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1 Introduction

Hamiltonian systems of ordinary differential equations appear in celestial mechanics to de-
scribe the motion of planets. They are also used in statistical mechanics to model the
dynamics of particles in a fluid, gas or many other microscopic models. It was known to
Liouville that the flow of a Hamiltonian system preserves the volume. Poincaré observed
that the the Hamiltonian flows are symplectic; they preserve certain symplectic area of two
dimensional surfaces. Various Symplectic Rigidity Phenomena offer ways to take advantage
of the symplicity of Hamiltonian flows.

Writing q and p for the position and momentum coordinates respectively, a Hamilto-
nian function H(q, p) represents the total energy associated with the pair (q, p). We regard
a Hamiltonian system associated with H completely integrable if there exists a change of
coordinates (q, p) 7→ (Q,P ), such that our Hamiltonian system in new coordinates is still
Hamiltonian system that is now associated with a Hamiltonian function H̄(P ). For com-
pletely integrable systems the coordinates of P = P (q, p) are conserved and the set of (q, p)
at which P (q, p) takes a fixed vector is an invariant set for the flow of our system. These
invariant sets are homeomorphic to tori in many classical examples of completely integrable
systems. According to Kolmogorov-Arnold-Moser (KAM) Theory, many of the invariant
tori survive when a completely integrable system is slightly perturbed. Aubry-Mather The-
ory constructs a family of invariant sets provided that the Hamiltonian function is convex
in the momentum variable. These invariant sets lie on the graph of the gradient of certain
scalar-valued functions. A. Fathi uses viscosity solutions of the Hamilton-Jacobi PDE as-
sociated with the Hamiltonian function H to construct Aubry-Mather invariant measures.
Recently there have been several interesting works to understand the connection between
Aubry-Mather Theory and Symplectic Topology. The hope is to use tools from Symplectic
Topology to construct interesting invariant sets/measures for Hamiltonian systems associ-
ated with with non-convex Hamiltonian functions.

Most of the aforementioned works on Hamiltonian systems are done when the Hamilto-
nian function is defined on the cotangent bundle of a compact manifold. A prime example
is when p, q ∈ Rd, with H periodic in q-variable, so that we may regard H as a function that
is defined on T ∗Td = Td × Rd. To go beyond the periodic case, we may take a Hamiltonian
function that is quasi-periodic with respect to q. In fact there is a probabilistic generalization
of quasi-periodic condition by selecting H randomly according to a probability measure P
that is invariant with respect to spatial shifts: τaH(q, p) = H(q + a, p). As it turns out the
Hamiltonian H̄ can be obtained from H by a scaling limit that is called Homogenization.

In this course we will explore the connection between Hamilton-Jacobi PDE, Homoge-
nization, Hamiltonian ODE and Symplectic Topology.
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1.1 Hamiltonian ODE

In Euclidean setting a Hamiltonian system associated with a C2 Hamiltonian function H :
R2d → R is the ODE

(1.1) ẋ = XH(x) := J∇H(x),

where [
0 I
−I 0

]
,

with I denoting the d × d identity matrix. Writing x = (q, p) with q, p ∈ Rd, the system
(6.1) means

q̇ = Hp(q, p), ṗ = −Hq(q, p).

We write φHt (x) for the flow of the vector field XH . More generally, we can define Hamiltonian
vector fields on any symplectic manifold. By a symplectic manifold we mean a pair (M,ω)
with M a C2 manifold, and ω a non-degenerate closed 2-form on M . Given a C2 function
H : M → R, we define the vector field XH = Xω

H as the unique vector field such that

iXHω = −dH.

When ω is the standard symplectic form of R2d, namely

ω = ω̄ :=
d∑
i=1

dqi ∧ dpi,

and M = R2d, we have X ω̄
H = J∇H.

Poincaré discovered that the circulation of any closed curve does not change along a
Hamiltonian flow. More precisely, if λ̄ = p · dq and γ : S1 → R2d is a C1 closed curve, then∫

γ

(
φHt
)∗

(λ) :=

∫
φHt (γ)

λ =

∫
γ

λ.

By Stokes’ Theorem, ∫
φHt (Γ)

ω̄ =

∫
Γ

ω̄.

This really means that if A(x) =
(
dφHt

)
x
, then

ω̄
(
A(x)v,A(x)w

)
= ω̄(v, w), or A(x)∗JA(x) = J.

If fact the Hamiltonian vector field Xω
H is chosen so that an analogous identity holds for its

flow: (
dφHt

)∗
ω = ω, or ωφHt (x)

(
A(x)v, A(x)w

)
= ωx(v, w).
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Given a vector field X on a manifold M , we write ψXt for its flow. Given C1 scalar-Valued
function f : M → R, we define its Lie derivative with respect to X by

(1.2) LXf(x) =
d

dt
f
(
ψt(x)

)∣∣
t=0

= (df)x
(
X(x)

)
.

More generally, if u(x, t) = f
(
ψt(x)

)
, then

ut = LXu.

From this, we learn that a function f ∈ C1(M ;R) is conserved along the flow of X iff
LXf = 0. In the case of a Hamiltonian vector field X = XH , the Lie derivative LXf is the
Poisson bracket of H and f :

{H, f} := LXHf = (df)(XH) = −ω(Xf , XH) = ω(XH , Xf ).

1.2 Completely Integrable Systems

We may call a Hamiltonian ODE completely integrable if we have a sufficiently explicit
formula for its solutions. One strategy to achieve this is by finding enough conservation
laws. As it turns out, a Hamiltonian system in R2d is completely integrable if it has d
many independent conservation laws that do not interact with each other. Note that if
f1, . . . , fk : M → R are C2 functions such that {H, fi} = 0, i = 1, . . . , k, then the set

MP =
{
x ∈M : (f1, . . . , fk) = P

}
,

is invariant for the flow:
x ∈MP =⇒ φt(x) ∈MP .

We recall a classical result of Liouville, and Arnold-Jost.

Theorem 1.1 Assume that there are C2 functions f1, . . . , fd : M → R such that the follow-
ing conditions hold:

• {fi, fj} = 0 for all i and j.

• For P ∈ Rd, the corresponding set MP is compact.

• For each x ∈MP , the vectors Xf1(x), . . . , Xfd(x) are linearly independent.

Then each such MP is homeomorphic to a d-dimensional torus. Moreover, the motion of
XH on MP is conjugate to a free motion.
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Remark 1.1(i) The latter claim in Theorem 1.1 means that if we think of a torus as [0, 1]d

with 0 = 1, then the motion is given by x(t) = x + tv(mod 1), for some vector v ∈ Rd.
Depending on the vector v, we may have a periodic or quasi-periodic orbit. (The latter
means that the closure of the orbit is a k-dimension torus for some k > 1.)

(ii) The set MP is an example of a Lagrangian submanifold. This means that dimMP = d
and ω(�MP

= 0. The latter follows from

ω
(
Xfi , Xfj

)
= {fi, fj} = 0.

�
The sketch of Arnold-Jost’s theorem is in order. If we define φt : M → M, t =

(t1, . . . , td) ∈ Rd by
φt(x) = φf1t1 ◦ · · · ◦ φ

fd
td
,

then φt(MP ) ⊆MP . On the other hand, if we pick some point a ∈MP and set ϕ(t) = φt(a),
then ϕ : Rd →MP , and the set

Σ =
{
t ∈ Rd : ϕ(t) = ϕ(0) = a

}
,

is a subgroup of (Rd,+). Since MP is compact, this subgroup is discrete. That is, there are
vectors v1, . . . , vd, such that

Σ =
{
n1v1 + · · ·+ ndvd : n1, . . . , nd ∈ Z

}
.

Hence the quotient Rd/Γ is a torus and the map ϕ yields a homeomorphism ϕ̂ : Rd/Γ →
MP . Moreover, assuming that f1 = H, then φHs is conjugate to the map (t1, . . . , td) 7→
(t1 +s, . . . , td). If we use the basis (v1, . . . , vd) for Rd, we can then show that φHs is conjugate
to a free motion.

Writing Q for the coordinates of Rd/Γ ≡ Td, we have a homeomorphism ΨP = ϕ̂ : Td →
MP . As we vary P , we obtain a map

Ψ : T ∗Td = Td × Rd →M.

We think of Ψ(Q,P ) = x as a parametrization of M . Setting H̄(P ) = H(x) = H
(
Ψ(Q,P )

)
,

for x ∈MP , we obtain a new Hamiltonian function H̄ : T ∗Td → R that is independent of Q.
The motion of φ̂t

(
Q(0), P (0)

)
:= (Q(t), P (t)) may be defined by

φ̂t := Ψ−1 ◦ φHt ◦Ψ.

We already know that Q(t) is a free motion and that P (t) = P (0). We may regard this
motion as a solution to the Hamiltonian ODE

Q̇ = ∇H(P ), Ṗ = 0.
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In summary, we have seen that for a completely integrable Hamiltonian ODE, we can
find a change of coordinates that turns our system to free motion. That is, there exists a
diffeomorphism Ψ such that

(1.3) φH̄t = Ψ−1 ◦ φHt ◦Ψ, H̄ = H ◦Ψ,

for a Hamiltonian function H that is independent of position. Recall that both φHt and φH̄t
are symplectic. It is no surprise that the change of coordinates map Ψ is also symplectic. As
the following Proposition indicates, a symplectic change of coordinates always transforms a
Hamiltonian system to another Hamiltonian system.

Proposition 1.1 Let (M,ω) and (M ′, ω′) be two symplectic manifolds and assume thatΨ :
M ′ → M is a diffeomorphism such that Ψ ∗ ω = ω′. Let H : M → R be a Hamiltonian
function on M , and let φHt be the flow of Xω

H . Then

φ̂t := Ψ−1 ◦ φHt ◦Ψ,

is the flow of the vector field Xω′

H̄
for H̄ = H ◦Ψ.

1.3 Kolmogorov-Arnold-Moser (KAM) Theory

We may take a small perturbation of a completely integrable system and wonder whether or
not some of the invariant tori persist. It turns out that for a small perturbation, an invariant
torus persists if the action variable ∇H(P ) is sufficiently irrational.

Theorem 1.2 Assume that H : Td × Rd → R is of the form

Hε(q, p) = H0(p) + εK(q, p),

with detD2H0 6= 0. Then for every τ, γ > 0, there exists ε0 = ε0(τ, γ) > 0 such that if
∇H0(p) satisfies a Diophantine condition of the form

n ∈ Zd \ {0} =⇒
∣∣n · ∇H0(p)

∣∣ ≥ γ|n|−τ ,

the vector field XHε has a quasi-periodic orbit of velocity ∇H0(p), whenever |ε| ≤ ε0.

It is worth mentioning that if we set

D(γ, τ) =
{
v ∈ Rd : |v · n| ≥ γ|n|−τ for all n ∈ Zd \ {0}

}
,

then the set D(τ) = ∪γ>0D(γ, τ) is of full measure whenever τ > d− 1. This is because, the
complement of D(γ, τ), restricted to a bounded set, has a volume of order O(γ|n|−τ−1), and∑

n6=0

|k|−τ−1 <∞,

iff τ + 1 > d.
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1.4 Generating Function

Note that a Hamiltonian vector field is very special as it is fully determined by a scalar-
valued function, namely its Hamiltonian function. As it turns out, the symplectic maps are
also locally determined by scalar-valued functions known as generating functions. To explain
this, take an ω̄-symplectic map and observe that since Ψ∗ω̄ = ω̄, we can find a scalar-valued
function S such that

(1.4) p · dq − P · dQ = dS.

Normally we think of S as a function of (q, p) or (Q,P ). However, it is more convenient to
think of S as a function of other pairs. For example under some non-degeneracy assumption
(for example if Qp(q, p) is invertible so that we can locally solve Q(q, p) = Q implicitly for
p = p(q,Q)), we may regard S = S(q,Q) so that (1.4) implies

(1.5) Sq(q,Q) = p, −SQ(q,Q) = P, Ψ
(
q, Sq(q,Q)

)
= (Q,−SQ(q,Q)

)
.

The scalar-valued functions S is an example of generating function for the symplectic map
Ψ. Since there are other type of generating functions that we may consider for a symplectic
map, let us refere to S as a generating function of Type I.

Alternatively, we may set W = p · q − S and regard W as a function of (Q, p) so that
(1.4) means

Wp(Q, p) = q, WQ(Q, p) = P, Ψ
(
Wp(Q, p), p

)
=
(
Q, WQ(Q, p)

)
.

The function W is another example of a generating function for the symplectic map Ψ and we
will refer to it as a generating function of Type II. Sometimes, we also consider a generating
function V (q, P ) that will be referred to as generating function of Type III.

If Ψ is the change of coordinates transformation of a completely integrable system, we
have

H̄(P ) = H(q, p) = H
(
q,Wq(q, P )

)
.

This means that for each fixed P , the function q 7→ W (q, P ) is a solution to a Hamilton-
Jacobi Equation (HJE) associated with H. Some care is needed here. Recall that Ψ is a
diffeomorphism defined on Td × Rd, whereas our H is defined on Rd × Rd. If we wish our
change of coordinates to work globally, we need Ψ

(
Td × Rd

)
to be (at least topologically

isomorphic) to Td × Rd. In fact if we assume that H is periodic in q, we may regard
H : Td × Rd → R. Thinking of Td × Rd, as T ∗Td, we interpret Wq(q, P ) as a 1-form on the
torus for each P . If we write W (q, P ) = q · P + wP (q) and assume that wP : Td → R, is
periodic, then our HJE reads as

(1.6) H
(
q, P + (dwP )q

)
= H̄(P ).

We think of αP = P + dwP as a closed 1-form that belongs to cohomology class of the
constant (closed) form P .
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1.5 Weak KAM Theory

In the classical KAM Theory, we consider a small perturbation of a non-degenerate Hamil-
tonian function H0(p) that depends on p only. We have learned that the majority of the
invariant tori of unperturbed systems persist for a sufficiently small perturbation. However
some invariant tori could be destroyed after a small perturbation. In fact Arnold constructed
an example of a perturbed integrable system, in which chaotic orbits - resulting from the
breaking of unperturbed KAM tori - coexist with the invariant tori of KAM theorem. This
phenomenon is known as Arnold diffusion. A natural question is whether or not we can con-
struct a family of invariant sets

(
MP : P ∈ Rd

)
for perturbed systems that come from the

invariant tori of the unperturbed system and still carry some of their features. Aubry and
Mather constructed such family for the so-called twist maps (these maps are the analog of
Hamiltonian systems when d = 1 and time is discrete). The generalization of Aubry-Mather
invariant sets to higher dimensions was achieved by Mather, Mane and Fathi. They prove
the existence of interesting invariant (action-minimizing) sets, which generalize KAM tori,
and which continue to exist even after KAM tori disappearance.

Aubry-Mather Theory replace the smallness condition with Tonelli Assumption. We say
that a Hamiltonian function H : Td×Rd → R is Tonelli, if the following conditions are true:

• H(q, p) is convex in p for each q.

• |p|−1H(q, p)→∞ as |p| → ∞, uniformly in q.

According to Aubry-Mather and Mather-Mane-Fathi Theory, for each P , there exists a
constant H̄(P ), a Lipschitz function wP : Td → R, and an invariant measure µP for φH such
that

• The function wP solves the HJE (1.7).

• The support of the measure µP is a subset of

MP =
{(
q, P + (dw)q

)
: q ∈ Td

}
.

Note that we only require the function w to be Lipschitz and not everywhere differentiable.
This is because the HJE (1.7) does no possess classical solutions in general. One remedy
for this is to consider certain generalized solutions. In fact if we consider the so called
viscosity solutions, then (1.7) always has at least one Lipschitz solution for each P . This was
established by Lions, Papanicolaou and Varadhan in 1987. We then modify the definition of
MP with

(1.7) MP =
{(
q, P + (dwP )q

)
: q ∈ Td, wP differentiable at q

}
.
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1.6 From Torus to General Closed Manifolds

We may replace the torus with any sufficiently smooth manifold M in weak KAM theory.
Now our Hamiltonian function H is a C2 function on the cotangent bundle T ∗M . The
manifold T ∗M carries a standard symplectic form ω = dλ with λ defined as

λ(q,p)

(
a
)

= pq
(
(dπ)(q,p)a

)
,

where π : T ∗M → M is the projection π(q, p) = q to the base point, and its derivative
(dπ)(q,p) : T(q,p)T

∗M → TqM projects onto tangent vectors. Recall that in the case of a
torus, we know that by a result of Lions-Papanicolaou-Varadhan, the (1.7) has at least one
solution. This existence result has been extended to arbitrary closed manifold and convex
Hamiltonian by Albert Fathi.

Theorem 1.3 Let M be a smooth closed Riemannian manifold and assume that H : T ∗M →
R is a Tonelli Hamiltonian. Then for every closed form α, there exists a unique constant
H̄(α), and a Lipschitz function w : M → R such that w satisfies

(1.8) H
(
q, αq + (dv)q

)
= H̄(α),

in viscosity sense.

Because of the uniqueness of H̄, it is clear that if we add an exact form to α, the value
of H̄ does not change. Abusing the notion slightly, we may define H̄ on the space H1(M)
of the cohomology classes of 1-forms and write H̄([α]) in place of H̄(α). Alternatively, for
each P ∈ H1(M), we may fix a representative ᾱP in class P and search for a Lipschitz
wP : M → R such that αP = ᾱP + dwP . Finally the invariant set MP is defined by

(1.9) MP =
{(
q, ᾱPq + (dwP )q

)
: q ∈M, wP differentiable at q

}
.

1.7 From Torus to Stochastic Hamiltonian and Homogenization

Weak KAM Theory a la Fathi is based on taking advantage of the HJE (1.7) in order to
construct interesting invariant measures for the corresponding Hamiltonian ODE. It turns
out that HJE can be used to to model certain deterministic and stochastic growths. More
precisely, imagine that we have an interface that separates different phases and this interface
is represented by a graph of function u(q, t) at time t. Suppose that the growth rate of this
interface depends on the position q, and the inclination of the interface uq. Mathematically
speaking, u satisfies a HJE of the form

(1.10) ut +H
(
q, uq(q, t)

)
= 0,
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for a Hamiltonian function H. We think of (1.10) as the microscopic equation describing
the evolution of the interface. If a large parameter n represents the ratio between the macro
and micro scale, then

un(q, t) = n−1u(nq, tq),

is the corresponding macroscopic height above that macro position q at the macro time t.
We observe that un now solves

(1.11) unt +Hn
(
q, unq (q, t)

)
= 0,

where
Hn(q, p) = (γnH)(q, p) = H(nq, p).

