} ={(¢,p q—tH(p")): q<tv_},
{(q+tH’p+ prg+tK(pt): q>0} ={(¢.pTq—tH(p")) : q¢>tv.},
{(
H'(

tH'(p),tK(p)) : p€ [pT.p7]},

with v* = H'(p*). Note

Fir =tF = tFs,  F) =tF =tF".

Hence we only need to determine F = F;. To analyze F further, we examine several cases:

(i) If H is strictly convex then H' is increasing. We then set L = K o(H’)™!, which is simply
the Legendre transform of H. Moreover v~ > v™, and

Fo={(v, L)) : ve o]}

Note that F* are lines that intersect at the point (q,u) where ¢ = H[p~,p*], and @ =
ptq — H(p*), with v given by Rankine-Hugoniot Formula

H(p") — H(p~)

Hlp~,p'] = e

In fact the only continuous function 4(-) such that the graph of @ is a subset of F(g) is

(5.2) a(q)=(p q—H(p ))L(¢ <v)+ (pTqg— H(p"))1L(q > v).

This yields the solution @(g,1) = 4(q) when ¢t = 1. The general ¢ follows from multiplying
the graph of u by t. The solution (5.2) is an example of a shock wave.

Observe that ¢ = min{g~,g*}, with 7*(q) = gp*, and V,(g) = min {Vt ). Vi(gM)}.
This strong form of monotonicity is true for any pair of initial data ¢, and is a consequence
of the convexity of H.

(ii) If H is strictly concave, then H' is decreasing. As before, we set L = K o (H')™!, which
is now concave . It may be defined by

L(v) = min (vp— H(p)).

pEpt,p]
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Moreover, if v= = H'(p*), then v~ < v*, and
FO={(v,L(v)) : ve v}
In fact F(g) is the graph of a function u(-) that is given by
i(q) = (p qa—Hp ))L(g<v7)+ (pTa— H(p"))L(g > v") + L(@L(v” <g<v).

What we have is an example of a rarefaction wave.

(iii) We now relax the convexity assumption of part (i) to the Oleinik Condition. More
precisely, we assume that the graph of H : [p*,p~] — R lies below the chord connecting
(p™,H(p™)) to (p~, H(p™)). We claim that under Oleinik condition, the only possible u with
its graph subset of Fi(g) = F(g), is given by (5.2). For this, it suffices to show that no point
of FY can reach the set below the graph of u. Indeed by Oleinik Condition

H(p) - Hp") - _ Hp") - Hp") Hp~) - H(p)
p—pt pt=p~ =  p —-p
for every p € [p™,p~]. Hence
_ H(p) — H(p*
v<q = (;_p+( >Sq = p'q—H(p") < pg— H(p),
_ H(p™) - H(p _ _
v>q = <p)_p()2q — pq—H(p") <pq—H(p)

Hence

~

u(q) < min — H(p)),
()= min_ (pg — H(p))
for every ¢. This means that the set F° lies above the graph of 4. On the other hand, if for
some point (H'(p), pH'(p) — H(p)) lies on the graph of 4 for some p € [p*, p~], then
H(p)— H(p* H(p~)—H
cither 7 < q = H'(p) = )= HEY) s g H'(p) = (p7) — H(p)
p—p* pT—p

By Oleinik Condition, we must have v = ¢, which implies that the only possible intersection
point between the graph of 4 and F° is the corner point of the graph of 4. This completes
the proof of our claim.

(iv) Assume that H(pt) = H(p~) = H'(p~™) = 0,H'(p*) < 0, and H(p) < 0 for every
p € (p*,p7). Then the Oleinik Condition is satisfied. We note that F~ ends at the origin,
F 7T passes through the origin, and F° has two concave and convex pieces that are tangent
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to F~ and F7 respectively. The shock location is the origin, and (g, t) = g(q) for all
t>0. O

As Example 5.1 indicates, we may have a simple formula for the variational solution when
H is convex in momentum variable. Note that the action can be expressed in terms of the
Lagrangian because when & = JVH(z) for x = (¢, p), then

p-q—H(q,p) = L(g,q).
In fact in this case the variational solution is given by Lax-Oleinik Formula.

Theorem 5.1 For a Tonelli Hamiltonian function H, we have
t

53 F@ =it {aa0)+ [ Lad) ds: ol 0. 0= Q).
0

In particular if H is convex and independent of ¢, we may use (5.3) and (5.1) to write

(54)  V(9)(Q) =inf (9@ -t (@))

q t

= infsup (9(@)+p-(Q—q)—tH(p)) = inf sup A'(q,p; Qs 9).

This formula is not surprising; after all we are looking for a critical value of A'(-; Q;g) that
is concave in p. So it is natural to try a simplex minimax critical value that happens to be
finite when H is convex.

In fact if we set ¢t = 1, then the role of ¢ and p are of the same flavor. Because of this,
we may wonder whether or not we have a simple formula for a variational solution when, for
example ¢ is concave. This is indeed the case as the following result confirms.

Theorem 5.2 Assume that H is Tonelli and independent of q, and g is Lipschitz and con-
cave. Then

(5.5) VI (9)(Q) = infsup (9(q) +p- (Q — q) — tH(p)).

P q

The identity (5.5) is known as Hopf’s formula and can be rewritten as
(5.6) Vi (9)(@ =int (p-Q = g'(p) —tH(p) = (9" + tH)(Q),
where we have used t for the Legendre Transform:

g'(p) = inf (p- g = g(q)).
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Note that (g +tH)" is always well-defined and a concave, even when H is not concave. If g
is convex instead, then (5.5) and (5.6) change to

(5.7) VE(9)(Q) = supinf (g(q) +p- (Q —q) — tH(p)) = (¢ + tH)*(Q),

P q

where we have used * for the Legendre Transform:

g (p) = sp (p-q—glq)).

Example 5.2(i) If the restriction of H to [p™,p~] consists of a collection of concave and
convex pieces, then the set F° is a union of the graphs of the Legendre transforms of such
pieces. However, when ¢(¢) = min{p~q,pTq} with p* < p~, then ¢ is concave, and the
corresponding function u depends only the the concave hull of the restriction of H to [p*,p~].
Indeed from (5.6), and the elementary fact that g'(p) = —oo]l(p ¢ [pt, p‘]), we deduce

u(q,1) =u(q) = min - H = min — H(p)),
(@.1) (@) pElp~.pT] (pq (p)) pElpt,p~] (pq (p))

where H denotes the concave hull of the restriction of H to [pt,p~]. Note that the graph
of H is below the chord connecting (p*, H(p*)) to (p_, H(p_)), iff the concave hull of the
restriction of H to [pT,p~] is this cord. If this is the case, then the Oleinik Condition is
satisfied, and we have a shock.The solution is simply given by

#(q)= min_ (pg— H(p)) =min{p q— H(p"),p"q— H(p")},

as in part (i). Note that the graph of u now can have pieces that lie on F°. In order to have
a feel for complex u could be, imagine that there are points py, ps, p3 with p* < p; < py <
ps < p~ such that H = H in the set [py, po] U [ps,p~], and H # H in its complement. Then
the graph of u would have two pieces of F° associated with the intervals [p1, p2] and [ps, p~].
More precisely we may express the graph of u as F; U Fy U F3 U Fy, where F} = F—,

Fy={(H'(p),K(p)): pelps,p7]}, Fs={(H(p),K({p): pelppal},

and Fy C F'. The momentum u' consists of two rarefaction waves associated with F, and
F3 that are separated by a discontinuity. The rarefaction Fj is separated from Fj by a shock
discontinuity.

(ii) Let us now assume that p~ < p*. Then g is convex and we may apply (5.7) to assert

i(q,1) = a(q) = max_(pg— H(p)) = Jpax, (pq — H(p)),

pE[P~.,pT]

]
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where H denotes the convex hull of H. In particular if the graph of the restriction of H
to [p~,pT] is above the chord connecting (p~, H(p~)) to (pT, H(p")), then H(p*) = H(p*),
and
(g, t) = max {gp* — H(p*),qp™ — H(p")}.
In other words, the Oleinik Condition is satisfied and we have a shock discontinuity. U
We now turn to wviscosity solutions.

Definition 5.3(i) Given a function u : R¥ — R, we write du(z) for the set of vectors a € R¥
such that
limsup [h| ™" (u(z + h) — u(z) —a-h) <0.
h—0
Equivalently, a € du(z) iff there exists a C! function ¢ : R¥ — R such that ¢(z) = u(z),
Vp(z) = a, and u < ¢. Similarly, a € Ju(z) iff

liminf |A| ™" (u(z + h) — u(z) —a-h) > 0.
h—0

Equivalently, a € du(z) iff there exists a C! function ¢ : R¥ — R such that ¢(2) = u(z),
Vp(z) =a, and u > .

(ii) We say a uniformly continuous function u : R x [0,00) — R is a solution of (1.10) if
for every (p,r) € Ou(q,t),t > 0 satisfies r + H(q, p) < 0, and for every (p,r) € du(q,t),t >0
satisfies r + H(q,p) > 0. O

Example 5.3 Assume that v : R¥ — R is continuous and there exists a C! surface I' of
codimension one such that u is C* on R¥ \ T'. Write u® for the restriction of u on each side
of T'. (This is well-defined for points near I'.) We assume that u* are C* functions up to the
boundary points on I'. Pick a point on I'. We wish to determine du(a) in terms of Vu®(a).
Assume that v € Ju(a) # 0. Let us write T,I" for the tangent fiber at a to I', P, for the
orthogonal projection onto T,I', and v, for the unit normal vector at a that points from
—-side (on which u~ is defined) to the +-side (on which u™ is defined). First take a smooth
path 7 : (—6,8) — I' with v(0) = a, %(0) = 7. Using v € du(a), and

we deduce that Vu*(a) -7 < v - 7. This also being also true for —7 € T,I" implies that
Vu®(a) -7 =v-7. Hence VuT(a) — Vu~(a) is orthogonal to T,I". This is not surprising
and follows from the continuity of w; since vt = u~ on I', we have that the 7-directional
derivative of ut and u~ coincide whenever 7 € T,I". Now if we vary a in the direction of v,
or —v,, we deduce

Vut(a) v, <v-ve, Vu (a) (—v,) <v-(—v,).
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Equivalently,
Vut(a) v, <v-v, < Vu (a)- v,

Hence, if du(a) # 0, then P,Vu*(a) = P,Vu~(a), Vu*(a) - v, < Vu~(a) - v,, and
du(a) = {P,Vu*(a) +rv, : a € [Vu'(a) v, Vu (a)-v,]}.

Likewise, if du(a) # 0, then P,Vu™(a) = P,Vu~(a), Vu't(a) - v, > Vu (a) - v,, and
Ou(a) = {P,Vu™(a) + rv,: a € [Vu (a) v, Vu'(a) - v, }.

In summary, we always have P,Vu'(a) = P,Vu~ (a), and there are three possibilities:

Vut(a) - v=Vu (a) v = (?u(a) = Ou(a) = {Vu*(a)},
Vu(a) - v<Vu (a)-v = 0dula)#0, OJula)=10,
Vut(a)-v>Vu (a)-v = Jula)=0, ula)#0.

O
In Example 5.1(i), (iii), (iv), and Example 5.2, we have variational solutions for which
U, has shock discontinuities. In all these examples, the jump discontinuity of 1, satisfies an
Oleinik Condition. However it is known that in general Oleinik condition may be violated for
a variational solution. Several explicit examples have been discovered for such a violation.
The following recent example is due V. Roos (2017). The idea is that in Example 5.1(iv)
Oleinik Condition is satisfied but a small perturbation of p* may lead to a violation of
Oleinik Condition. Indeed if we change p~ to p~ — 1 for some small n > 0, then we can find
small 7 > 0 such that the Oleinik Condition is violated for the left and right limits p* 4
and p~ —n. This may be achieved by perturbing the right arm of the graph of g by a convex
function.

Theorem 5.3 Assume d = 1, and H € C? is independent of q. Assume that p™ < p~,
H(p")=H(p~)=H'(p7)=0> H'(p™), and H(p) <0 for every p € (p*,p~). Let f € C?
be a strictly Lipschitz convex function with f(0) = f'(0) =0 and set

9(a) =p qll(g < 0)+ (p*a+ f(g) (g > 0).