A homogenization occurs if the limit

ū(q, t) = lim
n→∞

un(q, t),

exists whenever the limit
g(q) := lim

n→∞
un(q, 0),

exists. As it turns out, in many examples of interest, the limit ū satisfies a simpler HJE of
the form

(1.12)

{
ūt + H̄(ūq) = 0

ū(q, 0) = g(q).

In fact we may use (1.7) to guess that when H is periodic in q, then H̄ that appears in (1.12)
coincides with H̄ that appears in (1.7). This is because if wP is a periodic function that
satisfies (1.7), and we choose u(q, 0) = P · q + wP (q) as the initial condition for (1.10), then
u(q, t) = wP (q)− tH̄(P ), and

ū(q, t) = lim
n→∞

un(q, t) = P · q − tH̄(P ),

which solves (1.12).
We may wonder whether a weak KAM Theory can be achieved for H : R2d → R that

are not necessarily periodic. Let us write H for the space of all C1 Hamiltonian functions
H : R2d → R and two group actions on H, namely the spacial translation and scaling; more
precisely we set

τaH(q, p) = H(q + a, p), γnH(q, p) = H(nq, p),

for a ∈ Rd and n ∈ R+. We certainly have

τa ◦ τb = τa+b, γm ◦ γn = γmn.
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We are interested to know for what Hamiltonian H ∈ H we have weak KAM Theory and
Homogenization. Let us make a comment on bounded continuous functions K of the position
variable. For K : Rd → R, we define the translation operator τaK(q) = K(q + a) as before.
We note that if a function K is periodic in q, then for each p, the set{

τaH(·, p) : a ∈ Rd
}
,

is homeomorphic to a d-dimensional torus. In we take a function K̂ : TN → R and take a
N × d matrix A, then the function K(q) = K̂(Aq) yields a quasi-periodic function. In fact
the orbit of such K,

Γ(K) := {τaK : a ∈ Rd},
is dense in TN , in the following condition holds:

n ∈ Zd \ {0} =⇒ An 6= 0.

More generally we call a bounded continuous function K : Rd → R almost periodic if the set
Γ(K) is precompect in Cb(Rd) with respect to the uniform-norm.

We regard the group
{
τa : a ∈ Rd

}
as a d-dimensional dynamical system on H, and call

P translation invariant ergodic measure if the following conditions are met:

• For every Borel set A ⊂ H, and a ∈ Rd, we have P
(
τaA
)

= P(A).

• If a Borel set A is invariant i.e., τaA = A for all a ∈ Rd, then P(A) ∈ {0, 1}.

We many wonder whether or not the weak KAM theory or homogenization are applicable to
generic Hamiltonian functions in the support of an invariant ergodic measure. The hope is
that Birkhoff Ergodic Theorem would make up for the lack of compactness that has played
an essential role when we consider a cotangent bundle of a compact manifold in 1.6.

1.8 Variational Techniques

Homogenization questions and the existence of interesting invariant measures are closely re-
lated to the existence of special orbits of the Hamiltonian ODEs. Such existence questions
also play central role in several recent developments in symplectic topology. (A prime ex-
ample is Floer Homology that was formulated by Floer in order to treat Arnold Conjecture.)
Hamilton observed that the minimizers of the action yield solutions to Hamiltonian systems
of celestial mechanics. More generally, we may reduce the existence of special orbits of (6.1)
to the existence of a critical point for a suitable action functional. More precisely, let us
write ΓT for the space of piecewise C1 functions x : [0, T ]→ T ∗M , and given a Hamiltonian
function H : T ∗M × [0, T ]→ R, let us define AH : ΓT → R by

(1.13) A(γ) = ATH(γ) =

∫
γ

(λ−H dt) =

∫ T

0

[
λγ(t)

(
γ̇(t)

)
−H(γ(t), t)

]
dt.
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The form λH = λ−H dt is known as the Poincaré-Cartan form. We note that if we regard
dλH = ω + dt ∧ dH as a form on T ∗M × R, and X̂H =

(
XH , 1), then

iX̂Hdλ
H = iXHω + dH = 0.

Moreover, if we take a variation of a path with fixed end points: w : [0, T ]× [0, δ] → T ∗M ,
with

w(t, 0) = γ(t), w(0, θ) = w(0, 0), w(T, θ) = w(T, 0), wt(t, 0) = v(t),

then

d

dθ

∫
w(·,θ)

λ
∣∣
θ=0

= lim
h→0

h−1

[∫
w(·,h)

λ−
∫
w(·,0)

λ

]
= − lim

h→0
h−1

∫
w([0,T ]×[0,h])

ω

= − lim
h→0

h−1

∫ h

0

∫ T

0

ωw
(
wt, wθ

)
dtdθ = −

∫ T

0

ωγ
(
γ̇, v
)
dt.

This in turn implies

(1.14) −∂ATH(γ) =
(
iγ̇ω + dH

)
γ

=
(
iγ̇−XH(γ) ω

)
γ
.

From this we learn that the critical points of A are the orbits of XH . In fact critical values
of A solve the corresponding Hamilton-Jacobi PDE. To explain this, observe that if we write
S(Q, t) = S(Q, t; q) for the generating function of φHt so that

φHt
(
q,−Sq(Q, t; q)

)
=
(
Q,SQ(Q, t; q)

)
, q(0) = q, q(t) = Q, p(t) = SQ(Q, t; q),

then

S(Q, t; q) = S(q(t), t; q) = Λ(q(0), p(0), t) =

∫ t

0

[
p(s) · q̇(s)−H(q(s), p(s), s)

]
ds.

Differentiating both sides with respect to t yields

St(Q, t; q) + SQ(Q, t; q) · q̇ = p(t) · q̇(t)−H(q(t), p(t), t).

As a result,

(1.15) St(q,Q, t) +H (Q,SQ(q,Q, t), t) = 0,

for t ∈ (a, b). Similarly if we set W = Λ + q · p, and regard W (Q, t; p) as a function of (Q, p),
then

W (q(t), t; p(0)) = p(0) · q(0) +

∫ t

0

[
p(s) · q̇(s)−H(q(s), p(s), s)

]
ds.
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Differentiating both sides with respect to t yields

Wt(q(t), p(0), t) +WQ(q(t), p(0), t) · q̇(t) = p(t) · q̇(t)−H(q(t), p(t), t).

This yields

(1.16) Wt(Q, p, t) +H (Q,WQ(Q, p, t), t) = 0,

because WQ(q(t), p(0), t) = p(t). In summary

• Critical points of A are orbits of XH .

• Critical values of A are solutions of HJE.

Remark 1.1 In particular, if H is 1-periodic in t, T = 1, and we define A on the space
of 1-peridic paths (loops), then the critical points of A correspond to the periodic orbits of
XH . Floer uses the gradient equation

(1.17) ws = −∂A(w),

to prove the existence of periodic orbits by showing that

lim
s→∞

w(·, s),

exists. In fact (1.18) is an elliptic (or rather Cauchy-Riemann type) PDE, and one may hope
to use elliptic regularity of the solutions to obtain the compactness of path w in a suitable
Sobolev space. �

The action functional simplifies when H is convex in the momentum variable. To explain
this, let us assume that there exists a C2 function L : TM → R, L = L(q, v), that is
convex in the velocity v. Moreover when H is a Tonelli Hamiltonian, the transformation
L : TM → T ∗M ,

(1.18) L(q, v) =
(
q, Lv(q, v)

)
,

is a C1 diffeomorphism with

p = Lv(q, v) iff v = Hp(q, p).

(Here we identify
(
TqM)∗∗ with TqM .) The Lagrangian function L and the Hamiltonian

function H are related to each other by Legendre Transform

L(q, v) = sup
p∈T ∗qM

(
pq(v)−H(q, p)

)
, H(q, p) = sup

v∈TqM

(
pq(v)− L(q, v)

)
.
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Moreover
H ◦ L(q, v) = Lv(q, v)(v)− L(q, v).

Note that if x(t) = φHt (a) is a solution of (6.1), then

λx(ẋ)−H(x) = pq
(
(dπ)x(ẋ)

)
−H(q, p) = pq(q̇)−H(q, p) = L(q, q̇).

Hence

A
(
x(·)

)
=

∫ T

0

(
λx(ẋ)−H(x)

)
dt =

∫ T

0

L(q, q̇) dt =: L
(
q(·)
)
.

Since L is convex in v, we may find solutions to (6.1) by finding minimizers of L that is
defined for paths q : [0, T ] → M with specified endpoints. By a classical result of Tonelli,
the action functional L has a minimizer that satisfies the Euler-Lagrange equation

(1.19)
d

dt
Lv(q, q̇) = Lq(q, q̇).

We now argue that we can use the action functional to construct a generating function
for φHT . To explain this, let us define ΛT

H : T ∗M → R, by

(1.20) ΛT
H(x) = AH (ηxT ) , where ηxT (t) = φHt (x) for t ∈ [0, T ].

We now claim that Λ is a generating function for φH .

Proposition 1.2 For every T ≥ 0 and any Hamiltonian H, we have

(1.21) dΛT
H =

(
φHT
)∗
λ− λ.

Proof Set

A(x) =

∫
ηxT

λ, B(x) =

∫ T

0

H
(
ηxT (t), t

)
dt.

Take any
(
τ(θ) : 0 ≤ θ ≤ h

)
with τ(0) = x and τ̇(0) = v ∈ TxM . Set y(t, θ) = φH− t

(
τ(θ)

)
,

Θ = {y(t, θ) : 0 ≤ t ≤ T, 0 ≤ θ ≤ h},

and use Stokes’ theorem to assert

h−1

∫ h

0

∫ T

0

ωy(yt, yθ) dtdθ = h−1

∫
Θ

dλ = h−1

[∫
ητ(0)

λ−
∫
ητ(h)

λ+

∫
ϕ◦τ(·)

λ−
∫
τ(·)

λ

]
,

h−1

∫ h

0

∫ T

0

(iXHω)y (yθ) dtdθ = h−1

[∫
ητ(0)

λ−
∫
ητ(h)

λ+

∫
τ(·)

(ϕ∗λ− λ)

]
,

where ϕ = φHT . Sending h→ 0 yields

−(dB)x(v) = −(dA)x(v) +
(
ϕ∗λ− λ)x(v).

This is exactly (1.21). �
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1.9 Discrete Models

Any symplectic map ψ from a symplectic manifold to itself serves as an example of a dis-
crete analog of a Hamiltonian flow. We will be mainly interested in those symplectic dif-
feomorphism for which a global generating function exist. If the generating function is of
the first kind, i.e., (1.7) holds for some S(q,Q). In the Euclidean setting, we may write
S(Q, q) = L(q,Q − q), and if L(q, v) is bounded below and has a superlinear growth at
infinity in the velocity variable v, we call the corresponding map ψ a twist map and the
corresponding dynamical model is a generalization of the Frenkel-Kontorova Model. Given
a sequence q = (q0, q1, . . . , qn), we define its action by

A(q) =
n∑
i=1

S(qi−1, qi) =
n∑
i=1

L(qi − qi−1, qi−1).

The critical points of A correspond to the orbits of ψ. Because of our assumption on L, we
may use the minimizers of A to construct interesting orbits of ψ.

Example 1.1 (Standard Map) When L(q, v) = 1
2
|v|2 − V (q), then

Q = q + P, P = p−∇V (q).

�

We may also consider a generating function V (Q, p) = Q · p− v(Q, p) of Type III so that

ψ
(
Q− vp(Q, p), p

)
=
(
Q, p− vQ(Q, p)

)
.

In other words,
Q = q + vp(Q, p), P = p− vQ(Q, p).
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2 Twist Maps and Their Generalizations

The origin of the twist maps goes back to Poincaré’s work on area-preserving maps on
annulus that he encountered in his work on 3-body problem of celestial mechanics. Before
embarking on studying twist maps, we give an overview of circle diffeomorphisms and their
rotation numbers.

Definition 2.1(i) Regarding S1 as the interval [0, 1] with 0 = 1, let f : S1 → S1 be an
orientation preserving homeomorphism. Its lift F = `(f) is an increasing map F : R → R
such that f(x) = F (x) (mod 1), and F can be written as F (x) = x+G(x), for a 1-periodic
function G : R→ R. We may also regard G as a map on the circle: g : S1 → R, g(x) = G(x)
for x ∈ [0, 1).

(ii) We define π : R → S1 by π(x) = e2πx. For f and F as in (i), we define its rotation
number

(2.1) ρ(F ) = lim
n→∞

n−1F n(x), ρ(f) = π
(
ρ(F )

)
.

(iii) Given ρ ∈ [0, 1), we write rρ for a rotation of the circle through the angle ρ. Its lift Rρ

is given by Rρ(x) = x+ ρ. �

Theorem 2.1 (Poincaré) Let f : S1 → S1 be an orientation preserving homeomorphism
and write F for its lift. Then the following statements are true:

(i) The rotation number always exists and is independent of x.

(ii) f has a fixed point iff ρ(f) = 0.

(iii) ±ρ(F ) > 0 iff ±(F (x)− x) > 0.

(iv) Let (r, s) be a pair of coprime positive integers. Then f has a (r, s)-periodic orbit (this
means that F s(x) = F (x) + r for F = `(f)), iff ρ(f) = r/s.

(v) If ρ(f) /∈ Q, then the set Ω∞(x) of the limit points of the sequence
{
fn(x) : n ∈ N

}
is

independent of x, and is either S1 or nowhere dense.

Proof We only prove (i). By induction, we can readily show that if F (x) = x + g(x) for a
periodic function g, then F n(x) = x+Gn(x) for a periodic function Gn that is simply given
by

(2.2) Gn(x) =
n−1∑
i=0

G
(
F i(x)

)
=

n−1∑
i=0

g
(
f i(x)

)
.
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Observe that since F n is increasing, we have

0 ≤ x ≤ y < 1 =⇒ Gn(y)−Gn(x) ≤ y − x < 1.

Hence
Gm+n = Gm +Gn ◦ Fm ≤ Gm +Gn + 1.

From this we deduce

ρ(x) = lim
n→∞

n−1Gn(x) = lim
n→∞

n−1
(
Fn(x)− x

)
= lim

n→∞
n−1Fn(x),

exists and is a periodic non-decreasing function of x. Hence ρ(x) must be a constant. �

Theorem 2.2 Let f and F be as in Proposition 1.1.

(i) (Denjoy) If f ∈ C1 with f ′ a function of bounded variation, and ρ = ρ(f) /∈ Q, then
there exists a homeomorphism h such that f = h−1 ◦ rρ ◦ h.

(ii) (Herman) If f ∈ C2+α with α ∈ [0, 1), and ρ(F ) ∈ D(τ) satisfies a Diophantine condition
for some τ > 2, then h is Part (i) is in C1+α.

Remark 2.1(i) Since the Lebesgue measure is invariant for rρ, and h ◦ f ◦ h−1 = rρ, we
learn ∫

(h ◦ J)(f(x)) dh(x) =

∫
J dx, or

∫
J ◦ f dh =

∫
J dh.

In other words, the measure µ with µ[0, x] = h(x) is invariant for f . Hence Part (ii) is
equivalent to the statement that if f ∈ C2+α, then the invariant measure had a density in
Cα.

(ii) In terms of the invariant measure, the rotation number can be express as

ρ(f) =

∫
g dµ,

by (6.1).

(iii) Define F to be the set of continuous increasing functions F : R→ R such that

sup
x
|F (x)− x| <∞.

Writing F (x) = x+G(x), we define a translation operator that translates G:

(τaF )(x) = F (x+ a)− a = x+G(x+ a).
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Let P be an ergodic probability measure on F . Then on can show that there exists a constant
ρ(P) such that

lim
n→∞

n−1F n(x) = ρ(P),

for P-almost all choices of F . �

Definition 2.2(i) Let ϕ : S1 × [−1, 1] → S1 × [−1, 1], be an orientation preserving homeo-
morphism. Its lift is a homeomorphism Φ : R× [−1, 1]→ R× [−1, 1] such that

ϕ(x) = Φ(x) (mod 1),

and Φ = `(ϕ) can be written as Φ(q, p) = (q, 0) + Ψ(q, p), for a continuous Ψ : R× [−1, 1]→
R× [−1, 1], that is 1-periodic function in q-variable.

(ii) An orientation-preserving diffeomorphism ϕ : S1× [−1, 1]→ S1× [−1, 1] is called a twist
map if the following conditions are met:

(i) ϕ (or equivalently its lift Φ) is area-preserving.

(ii) If we define Φ± by (Φ±(q),±1) = Φ(q,±1), then ±
(
Φ±(x)− x

)
> 0.

�
Our main result about twist maps is the following:

Theorem 2.3 (Poincaré and Birkhoff) Any twist map has at least two fixed points.

To see Poincaré-Birkhoff’s theorem within a larger context, we interpret it in the following
way: since 0 ∈

(
ρ(Φ−), ρ(Φ+)

)
, then ϕ has at least two orbits in the interior of the cylinder

that are associated with 0 rotation number, namely fixed points. In fact an analogous result
is true for periodic orbits which may be regarded as a variant of Theorem 1.1(ii) for the
twist maps.

Theorem 2.4 (Birkhoff) Let ϕ : S1 × [−1, 1] → S1 × [−1, 1], be an area and orientation
preserving C1-diffeomorphism. If r/s ∈

(
ρ(Φ−), ρ(Φ+)

)
is a rational number with r and s

coprime, then ϕ has at least two (r, s)-periodic orbits in the interior of S1 × [−1, 1].

Naturally we are led to the following question: How about an irrational ρ ∈
(
ρ(Φ−), ρ(Φ+)

)
?

Can we find an orbit of ϕ associated with such ρ? The answer to this question is affirmative
and this is the subject of the Aubry-Mather Theorem. For any irrational ρ ∈

(
ρ(Φ−), ρ(Φ+)

)
,

there exists an invariant set on the cylinder that in some sense has the rotation number ρ.
This invariant set q-projects onto either a Cantor-like subset of S1 or the whole S1. The
invariant set lies on a graph of a Lipschitz function defined on S1. These invariant sets are
known as Aubry–Mather sets.
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Poincaré established Theorem 2.3 provided that ϕ has a global generating function. Such
a generating function exists if ϕ is a monotone twist map. To explain Poincare’s argument,
let us formulate a condition on Φ = `(ϕ) that would guarantee the existence of a global
generating function S(q,Q) for Φ.