Then there exists to > 0 such that for every t € (0,ty), there exists a point q(t) > 0 such
that for every variational solution 1,(q,t) is discontinuous at q(t). Moreover the momenta
Ug(q(t)x, t) violate the Oleinik Condition.

Proof (Step 1) As before, Fi(q) = F;" U FY U F; , where

Fr=tF"={t(a+ H'(d(ta)),t "g(tq) + K(d'(tq))) : q >0},
Fo=F ={(¢,ap7) : ¢<0},
Fo=tF' = {t(H'(p),K(p)): pep’,p]}
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Note that the sets F~ and F° are independent of f and the same as what we had in
Example 5.1(iv). Let us write

Fr={(a.ap* +HP"): ¢>H (")},

which is what we get when f =0 and ¢t = 1.
We now examine the set F;". We claim that for ¢ € (0,), with

to = [sup |[H"(q)|sup | f" ()]

the set F,” is a graph of a convex function that is above tF*, and is tangent to tF ' at its
end point. For convexity, observe that if

a(g) = q+ H'(¢'(tq)), blq) =t "g(tq) + K(d'(tq)),

then o/(q) = 1+tH"(¢'(tq))g"(tq) = 1+ tH"(¢'(tq)) f"(tq) > 0, and
V'(q) = g'(tq) +tg'(tq) H"(¢'(tq))g" (tq) = ¢'(tq)a’(tq).

Hence the slope of F," at the point t(a(q),b(q)) is ¢'(tq). Since both a’ and ¢’ are increasing,
F;" is convex. At ¢ = 0 this slope is p*, which means that the line 7 is tangent to F;" at
its end point (a(0),b(0)), hence it lies above this line.

(Step 2) For small § > 0, the set

F=tF = {t(H'(p),K(p)): pelp =67},

is a graph of concave function that starts from the origin and lies below a line of slope p~
that passes through the origin. As a result, the set F,” will intersect fto at some point
t(a(q"), b(¢")), q" > 0, for small and positive t. One can see this by comparing the set F;"
with F° and find an intersection point for these two sets. Observe that the set ft+ is above
F* and tangent to F1 at its end point. Moreover, since

g'(tq) = p* + f(tq) =p* +o(1), t'g(tq) = qp* +1" f(tq),

we have that F;” — F* as t — 0. This means that the sets ]:_;“ and FO intersect at a some
point (a(q'), b(¢") near the origin for small . This means that the variational solution u(q, t)
has a corner at t¢'. The left and right derivatives of u(-, ) at tq", are given by the slope of
F? and F," at the point t(a(q'),b(q")). The right derivative is given by ¢'(¢") as we showed
in Step 1. For the right derivative, if for some p— € [p~ — 0, p~], we have H'(p) = a(q'), then

b(q") =pH'(p™) — H(p"),
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and the tangent vector to .7:}0 at (a(q'),b(q")) is (H”(ﬁ_),ﬁ_H”(ﬁ_)), which has a slope p~.
It remains to show that the Oleinik Condition is violated for the left and right momenta p~
and p* = ¢(d").

(Final Step) For small ¢, we have p~ = p~ 4+ o(1), p* = p™ + o(1). So p~ < p*. By
H'(p~) = a(q"), we know that H'(p*) = H'(p~) — ¢". Hence,

pH(p7) — H(p™) =b(¢") =t g(tq") +p"H'(p*) — H(p")
=t"lg(tq") —pTq' +pTH'(p7) — H(p").
Equivalently,
(b~ =P ) H' () +H(p") —H(p™) =t (g(ta") —¢'(a")ta") =t~ (f(ta") — f'(ta")td") =: p(d").
We note that ¢(0) = 0 and ¢'(¢q) < 0 for ¢ > 0 by convexity of f. As a result,
(- —p")H'(p ) <H@E ) —HE").

This violates the Oleinik Condition because pt < p~. 0

As we will see in Exercise(i) below, the Oleinik Condition is always satisfied by the pair
(ug(q—, 1), uqe(g+,t) at every discontinuity point (g¢,t) of u,, where u is a viscosity solution.
Hence the variational solution of Theorem 5.3 is not a viscosity solution. We now explore
the viscosity solution for H and g as in Theorem 5.3.

Example 5.4 Let H and g be as in Theorem 5.3. Assume that H is concave near p—, and
for some 9, 61,09, > 0,

{pelptp]: Hp) e [-6,0]} = [p",p" +&]U[p™ —d,p7].

Choose = < 09,07 < 0; such that for each p € [p™,p™ + 0], there is unique ¥ (p) €
[p~ — 67, p7] such that ¥(pT) = p~, and

(5.8) H(¢(p)) — H(p) = H'(¢(p)) (¥ (p) — p).
We claim that the viscosity solution u as a corner at ¢(t) such that ¢(0) = 0, and for small ¢,
(5.9) g(t) =H'(p~(t)), » (1) =¢(p" (1)),

where p*(t) = u, (q(t)j:, t) represent the left and right values of u, at ¢(t). We now express
pT(t) in terms of ¢(t), so that the ODE (5.9) can be solved uniquely for the initial condition
q(0) = 0. For this, let us write h : [p*,00) — [0,00) for the Legendre transform of g :
[0,00) — (—00,0], so that A'(p™) = 0, and ¢'(q) = p iff W' (p) = ¢. Note if for ¢, we have
q(t) = q+tH'(g'(q)), then p™(t) = ¢'(¢g). Equivalently,

q(t) =h'(p) +tH'(p), p"(t) = p.
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Let us write ¢(q,t) for the inverse of p — h'(p) + tH'(p), that is increasing and well-defined
for small ¢. This gives us the formula

p*(t) = £(a(t),t),

which allows us to express p~ () as a function of ¢(¢). The function ¢(q,t) can be expressed
as ¢ = w,, where w solves the HJE with initial condition g(¢), ¢ > 0, and our formula for ¢
is compatible with (5.7). In particular

6+ H'(0)¢, = 0.

We note that ¢(0) = 0 but ¢(¢) > 0 for ¢ > 0 and small because H'(p~(t)) > 0. On the other
hand,

pr(t) = e(a(t),t) + Lo (a(t), )a(t) = Lo(at),t) (H'(p™ (1) — H'(p*(1))).
Since ¢, > 0, H'(p~(t)) > 0, H'(p™(t)) < 0, we deduce that p*(¢) is increasing as a function
of t. Since v is decreasing, we learn that p~(t¢) is decreasing. On the other hand,

G(t) = H"(p™(t))p~(t) > 0,

for small £. This means that ¢(-) as a function of ¢ is convex. Here how the viscosity solution
for short times look like:

e For @ > q(t) we have u(Q,t) = g(q) + tK(p), where p = ((Q,t), and ¢'(¢) = p.

e For Q <0, we have u(Q,t) = p~Q.

e For Q € [0,q(t)], we first set Q(s,t) = q(s) + (t — s)H'(p~(s)), for s > t. We
note that Qs = (t — s)H"(p~(s))p~—(s) > 0, so that s — Q(s,t) is increasing with
Q(0,t) = 0,Q(t,t) = q(t). Its inverse is denoted by s(Q@,t), and u(Q,t) = u(q(s)) +
(t—s)H'(p~(s)), for s = s(Q, 1).

What we have constructed is a viscosity solution because it solves HJE outside the set
{(q(t),t) : t €0,6)} for small §, and on this set the Oleinik Condition is satisfied. It also
coincides with g initially. So v must be the unique viscosity solution.

For comparison, let us write @ for the variational solution which has a corner at ¢(t) with
the left and right momenta at §(t) given by p=(¢). Indeed

H(p~ (1)) —H(p* @) — H (p~ @) (p~(t) = p* (1)) =0,

H(p=(t)) = H(p* (1)) — H' (5~ (1) (6~ (1) =57 (1)) = t7" (a(t)g'(a(t)) — g(d(1))) > 0.
Hence p~(t) = ¢ (p™(t)), but p~(¢) > ¢ (p*(¢)). From this we can deduce
dq

Q(t) = H'(p" (1) = H'(¥(p* (1)), but  —

(t) = H[p"(t),p~(t)] < H'($(5"(2)))-
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Since ¢(0) = ¢(0) = 0, and
pr(t) = a(t),t), (1) =L0(q(t). 1),

we deduce that ¢(t) < ¢(t) for t > 0. Note that u(q,t) = u(q,t) for ¢ ¢ (0,q(t)). We now
that u(q,t) < (g, t) if ¢ € (0,q(t)), and ¢ is small. For this it suffices to show that if p = u,
and p = 4y, then p(q, ) < pu ( t) for g € (0,¢(t)). Simply because

q(t) q(t)
ul(g,t) = u(g(t). £) — / plart) da = i(q(t), ) — / plat) da

q(t)
< ilg(t). ) - / pa,t) da = a(q, ?).
q

We first consider the case ¢ € (4(t), q(t)). For small ¢, p(q,t) = p(qo,0) = ¢'(qo) for some
qo that is close to 0. Hence p(q,t) is close to p*. However, on the other side of the jump
discontinuity, we have p(g,t) that is close to p~. Hence larger than p. In the same fashion
we can show that p > p for g € (0,¢(t)) and small . O

As we have seen in the proof of Theorem 5.3, we can easily calculate solution for small
times if the second derivative of the initial data is uniformly bounded.

Proposition 5.1 Assume that D*H and D?*g are uniformly bounded and g is C* and Lips-
chitz. Write uw and u for viscosity and variational solution with initial condition g. Then for
t >ty (with ty depending on the bounds on D*H and Vg only), we have

u(Qut) = (Qut) = 9(a() + [ - Hlg.p)] ds
where (q(s),p(s)) = ¢(q(0), Vg(q(0))) is the unique Hamiltonian orbit such that q(t) = Q.

Proof We can readily show that the map F(a) = q(t) where (q(s),p(s)) = ¢s(a, Vg(a)), is
a homeomorphism. O

Theorem 5.4 (Bernard) Assume that D*H is uniformly bounded and g is Lipschitz. We
also assume that D?q is either uniformly bounded above, or uniformly bounded from below.
Write uw and u for viscosity and variational solution with initial condition g. Then there
exists tg > 0 that depends only on the bounds on D*H and A%q such that the following are
true fort > ty:

(1) ulg,t) <afgt).

e If D?g is bounded from above, then
(5.10) a(q,t) =inf {u: (q,u) € F(q)}.
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e If D%g is bounded from below, then

(5.11) a(q,t) =sup{u: (q,u) € F(q)}.

Proof Assume that D?¢ is bounded from above by ¢y. Then we can find a family G of C?
Lipschitz functions such that

g=infg, supsup|D?j(q)| < co,
geg g€G ¢

9(q), and Vg(a) = p.

and for every a € R? and p € dg(a), there exists g € G such that g( )=
a,p), then ¢(t) = q. Pick

Now given @, pick (a,p) such p € dg(a), and if (¢(s),p(s)) = és(a
g € G such that g(a) = g(¢), and Vg(a) = p. We then have

Va(Q) < V(@) = V4@ = ola) + p-d— Hlq.p) ds

~

Val@) < Vial@) = gl + [ o+~ Hlg.p) ds.
As a result,

V,9(Q) < inf {u : (q,u) € F(q)
1>tg(Q) < inf {u : (q,u) € F(q)

5.1 Variational selectors

We now give a recipe for the construction of variational solutions in discrete setting. Recall
that we write A for the set of Lipschitz functions, and A, for the set of ¢ € A such that
lg(q) — 9(¢")| < r|g —¢'|. Recall that a variational solution u,(Q) is a critical value of

A(xn; Q3 9) = 9(q0) + Z [pi—l (@ — qi-1) —w(pi-1, %‘)L

where ¢, = Q, and x,, = (7, ..., T, 1), With 7; € (¢;, p;) € R*. We assume that w : R** —
R is a C! and Lipschitz function. We may write A = ¢ + f, where £ is a quadratic function
and f is a Lipschitz function. Writing x,, = x = (¢,p) € R* for k = 2nd, then

1
o) =3B v = > pict - (@ — Gim1) = Pr1 - Qoo
1
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where B is a matrix of the form
B 0 D
Dt 0’

where D is a matrix which has —1 on its main diagonal, 1 right above the main diagonal,
and 0 anywhere else. As a result, ¢ is a non-degenerate quadratic form. Because of the very
form of A, we make the following definition.