Definition 2.3 An area-preserving map ϕ or its lift Φ(q, p) = (Q(q, p), P (q, p)) is called
positive (monotone) if Q(q, p) is increasing in p for every q ∈ R. We say ϕ is negative
(monotone) twist if ϕ−1 is a positive twist. �

Proposition 2.1 Let Φ be a C1 monotone twist map. Then there exists a C2 function
S : U → R with

U = {(q,Q) : Q(q,−1) ≤ Q ≤ Q(q,+1)}
such that

Φ(x,−Sq(q,Q)) = (Q,SQ(q,Q)).

Moreover

(2.3) S(q + 1, Q+ 1) = S(q,Q), SqQ < 0.

Proof The image of the line segment {q}× [−1, 1] under Φ is a curve γ with parametrization
γ(p) = (Q(q, p), P (q, p)). By the monotonicity, the relation Q(q, p) = Q can be inverted to
yield p = p(q,Q) which is increasing in Q. The set γ[−1, 1] can be viewed as a graph of the
function

Q 7→ P (q, p(q,Q))

with Q ∈ [Q(q,−1), Q(q,+1)]. The anti-derivative of this function yields S. This can be
geometrically described as the area of the region ∆ between the curve γ([−1, 1]), the line
P = −1 and the vertical line {q} × [−1, 1]. We now apply Φ−1 on this region. The line
segment {Q} × [−1, 1] is mapped to a curve γ̂([−1, 1]) which coincides with a graph of a
function q 7→ p. Since Φ is area preserving the area of Φ−1(∆) is S(q,Q). From this we
deduce that SQ = −p. Here we have used the fact that Φ−1 is a (negative) twist map. This
is because if we write Φ−1(Q,P ) = (q(Q,P ), p(Q,P )), then

(Φ−1)′ =

[
qQ qP
pQ pP

]
=

[
Qq Qp

Pq Pp

]−1

=

[
Pp −Qp

−Pq Qq

]
which implies that qP = −Qp < 0.

The periodicity (2.3) is an immediate consequence of Φ(q + 1, p) = Φ(q, p) + (1, 0);

Φ({q + 1} × [−1, 1]) = Φ({q} × [−1, 1]) + (1, 0).

As for the second assertion in (2.3), recall that p(q,Q) is increasing in Q. Hence

SqQ = −pQ < 0.
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�

A partial converse to Proposition 2.1 is true, namely if a function S satisfies (??), then
it generates a map Φ which is area preserving. We don’t address the behavior of Φ on the
boundary lines and for simplicity assume that S is defined on R2.

Proposition 2.2 Let S be a C2 function satisfying (2.3). Then there exists a C1-function
Ψ such that

(i) Φ(q + 1, p) = Φ(q, p) + (1, 0)

(ii) Ψ(q,−Sq(q,Q)) = (Q,SQ(q,Q))

(iii) det Φ′ ≡ 1.

Proof Since SqQ < 0, the function Q 7→ −Sq(q,Q) is increasing. As a result, p = −Sq(q,Q)
can be inverted to yield Q = Q(q, p). We then set

P (q, p) = SQ(q,Q(q, p)) and Φ(q, p) = (Q(q, p), P (q, p)).

Evidently (ii) is true and (i) follows from (ii) and (??) because Sq(q+1, Q+1) = Sq(q,Q), and

SQ(q + 1, Q + 1) = SQ(q,Q). It remains to verify (iii). For this, set Ŝ(q, p) = S(q,Q(q, p)).
We have

Ŝq = Sq + SQQq = −p+ PQq,

Ŝp = SQQp = PQp.

Differentiating again yields

Ŝqp = −1 + PpQq + PQqp,

Ŝpq = PqQp + PQpq.

Since S ∈ C2, we must have Ŝqp = Ŝpq, which yields PpQq − PqQp = 1, as desired. �

We now show how the existence of a generating function can be used to prove the existence
of fixed points.

Proof of Theorem 2.3 for a monotone twist map Define L(q) = S(q, q). We first
argue that a critical point of L corresponds to a fixed point of Φ. Indeed, if L′(q0) = 0,
then Sq(q

0, q0) + SQ(q0, q0) = 0. Since Φ(q0,−Sq(q0, q0)) = (q0, SQ(q0, q0)), we deduce that
Φ(q0, y0) = (q0, y0) for y0 = −Sq(q0, q0) = SQ(q0, q0). On the other hand, by (??), we have
that L(q + 1) = L(q). Either L is identically constant which yields a continuum of fixed
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points for Ψ, or L is not constant. In the latter case, L has at least two distinct critical
points, namely a maximizer and minimizer. These yield two distinct critical points of Φ.

�
We may wonder whether a similar strategy as in the above proof can be used to Prove

Theorem 9.2 when ϕ is a monotone area-preserving map. Indeed if Φ is a monotone twist
map, then we can associated with it a variational principle which is the discrete analog of
the Lagrange Variational Principle, as can be seen in the following proposition.

Proposition 2.3 Let Φ be a monotone twist map with generating function S. Given q and
Q ∈ R, define

L(q,Q; q1, q2, . . . , qk−1) =
n−1∑
j=0

S(qj, qj+1),

with q0 = q, and qn = Q. Then the following statements are true.

(i) The point (q1, q2, . . . , qk−1) is a critical point of L(·; q,Q) iff there exist p0, p1, . . . , pk such
that Φj(qj, pj) = (qj+1, pj+1) for j = 1, 2, . . . , k − 1.

(ii) The point (q0, q1, q2, . . . , qs−1) is a critical point of

K(q1, q2, . . . , qs) = S(qs−1, q0 + r) +
s−2∑
j=0

S(qj, qj+1)

if and only if there exist p0, p1, p2, . . . , ps−1 such Φj(qj, pj) = (qj+1, pj+1) for j = 0, . . . , s− 1,
with qs = q0 + r.

Proof We only prove (ii) because (i) can be proved by a verbatim argument. Let (q0, . . . , qs−1)
be a critical point and set qs = q0 + r. We also set pj = −Sq(qj, qj+1). The result follows
because if Pj = SQ(qj, qj+1), then

Kqj = pj − Pj−1

for j = 0, 1, 2, . . . , s− 1 and Ψ(qj, pj) = (qj+1, Pj). �

Given a Hamiltonian function H : M ×R→ R on a symplectic manifold (M,ω), we may
wonder whether or not the corresponding Hamiltonian vector field XH = Xω

H has T -periodic
orbits for a given period T . Arnold’s Conjecture offers a non-trivial lower bounds on the
number of such periodic orbits. To convince that such a question is natural and important,
let us examine this question when the Hamiltonian function is time-independent first. We
note that for the autonomous XH we can even find rest points (or constant orbits) and
there is a one-one correspondence between the constant orbits of XH and the critical points
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of H. We can appeal to the following classical theories in Algebraic Topology to obtain
sharp universal lower bounds on the number of critical points of a smooth function on M
where M is a smooth closed manifold. Let us write Crit(H) for the set of critical points of
H : M → R.

(i) According to Lusternik-Schnirelmann (LS) Theorem,

(2.4) ]Crit(H) ≥ c`(M),

where c`(M) denotes the cuplength of M .

(ii) According to Morse Theory, for a Morse function H,

(2.5) ]Crit(H) ≥
∑
k

βk(M),

where βk(M) denotes the k-th Betti’s number of M .

According to Arnold’s conjecture, the analogs of (2.4) and (2.5) are true for the non-
autonomous Hamiltonian functions provided that we count 1-periodic orbits of XH instead
of constant orbits. For the sake of comparison, we may regard (2.4) and (2.5) as a lower bound
on the number of 0-periodics orbit when H is 0-periodic in t. In Arnold’s conjecture, we
replace 0-periodicity with 1-periodicity. Note that if H is 1-periodic in time, then φHt+1(x) =
φHt (x) for all t iff φH1 (x) = x. To this end, define

(2.6) Per(H) :=
{
x ∈M : φH1 (x) = x

}
= Fix

(
φH1
)
.

Arnold’s Conjecture: Let (M,ω) be a closed symplectic manifold and letH : M×[0,∞)→
R be a smooth Hamiltonian function that is 1-periodic in the time variable. Then

(2.7) ]Per(H) ≥ c`(M).

Moreover, if ϕ := φH1 is non-degenerate in the sense that det(dϕ − id)x 6= 0 for every
x ∈ Fix(ϕ), then

(2.8) ]Per(H) ≥
∑
k

βk(M).

�
We now describe our strategies for establishing Arnold’s conjecture under some additional

conditions on M : A natural way to tackle Arnold’s conjecture is to study the set of critical
points of AH : Γ→ R, where Γ is the space of 1-periodic x : R→M and

(2.9) AH(x(·)) =

∫
w

ω −
∫ 1

0

H(x(t), t) dt,
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where w : D → M is any extension of x· : S1 → M to the unit disc D. (Note that since
ω is closed, the right-hand side of (2.9) is independent of the extension.) We may try to
apply LS and Morse Theory to the functional AH in order to get lower bounds on ]Per(H).
Of course we cannot apply either Morse Theorem (2.5) or LS Theorem (2.4) to AH directly
because Γ is neither compact nor finite-dimensional. However in the case of the torus or
when M is a cotangent bundle, we may reduce the problem by using generalized generating
functions. In fact, one can show that φHt has a type II or III generating functions (as we
discussed in Subsections 1.8 and 1.9) provided that t is sufficiently small. We then use the
group property of the flow to write

ϕ = φH1 = ψ1 ◦ · · · ◦ ψN ,

where each ψi has a generating function. This can be used to build a generalized generating
function for ϕ a la Chaperon. We may establish Arnold’s conjecture with the aid of general-
ized generating functions in some cases. We note that when M = T2d, then the symplectic
map ϕ = ΦH

1 : T2d → T2d has a lift Φ : R2d → R2d such that Φ − id is periodic. Motivated
by Arnold’s conjecture, we may wonder where or not any symplectic diffeomorphism of T2d

possesses fixed points and a non-trivial lower bound can be given for the number of its fixed
points. This is not the case in general as a non-zero translation on a torus has no fixed point.
However note that there is an additional feature of such ϕ = ΦH

1 that we have not discussed
and will play an essential role for our purposes, namely since

Φ(x)− x =

∫ 1

0

J∇H
(
φHt (x), t

)
dt,

and regarding T2d as [0, 1)2d, we have

(2.10)

∫
T2d

(
Φ(x)−x

)
dx =

∫ 1

0

J

∫
T2d

∇H
(
φHt (x), t

)
dx dt =

∫ 1

0

J

∫
T2d

∇H(x, t) dx dt = 0.

Arnold’s conjecture was established by Conley and Zehnder when M = T2d. In fact an
equivalent formulation goes as follows.

Theorem 2.5 Let ϕ : T2d → T2d be a symplectic diffeomorphism such that its lift Φ satisfies

(2.11)

∫
T2d

(
Φ(x)− x

)
dx = 0

Then ϕ has at least 2d+ 1 fixed points.

A variant of Theorem 2.5 can be proved when the periodicity of Φ− id is replaced with
almost periodicity, or even when Φ − id is selected randomly according to a translation
invariant probability measure.
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Definition 2.4(i) Let us write H = H
(
R2d
)

for the space of C2 Hamiltonian functions
H : R2d × R→ R. For each a = (b, c) ∈ Rd × Rd, we define

(τbH)(q, p, t) = H(q+b, p), (ηcH)(q, p, t) = H(q, p+c, t), (θaH)(q, p, t) = H(q+b, p+c, t).

(ii) We write C1 for the set of C1 maps Φ : R2d → R2d. We set F(Φ) = Φ − id, where id
denotes the identity map. We write S for the set of symplectic diffeomorphism Φ : R2d → R2d

and set S̃ = F
(
S
)
. For a ∈ R2d, the translation operators θa : R2d → R2d and θa, θ

′
a : C1 → C1

are defined by
θa(x) = x+ a, θaω = ω ◦ θa, θ′a = F−1 ◦ θa ◦ F ,

for x ∈ R2d and ω ∈ C1. Note that for Φ ∈ C1,(
θ′aΦ
)
(x) = θ−a ◦ Φ ◦ θa = Φ(x+ a)− a.

(iii) Let Φ be a symplectic diffeomorphsim with

Φ(q, p) =
(
Q(q, p), P (q, p)

)
.

We say that Φ is exact if for every p ∈ Rd, the map q 7→ Q(q, p) is a diffeomorphism of Rd.
We write q̂(Q, p) for the inverse:

Q(q, p) = Q ⇔ q = q̂(Q, p).

We also set P̂ (Q, p) = P
(
q̂(Q, p), p), and

Φ̂(Q, p) =
(
q̂(Q, p), P̂ (Q, p)

)
, Φ̃(Q, p) =

(
P̂ (Q, p), q̂(Q, p)

)
.

�

Proposition 2.4 (i) φθaH = θ−a ◦ φH ◦ θa = θ′aφ
H . In particular, if H is 1-periodic, i.e.,

θnH = H, for all n ∈ Z2d, and Φ = φH1 , then F
(
Φ
)

is also 1-periodic.

(ii) For every exact Φ, and a ∈ Rd, we have

θ̂′aΦ = θ′aΦ̂.

In particular, if F(Φ) is 1-periodic, then so is F
(
Φ̂
)
.

(iii) Assume that Φ ∈ S is exact. Then there exists a C2 function W : R2d → R such that

Φ̃ = ∇W .

(iv) If ω = F(Φ) is 1-periodic, with ∫
T2d

ω(x) dx = 0,

then
W (Q, p) = Q · p− w(Q, p),

for a function w that is 1-periodic.
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Proof(i) This is an immediate consequence of the fact that if y(·) is an orbit of XθaH , then
x(·) = θ−ay(·) = y(·)− a is an orbit of XH .

(ii) Let use write

Φ′(q, p) := (θ′aΦ)(q, p) =
(
Q′(q, p), P ′(q, p)

)
, Φ̂′(Q, p) =

(
q̂′(Q, p), P̂ ′(Q, p)

)
.

This implies

Q(q + b, p+ c)− b = Q ⇔ q̂′(Q, p) = q,

Q(q + b, p+ c) = Q+ b ⇔ q̂(Q+ b, p+ c) = q + b.

Hence q̂′(Q, p) = q̂(Q+ b, p+ c)− b. On the other hand

P̂ ′(Q, p) = P ′
(
q̂′(Q, p), p

)
= P

(
q̂′(Q, p) + b, p+ c

)
− c

= P
(
q̂(Q+ b, p+ c), p+ c

)
− c = P̂

(
Q+ b, p+ c

)
− c,

as desired.

(iii) Since Φ is symplectic, we have

d
(
P̂ · dQ+ q̂ · dp) = d

(
P̂ · dQ− dp · q̂) = d

(
P · dQ− dp · q) = 0.

Hence, there exists a function W = W (Q, p) such that

dW = P̂ · dQ+ q̂ · dp.

As a result, ∇W = Φ̃.

(iv) We write ω̂ = F
(
Φ̂
)
, and ∇̂w = (wp, wQ), so that(

Wp(Q, p),WQ(Q, p)
)

=
(
Q− wp(Q, p), p− wQ(Q, p)

)
= (Q, p)− ∇̂w(Q, p) = (Q, p) + ω̂(Q, p).

By (ii) we know that ∇̂w = −ω is a periodic function. We wish to show that w is also a
periodic function. The periodicity of w is equivalent to∫

[0,1]2d
ω̂(x) dx = −

∫
[0,1]2d

∇̂w(x) dx = 0.

To verify this, observe that if

A = (B,C) =

∫
[0,1]2d

ω̂(x) dx,
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then there exits a C2 periodic function v(Q, p) such that ω̂ − A = −∇̂v, or

P̂ (Q, p) = C + p− vQ(Q, p), q̂ = B +Q− vp(Q, p).

On the other hand, by assumption,

0 =

∫
[0,1]2d

ω(q, p) dqdp =

∫
[0,1]2d

(
Q(q, p)− q, P (q, p)− p

)
dqdp

=

∫
[0,1]2d

(
Q− q̂(Q, p), P̂ (Q, p)− p

)
dqdp

=

∫
[0,1]2d

(
Q− q̂(Q, p), P̂ (Q, p)− p

)
det
(
q̂Q(Q, p)

)
dQdp

=

∫
[0,1]2d

(
vp(Q, p)−B,C − vQ(Q, p)

)
det
(
I − vQp(Q, p)

)
dQdp

= (−B,C) +

∫
[0,1]2d

J∇v(Q, p) det
(
I + vQp(Q, p)

)
dQdp.

We are done if we can show

(2.12)

∫
[0,1]2d

∇v(Q, p) det
(
I + vQp(Q, p)

)
dQdp = 0.

�

Proposition 2.5 Let Φi, i = 1, . . . , k, be k exact symplectic diffeomorphisms with generating
functions W i(Q, p) = Q · p− wi(Q, p), i = 1, . . . , k, respectively. Let Φ = Φk ◦ · · · ◦ Φ1.

(i) Define

W (Q, p; ξ) =
k∑
i=1

W i(qi, pi−1)−
k−1∑
i=1

qi · pi

= q1 · p0 +
k∑
i=2

pi−1 · (qi − qi−1)−
k∑
i=1

wi(qi, pi−1)

= Q · p+
k∑
i=2

(pi−1 − p0) · (qi − qi−1)−
k∑
i=1

wi(qi, pi−1)

=: Q · p+ w(Q, p; ξ).

where p0 = p, qk = Q, and ξ =
(
q1, p1, . . . , qk−1, pk−1

)
. Then

(2.13) Wξ(Q, p; ξ) = 0 =⇒ Φ
(
Wp(Q, p; ξ), p

)
=
(
Q,WQ(Q, p; ξ)

)
.
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Moreover (Q, p) is a fixed point of Φ iff for some ξ, we have ∇w(Q, q; ξ) = 0.