Definition 5.4(i) We write Qy, for the set of non-degenerate quadratic functions ¢ : R¥ — R.

1

In other words, ¢(x) = 5Bx - x for a nonsingular symmetric matrix B. We write € (¢;r) for

the set of functions F : R¥ — R such that F = ¢+ f for some f € A,. We write

Q - Uzozl Qk}7 Qk = U:il Ufer Qk(ga T)7 Q= UZOZIQk

(ii) We call C : © — R a em variational selector if it satisfies the following conditions:
(1) If FeQand F € C, then C(F) = F(z), for some z with VF(z) = 0.
(2) If f1, fo € A, with f; < fo, and £ € Q, then C(¢ + f1) < C({ + fo).
(8) C(F+c¢)=C(F)+c, for every FF € Q and c € R.
(4) If F € Q is bounded below, then C(F') = min F.

(5) If ¢ : R? — R is a Lipschitz smooth diffeomorphism, and F € €, then C(F) =
C(F o).

(6) If F e Q, V' € Qp, and F'(x,y) = F(x) + {'(y), then C(F') = C(F).
0

Once a variational selector is known, then we can use it to construct a variational solution
by setting

(5.12) Va(9)(Q) = C(A(5Q: 9))-

As we mentioned before we use Lusternik-Schnirleman (LS) Theory to construct a selec-
tor. Before we give a precise recipe for C, we make some remarks:

Proposition 5.2 (i) If F' € Qu(6;7), with F =0+ f, { € Qy, and VF(Z) = 0, then

|| <r8(B)™',  where 6(¢) = inf |Bx|.

|x|=1
Q) Ifb+f=0+f for f,f €N L,V € Qy, then =1V, and f = [
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Proof(i) At a critical point  we have Bz = —V f(z), which implies
(B)|z] < |Bz| = [V f(z)| <,

as desired.

(1) If e+ f =0+ f then " = f” where 0" =0'— ¢, f" = f— f'. Since f” is Lipschitz, then
0" = 0. In fact if ¢"(z) = B"z -z, and v is an eigenvector of B” associated with eigenvalue
A, then ¢(t) = Mv|*t? must be Lipschitz in ¢, which is impossible unless A|v|* = 0. O

LS Theory is normally applied to continuous maps F': M — R, for a compact manifold
M. In our case the non-degenerate quadratic function ¢ make up for the lack of compactness.
A standard way to find a critical value of F is by designing a collection F of subsets of R*
such that

o(F,F) = Ialxrelffsij’

is a critical value of F'. This is guaranteed if the collection F satisfies the following property:
AcFt>0 = ¢l (A)cF,

where p¢; denotes the flow of the vector field —V F'. To have a universal collection F that
words for all F', we assume two properties for F:

(1) If A€ F, and ¢ is a homeomorphism, then p(A) € F.
(2) If A€ F,and A C B, then B € F.

Note that the second property is harmless can always be assumed because we take an infimum
over subsets of A € F. Especially this property implies

(5.13) c(F,F) = Allelg__Slj‘pF = ilelﬂg {r: M,(F)e F},

where

M,(F)={z: F(z) <r}.

Indeed if we write ¢ and ¢ for the left and right-hand sides of the second equality in (5.12),
then for any a > ¢, we can find A € F such that sup, F' < a, which means that A C Mg(a).
This in turn implies that M,(F) € F, which leads to ¢ < ¢. In the same fashion, we can
verify ¢ < ¢.

It remains to design a family F such that (1) and (2) hold, and ¢(F, F) is finite. Once
such a family is found, we set F(F) = ¢(F,F). In view of (5.13), and property (1), we my
choose F the collection of sets with certain degree of topological complexity, so that ¢(F, F)
is the first r for which the sublevel set M, (F') reaches such complexity. We now describe the
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LS strategy. Write Q9(¢,ro) for the set of F' € Q. (¢, ) such that F(0) = 0. Let us consider
F e Q)(¢,ro), with £(z) = 1Bz - . Set ¢g = rod(B) ™!, and ¢; = rocp,s0 that

VEE) =0 = |7/<cq = |F@)|<ec.

Note that ¢ has a single critical point at the origin. Hence for a < 0 < b, the sets M,;(¢)
is topologically more complex than M,(¢). Since F' is a Lipschitz perturbation of ¢, and all
critical values of F' are in the interval [—cy, ¢1], we expect M, (F') to be topologically more
complex than M_., (F). We wish to design a collection F that captures such complexity.
Relative Cohomology Classes allow us to measure such complexity.

Definition 5.5 Given two open sets A C B, we write A/(B, A) for the set of closed j forms
« in B such that the restriction of « to the set A is exact. We write a ~ (8 for two forms in
A (B, A) such that 8 — a is exact in B. We write H/(B, A) for the set of equivalent classes
and H*(B, A) for the union of H/(B, A),7 =0,1,.... O
For example, for a < 0 < b, one can show that H*(M,((), M,({)) is the same as
H*(D,0D), where D is a disc in R"” | with r~ denoting the number of the negative eigen-
values of B. In fact the set M_., (F) is homeomorphic to M_., (¢), and we may define

C(F)=inf{r: H*(M.(F),M_.,(F)) #0} =sup{r: H*(M,(F), M_.,(F)) =0},
More generally, we may take any a € H*(My((), M,(()), and set

C(F;a) =inf {r: the restriction of a to M,(F) is not exact }
=sup {r: the restriction of a to M,(F) is exact}.

5.2 Game Theory

We now offer a way of constructing viscosity solutions. For our purposes, it is more convenient
to solve the final value problem

u+ H(q,uy) =0, t<T,
o1 { u(g, T) = g(q).

We assume that H is of the following form

A

H(g,p) = inf H(q,p; 2) = inf sup (p- v — L(g,v; 2)),

v

where Z is some measure space, H (q,p; z) is convex in p for each z € Z, and we writing
L(q,v; ) for its Legendre transform in the p-variable. We assume that the family {L( e Z)
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z€Z } is Tonelli, uniformly in z: There exist constants 1y > 1,9y > 0, and ag such that

A

(5.15) L(g,v;2) > Lo(v) := olv|™ — ag,  sup L(g,v;2) < aq,

v'[<1
lim sup sup sup |FI($/§ Z) - f{(xv Z/)} =0,
=0 ¢z |z|<1 |z—2!|<d

for all g,v € R? and 2z € Z.

Definition 5.6 We write V(t) for the set of bounded measurable maps v : [t,T7] — R,

and Z(t,T) for the set of measurable maps z : [t,T] — Z. We write A(¢,T') for the set of

strategies. By a strategy, we mean a map « : Z(t,T) — V(t,T) such that if t < s < T, and

z=2"on [t,s], then alz] = a[Z'] on [t, s]. O
We are now ready to offer a solution to (5.14). For ¢t < T, set

516 a0 = V@@= sw it loam) - [ La).d0)=0) 0],

aEA(L,T) z€Z(t, T

where ¢(-) is uniquely specified by the requirements ¢(t) = ¢, and ¢ = «a[z] =: v. In other
words, for 0 € [t,T],

0 :q+/t alz](6') db'.

)
(q(@),p(ﬁ); 2(9)), where

~

p(0) = Ly (q(8), o[2](6); 2(0)).

q(
Note that we may write ¢(0) = ﬁp
In terms of p(-), we have

Note that when H is not convex in p, the relationship v = H,(g, p) is no longer invertible in
p for a every q. However, if we specify z, then we can invert p flp(p, q; z). The role of the
path ¢(-) is the same as the characteristic. The optimal path still solves the Hamiltonian
ODE locally, but it is allowed to have corners. This is when we switch from one lael z to
another.

Theorem 5.5 The function u as in (5.15) is a viscosity solution of (5.14).
The main ingredient for the proof of Theorem 5.5 is the following dynamic programming

optimality condition:
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Theorem 5.6 For s € [t,T], we have

~

6517 V(@)= swp inf [vﬂg)(q(s»— /tsf:(qw),q(e);z(e)) a6

a€A(L,s) z€Z(t,s)
Proof Fix q. We write u and u’ for the left and right hand sides of (5.6) respectively. We

carry out the proof in two steps. First we pick ¢ < u/. We wish to show that ¢ < u. For this,
first from ¢ < u/, we know that there exists § € Alt, s| such that for all y € Z(t, s), we have

¢ < VT(9)(g(s)) - / L(q(6). 4(0): =(0)) db.

with ¢(0) = q + fte Bly](6') df’. Now given a = q(s), we can find ~, € A(s,T) such that for
every w € Z(s,T), we have

A

519 e<glam) -~ [ La0).q0ru0) a0 [ La0).00500) @,
where

0 =)+ [ olel@) a0 =0 [ 50 @0+ [ ol av
for 6 € [s,T]. We now construct a € A(t, T) as follows: Given z € Z(t, T), we set

Bz s ] (0), 0 €t s
alz|(0) =
A0 {O‘q(s) [ T2y ] (0), 0 € (s,T),

where q(s) = g+ [, 8]z I11.s) ] (6) db. For this o, (5.18) means
< oa(T) = [ L(a(0).(0):=(6)) @,

for every z € Z(t,T). This completes the proof of v’ < u.
We now turn to the proof of v < «’. Pick ¢ < u, and choose o € A(t,T) such that for
every z € Z(t,T)

— g(q(T)) - / £.(4(6). 4(0); 2(0)) do / " L(4(6). 4(0): =(0)) do.



We the define § € A(t,s) as follows: for every y € Z(s,t), we have S[y] = «a[y'], where
y' € Z(t,T), is any extension of y. For this 3, we wish to show that for every y € Z(¢, s),

¢ < VT(9)(q(s)) - / L(¢(0). 4(0): =(6)) db,

where ¢(0) = q + fte Bly|(0") do’ for 6 € [t,s]. Given y € Z(s,t), we need to come up with a
family of strategies 7, € A(s,T') such that for every w € Z(s,T'), we have

>

¢ < gla(T)) - / (4(0). d(6): w(6)) do — / " L(q(6). 4(0): y(0)) do.

This is achieved by setting
Yot W] = aly S wl,
where
y(0),  0€lts],
b w)d) =
(v & w)(b) {w(e) 6 ls,T).

O
As our next step we show that we can always restrict « in (5.17) to those with bounded
range:

Proposition 5.3 If g is Lipschitz with Lipschitz constant r, then the supremum in (5.17)
can be restricted to those o such that

1

I "0
(5.19) M(a) = sup M(a,z):= sup {—/ ’@[z]((g)‘m) d@] < Cy,
2€Z(t,T) zezaem) [T —1t )
where )
r+ 1Y\t
Co = Co(r, 00, 10, a0) = 200 + ( 5 > :

Proof Assume that g € A,. Write

Algia2()) = ala(T) = [ L(a(0).(0):=(0)) ab.

with ¢(-) as in (5.16). We certainly have

Alga, () < glg) +r

< g(q) + (T — )M(a) + ao(T — 1) — 8o(T — t)M(a)™.

/tT olz] d@‘ +ao(T —t) — 6o(T — t)M(a)™

69



On the other hand,

T
A(g;0,2()) = g(a) — / L(q,0;2(0)) db > g(q) — ao(T —t).
t
In (5.16), we may ignore those « such that

nf A(g e, 2(1) < g(g) — ao(T = t).

For this, it suffices that for some z(-) € Z(¢,T), we have
r(T —t)M (o, z) + ag(T —t) — 0o(T — t)M (v, 2)™ < —ao(T —t)

Equivalently,
oM (a, 2)™ —rM(a, z) — 2ay > 0.

This inequality is valid if

1\ 7T
M(oz,z)>00::2a0+(r;_ )O .
0

In summary, we may ignore those o such that

sup M(a,z) > Cy.
z€Z(t,T)

We are done.
With the aid of (5.19), we can show the regularity of of u = V,(g).