(ii) Given x = (x0, . . . , xk−1), x0 = (q0, p0), . . . , xk−1 = (qk−1, pk−1), define

Ak(x) =
k∑
i=1

W i(qi, pi−1)−
k∑
i=1

qi · pi

=
k∑
i=1

(
pi−1 · (qi − qi−1)− wi(qi, pi−1)

)
,

with x0 = xk = (qk, pk). (In other words, Ak is defined for k-periodic sequences.) Then any
critical point x of Ak yields an orbit Φi(xi−1) = xi, i = 1, . . . , k. In particular x0 = xk is a
fixed point of Φ.

Proof(i) If we write q̂i−1 = Wp

(
qi, pi−1

)
, and p̂i = WQ

(
qi, pi−1

)
, then Φi

(
q̂i−1, pi−1

)
=
(
qi, p̂i

)
.

On the other hand, for i = 1, . . . , k − 1,

Wqi(Q, p; ξ) = p̂i − pi, Wpi(Q, p; ξ) = q̂i − qi,
Wp(Q, p; ξ) = W 1

p (q1, p), WQ(Q, p; ξ) = W k
Q(Q, pk).

From this, we can readily deduce (2.13).

(ii) Observe that if we set q̂i−1 = Wp

(
qi, pi−1

)
, and p̂i = WQ

(
qi, pi−1

)
, then

Akqi(x) = p̂i − pi, Akpi(x) = q̂i − qi,
Akqk(x) = p̂k − pk, Akp0(x) = q̂0 − q0

for i = 1, . . . , k − 1. Hence at a critical point we have Φi(xi−1) = xi for i = 1, . . . , k. This
completes the proof. �

Proof of Theorem 2.5 (Sketch) For some sufficiently large k, we can find exact symplectic
diffeomorphisms Φi, i = 1, . . . , k, such that Φ = Φk ◦ · · · ◦Φ1. By Proposition 2.5(ii), there is
a one-to-one correspondence between Φ fixed points x0 and critical points x = (x0, . . . , xk−1).
Observe that when F(Φ) is periodic of 0 average, then w1, . . . , wk are periodic. On he other
hand, since xk = x0 in the definition of Ak, we may write

Ak(x) =
k∑
i=1

[
(pi−1 − p0) · (qi − qi−1)− wi(qi, pi−1)

]
.
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This implies that if we set zi = xi−xi−1 = (q′i, p
′
i), and z = (z1, . . . , zk−1), then we can write

1

2
Bz · z :=

k∑
i=1

pi−1 · (qi − qi−1) = −
k∑
i=1

(pi − pi−1) · qi

=
k∑
i=1

(pi−1 − p0) · (qi − qi−1) = −
k∑
i=1

(pi − pi−1) · (qi − q0)

=
k∑
i=1

(p′i−1 + · · ·+ p′1) · q′i = −
k∑
i=1

(q′i + · · ·+ q′1) · p′i,

where B = [Bij]
k−1
i,j=1, with each Bij a (2d)× (2d) matrix. We may express B as

B =

[
0 C
−D 0

]
,

with both C and D invertible. Hence B is non-singular. Moreover, since for each m ∈ Z2d,

Ak(x0 +m, . . . , xk−1 +m) = Ak(x0, . . . , xk−1),

we can write

Ak(x) =
1

2
Bz · z + ŵ(x0, z),

for a bounded C2 function ŵ(x0, z) that is periodic in x0. writing y = (x0, z), and B(y) for
Ak, we may regard B as a function on T2d×R2d(k−1). We may study the set of critical points
of B by analyzing the corresponding gradient flow ẏ = −∇B(y). Equivalently,

(2.14) ż = Bz + ŵz(x0, z), ẋ0 = ŵx0(x0, z).

Note that if ŵ = 0, then T2d × {0} is the the set rest points for the flow associated with
(2.14). In fact 0 is a hyperbolic (saddle-like) critical point for ż = Bz. In (2.14) we have a
rather compact perturbation of ż = Bz.

Writing ψt for the flow of (2.14), we set

Γ =

{
y : sup

t

∣∣ψt(y)
∣∣ <∞} .

�
Let us study an example of a map which is not quite a twist map but still possesses a

global generating function and Theorem 2.4 may be applied to guarantee the existence of its
periodic orbits.
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Example 2.1 (Billiard map in a convex domain). Let C be a strictly bounded convex
domain in R2 and denote its boundary by Γ. Without loss of generality, we assume that the
total length of Γ is 1. First we describe the billiard flow in C. This is the flow associated
with the Hamiltonian function H(q, p) = 1

2
|p|2 + V (q) where

V (q) =

{
0 if q ∈ C
∞ if q /∈ C.

Here is the interpretation of the corresponding flow: A ball of velocity x starts from a
point a ∈ C and is bounced off the boundary Γ by the law of reflection. This induces a
transformation for the hitting location and reflection angle. More precisely, if a trajectory
a+tv, t > 0 hits the boundary at a point γ(q) and a post-reflection angle θ, then we write γ(Q)
and Θ for the location and post-reflection angle of the next reflection. Here q is the length
of arc between a reference point A ∈ Γ and γ(q) on Γ in positive direction, and θ measures
the angle between the tangent at γ(q) and the post-reflection velocity vector. We write ψ
for the map (q, θ) 7→ (Q,Θ) with q,Q ∈ S1 and θ,Θ ∈ [0, π]. It is more convenient to define
p = − cos θ so that in the (q, p) coordinates, we have a map ϕ : S1 × [−1, 1]→ S1 × [−1, 1].
As before, we write Φ for its lift. We claim that Φ is a monotone area-preserving map; it is
not a twist map because the twist conditions on the boundary lines p = ±1 are violated. We
show this by applying Proposition 9.4. In fact the generating function is simply given by

S(q,Q) = −|γ(q)− γ(Q)|,

because

−Sq(q,Q) = −(γ(Q)− γ(q))

|γ(Q)− γ(q)|
· γ̇(q) = − cos θ,

SQ(q,Q) = −(γ(Q)− γ(q))

|γ(Q)− γ(q)|
· γ̇(Q) = cos Θ,

SQq(q,Q) = Θq sin Θ.

Note that if Θ ∈ (0, π), then sin Θ > 0, and Θ is decreasing in q which means that SQq <
0. Here of course we are using the strict convexity. As for the boundary lines, we have
Φ(q,−1) = (q,−1), Φ(q, 1) = (q + 1, 1). Note that S(q,Q) is defined for (q,Q) satisfying
Q ∈ [q, q+ 1]. Also note that Φ has no fixed point inside R× (−1, 1). It is not hard to show
that ρ− = ρ(ϕ−) = 0 and ρ+ = ρ(ϕ+) = 1. �

Exercises(i) Show that if f is an orientation preserving homeomorphism with ρ(f) = 0,
then f has a fixed point.

(ii) Let b : R → R be a positive 1-periodic function and write φt for the flow of the ODE
ẋ = b(x). Find the rotation number of this ODE by evaluating the following limit:

lim
t→∞

t−1
(
φt(x)− x

)
.
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Also, find a strictly increasing function K : R→ R such that

K ◦ φt ◦K−1,

is a free motion on R.

(iii) Define τab(x) = b(x+a), and write B for the set of uniformly positive Lipshitz function
b : R → R. Let P be a τ -invariant ergodic probability measure on B. For each b, write
φt(x; b) for the flow of the ODE ẋ = b(x). Show that

lim
t→∞

t−1
(
φt(x; b)− x

)
,

exists P-almost surely, and evaluate the limit.

(iv) Verify (2.12). �
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3 Hamilton-Jacobi Equation and Its Discrete Variant

We have discussed two types of generating functions. They have led to two types of action
functionals. In Chapter 2 we learned how the critical points of the action functional yield
the orbits of the corresponding dynamical system. In this chapter we focus on the critical
values of the action functional. We also examine how the stochasticity can play a role. We
may choose the generating function randomly according to a probability law, or add some
noise to the dynamics. We first focus on Type I generating functions:

3.1 Frenkel-Kontorova Model

Imagine that we have a sequence of symplectic maps
(
Φi : i ∈ N

)
such that each Φi has a

Type I generating function Si(q,Q), so that

Φi

(
q, Siq(q,Q), q

)
=
(
Q,SiQ(q,Q)

)
.

We may define a dynamical system with orbits (x0, x1, . . . , xn, . . . ) with the rule

xn = Φi(x0), or xn = Φn ◦ · · · ◦ Φ1(x0).

If Φi = Φ is independent of i, then we have an autonomous dynamical system with xn =
Φn(x0). This dynamical system is equivalent to a second order dynamical system in q
components. By this we mean that if (xn : n = 0, 1, . . . ) is an orbit with xi = (qi, pi), then
(qn : n = 0, 1, . . . ) is an orbit of the dynamical system with the rule qn = Fn

(
qn−2, qn−1

)
,

where Fn is defined implicitly from

(3.1) Sn−1
q

(
qn−2, qn−1

)
+ SnQ

(
qn−1, qn

)
= 0.

Moreover, given q and Q, we can find an orbit (q0, . . . , qn), with q0 = q, qn = Q, iff(
q1, . . . , qn−1

)
is a critical point of

Sn
(
q1, . . . , qn−1; q,Q

)
=

n∑
i=1

Si
(
qi−1, qi

)
.

For the construction of invariant measures, we may consider the following variation: given a
continuous function g : Rd → R, consider

Sn
(
q0, q1, . . . , qn−1; g;Q

)
= g(q0) + Sn

(
q1, . . . , qn−1; q0, Q

)
.

Given q and Q, a critical point of Sn
(
q0, q1, . . . , qn−1; g;Q

)
yields an orbit (x0, . . . , xn) of our

dynamical system with properties

p0 = −S1(q0, q1) = ∇q(q0), pn = Sn(qn−1, Q).
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As we mentioned in Chapter 2, it is more convenient to write S(q,Q) = L(q,Q− q), and in
the case of q-periodic Hamiltonian, the function L(q, v) is periodic in q. Because of examples
we have in mind, it is quite natural to assume that

(3.2) lim inf
|v|→∞

inf
q
|v|−1L(q, v) =∞.

Note that this condition is satisfied for a standard map associated with L(q, v) = |v|2/2 −
V (q), for a bounded C1 function V . Assuming (3.2) is valid for each Si, we define two
operators

(3.3) (Tig)(Q) = inf
q

(
g(q) + Si(q,Q)

)
, (T̂ig)(q) = inf

Q

(
g(Q)− Si(q,Q)

)
,

on the space Λ of Lipschitz functions g : Rd → R. Note that if S(q,Q) is a generating
function for Φ, then S ′(q,Q) = −S(Q, q) is a generating function for Φ−1. More or less going

from T to T̂ is a matter of reversing the direction of time. (With some modifications, we can
replace Rd with a Riemannian manifold M for what follows.) We will see later that Tig ∈ Λ
when g ∈ Λ. Observe

un(Q) :=
(
Tn ◦ · · · ◦ T1)(g)(Q) = inf

q0,...,qn−1

(
g(q0) + Sn

(
q1, . . . , qn−1; q0, Q

))
.

We regard
un = Tn

(
un−1

)
, u0 = g,

as a discrete variant of the (time inhomogeneous) HJE, where g is the initial data. Similarly,

u−n = T̂n
(
u1−n

)
, û0 = g,

is a discrete HJE with final condition u0 = g. In particular, when Si = S is independent of
i, we simply have un = T n(g), and un = T̂ n(g), where

(3.4) u(Q) := (T g)(Q) = inf
q

(
g(q) + S(q,Q)

)
, û(q) := (T̂ g)(q) = sup

Q

(
g(Q)− S(q,Q)

)
.

Given Q, let us write q = q(Q) for a minimizer in (3.4). If g is differentiable at q and
u is differentiable at Q, then we have ∇g(q) + Sq(q,Q) = 0, and if we write A(q;Q) =
g(q) + S(q,Q), then

∇u(Q) = Aq(q,Q) Dq(Q) + AQ(q,Q) = SQ(q,Q).

As a result,
Φ
(
q,∇g(q)) =

(
Q,∇u(Q)

)
.
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In particular, if T (U) = U + c for a constant c, then ∇T (U) = ∇U and we learn that if

Gr(U) =
{

(q,∇U(q)) : U differentiable at q
}
,

then

(3.5) Φ−1
(
Gr(U)

)
⊆ Gr(U).

Similarly, given q, if we write Q = Q(q) for a maximizer in (3.4), then

Φ
(
q,∇û(q)) =

(
Q,∇g(q)

)
,

provided that g is differentiable at Q and û is differentiable at q. In particular, if we find Û
such that T̂ (Û) = Û + c′, for a constant c′, then ∇T̂ (Û) = ∇Û , and

(3.6) Φ
(
Gr(Û)

)
⊆ Gr(Û).

This and (3.5) suggests that we should look for the HJE of the form

(3.7) T (U) = U + c, T̂ (Û) = Û + c′,

for suitable constants c and c′, and use the solutions to construct invariant sets for Φ.

To have some concrete regularity estimate let us assume that L(q, v) = S(q, q + v) has a
super linear growth at infinity.

Assumption 3.1 There exists constants c0, c1 and δ > 0, α > 1 such that

inf
q
L(q, v) ≥ δ|v|α − c0, sup

q
L(q, 0) ≤ c1,(3.8)

sup
q

sup
|v|≤`
|L(q + z, v)− L(q, v)| ≤ c2(`)|z|.

Proposition 3.1 Assume that (3.8) holds and that |g(q′) − g(q)| ≤ `|q′ − q| for all q, q′.
Then

(3.9) (T q)(Q) = inf
q:|Q−q|≤`′

(
g(q) + S(q,Q)

)
, |u(Q′)− u(Q)| ≤ `′′|Q′ −Q|,

for `′ = c0 + c1 +
(
δ−1(`+ 1)

) 1
α−1 , and `′′ = `+ c2(`′).

Proof Observe
g(q) + S(q,Q) ≥ g(Q)− `|Q− q|+ δ|Q− q|α − c0.

Hence
g(Q) + S(Q,Q) ≤ g(q) + S(q,Q),
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if c0 + c1 ≤ δ|v|α − `|v|, for v = Q− q. Note δ|v|α − `|v| ≥ |v| if |v| ≥
(
δ−1(`+ 1)

) 1
α−1 . This

implies the identity in (3.9).
If u(Q) = g(q) + L(q,Q− q) for some Q with |Q− q| ≤ `′, then for q′ = q +Q′ −Q,

u(Q′) ≤ g(q′) + L(q′, Q− q) ≤ g(q) + L(q,Q− q) + `|Q′ −Q|+ c2(`′)|Q′ −Q|
= u(Q) +

(
`+ c2(`′)

)
|Q′ −Q|,

as desired. �

3.2 Type II and III Generating Functions

If we consider a symplectic map with generating function W (Q, p) = Q · p−w(Q, p), then a
candidate for the action is

A(q, p;Q) = A(x;Q) = g(q) +W (Q, p)− q · p = g(q) + (Q− q) · p− w(Q, p).

Given Q, at any critical point x = x(Q) = (q, p) of A we have

0 = Aq(q, p;Q) = ∇g(q)− p, 0 = Ap(q, p;Q) = Wp(Q, p)− q,
AQ(q, p;Q) = Ax(x;Q)(Dx)(Q) +WQ(Q, p) = WQ(Q, p).

This means that for u(Q) = A(x;Q) at the critical point,

Φ
(
q,∇g(q)

)
=
(
Q,∇u(Q)

)
,

provided that g is differentiable at q and u is differentiable at Q. In the case of Type
I generating function, we simply take the minimum of the action because the action is
bounded blow. This is no longer the case for Type II generating function. For example if
Φ is a symplectic map, then w is periodic, and if g is also periodic, then A is a periodic
perturbation of the quadratic function A0(x;Q); = (Q− q) ·p. Hence A is neither is bounded
from below nor above. The best we can hope for that given Q, the function A(x;Q) has a
critical point which is of the same type as the type 0 is for A0(x;Q). Now imagin that we
come up with a universal way of selecting a critical value of A no matter what g is. This
critical value yields an operator

V(g)(Q) = A(x;Q) = A
(
x(Q);Q),

where x(Q) is our selected critical point. If we can find a function U such that V(U) = U+c,
for a constant c, then Φ−1

(
Gr(U)

)
⊆ Gr(U).

More generally, assume that Φ = Φk ◦ · · · ◦ Φ1 and each Φi has a generating function
W i(qi, pi−1) = qi · pi−1 − wi(qi, pi−1). Then Φ has a generalized generating function of the
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form

W (qk, p0; ξ) = W
(
qk, p0; q1, p1, . . . , qk−1, pk−1

)
= q1 · p0 +

k∑
i=2

pi−1 · (qi − qi−1)−
k∑
i=1

wi(pi−1, qi).

Recall

Wξ(qk, p0; ξ) = 0 =⇒ Φ
(
Wp0(qk, p0; ξ), p0

)
=
(
qk,Wqk(qk, p0; ξ), p0

)
Given an initial data g, we set

A(ξ′; qk) = A
(
q1, p1, . . . , qk−1, pk−1; qk

)
= g(q0)− p0 · q0 +W (qk, p0; ξ)

= g(q0) +
k∑
i=1

(
pi−1 · (qi − qi−1)− wi(pi−1, qi)

)
.

We then have

Aξ′(qk; ξ
′) = 0 =⇒ p0 = ∇g(q0), Φ

(
q0, p0

)
=
(
qk,∇uk(qk)

)
,

where uk(qk) = A(qk; ξ
′(qk)), is the value of the action at the critical point ξ′(qk). If we set

Vk(g)(qk) for this critical value, and U is chosen so that Vk(U) = U + ck, for a constant ck,
then we have Φ−1

(
Gr(U)

)
⊆ Gr(U).

Observe that if W ′(q, P ) is a Type II generating function for Φ−1, then it is a Type III
generating function for Φ. Motivated by this, let us choose a generating function V (q, P ) =
q · P − v(q, P ) of type III, so that

Φ
(
q, Vq(q, P )

)
=
(
VP (q, P ), P

)
.