Theorem 5.7 Assume that g € A,.. Then the following statements are true:
(i) The value of u(q,t) = (V] 'g)(q) depends only on the restriction of g to the set

Beyr-n(a) = {d": 1d' —al < Co(T —1)}.
(ii) The value of u(q,t) = (VI 9)(q) depends only on the restriction of H to the set
Beyar-n(a) x R x Z = {(d,p,2) ER* x Z: |¢ —q| < Co(T = )}
(iii) We have
(5.20) —ao(T' — 1) < u(q, 1) —g(q) < Co(T' = 1),
where C; = C1(r) = ag + 1™, for constants n = (no — 1)/no, and c; = ¢1(dg, Mo)-
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(iv) Assume that s € [t,T]. Then

(5.21) —ap(s —t) < u(g,t) —u(q,s) < Ci(s —1t).

(v) For everyt < T, and q,q¢ € R, we have

(5.22) lu(q',t) —u(q,t)] < (Cy +ao +7)|q" — ql.

Proof(i) The dependence of u on the final data is of the form ¢(¢(7")) with

/tTa[z] d&‘ < Co(T — 1),

9(T) —q| =

by Proposition 5.19.

(ii) The spatial dependence of L is ¢(0) with 6 € [t,T]. We are done because |¢(f) — ¢| <
Co(T —t).

(iii) By choosing the strategy « = 0 in the definition of u we get
u(q,t) = g(q) — ao(T' —1).
On the other hand, by the Lipschitzness of g and (5.15),

u(g,t) <g(g)+ sup  inf ){T’(J(T) —q —/t Lo(4(9)) d9}

a€A(L,T) z€Z(t,T

<o)+ s inf {rrq<T>—q|—<T—t>Lo(
aeAT) #€4(t,T)

— g(q) + sup {T!Q —al = (T =)L (%ﬂ

= g(q) + (T — t)sup [ra — §oa™ + ao]
a>0

=g(q)+ (T —1) [ao + clrm},

as desired.

(iv) Set 6 = s — t. From (5.17) and since L does not depend on ¢,

u(g, t) = (ViLs9) (@) = (V5 (Vi—s9)) (@) = (VS (Vi_s9)) ().
From this, u(q,t) = VX g(q), and the contraction of the operator V7T,

inf (V]_s9 — 9) < u(q,t) —u(g,s) <sup (Vi_s9 — 9).
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This and (5.20) yield (5.21).
(v) Set p =|q — ¢'|. First we assume that p > T —t. We then use (5.20) to write
(Cr +ao)(T = 1) +9(d) — 9(q)

<
< (Cy +ag)(T — 1) +7"|q/ — q
< (Ci+ao+7)|d —ql.

u(q',t) —u(g;t)

Hence
(5.23) =g >T -t = |u(d,t) —u(q,t)] < (Cy+ao+7)|d —ql

On the other hand, when p < T —t, we use (5.12) and Proposition 5.3 to write

u(gq,t) = sup inf [u(q(t +p),t+p) — /tt+pj}(q(9),6j(9); z(6)) d&] :

a€A(t,t4p) z€Z(tt+p)

From this and (5.21) we learn

waz s w0 - [ L@0).a0)20) @] - i

a€A(t,t4p) z€Z(t,t+p)

Pick a vector e and choose the constant strategy alz] = e to assert

t+p
u(g,t) >  inf [u(q + pe, t) — / L(q+ fe,e; 2(0)) dﬁl — app
ZEZ(t,t+P) t
> u(q + pe, t) — (C1 + ag)p.
We now choose e = (¢' — q)/|¢’ — q| to conclude
U<Q7 t) - u(q/’ t) > _2a0p7
which yields
[ =gl <T—t = Ju(d,t) —u(g,t)] < (C1 + ao)lg’ — ql.
This and (5.23) yield (5.22).

Proof of Theorem 5.5 Fix (qo, %), and assume that ¢ € C'! with

u(qo,to) = #(qo,t0), u <@, po= Pg(qosto), 70 = ¢e(qo, to)-
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Pick 6 > 0, and write A’(ty,to + §) for the set of o € A(tg,to + J) such that
to+0 %
M(a):=  sup {5_1/ |laf2](0)]™ d@} < (.
z€Z(to,to+90) to
By Theorem 5.6,

to+s
u(qo, to) = sup inf {u(q(to +9),to+ 5) —/ L(q(@),cj(@); 2(9)) d@] ,

a€A/(to,to+0) ZGZ(t07t0+§) to

where ¢(6) = qo + fti alz](0) df. To ease the notation, we write Ay and Zs for A'(to, to + 9)
and Z(tg,to + 6). This implies

- to+s
0<sup inf [p(q(to+9),to+3) — ¢(go, to) —/ L(q(0),4(0); 2(0)) d@]

C!EA:; 2€Zs L to

= sy inf [ [ (6000000 + ) 00(4(0),0) ~ L), 0::(0))) 0]

a€cAj 2€Zs | to

<o ing [[77 (600000 + H0).6,0).0):20)) @]

aGA% 2€2Z5 LJ to

< sup inf
OCEACS z2€Z

/Ws (@4(a(0),0) + F (a(6), 64(a(0),0); =) ) de} |

to

where for the last inequality, we take the infimum over constant paths in Z(to,to + ). On
the other hand, since M («) < Cy, with Cy independent of ¢,

0
(5.24) 19(0) — g0l < / a[2)(8)] 46 < 5M(a) < Cod,

for 6 € [to, to + d]. Hence, using the continuity of H as in (5.15),
th(Q(G); 0) + F[(Q<0)7 ¢q(Q(6)7 9)7 Z) S ¢t(q07 tO) + ]:I(Q(J, ¢q(QU7 tO)a Z) + Cl(5>7

for a constant ¢1(d) such that ¢;(d) — 0 as 6 — 0. As a result

0 <6 sup ing [Qﬁt(q(),to) + PI(QO; bq(qo.to); Z) + 01(5)]

acAf z€
5 inf [ro + A(go, po; 2) + cl((s)} = 5 [ro + H(go, po) + c1(6)].

We divide both sides by ¢ and send 6 — 0 to arrive at 0 < rq + H(qo, po), as desired. (Note
that since we are solving a backward HJE, this is the correct inequality.)
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We next assume that ¢ € C! with

u(qo,to) = #(qo,t0), u <@, po= Pg(qosto), 7o = ¢e(qo, to)-

After a repetition of what we did above, we now have

0= swp it | " (0lal).0)+ 106) - 6,(0(6).0) — L(a(0),0):(9))) ).