Again

A(Q,P ; q) = A(X; q) = g(Q)−Q · P + V (q, P ) = g(Q) + (q −Q) · P − v(q, P ),

is the action, and at a critical point AX(X; q) = 0, we have

P = ∇g(Q), Q = VP (q, P ), ∇û(q) = p,

where
û(q) = V̂(g)(q) = A(X(q); q),

is the corresponding critical value. Again if for some Û , we have that V̂(Û) = Û + c, for a
constant c, we learn that Φ

(
Gr(Û)

)
⊆ Gr(Û).
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3.3 Gibbs Measures

There is a viscous variant of the discrete HJE that is related to orbits (or rather realizations)
of a Markov chain. Instead of minimizing Sn, we define a probability measure on Mn−1 that
favors states qn = (q1, . . . , qn−1) of lower energy Sn. More precisely, we define a Gibbs
measure Pn(·; q,Q) on Mn−1 as

P(dqn) = Zn(q,Q)−1 exp
(
− βSn(qn; q,Q)

) n−1∏
i=1

ν(dqi),

where β is a positive scalar, ν(dq) is a reference measure (for example a volume form associ-
ated with a metric when M is a Riemannian manifold), and Z is the normalizing constant:

Zn(q,Q) =

∫
Mn−1

exp
(
− βSn(qn; q,Q)

) n−1∏
i=1

ν(dqi).

For simplicity, let us assume that Si = S for all i. Now, if we attempt to normalize our
measure inductively, we need to evaluate n = 2, we need to calculate

Z(qn−2, Q) :=

∫
M

exp
(
− βS(qn−2, qn−1)− βS(qn−1, Q)

)
ν(dqn−1),

which depends on qn2 . Dividing the integrand by Z(qn−2, Q) would alter S. To avoid this,
observe that if we replace S(q,Q) with S(q,Q) +u(Q)−u(q), then the corresponding Gibbs
measure would not be affected (it only changes the normalizing constant). Motivated by
this, we define

Rβ(h)(g)(Q) =

∫
M

e−βS(q,Q)h(Q) ν(dQ), R∗β(h)(g)(Q) =

∫
M

e−βS(q,Q)h(q) ν(dq).

Note that with respect to the inner product

〈h, k〉 =

∫
M

hk dν,

we can readily show that R∗β is the adjoint of Rβ. A generalization of Perron-Frobenius
Theorem offers a way of modifying S so that we can normalize our measure inductively: For
simplicity, let us assume that M = Rd, ν is the Lebesgue measure and that (2.3) holds.

Theorem 3.1 The largest eigenvalue λ′β = eβλβ of Rβ is positive and λ′β satisfies λ′β ≥ |λ′
for any other eigenvalue λ′. Moreover λ′β is simple, and there exist functions uβ, u

∗
β : M → R

such that
Rβ

(
eβuβ

)
= eβλβeβuβ , R∗β

(
e−βu

∗
β
)

= eβλβe−βu
∗
β .
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Motivated by Theorem 3.1, we set

Ŝ(q,Q) := S(q,Q)− (uβ(Q)− uβ(q)) + λβ, p(q, dQ) = exp
(
− βŜ(q,Q)

)
ν(dQ).

By Theorem 3.1, the kernel p(q, dQ) is a probability measure for each q. Using this kernel,
we may define a Markov chain q = (q0, q1, . . . , qn, . . . ) such that

Pq
(
qn ∈ A | q0, . . . , qn−1

)
=

∫
A

p(qn−1, dqn), q0 = q,

for every measurable set A ⊆ M . Here Pq is a probability measure on the set of sequences
q with q0 = q. Hence

Pq
(
q1 ∈ A1, . . . , qn ∈ An

)
=

∫
A1

. . .

∫
An

n∏
i=1

p(qi−1, dqi)

=

∫
A1

. . .

∫
An

exp

(
−

n∑
i=1

βŜ(qi−1, qi))

)
n∏
i=1

ν(dqi).

Writing Pqn(dq1, . . . , dqn) for the n-dimensional marginal of Pq, we deduce

Pn
(
dq1, . . . , dqn−1; q,Q

)
= Pqn

(
dq1, . . . , dqn | qn = Q

)
.

Also, if we define
T̂β(g) = β−1 logRβ

(
eβg
)
,

then
un = T̂β(un−1),

is a discrete analog of viscous HJE. Note that

lim
β→∞

T̂β(g) = T̂ (g).

In the same vein, we set
Tβ(g) = −β−1 logR∗β

(
e−βg

)
,

then
un = Tβ(un−1),

is a discrete analog of viscous backward HJE. Note that

lim
β→∞

Tβ(g) = T (g).
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Moreover, the eigenfunctions eβuβ , and e−βu
∗
β , can be used to find an invariant measure

for our Markov Chain. For this, observe that if we have an invariant measure of the form
µ(dq) = Z−1eh dq, then we must have

eh(Q) =

∫
eh(q)p(q, dQ) = eβ(uβ(Q)−λβ)R∗β

(
eh−βuβ

)
(Q)

This means eh−βuβ = e−u
∗
β . Hence for an invariant measure, we may choose a measure of the

form
µ(dq) = Z−1eβ(uβ−u∗β)(q) dq.

We note

(3.10) T̂ (uβ) = uβ + λβ, T (u∗β) = u∗β − λβ,

which is in line with (3.5) and (3.4) as we solved the corresponding HJE (3.7).
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4 Homogenization

Let us write L for the set of maps S : Rd ×Rd → R such that the map L(q, v) = S(q, q + v)
satisfies Assumption 3.1. We also write Ω for the set of C1 functions F : Rd → Rd such that
G(q) = F (q)− q is bounded. For the question of homogenization, we define an operator that
turns a microscopic height function g : Rd → R to a macroscopic height function. Its inverse
does the opposite:

(Γng)(q) = n−1g(nq),
(
Γ−1
n g)(q) = ng

(
n−1q

)
.

We think of g as an initial macroscopic height function. Its growth is governed microscopi-
cally by the operator T or T̂ . The macroscopic height function after one macroscopic time
step is given by

un = T̂ nΓn(S)(g) =
(
Gn ◦ T̂ nS ◦ Γ−1

n

)
(g).

A homogenization occurs if the limit

lim
n→∞

un(q),

exists for every Lipschitz function g. We may write

un = sup
q1,...,qn

[
g
(
n−1qn

)
− n−1

(
S(nq, q1) + S(q1, q2) + · · ·+ S(qn−1, qn)

)]
= sup

Q

[
g(Q)− Sn(q,Q)],(4.1)

where

Sn(q,Q) = inf
q1,...,qn−1

n−1
(
S(nq, q1) + S(q1, q2) + · · ·+ S(qn−1, nQ)

)
= inf

q1,...,qn−1

(
(ΓnS)(q, q1) + (ΓnS)(q1, q2) + · · ·+ (ΓnS)(qn−1, Q)

)
.

One approach for establishing the homogenization is based on the following intuition that
we partially discussed in Chapter 3: If for some C1 U ∈ Λ, we have T̂ (Û) = Û + c, then
Φ
(
q,∇Û(q)

)
=
(
Q,∇Û(Q)

)
. The relationship between q and Q = F (q) is that Q is a critical

point of A(Q; q) = Û(Q)− S(q,Q). So, F (q) is implicitly given by

(4.2) ∇Û(F (q)) = SQ(q, F (q)).

Hence for such U , the set Gr(Û) is invariant for Φ. Moreover, the q-component of the flow
associated with the restriction of Φ to the set Gr(Û) is given by F : Rd → Rd.

The homogenization maybe achieved in three steps that we now sketch:
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Step 1 (Lower Bound) Motived by the flow F of (4.2), we pick any F ∈ Ω with F (q) =
q +G(q). We select qi = F i(q0) with q0 = nq in (4.1). Note

n−1qn = q + n−1

n−1∑
i=0

G
(
F i(q0)

)
,

n−1∑
i=0

S(qi, qi+1) =
n−1∑
i=0

SF
(
F i(q0)

)
,

where SF (q) = S(q, F (q)) = L(q,G(q)). We certainly have

(4.3) un(q) ≥ g

(
q + n−1

n−1∑
i=0

G
(
F i(q0)

))
− n−1

n−1∑
i=0

SG
(
F i(q0)

)
.

We wish to find the limit of the right-hand side of (4.3). For example, when L(q, v) is
periodic in q, we choose F to be a lift of a map f : Td → Td. Then G is also periodic, which
implies that SF is periodic. Now if we pick any ergodic invariant measure for F , then we
have

(4.4) lim
n→∞

n−1

n−1∑
i=0

G
(
F i(q0)

)
=

∫
G dµ, lim

n→∞
n−1

n−1∑
i=0

SF
(
F i(q0)

)
=

∫
LG dµ,

almost surely for µ almost choices of q0. From this we obtain

lim inf
n→∞

un ≥ g

(
q +

∫
G dµ

)
−
∫
LG dµ.

This being true for any such pair (F, µ), we deduce

(4.5) lim inf
n→∞

un ≥ sup
(F,µ)

[
g

(
q +

∫
G dµ

)
−
∫
SF dµ

]
= sup

v

[
g(q + v)− L̂(v)

]
,

where the first supremum is over the pair (F, µ) such that µ is an ergodic invariant measure
for that map F , and

(4.6) L̂(v) = inf
(F,µ)

{∫
S(q, F (q)) µ(dq) :

∫
(F (q)− q) µ(dq) = v

}
.

Step 2 (Upper Bound) Given any p ∈ Rd and any continuous function u : Rd → R, we define

H̄(p;u) = sup
q,Q

(
u(Q)− u(q) + p · (Q− q)− S(q,Q)

)
.

We write U for the set continuous u : Rd → R, such that

lim
|q|→∞

|u|−1u(q) = 0.
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We then use any u ∈ U to produce an upper bound for un:

un(q) ≤ sup
q1,...,qn

[
g
(
n−1qn

)
−
(
n−1qn − q

)
· p− n−1

(
u(qn)− u(nq)

)]
+H(p;u)

= sup
Q

(
g(Q)− (Q− q) · p− n−1

(
u(nQ)− u(nq)

))
+H(p;u).

As a result,

(4.7) lim sup
n→∞

un ≤ inf
p

inf
u∈U

[
sup
Q

(
g(Q)− (Q− q) · p− n−1

(
u(nQ)− u(nq)

))
+ H̄(p;u)

]
.

If we can interchange inf with sup, we obtain

lim sup
n→∞

un ≤ sup
Q

[
g(Q)− inf

p

(
(Q− q) · p− inf

u∈U
H̄(p;u)

)]
= sup

Q

[
g(Q)− L̄(Q− q)

)
,(4.8)

where
L̄(v) = sup

p

(
p · v − H̄(p)

)
, H̄(p) = inf

u∈U
H̄(p;u).

Step 3 (L̂ = L̄) To establish homogenization, it remains to show that the upper and lower
limits of Steps 1 and 2 coincide. This may be achieved by an introduction of a Lagrange
multiplier, and an application of Minimax Principle. Indeed, if we write Ĥ for the Legendre
Transform of L̂:

Ĥ(p) := sup
v

(
p · v − L̂(v)

)
,

then we can write

Ĥ(p) = sup
(F,µ)

(∫ (
(F (q)− q) · p− S(q, F (q))

)
µ(dq)

)
= sup

F
sup
µ

inf
u∈Cb

(∫ (
(F (q)− q) · p− S(q, F (q))

)
µ(dq) +

∫ (
u(F (q))− u(q)

)
µ(dq)

)
= inf

u∈Cb
sup
F

sup
µ

(∫ (
(F (q)− q) · p− S(q, F (q))

)
µ(dq) +

∫ (
u(F (q))− u(q)

)
µ(dq)

)
= inf

u∈Cb
sup
F

sup
q

((F (q)− q) · p− S(q, F (q)) + u(F (q))− u(q) )

= inf
u∈Cb

sup
Q

sup
q

((Q− q) · p− S(q,Q) + u(Q)− u(q)) = H̄(p).
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Here Cb = Cb(Rd), is the space of bounded continuous functions. �

Motivated by the above discussion, we now state our homogenization result. We start
with the periodic case.

Theorem 4.1 Let S(q,Q) = L(q,Q−q) with L(q, v) periodic in q and satisfying (??). Then
for every Lipschitz function g, we have

(4.9) lim
n→∞

Γn ◦ T̂ n ◦ Γ−1
n (g) = sup

Q

(
g(Q)− L̄(Q− q)

)
.

Here L̄ the Legendre transform of H̄, given by

(4.10) H̄(p) = inf
u

sup
q,Q

(
p · (Q− q) + u(Q)− u(q)− S(q,Q)

)
,

with the infimum over periodic continuous functions u : Rd → R.

We may also establish a homogenization when S is selected randomly according to an
ergodic τ -invariant measure. Before we state the main result, we remark that in the formula
(4.1), we compared S(q,Q) with

w(q,Q) = p · (Q− q) + u(Q)− u(q),

which should be regarded as a discrete analog of a 1-form. Think of w(q,Q) = w′(q,Q− q)
as a function that acts on velocities Q − q at the base point q. Note that our w′(q, v) is
periodic in q, but not linear in Q − q because it is not defined on the tangent fiber at q as
in the continuous setting. Though it is a discrete 1-form because we can “integrate” it over
Td sequences q = (q0, . . . , qn):

w(q) :=
n−1∑
i=0

w(qi, qi+1).

Now if u : Rd → R is periodic, then the form u(q,Q) := u(Q) − u(q) is an example of an
exact form because u(q) = 0 for any periodic sequence (whenever qn − q0 ∈ Zd.) However
the form p̄(q,Q) = p · (Q− q) is not exact but closed because p̄(q) depends only on the end
points q0 and qn.

In the random case, the torus Td is replaced with the space S.

Definition 4.1(i) Given δ, c0, c1, c2, c3 > 0, and α, β > 1, we write S for the set of continuous
S : Rd × Rd → R such that

inf
q
S(q, q + v) ≥ δ|v|α − c0, sup

q
S(q, q) ≤ c1,

sup
q,Q
|S(q + z,Q+ z)− S(q,Q)| ≤ c2|z|,

sup
q,Q
|S(q,Q+ z)− S(q,Q)| ≤ c3|z||Q− q + z|β−1.
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(ii) For measurable functions u : Rd → R, L : S × Rd → R, S : Rd × Rd and a ∈ Rd, we set

τau(q) = u(q + a), τaL(q, v) = L(q + a, v), (τ ′aS)(q,Q) = S(q + a,Q+ a).

�
We have a τ ′-invariant probability measure on S. If for example S(q,Q) = L(q,Q −

q), with L(q, v) periodic in q, then we take a probability measure that is concentrated on
{τqS : q ∈ Rd}. This set is closed with respect to the uniform topology, and topologically
homeomorphic to Td. In fact the only τ ′-invariant measure on this set is isomorphic to
the Lebesgue measure on Td. Though if we take a quasi-periodic S, and consider the set
{τ ′qS : q ∈ Rd}, it is no longer closed and its closure would be homeomorphic to TdN for
some N ∈ N. Given S ∈ S, we may define the operator

T̂ (g) = T̂ (g;S) = sup
Q

(
g(Q)− S(q,Q)

)
,

as before. Recall that our homogenization proof was based on the existence of a function
u : Rd → R, and F : Rd → Rd, with F (q) = G(q) + q, such that

sup
Q

(
p · (Q− q) + u(Q)− u(q)− S(q,Q)

)
= H̄(p),

Sq(q, F (q)) +∇u(q) + p = Sq
(
q,G(q) + q

)
+∇u(q) + p = 0.(4.11)

We note that if we can replace S with τ ′aS, u with τau, and G with τaG, our equations
in(4.11) are still valid. This suggests finding u(q) = u(q;S) and G(q) = G(q;S), such that

u(q; τaS) = u(q + a;S), G(q; τaS) = G(q + a;S).

In fact, if we define û(S) = u(0;S), then u(q, S) = û
(
τ ′qS
)
. Equivalently, we may look for

functions
û : S → R, Ĝ : S → Rd,

such that u(q) = û
(
τqS
)

and G(q) = Ĝ
(
τqS
)

satisfy (4.11). Given p ∈ Rd, we may wonder
whether or not there exists a continuous û : S → R, and a constant H̄(p) such that

(4.12) sup
Q

(
p · (Q− q) + û

(
τ ′QS

)
− û
(
τ ′qS
)
− S(q,Q)

)
= H̄(p).

It turns out that (4.12) does not have a solution if we go beyond the periodic case. Instead,
we need to consider functions of the form u(q;S) that are in some sense acts like an exact
form in the discrete setting.

Definition 4.2 A measurable function u : Rd × S → R is an exact form if the following
conditions hold:
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(i) u
(
Q− q; τ ′qS

)
= u(Q;S)− u(q;S), for all (q,Q, S) ∈ Rd × R×S.

(ii) u(q;S) is Lipschitz continuous in q.

(iii) For some r > d, and every q ∈ Rd,
∫
|u(q;S)|r P(dS) <∞.

(iv) u(0;S) = 0, and for every q, we have
∫
u(q;S) P(dS) = 0.

We write U for the set of exact forms. �

Remark 4.1 Note that the first and the last properties are satisfied if u(q, S) = h
(
τ ′qS
)
−h(S)

for some function h : S → R. We also note that (i) is equivalent to the following property:
If q0, . . . , qk is any sequence with q0 = qk, then

k∑
i=0

u
(
qi+1 − qi; τ ′qiS

)
= 0.

�

Theorem 4.2 Let P be an ergodic τ ′-invariant measure on the set S.Then for every Lipschitz
function g, (4.9) holds for L̄, the Legendre transform of H̄. The function H̄ is given by

(4.13) H̄(p) = inf
u∈U

sup
q
ess sup

S

(
p · q + u(q;S)− S(0, q)

)
.

As a preparation, we establish a variant of Proposition 3.1 for un.

Proposition 4.1 Assume that g is Lipschitz with Lipschitz constant `. Then we can restrict
the supremum in (4.1) to those Q such that

(4.14) |Q− q| ≤ `′, 0 ≤ Sn(q,Q) + c0 ≤ c′0,

with `′ is as in Proposition 3.1 and c′0 = δ1/(1−α) + (1− α−1) c0.

Proof Note that by (3.8),

Sn(q,Q) ≥ δn−1 (|nq − q1|α + · · ·+ |qn−1 − nQ|α)− c0

≥ δ
∣∣n−1

(
(nq − q1) + · · ·+ (qn−1 − nQ)

)∣∣α − c0

= δ|q −Q|α − c0.
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This allows to repeat the proof of Proposition 3.1 and deduce the first inequality in (??).
On the other hand, if the supremum in (4.1) is attained in Q, then

0 ≤ g(Q)− g(q)− Sn(q,Q) ≤ `|Q− q|α − Sn(q,Q)

≤ δ−1/α
(
Sn(q,Q) + c0

)1/α − Sn(q,Q)

≤
(
1− α−1

)
δ1/(1−α) + α−1

(
Sn(q,Q) + c0

)
− Sn(q,Q)

This implies the second bound in (4.14). �
The main ingredients for the proof of Theorem 4.1 are the following existence and regu-

larity of exact forms and an application of Subadditive Ergodic Theorem.

Theorem 4.3 For every u ∈ U ,

(4.15) lim
|q|→∞

|q|−1u(q;S) = 0,

P-almost surely.

Theorem 4.4 For every p, there exist a constant Ĥ(p), and u ∈ U such that

(4.16) sup
q

(
p · q + u(q, S)− S(0, q)

)
= Ĥ(p).

Theorem 4.5 For each v, the limit

(4.17) L̂(v, S) = lim
n→∞

n−1Sn(0, v),

exists P-almost surely. Moreover L̂(v) = L̂(v, S) is independent of S, and convex in v.

Proof Observe that if

S ′n(q,Q) = inf
q1,...,qn−1

n−1∑
i=0

S(qi, qi+1),

with q0 = q, qn = Q, then we have the following subadditivity:

S ′m+n(a, c) ≤ S ′m(a, b) + S ′n(b, c).

As a result, if we pick v ∈ Rd, and set

T = τ ′v, Fn(S) = S ′n(0, nv),

then
Fm+n(S) ≤ Fm(S) + Fn

(
TmS

)
.
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Note that P is T -invariant but may not be ergodic. Nonetheless we may apply Kingman
Subadditive Ergodic Theorem to assert that the limit

(4.18) L̂(v, S) := lim
n→∞

n−1S ′n(0, nv),

exists P-almost surely, and that∫
L̂(v, S) P(dS) = inf

n

∫
n−1S ′n(0, nv) dP.

Moreover, using the ergodicity of P and the subadditivity of S ′, we can show that L̄ is
independent of S and convex in v. �

Proof of Theorem 4.3 (Step 1) To ease the notation, let us write

Sp(q,Q) = S(q,Q)− p · (Q− q).

We note that if S ∈ S, with constants δ, c0, c1, c2, c3, then then Sp ∈ S for constants
δ′, c′0, c

′
1, c
′
2, c
′
3. (α, β will not change.) For example

Sp(q,Q) ≥ p · (Q− q) + δ|Q− q|α − c0 ≥ −|Q− q||p|+ δ′|Q− q|α − c′0 ≥ −c1 − c0,

where δ′ can be chosen to be δ/2, and c′0 = c0 + c′′0|p|
α
α−1 for a constant c′′0 = c′′0(α, δ). From

now on we assume that p = 0.
Pick λ ∈ (0, 1), and define hλ : S → R, by

hλ(S) = − inf
q1,q2,...

∞∑
n=0

S(qn, qn+1)λn,

with q0 = 0. We then have

hλ
(
τ ′qS) = − inf

q1,q2,...

∞∑
n=0

S(qn, qn+1)λn,

with q0 = q. Moreover,
sup
q

(
λhλ(τ ′qS)− S(0, q)

)
= hλ(S).

Equivalently,
sup
q

(
λhλ(τ ′qS)− λhλ(S)− S(0, q)

)
= (1− λ)hλ(S).

Hence if uλ(q;S) = hλ(τ ′qS)− hλ(S), then

(4.19) sup
Q

(
λuλ(q;S)− S(0, q)

)
= (1− λ)hλ(S).
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We claim that for a subsequence, the limits

(4.20) u(q;S) = lim
λ→1

uλ(q;S), Ĥ(p;S) = lim
λ→1

(1− λ)hλ(S),

exist and they are the desired u and Ĥ we are searching for. We note that if the limits in
(4.28) exit, then

u
(
Q− q; τ ′qS

)
= u(Q;S)− u(q;S),(4.21)

Ĥ
(
p; τ ′qS

)
− Ĥ(p;S) = lim

λ→1
(1− λ)uλ(q;S) = 0.

From the latter and the ergodicity of P, we deduce that Ĥ is independent of S. The former
implies that Property (i) of an exact form is satisfied.

(Step 2) Evidently (1 − λ)hλ(S) ≥ −S(0, 0) ≥ −c1, by choosing 0 = q0 = q1 = . . . in the
definition of hλ. From this and S(q,Q) ≥ −c0 we deduce

(4.22) −c1 ≤ (1− λ)hλ(S) ≤ c0.

We now examine uλ. From (4.27) and (4.29) we learn

λuλ(q;S) ≤ S(0, q) + c0.

Hence
λuλ(q;S) = −λuλ

(
− q; τ ′qS) ≥ −S(q, 0)− c0.

Proof of Theorem 4.2 (Step1) Observe that if VSn = Γn ◦ T̂ nS ◦ Γ−1
n = T̂ nΓn(S), then

(4.23) Vτ ′naSn = τa ◦ VSn ◦ τ−a or Vτ ′naSn ◦ τa = τa ◦ VSn .

This means

(4.24) un(q) = uSn(q) =
(
VSn g

)
(q) =

(
Vτ
′
nqS
n (τqg)

)
(0)

From this, we learn that for any ū : Rd → R,∫ [∫
[−`,`]d

∣∣(VSn g)(q)− u(q)
∣∣ dq]P(dS) =

∫ [∫
[−`,`]d

∣∣∣(Vτ ′nqSn (τqg)
)

(0)− u(q)
∣∣∣ dq]P(dS)

=

∫ [∫
[−`,`]d

∣∣(VSn (τqg)
)

(0)− ū(q)
∣∣ dq]P(dS).

This means that for a local L1 convergence of un(q) =
(
VSn g

)
(q) to a deterministic function

u, we only need to show the existence of the limit for q = 0.
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(Step 2) Let us simply write un(S) for
(
VSn g

)
(0). Set

u(S) = lim inf
n→∞

un(S).

We claim that P-almost surely, the function u(S) is constant. By the ergodicity of P, it
suffices to show that u(τ ′aS) = u(S), for every a ∈ Rd. Indeed by (4.24),

un(τ ′aS) = sup
Q

(
g
(
Q− n−1a

)
− Sn

(
n−1a,Q

))
= sup

Q

(
g
(
Q
)
− Sn

(
n−1a,Q

))
+O

(
n−1
)
,

where

Sn
(
n−1a,Q

)
= inf

q1,...,qn−1

n−1 (S(a, q1) + · · ·+ S(qn−2, qn−1) + S(qn−1, nQ)) ,

and Sn
(
n−1a,Q

)
≤ c3 by Proposition 4.1. In particular

c3 ≥ n−1S(a, q1) ≥ δn−1|a− q1|α − n−1c0.

This leads to
|a− q1| ≤ δ−1/α(nc3 + c0)1/α.

This implies
|S(a, q1)− S(0, q1)| ≤ c|a|(|q1|+ 1) ≤ c′n1/α,

which in turn implies ∣∣Sn(n−1a,Q
)
− Sn(0, Q)

∣∣ ≤ c′n1/α−1.

From this we deduce that u(τ ′aS) = u(S), as desired.

(Step 3) Given Ĝ : S → R, we may set F (q) = q + Ĝ(τqS), and choose a sequence of the
form qn = F n(0). Observe that if f(S) = fG(S) = τ ′G(S)S, L(S) = LG(S) = S(0, G(S)), then

qn = S +G(S) + · · ·+G
(
fn−1(S)

)
, τ ′qnS = fn(S),

S(0, q1) + · · ·+ S(qn−1, qn) = LG(S) + · · ·+ LG
(
fn−1(S)

)
.(4.25)

These identities can be readily verified by induction on n. We now set Θ to be the set
of measurable pairs

(
Ĝ, ρ

)
, Ĝ, ρ : S → R such that the probability measure Q(dS) =

ρ(dS) P(dS) is an invariant measure for f = fG. We write Θer for the set of measurable
pairs

(
Ĝ, ρ

)
∈ Θ such that the measure Q is also ergodic. By Ergodic Theorem, the limits

q̄G(S) := lim
n→∞

n−1qn, L̄G(S) = lim
n→∞

n−1
(
LG(S) + · · ·+ LG

(
fn−1(S)

))
,

exists Q-almost surely, and

(4.26) q̄G =

∫
G dQ, L̄G =

∫
LG dQ.
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As a result,

(4.27) u(S) ≥ g
(
q̄G
)
− L̄G,

Q-almost surely. Since P << Q, we learn that (4.27) is also true P-almost surely.

(4.28) u(S) ≥ sup
(Ĝ,ρ)∈Θer

(
g
(
q̄G
)
− L̄G

)
= sup

v

(
g(v)− L̂(v)

)
,

P-almost surely. Here

L̂(v) = inf

{∫
LGρ dP : (Ĝ, ρ) ∈ Θer,

∫
Gρ dP = v

}
.

(Step 4) If we choose g(Q) = p ·Q, and write up for the corresponding u, then for every pair
(Ĝ, ρ) ∈ Θer, we have

up(S) ≥ p · q̄G(S)− L̄G(S).

Since up(S) is P-almost surely constant, we learn,∫
up dP =

∫
up dQ ≥

∫ [
p · q̄G(S)− L̄G(S)

]
Q(dS) =

∫
G dQ−

∫
LG dQ.

As a result, ∫
up dP ≥ sup

(Ĝ,ρ)∈Θ

(∫
G dQ−

∫
LG dQ

)
.

Hence, P-almost surely,

(4.29) up(S) ≥ sup
(Ĝ,ρ)∈Θ

(∫
G dQ−

∫
LG dQ

)
.

Exercise(i) Show that L̂ defined by (4.26) is independent of S and convex in v.
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5 Viscosity Solution verses Variational Solution

Let Φ : R2d → R2d be a symplectic map with generating function W (Q, p) = Q · p−w(Q, p).
In Chapter 3 we learned that if g is a C1 function, and

A
(
q0, p0, . . . , qn−1, pn−1; qn; g) = g(q0) +

k∑
i=1

(
pi−1 · (qi − qi−1)− w(pi−1, qi)

)
,

then a critical point of A yields an orbit xi = (qi, pi) = Φi(x0), i = 1, . . . , n, with p0 = ∇g(q0).
Motivated by this, let us define

Wn(x0) =
n∑
i=1

(
pi−1 · (qi − qi−1)− w(pi−1, qi)

)
,

where xi(qi, pi) = Φi(x0) for i = 1, . . . , n. In other words, Wn(x0) denotes the action at time
n of an orbit that starts from x0. We then set

Fn(g) =
{(
Q, g(q) +Wn

(
q,∇g(q)

))
: q ∈ Rd, Φn(q,∇g(q)) = (Q,P )

}
.

We may extend the definition of Fn to Lipschitz g.

Definition 5.1(i) Given a Lipschitz function g : Rd → R, we write ∂̂g(q) for the set of
vectors p such that there exists a sequence qk such that ∇g(qk) exists, and

q = lim
k→∞

qk, p = lim
k→∞
∇g(qk).

The convex hull of the set ∂̂g(q) is denoted by ∂g(q).

(ii) Given a Lipschitz function g, we set

Fn(g) =
{

(qn, g(q0) +Wn(q0, p0)) : q0 ∈ Rd, p0 ∈ ∂g(q0), Φn(q0, p0) = (qn, pn)
}
.

(iii) By a variational solution associated with Φ, we mean a collection of operators V̂n =

V̂Sn : Λ→ Λ, n ∈ N with the following properties:

• V̂n(g + c) = V̂n(g) + c for each n and every constant c ∈ R.

• For g, g′ ∈ Λ with g ≤ g′, we have V̂n(g) ≤ V̂n(g′).

• For every g ∈ Λ, and n ∈ N,{(
q, V̂n(g)(q)

)
: q ∈ Rd

}
⊆ Fn(g).
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�
Likewise, we may define a variational solution of the HJE (1.10). Recall that for γ :

[0, t] → R2d, with γ(s) = (q(s), p(s)), and a C1 Hamiltonian function H : R2d → R, the
action is defined by

At(γ) = AHt (γ) =

∫ t

0

[
p · q̇ −H(x)

]
ds.

Definition 5.2(i) We set φH[0,t](a) for the restriction of the flow φHs (a) to the interval [0, t].

Given a ∈ R2d, we define
AHt (a) = AHt

(
φH[0,t](a)

)
.

(ii) Given a Lipschitz function g, we set

Ft(g) =
{

(q(t), g(q0) +An(q0, p0)) : q0 ∈ Rd, p0 ∈ ∂g(q0), φHt (q0, p0) = (q(t), p(t))
}
.

(iii) By a variational solution associated with Φ, we mean a collection of operators V̂t : Λ→
Λ, t ∈ [0,∞) with the following properties:

• V̂0 is identity, and V̂t(g + c) = V̂t(g) + c for each t and every constant c ∈ R.

• For g, g′ ∈ Λ with g ≤ g′, we have V̂t(g) ≤ V̂t(g′).

• For every g ∈ Λ, and t ∈ [0,∞),{(
q, V̂t(g)(q)

)
: q ∈ Rd

}
⊆ Ft(g).

�
When H is independent of q, then Ft can simply be described as

Ft(g) =
{(
q + t∇H(p), g(q) + t(p · ∇H(p)−H(p))

)
: q ∈ Rd, p ∈ ∂g(q)

}
=
{(
Q, g(q) + p · (Q− q)− tH(p)

)
: Q ∈ Rd, Q− q = t∇H(p), p ∈ ∂g(q)

}
=
{(
Q,At(x;Q; g)

)
: Q ∈ Rd, 0 ∈ ∂xA(x;Q; g)

}
,(5.1)

where At(q, p;Q; g) = At(x;Q; g) = g(q) + p · (Q− q)− tH(p).
Before examining some examples in dimension one, we define a type of discontinuity of

uq is will play an essential role as we compare variational solutions with viscosity solutions.

Definition 5.3 We say that a pair of momenta (p−, p+) satisfies the Oleinik Condition if
either p− > p+, and the graph of the restriction of H to [p−, p+] is above the chord connecting
(p−, H(p−)) to (p+, H(p+)), or p− < p+, and the graph of the restriction of H to [p−, p+] is
below the chord connecting (p−, H(p−)) to (p+, H(p+)). �
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Example 5.1 Assume that d = 1 and that H is independent of q. Set K(p) = pH ′(p)−H(p).
Then

Ft(g) =
{(
q + tH ′(p), g(q) + tK(p)

)
: q ∈ R, p ∈ ∂g(q)

}
.

For example, if g(q) = p−q11(q ≤ 0)+p+q11(q ≥ 0), with p− > p+, then Ft(g) = F−t ∪F0
t ∪F+

t ,
where

F−t =
{(
q + tH ′(p−), p−q + tK(p−)

)
: q ≤ 0

}
=
{(
q, p−q − tH(p−)

)
: q ≤ tv−

}
,

F+
t =

{(
q + tH ′(p+), p+q + tK(p+)

)
: q ≥ 0

}
=
{(
q, p+q − tH(p+)

)
: q ≥ tv+

}
,

F0
t =

{(
tH ′(p), tK(p)

)
: p ∈ [p+, p−]

}
,

with v± = H ′(p±). Note

F±t = tF±1 =: tF±, F0
t = tF0

1 =: tF0.

Hence we only need to determine F = F1. To analyze F further, we examine several cases:

(i) If H is strictly convex then H ′ is increasing. We then set L = K ◦(H ′)−1, which is simply
the Legendre transform of H. Moreover v− > v+, and

F0 =
{(
v, L(v)

)
: v ∈ [v+, v−]

}
.

Note that F± are lines that intersect at the point (q̄, ū) where q̄ = H[p−, p+], and ū =
p±q̄ −H(p±), with v̄ given by Rankine-Hugoniot Formula

H[p−, p+] =
H(p+)−H(p−)

p+ − p−
.

In fact the only continuous function û(·) such that the graph of û is a subset of F(g) is

(5.2) û(q) =
(
p−q −H(p−)

)
11
(
q ≤ v̄

)
+
(
p+q −H(p+)

)
11
(
q ≥ v̄

)
.

This yields the solution û(q, 1) = û(q) when t = 1. The general t follows from multiplying
the graph of u by t. The solution (5.2) is an example of a shock wave.

Observe that g = min{g−, g+}, with γ±(q) = qp±, and V̂t(g) = min
{
V̂t(g−), V̂t(g+)}.

This strong form of monotonicity is true for any pair of initial data g±, and is a consequence
of the convexity of H.

(ii) If H is strictly concave, then H ′ is decreasing. As before, we set L = K ◦ (H ′)−1, which
is now concave . It may be defined by

L(v) = min
p∈[p+,p−]

(vp−H(p)).
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Moreover, if v± = H ′(p±), then v− < v+, and

F0 =
{(
v, L(v)

)
: v ∈ [v−, v+]

}
.

In fact F(g) is the graph of a function u(·) that is given by

û(q) =
(
p−q −H(p−)

)
11
(
q ≤ v−

)
+
(
p+q −H(p+)

)
11
(
q ≥ v+

)
+ L(q)11

(
v− ≤ q ≤ v+

)
.

What we have is an example of a rarefaction wave.

(iii) We now relax the convexity assumption of part (i) to the Oleinik Condition. More
precisely, we assume that the graph of H : [p+, p−] → R lies below the chord connecting
(p+, H(p+)) to (p−, H(p−)). We claim that under Oleinik condition, the only possible u with
its graph subset of F1(g) = F(g), is given by (5.2). For this, it suffices to show that no point
of F0 can reach the set below the graph of u. Indeed by Oleinik Condition

H(p)−H(p+)

p− p+
≤ v̄ =

H(p+)−H(p−)

p+ − p−
≤ H(p−)−H(p)

p− − p
,

for every p ∈ [p+, p−]. Hence

v̄ ≤ q =⇒ H(p)−H(p+)

p− p+
≤ q =⇒ p+q −H(p+) ≤ pq −H(p),

v̄ ≥ q =⇒ H(p−)−H(p)

p− − p
≥ q =⇒ p−q −H(p−) ≤ pq −H(p).

Hence
û(q) ≤ min

p∈[p+,p−]
(pq −H(p)),

for every q. This means that the set F0 lies above the graph of û. On the other hand, if for
some point (H ′(p), pH ′(p)−H(p)) lies on the graph of û for some p ∈ [p+, p−], then

either v̄ ≤ q = H ′(p) =
H(p)−H(p+)

p− p+
or v̄ ≥ q = H ′(p) =

H(p−)−H(p)

p− − p
.