CVGA/ z€Zs

Using (5.22),
oi(q(0),0) + H (q(9), ¢4(q(0),0)) = 1o + H(qo, po) — 19,

for some constant ¢;. From this and (5.21) we deduce
0> d[ro+ H(qo,po) + c16] .
We divide both sides by ¢ and send § — 0 to arrive at 0 > ro + H(qo, po), as desired. O

Example 5.5(i) When Z is a singleton, H is convex in p, the the set A(¢,T) is isomorphic
to the set V (t,T), and (5.16) simply reads as

A

Vi(9)(a) = sup){g<q<T>>— / £.(a(6). 4(0): 2(0)) d6 - q<0>:q}

GeV(t,T

~

- {g<q<T>>— | Lat0).0):2(0)) ao- q<o>=q}.

qeC1(t,T)
(ii) We now assume that Z = {z,...,2,} is finite, and that H(p) = H(p; z) are inde-
pendent of position for each i = 1,... k. We also write L'(v) = L(v;z;). We make some
definitions:
e We write I for the set of finite sequences of the form i = (ig,...,4,) of indices in

I ={1,...,k} such that i; # i;4; for j =0,1,...,¢ — 1. We write |i| = £ for the size
of the sequence i.

e We write O(¢,T) for the set of finite sequences of the form § = (00, 0, ... ,05), with
bp=t<bh<--- <0y <bp1="T.
We write |@| = ¢ for the size of the sequence 6.

o We write Z(t,T) for the set of pairs (i,8) € IxO(t, T) with |i| = |#]. By a slight abuse
of notation, we think of (i,0)(-) € Z(t,T), with (i,0)(s) = z;,, for s € [0;,0;11),]
0,1,...,¢
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e We write V for the set of finite sequences of the form v = (vp, .. .,v) of vectors in R
We write |v| = ¢ for the size of the sequence v.

o We write V(¢,T) for the set of pairs (v,0) € V x ©(¢,T) with |[v| = |[§]. By a
slight abuse of notation, we think of (v,0)(-) € V(¢,T), with (v,0)(s) = v;, for s €
0,,0,21),7 = 0,1,....L.

Pick a € A(t,T), (i,8) € Z(t,T), and write v/ : [4;, ;1) for the restriction of af(i,0)(-)] to
the interval [6;,0;11). We then have

T Lo
| sezoyan =3 [ 1) a.

Recall that q(s) = [ a[z](0) df, with ¢(t) = t and z = (i,8). We may define a sequence
9 =49, - ,ng 1nduct1vely by

Oj+1
qj+1 = Qj —|—/ UJ (9) d@
6

i
Since 00 -
[ e o> 0 - 010 (2222,
0; Jjt+1 J
we learn that the action cannot decrease if we switch from the path (v° v!,... v*) to a

collection of appropriate constant paths on the same intervals. Motivated by this, we now
define A for maps e : I — V such that the following two conditions hold:

o |i| = |v].
e Ifiji' € I, and v = ali], v/ = ali], with i, =i/ for r = 0,1,...,m, then v, = v for
r=0,1,...,m

We now have a simpler expression for the viscosity solution:

i
Vi(g)(g) =sup  inf < g(Q(q:1,0)) =Y (01— 0;) L (v;) = q(0) =q ¢,

OtGA (i,o)GZ(t,T) =0

where
lil

q7170 ZQ+Z j4+1 U], V:a(l)
7=0
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(iii) If in (ii) we assume that k = 2, and write L* for L' and L? then i € I is fully
determined by its length and ig. Hence Z(t,T) = Z(¢t,T) U Z~(t,T), where Z%(t,T) is
isomorphic to {+} x O(¢,T). O

Exercise(i) Assume that d = 1 and wu is a (continuous) viscosity solution of (1.10). Let U
be an open set in R x (0,00) and assume that u is C' in U \ T, where

I'={(a(t),t)): t € (to,t1)} C U,

with a : (tp,t1) — R a C! function. Assume that v = ™ and u~, on the right and left side
of T in U and both u* solve (1.10) classically. Use Example 5.3 to show the following:

o a(t) = Huf(a(t),t),u, (a(t),t)].

’ g

e The pair (ug (a(t),t),u] (a(t),t)) satisfies the Oleinink Condition for every t € (t1,ts).
U
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6 Second Variation

Let M be a closed manifold and set X = T*M. Consider a Hamiltonian function H : X — R
and write ¢! = ¢, for its flow. Consider a Lagrangian bundle (L, : x € X) that is invariant
for the flow. That is

We assume that L is a graph: for some symmetric S, : T,M — T M, we have
L, ={(3.54): ¢€ T, M}.

If 2(t) = (G(t),p(t)) = (det).2(0), then we have
. . dp . .
—(t) = Hgp(x(£))4(t) + Hpp(2(2))p(t), d—f(t) = —Hyq((t))q(t) — Hop((t))p(t).
Assuming p = S.q,

dq .

T = (Hyp(a(t) + Hyp(a()So0)d(2),

B (1) =~ (Hygl(t)) + Hop (1)) Suq) (1)

On the other hand,

dp d R dq d R R
27 (0 = 2 (Se0) 4() + San 75 (1) = = (Se0) 4(0) + Sao (Hop(2(2)) + Hpp(x(1)) Sty ) 4(1)-
As a result,
d

= (S20)) + S Hop(@(8))Saqe) + Sary Hop (2 (1)) + Hop((2))Saqe) + Hyg(2(1)) = 0.
Writing S(t) = Sy), we get a Ricatti type equation
(6.1) S+ SH,,S + SHy, + HypS + Hyy = 0.
We next take two such Lagrangian bundles L and L’ associated with S and S’, and set
S(t) = Spw, 9'() =50, =)= d)

We have that if 2(¢) = (¢(t), S(¢)4(t)) € Laq), and &'(t) = (4(t), S"(¢)4(t)) € L, then

w(t) = way (2(t), 7(t)) = (S(t) — §'(1))a(t) - 4(1).
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As a result
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