By Oleinik Condition, we must have v̄ = q, which implies that the only possible intersection
point between the graph of û and F0 is the corner point of the graph of û. This completes
the proof of our claim.

(iv) Assume that H(p+) = H(p−) = H ′(p−) = 0, H ′(p+) < 0, and H(p) < 0 for every
p ∈ (p+, p−). Then the Oleinik Condition is satisfied. We note that F− ends at the origin,
F+ passes through the origin, and F0 has two concave and convex pieces that are tangent
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to F− and F+ respectively. The shock location is the origin, and û(q, t) = g(q) for all
t ≥ 0. �

As Example 5.1 indicates, we may have a simple formula for the variational solution when
H is convex in momentum variable. Note that the action can be expressed in terms of the
Lagrangian because when ẋ = J∇H(x) for x = (q, p), then

p · q̇ −H(q, p) = L(q, q̇).

In fact in this case the variational solution is given by Lax-Oleinik Formula.

Theorem 5.1 For a Tonelli Hamiltonian function H, we have

(5.3) V̂Ht (g)(Q) = inf

{
g(q(0)) +

∫ t

0

L(q, q̇) ds : q(· ∈ C1[0, t], q(t) = Q

}
.

In particular if H is convex and independent of q, we may use (5.3) and (5.1) to write

V̂Ht (g)(Q) = inf
q

(
g(q)− tL

(
Q− q
t

))
(5.4)

= inf
q

sup
p

(
g(q) + p · (Q− q)− tH(p)

)
= inf

q
sup
p
At(q, p;Q; g).

This formula is not surprising; after all we are looking for a critical value of At(·;Q; g) that
is concave in p. So it is natural to try a simplex minimax critical value that happens to be
finite when H is convex.

In fact if we set t = 1, then the role of q and p are of the same flavor. Because of this,
we may wonder whether or not we have a simple formula for a variational solution when, for
example g is concave. This is indeed the case as the following result confirms.

Theorem 5.2 Assume that H is Tonelli and independent of q, and g is Lipschitz and con-
cave. Then

(5.5) V̂Ht (g)(Q) = inf
p

sup
q

(
g(q) + p · (Q− q)− tH(p)

)
.

The identity (5.5) is known as Hopf’s formula and can be rewritten as

(5.6) V̂Ht (g)(Q) = inf
p

(
p ·Q− g†(p)− tH(p)

)
=
(
g† + tH)†(Q),

where we have used † for the Legendre Transform:

g†(p) = inf
q

(
p · q − g(q)

)
.
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Note that
(
g + tH)† is always well-defined and a concave, even when H is not concave. If g

is convex instead, then (5.5) and (5.6) change to

(5.7) V̂Ht (g)(Q) = sup
p

inf
q

(
g(q) + p · (Q− q)− tH(p)

)
=
(
g∗ + tH)∗(Q),

where we have used ∗ for the Legendre Transform:

g∗(p) = sup
q

(
p · q − g(q)

)
.

Example 5.2(i) If the restriction of H to [p+, p−] consists of a collection of concave and
convex pieces, then the set F0 is a union of the graphs of the Legendre transforms of such
pieces. However, when g(q) = min{p−q, p+q} with p+ < p−, then g is concave, and the
corresponding function u depends only the the concave hull of the restriction of H to [p+, p−].
Indeed from (5.6), and the elementary fact that g†(p) = −∞11

(
p /∈ [p+, p−]

)
, we deduce

û(q, 1) = û(q) = min
p∈[p−,p+]

(
pq −H(p)

)
= min

p∈[p+,p−]

(
pq − Ĥ(p)

)
,

where Ĥ denotes the concave hull of the restriction of H to [p+, p−]. Note that the graph
of H is below the chord connecting

(
p+, H(p+)

)
to
(
p−, H(p−)

)
, iff the concave hull of the

restriction of H to [p+, p−] is this cord. If this is the case, then the Oleinik Condition is
satisfied, and we have a shock.The solution is simply given by

û(q) = min
p∈[p+,p−]

(
pq −H(p)

)
= min

{
p−q −H(p−), p+q −H(p+)

}
,

as in part (i). Note that the graph of u now can have pieces that lie on F0. In order to have
a feel for complex u could be, imagine that there are points p1, p2, p3 with p+ < p1 < p2 <
p3 < p− such that Ĥ = H in the set [p1, p2] ∪ [p3, p

−], and Ĥ 6= H in its complement. Then
the graph of u would have two pieces of F0 associated with the intervals [p1, p2] and [p3, p

−].
More precisely we may express the graph of u as F1 ∪ F2 ∪ F3 ∪ F4, where F1 = F−,

F2 =
{

(H ′(p), K(p)) : p ∈ [p3, p
−]
}
, F3 =

{
(H ′(p), K(p)) : p ∈ [p1, p2]

}
,

and F4 ⊂ F+. The momentum u′ consists of two rarefaction waves associated with F2 and
F3 that are separated by a discontinuity. The rarefaction F3 is separated from F4 by a shock
discontinuity.

(ii) Let us now assume that p− < p+. Then g is convex and we may apply (5.7) to assert

û(q, 1) = û(q) = max
p∈[p−,p+]

(
pq −H(p)

)
= max

p∈[p−,p+]

(
pq − H̃(p)

)
,
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where H̃ denotes the convex hull of H. In particular if the graph of the restriction of H
to [p−, p+] is above the chord connecting (p−, H(p−)) to (p+, H(p+)), then H(p±) = H̃(p±),
and

û(q, t) = max
{
qp+ −H(p+), qp− −H(p−)

}
.

In other words, the Oleinik Condition is satisfied and we have a shock discontinuity. �
We now turn to viscosity solutions.

Definition 5.3(i) Given a function u : Rk → R, we write ∂̄u(z) for the set of vectors a ∈ Rk

such that
lim sup
h→0

|h|−1
(
u(z + h)− u(z)− a · h) ≤ 0.

Equivalently, a ∈ ∂̄u(z) iff there exists a C1 function ϕ : Rk → R such that ϕ(z) = u(z),
∇ϕ(z) = a, and u ≤ ϕ. Similarly, a ∈ ∂u(z) iff

lim inf
h→0

|h|−1
(
u(z + h)− u(z)− a · h) ≥ 0.

Equivalently, a ∈ ∂u(z) iff there exists a C1 function ϕ : Rk → R such that ϕ(z) = u(z),
∇ϕ(z) = a, and u ≥ ϕ.

(ii) We say a uniformly continuous function u : Rd × [0,∞) → R is a solution of (1.10) if
for every (p, r) ∈ ∂̄u(q, t), t > 0 satisfies r+H(q, p) ≤ 0, and for every (p, r) ∈ ∂u(q, t), t > 0
satisfies r +H(q, p) ≥ 0. �

Example 5.3 Assume that u : Rk → R is continuous and there exists a C1 surface Γ of
codimension one such that u is C1 on Rk \ Γ. Write u± for the restriction of u on each side
of Γ. (This is well-defined for points near Γ.) We assume that u± are C1 functions up to the
boundary points on Γ. Pick a point on Γ. We wish to determine ∂̄u(a) in terms of ∇u±(a).
Assume that v ∈ ∂̄u(a) 6= ∅. Let us write TaΓ for the tangent fiber at a to Γ, Pa for the
orthogonal projection onto TaΓ, and νa for the unit normal vector at a that points from
−-side (on which u− is defined) to the +-side (on which u+ is defined). First take a smooth
path γ : (−δ, δ)→ Γ with γ(0) = a, γ̇(0) = τ . Using v ∈ ∂̄u(a), and(

d

dt
u ◦ γ

)
(0) = ∇u±(a) · τ,

we deduce that ∇u±(a) · τ ≤ v · τ . This also being also true for −τ ∈ TaΓ implies that
∇u±(a) · τ = v · τ . Hence ∇u+(a) − ∇u−(a) is orthogonal to TaΓ. This is not surprising
and follows from the continuity of u; since u+ = u− on Γ, we have that the τ -directional
derivative of u+ and u− coincide whenever τ ∈ TaΓ. Now if we vary a in the direction of νa
or −νa, we deduce

∇u+(a) · νa ≤ v · νa, ∇u−(a) · (−νa) ≤ v · (−νa).
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Equivalently,
∇u+(a) · νa ≤ v · νa ≤ ∇u−(a) · νa.

Hence, if ∂̄u(a) 6= ∅, then Pa∇u+(a) = Pa∇u−(a), ∇u+(a) · νa ≤ ∇u−(a) · νa, and

∂̄u(a) =
{
Pa∇u±(a) + rνa : a ∈

[
∇u+(a) · νa,∇u−(a) · νa

]}
.

Likewise, if ∂u(a) 6= ∅, then Pa∇u+(a) = Pa∇u−(a), ∇u+(a) · νa ≥ ∇u−(a) · νa, and

∂u(a) =
{
Pa∇u±(a) + rνa : a ∈

[
∇u−(a) · νa,∇u+(a) · νa

]}
.

In summary, we always have Pa∇u+(a) = Pa∇u−(a), and there are three possibilities:

∇u+(a) · ν = ∇u−(a) · ν =⇒ ∂̄u(a) = ∂u(a) = {∇u±(a)},
∇u+(a) · ν < ∇u−(a) · ν =⇒ ∂̄u(a) 6= ∅, ∂u(a) = ∅,
∇u+(a) · ν > ∇u−(a) · ν =⇒ ∂̄u(a) = ∅, ∂u(a) 6= ∅.

�
In Example 5.1(i), (iii), (iv), and Example 5.2, we have variational solutions for which

ûq has shock discontinuities. In all these examples, the jump discontinuity of ûq satisfies an
Oleinik Condition. However it is known that in general Oleinik condition may be violated for
a variational solution. Several explicit examples have been discovered for such a violation.
The following recent example is due V. Roos (2017). The idea is that in Example 5.1(iv)
Oleinik Condition is satisfied but a small perturbation of p± may lead to a violation of
Oleinik Condition. Indeed if we change p− to p− − η for some small η > 0, then we can find
small η′ > 0 such that the Oleinik Condition is violated for the left and right limits p+ + η′

and p−− η. This may be achieved by perturbing the right arm of the graph of g by a convex
function.

Theorem 5.3 Assume d = 1, and H ∈ C2 is independent of q. Assume that p+ < p−,
H(p+) = H(p−) = H ′(p−) = 0 > H ′(p−), and H(p) < 0 for every p ∈ (p+, p−). Let f ∈ C2

be a strictly Lipschitz convex function with f(0) = f ′(0) = 0 and set

g(q) = p−q11(q ≤ 0) +
(
p+q + f(q)

)
11(q ≥ 0).

Then there exists t0 > 0 such that for every t ∈ (0, t0), there exists a point q(t) > 0 such
that for every variational solution ûq(q, t) is discontinuous at q(t). Moreover the momenta
ûq(q(t)±, t) violate the Oleinik Condition.

Proof (Step 1) As before, Ft(q) = F+
t ∪ F0

t ∪ F−t , where

F+
t = tF̂+

t =
{
t
(
q +H ′(g′(tq)), t−1g(tq) +K(g′(tq))

)
: q > 0

}
,

F−t = F− =
{(
q, qp−

)
: q < 0

}
,

F0
t = tF0 =

{
t
(
H ′(p), K(p)

)
: p ∈ [p+, p−]

}
.
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Note that the sets F− and F0 are independent of f and the same as what we had in
Example 5.1(iv). Let us write

F+ =
{(
q, qp+ +H(p+)

)
: q > H ′(p+)

}
,

which is what we get when f = 0 and t = 1.
We now examine the set F+

t . We claim that for t ∈ (0, t0), with

t0 =
[

sup
q
|H ′′(q)| sup

q
|f ′′(q)|

]−1
,

the set F+
t is a graph of a convex function that is above tF+, and is tangent to tF+ at its

end point. For convexity, observe that if

a(q) = q +H ′(g′(tq)), b(q) = t−1g(tq) +K(g′(tq)),

then a′(q) = 1 + tH ′′(g′(tq))g′′(tq) = 1 + tH ′′(g′(tq))f ′′(tq) > 0, and

b′(q) = g′(tq) + tg′(tq)H ′′(g′(tq))g′′(tq) = g′(tq)a′(tq).

Hence the slope of F+
t at the point t(a(q), b(q)) is g′(tq). Since both a′ and g′ are increasing,

F+
t is convex. At q = 0 this slope is p+, which means that the line F+ is tangent to F̂+

t at
its end point (a(0), b(0)), hence it lies above this line.

(Step 2) For small δ > 0, the set

F̂0
t = tF̂0 =

{
t
(
H ′(p), K(p)

)
: p ∈ [p− − δ, p−]

}
,

is a graph of concave function that starts from the origin and lies below a line of slope p−

that passes through the origin. As a result, the set F+
t will intersect F̂0

t at some point
t(a(qt), b(qt)), qt > 0, for small and positive t. One can see this by comparing the set F̂+

t

with F̂0 and find an intersection point for these two sets. Observe that the set F̂+
t is above

F+ and tangent to F+ at its end point. Moreover, since

g′(tq) = p+ + f ′(tq) = p+ + o(1), t−1g(tq) = qp+ + t−1f(tq),

we have that F̂+
t → F+ as t→ 0. This means that the sets F̂+

t and F̂0 intersect at a some
point (a(qt), b(qt) near the origin for small t. This means that the variational solution u(q, t)
has a corner at tqt. The left and right derivatives of u(·, t) at tqt, are given by the slope of
F0
t and F+

t at the point t(a(qt), b(qt)). The right derivative is given by g′(qt) as we showed
in Step 1. For the right derivative, if for some p̂− ∈ [p−− δ, p−], we have H ′(p̂) = a(qt), then

b(qt) = p̂H ′(p̂−)−H(p̂−),
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and the tangent vector to F̂0
t at (a(qt), b(qt)) is

(
H ′′(p̂−), p̂−H ′′(p̂−)

)
, which has a slope p̂−.

It remains to show that the Oleinik Condition is violated for the left and right momenta p̂−

and p̂+ := g′(qt).

(Final Step) For small t, we have p̂− = p− + o(1), p̂+ = p+ + o(1). So p̂− < p̂+. By
H ′(p̂−) = a(qt), we know that H ′(p̂+) = H ′(p̂−)− qt. Hence,

p̂−H ′(p̂−)−H(p̂−) = b(qt) = t−1g(tqt) + p̂+H ′(p̂+)−H(p̂+)

= t−1g(tqt)− p̂+qt + p̂+H ′(p̂−)−H(p̂+).

Equivalently,

(p̂−−p̂+)H ′(p̂−)+H(p̂+)−H(p̂−) = t−1
(
g(tqt)−g′(qt)tqt

)
= t−1

(
f(tqt)−f ′(tqt)tqt

)
=: ϕ(qt).

We note that ϕ(0) = 0 and ϕ′(q) < 0 for q > 0 by convexity of f . As a result,

(p̂− − p̂+)H ′(p̂−) < H(p̂−)−H(p̂+).

This violates the Oleinik Condition because p̂+ < p̂−. �
As we will see in Exercise(i) below, the Oleinik Condition is always satisfied by the pair

(uq(q−, t), uq(q+, t) at every discontinuity point (q, t) of uq, where u is a viscosity solution.
Hence the variational solution of Theorem 5.3 is not a viscosity solution. We now explore
the viscosity solution for H and g as in Theorem 5.3.

Example 5.4 Let H and g be as in Theorem 5.3. Assume that H is concave near p−, and
for some δ, δ1, δ2 > 0,{

p ∈ [p+, p−] : H(p) ∈ [−δ, 0]
}

= [p+, p+ + δ1] ∪ [p− − δ2, p
−].

Choose δ− < δ2, δ
+ < δ1 such that for each p ∈ [p+, p+ + δ+], there is unique ψ(p) ∈

[p− − δ−, p−] such that ψ(p+) = p−, and

(5.8) H
(
ψ(p)

)
−H(p) = H ′

(
ψ(p)

)(
ψ(p)− p

)
.

We claim that the viscosity solution u as a corner at q(t) such that q(0) = 0, and for small t,

(5.9) q̇(t) = H ′
(
p−(t)

)
, p−(t) = ψ

(
p+(t)

)
,

where p±(t) = uq
(
q(t)±, t) represent the left and right values of uq at q(t). We now express

p+(t) in terms of q(t), so that the ODE (5.9) can be solved uniquely for the initial condition
q(0) = 0. For this, let us write h : [p+,∞) → [0,∞) for the Legendre transform of g :
[0,∞) → (−∞, 0], so that h′(p+) = 0, and g′(q) = ρ iff h′(ρ) = q. Note if for q, we have
q(t) = q + tH ′(g′(q)), then p+(t) = g′(q). Equivalently,

q(t) = h′(ρ) + tH ′(ρ), p+(t) = ρ.
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Let us write `(q, t) for the inverse of ρ 7→ h′(ρ) + tH ′(ρ), that is increasing and well-defined
for small t. This gives us the formula

p+(t) = `
(
q(t), t

)
,

which allows us to express p−(t) as a function of q(t). The function `(q, t) can be expressed
as ` = wq, where w solves the HJE with initial condition g(q), q ≥ 0, and our formula for `
is compatible with (5.7). In particular

`t +H ′(`)`q = 0.

We note that q̇(0) = 0 but q̇(t) > 0 for t > 0 and small because H ′
(
p−(t)

)
> 0. On the other

hand,
ṗ+(t) = `t

(
q(t), t

)
+ `q

(
q(t), t

)
q̇(t) = `q

(
q(t), t

)(
H ′(p−(t))−H ′(p+(t))

)
.

Since `q > 0, H ′(p−(t)) > 0, H ′(p+(t)) < 0, we deduce that p+(t) is increasing as a function
of t. Since ψ is decreasing, we learn that p−(t) is decreasing. On the other hand,

q̈(t) = H ′′
(
p−(t)

)
ṗ−(t) > 0,

for small t. This means that q(·) as a function of t is convex. Here how the viscosity solution
for short times look like:

• For Q > q(t) we have u(Q, t) = g(q) + tK(ρ), where ρ = `(Q, t), and g′(q) = ρ.

• For Q ≤ 0, we have u(Q, t) = p−Q.

• For Q ∈ [0, q(t)], we first set Q(s, t) = q(s) + (t − s)H ′(p−(s)), for s ≥ t. We
note that Qs = (t − s)H ′′(p−(s))ṗ−(s) > 0, so that s 7→ Q(s, t) is increasing with
Q(0, t) = 0, Q(t, t) = q(t). Its inverse is denoted by s(Q, t), and u(Q, t) = u(q(s)) +
(t− s)H ′(p−(s)), for s = s(Q, t).

What we have constructed is a viscosity solution because it solves HJE outside the set{
(q(t), t) : t ∈ [0, δ)

}
for small δ, and on this set the Oleinik Condition is satisfied. It also

coincides with g initially. So u must be the unique viscosity solution.
For comparison, let us write û for the variational solution which has a corner at q̂(t) with

the left and right momenta at q̂(t) given by p̂±(t). Indeed

H
(
p−(t)

)
−H

(
p+(t)

)
−H ′

(
p−(t)

)(
p−(t)− p+(t)

)
= 0,

H
(
p̂−(t)

)
−H

(
p̂+(t)

)
−H ′

(
p̂−(t)

)(
p̂−(t)− p̂+(t)

)
= t−1

(
q̂(t)g′(q̂(t))− g(q̂(t))

)
> 0.

Hence p−(t) = ψ
(
p+(t)

)
, but p̂−(t) > ψ

(
p̂+(t)

)
. From this we can deduce

q̇(t) = H ′
(
p−(t)

)
= H ′

(
ψ(p+(t))

)
, but

dq̂

dt
(t) = H

[
p̂+(t), p̂−(t)

]
< H ′

(
ψ(p̂+(t))

)
.
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Since q(0) = q̂(0) = 0, and

p+(t) = `(q(t), t), p̂+(t) = `
(
q̂(t), t

)
,

we deduce that q̂(t) ≤ q(t) for t > 0. Note that u(q, t) = û(q, t) for q /∈ (0, q(t)). We now
that u(q, t) < û(q, t) if q ∈ (0, q(t)), and t is small. For this it suffices to show that if ρ = uq
and ρ̂ = ûq, then ρ̂(q, t) < ρu(q, t) for q ∈ (0, q(t)). Simply because

u(q, t) = u(q(t), t)−
∫ q(t)

q

ρ(a, t) da = û(q(t), t)−
∫ q(t)

q

ρ(a, t) da

< û(q(t), t)−
∫ q(t)

q

ρ̂(a, t) da = û(q, t).

We first consider the case q ∈ (q̂(t), q(t)). For small t, ρ̂(q, t) = ρ̂(q0, 0) = g′(q0) for some
q0 that is close to 0. Hence ρ̂(q, t) is close to p+. However, on the other side of the jump
discontinuity, we have ρ(q, t) that is close to ρ−. Hence larger than ρ̂. In the same fashion
we can show that ρ > ρ̂ for q ∈ (0, q̂(t)) and small t. �

As we have seen in the proof of Theorem 5.3, we can easily calculate solution for small
times if the second derivative of the initial data is uniformly bounded.

Proposition 5.1 Assume that D2H and D2g are uniformly bounded and g is C1 and Lips-
chitz. Write u and û for viscosity and variational solution with initial condition g. Then for
t ≥ t0 (with t0 depending on the bounds on D2H and ∇g only), we have

u(Q, t) = û(Q, t) = g(q(0)) +

∫ t

0

[p · q̇ −H(q, p)] ds,

where (q(s), p(s)) = φs
(
q(0),∇g(q(0))

)
is the unique Hamiltonian orbit such that q(t) = Q.

Proof We can readily show that the map F (a) = q(t) where (q(s), p(s)) = φs
(
a,∇g(a)

)
, is

a homeomorphism. �

Theorem 5.4 (Bernard) Assume that D2H is uniformly bounded and g is Lipschitz. We
also assume that D2g is either uniformly bounded above, or uniformly bounded from below.
Write u and û for viscosity and variational solution with initial condition g. Then there
exists t0 > 0 that depends only on the bounds on D2H and ∆2g such that the following are
true for t ≥ t0:

(i) u(q, t) ≤ û(q, t).

• If D2g is bounded from above, then

(5.10) û(q, t) = inf
{
u : (q, u) ∈ F(q)

}
.
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• If D2g is bounded from below, then

(5.11) û(q, t) = sup
{
u : (q, u) ∈ F(q)

}
.

Proof Assume that D2g is bounded from above by c0. Then we can find a family G of C2

Lipschitz functions such that

g = inf
ĝ∈G

ĝ, sup
ĝ∈G

sup
q
|D2ĝ(q)| ≤ c0,

and for every a ∈ Rd, and p ∈ ∂g(a), there exists ĝ ∈ G such that g(a) = ĝ(q), and∇ĝ(a) = p.
Now given Q, pick (a, p) such p ∈ ∂g(a), and if (q(s), p(s)) = φs(a, p), then q(t) = q. Pick
ĝ ∈ G such that g(a) = ĝ(q), and ∇ĝ(a) = p. We then have

Vtg(Q) ≤ Vtĝ(Q) = V̂tĝ(Q) = g(a) +

∫ t

0

[p · q̇ −H(q, p)] ds

V̂tg(Q) ≤ V̂tĝ(Q) = g(a) +

∫ t

0

[p · q̇ −H(q, p)] ds.

As a result,

Vtg(Q) ≤ inf
{
u : (q, u) ∈ F(q)

}
≤ V̂tg(Q)

V̂tg(Q) ≤ inf
{
u : (q, u) ∈ F(q)

}
.

�

5.1 Variational selectors

We now give a recipe for the construction of variational solutions in discrete setting. Recall
that we write Λ for the set of Lipschitz functions, and Λr for the set of g ∈ Λ such that
|g(q)− g(q′)| ≤ r|q − q′|. Recall that a variational solution un(Q) is a critical value of

A(xn;Q; g) = g(q0) +
n∑
i=1

[
pi−1 · (qi − qi−1)− w(pi−1, qi)

]
,

where qn = Q, and xn = (x0, . . . , xn−1), with xi ∈ (qi, pi) ∈ R2d. We assume that w : R2d →
R is a C1 and Lipschitz function. We may write A = `+ f , where ` is a quadratic function
and f is a Lipschitz function. Writing xn = x = (q, p) ∈ Rk for k = 2nd, then

`(x) =
1

2
Bx · x =

n−1∑
1

pi−1 · (qi − qi−1)− pn−1 · qn−1,
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where B is a matrix of the form

B =

[
0 D
Dt 0

]
,

where D is a matrix which has −1 on its main diagonal, 1 right above the main diagonal,
and 0 anywhere else. As a result, ` is a non-degenerate quadratic form. Because of the very
form of A, we make the following definition.

Definition 5.4(i) We write Qk for the set of non-degenerate quadratic functions ` : Rk → R.
In other words, `(x) = 1

2
Bx · x for a nonsingular symmetric matrix B. We write Ωk(`; r) for

the set of functions F : Rk → R such that F = `+ f for some f ∈ Λr. We write

Q = ∪∞k=1Qk, Ωk = ∪∞r=1 ∪`∈Qk Ωk(`; r), Ω = ∪∞k=1Ωk.

(ii) We call C : Ω→ R a em variational selector if it satisfies the following conditions:

(1) If F ∈ Ω and F ∈ C1, then C(F ) = F (x̄), for some x̄ with ∇F (x̄) = 0.

(2) If f1, f2 ∈ Λ, with f1 ≤ f2, and ` ∈ Q, then C(`+ f1) ≤ C(`+ f2).

(3) C(F + c) = C(F ) + c, for every F ∈ Ω and c ∈ R.

(4) If F ∈ Ω is bounded below, then C(F ) = minF .

(5) If ψ : Rd → Rd is a Lipschitz smooth diffeomorphism, and F ∈ Ωk, then C(F ) =
C(F ◦ ψ).

(6) If F ∈ Ωk, `
′ ∈ Qk′ , and F ′(x, y) = F (x) + `′(y), then C(F ′) = C(F ).

�

Once a variational selector is known, then we can use it to construct a variational solution
by setting

(5.12) V̂n(g)(Q) = C
(
A(·;Q; g)

)
.

As we mentioned before we use Lusternik-Schnirleman (LS) Theory to construct a selec-
tor. Before we give a precise recipe for C, we make some remarks:

Proposition 5.2 (i) If F ∈ Ωk(`; r), with F = `+ f , ` ∈ Qk, and ∇F (x̄) = 0, then

|x̄| ≤ rδ(B)−1, where δ(`) = inf
|x|=1
|Bx|.

(ii) If `+ f = `′ + f ′, for f, f ′ ∈ Λ, `, `′ ∈ Qk, then ` = `′, and f = f ′.

64



Proof(i) At a critical point x̄ we have Bx̄ = −∇f(x̄), which implies

δ(B)|x̄| ≤ |Bx̄| =
∣∣∇f(x̄)

∣∣ ≤ r,

as desired.

(ii) If `+f = `′+f ′, then `′′ = f ′′, where `′′ = `′− `, f ′′ = f −f ′. Since f ′′ is Lipschitz, then
`′′ = 0. In fact if `′′(x) = B′′x · x, and v is an eigenvector of B′′ associated with eigenvalue
λ, then ϕ(t) = λ|v|2t2 must be Lipschitz in t, which is impossible unless λ|v|2 = 0. �

LS Theory is normally applied to continuous maps F : M → R, for a compact manifold
M . In our case the non-degenerate quadratic function ` make up for the lack of compactness.
A standard way to find a critical value of F is by designing a collection F of subsets of Rk

such that
c(F,F) = inf

A∈F
sup
A
F,

is a critical value of F . This is guaranteed if the collection F satisfies the following property:

A ∈ F , t > 0 =⇒ ϕφFt (A) ∈ F ,

where ϕφt denotes the flow of the vector field −∇F . To have a universal collection F that
words for all F , we assume two properties for F :

(1) If A ∈ F , and ϕ is a homeomorphism, then ϕ(A) ∈ F .

(2) If A ∈ F , and A ⊂ B, then B ∈ F .

Note that the second property is harmless can always be assumed because we take an infimum
over subsets of A ∈ F . Especially this property implies

(5.13) c(F,F) = inf
A∈F

sup
A
F = inf

r∈R

{
r : Mr(F ) ∈ F

}
,

where
Mr(F ) =

{
x : F (x) < r

}
.

Indeed if we write c and c̄ for the left and right-hand sides of the second equality in (5.12),
then for any a > c, we can find A ∈ F such that supA F ≤ a, which means that A ⊆MF (a).
This in turn implies that Ma(F ) ∈ F , which leads to ĉ ≤ c. In the same fashion, we can
verify c ≤ ĉ.

It remains to design a family F such that (1) and (2) hold, and c(F,F) is finite. Once
such a family is found, we set F(F ) = c(F,F). In view of (5.13), and property (1), we my
choose F the collection of sets with certain degree of topological complexity, so that c(F,F)
is the first r for which the sublevel set Mr(F ) reaches such complexity. We now describe the
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LS strategy. Write Ω0
k(`, r0) for the set of F ∈ Ωk(`, r0) such that F (0) = 0. Let us consider

F ∈ Ω0
k(`, r0), with `(x) = 1

2
Bx · x. Set c0 = r0δ(B)−1, and c1 = r0c0,so that

∇F (x̄) = 0 =⇒ |x̄| ≤ c0 =⇒ |F (x̄)| ≤ c1.

Note that ` has a single critical point at the origin. Hence for a < 0 < b, the sets Mb(`)
is topologically more complex than Ma(`). Since F is a Lipschitz perturbation of `, and all
critical values of F are in the interval [−c1, c1], we expect Mc1(F ) to be topologically more
complex than M−c1(F ). We wish to design a collection F that captures such complexity.
Relative Cohomology Classes allow us to measure such complexity.

Definition 5.5 Given two open sets A ⊂ B, we write Λj(B,A) for the set of closed j forms
α in B such that the restriction of α to the set A is exact. We write α ∼ β for two forms in
Λj(B,A) such that β − α is exact in B. We write Hj(B,A) for the set of equivalent classes
and H∗(B,A) for the union of Hj(B,A), j = 0, 1, . . . . �

For example, for a < 0 < b, one can show that H∗
(
Mb(`),Ma(`)

)
is the same as

H∗(D, ∂D), where D is a disc in Rr− , with r− denoting the number of the negative eigen-
values of B. In fact the set M−c1(F ) is homeomorphic to M−c1(`), and we may define

C(F ) = inf
{
r : H∗

(
Mr(F ),M−c1(F )

)
6= 0
}

= sup
{
r : H∗

(
Mr(F ),M−c1(F )

)
= 0
}
.

More generally, we may take any α ∈ H∗
(
Mb(`),Ma(`)

)
, and set

C(F ;α) = inf
{
r : the restriction of α to Mr(F ) is not exact

}
= sup

{
r : the restriction of α to Mr(F ) is exact

}
.

5.2 Game Theory

We now offer a way of constructing viscosity solutions. For our purposes, it is more convenient
to solve the final value problem

(5.14)

{
ut +H(q, uq) = 0, t < T,

u(q, T ) = g(q).

We assume that H is of the following form

H(q, p) = inf
z∈Z

Ĥ(q, p; z) = inf
z∈Z

sup
v

(
p · v − L̂(q, v; z)

)
,

where Z is some measure space, H(q, p; z) is convex in p for each z ∈ Z, and we writing
L̂(q, v; z) for its Legendre transform in the p-variable. We assume that the family

{
L̂(·, ·; z) :
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z ∈ Z
}

is Tonelli, uniformly in z: There exist constants η0 > 1, δ0 > 0, and a0 such that

L̂(q, v; z) ≥ L0(v) := δ0|v|η0 − a0, sup
|v′|≤1

L̂(q, v′; z) ≤ a0,(5.15)

lim
δ→0

sup
z′∈Z

sup
|x|≤1

sup
|x−x′|≤δ

∣∣Ĥ(x′; z′)− Ĥ(x; z′)
∣∣ = 0,

for all q, v ∈ Rd and z ∈ Z.

Definition 5.6 We write V (t) for the set of bounded measurable maps v : [t, T ] → Rd,
and Z(t, T ) for the set of measurable maps z : [t, T ] → Z. We write ∆(t, T ) for the set of
strategies. By a strategy, we mean a map α : Z(t, T )→ V (t, T ) such that if t < s ≤ T , and
z = z′ on [t, s], then α[z] = α[z′] on [t, s]. �

We are now ready to offer a solution to (5.14). For t ≤ T , set

(5.16) u(q, t) = VTt (g)(q) = sup
α∈∆(t,T )

inf
z∈Z(t,T )

[
g(q(T ))−

∫ T

t

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ

]
,

where q(·) is uniquely specified by the requirements q(t) = q, and q̇ = α[z] =: v. In other
words, for θ ∈ [t, T ],

q(θ) = q +

∫ θ

t

α[z](θ′) dθ′.

Note that we may write q̇(θ) = Ĥp

(
q(θ), p(θ); z(θ)

)
, where

p(θ) = L̂v
(
q(θ), α[z](θ); z(θ)

)
.

In terms of p(·), we have

L
(
q(θ), q̇(θ); z(θ)

)
= p(θ) · q̇(θ)−H

(
q(θ), p(θ); z(θ)

)
.

Note that when H is not convex in p, the relationship v = Hp(q, p) is no longer invertible in

p for a every q. However, if we specify z, then we can invert p 7→ Ĥp(p, q; z). The role of the
path q(·) is the same as the characteristic. The optimal path still solves the Hamiltonian
ODE locally, but it is allowed to have corners. This is when we switch from one lael z to
another.

Theorem 5.5 The function u as in (5.15) is a viscosity solution of (5.14).

The main ingredient for the proof of Theorem 5.5 is the following dynamic programming
optimality condition:
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Theorem 5.6 For s ∈ [t, T ], we have

(5.17) VTt (g)(q) = sup
α∈∆(t,s)

inf
z∈Z(t,s)

[
VTs (g)(q(s))−

∫ s

t

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ

]
.

Proof Fix q. We write u and u′ for the left and right hand sides of (5.6) respectively. We
carry out the proof in two steps. First we pick c < u′. We wish to show that c < u. For this,
first from c < u′, we know that there exists β ∈ ∆[t, s] such that for all y ∈ Z(t, s), we have

c < VTs (g)(q(s))−
∫ s

t

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ,

with q(θ) = q +
∫ θ
t
β[y](θ′) dθ′. Now given a = q(s), we can find γa ∈ ∆(s, T ) such that for

every w ∈ Z(s, T ), we have

(5.18) c < g(q(T ))−
∫ T

s

L̂
(
q(θ), q̇(θ);w(θ)

)
dθ −

∫ s

t

L̂
(
q(θ), q̇(θ); y(θ)

)
dθ,

where

q(θ) = q(s) +

∫ θ

s

γq(s)[w](θ′) dθ′ = q +

∫ s

t

β[y](θ′) dθ′ +

∫ θ

s

γq(s)[w](θ′) dθ′,

for θ ∈ [s, T ]. We now construct α ∈ ∆(t, T ) as follows: Given z ∈ Z(t, T ), we set

α[z](θ) =

{
β
[
z �[t,s]

]
(θ), θ ∈ [t, s]

αq(s)
[
z �[s,T ]

]
(θ), θ ∈ (s, T ],

where q(s) = q +
∫ s
t
β
[
z �[t,s]

]
(θ) dθ. For this α, (5.18) means

c < g(q(T ))−
∫ T

t

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ,

for every z ∈ Z(t, T ). This completes the proof of u′ ≤ u.
We now turn to the proof of u ≤ u′. Pick c < u, and choose α ∈ ∆(t, T ) such that for

every z ∈ Z(t, T )

c < g(q(T ))−
∫ T

t

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ

= g(q(T ))−
∫ T

s

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ −

∫ s

t

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ.
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We the define β ∈ ∆(t, s) as follows: for every y ∈ Z(s, t), we have β[y] = α[y′], where
y′ ∈ Z(t, T ), is any extension of y. For this β, we wish to show that for every y ∈ Z(t, s),

c < VTs (g)(q(s))−
∫ s

t

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ,

where q(θ) = q +
∫ θ
t
β[y](θ′) dθ′ for θ ∈ [t, s]. Given y ∈ Z(s, t), we need to come up with a

family of strategies γa ∈ ∆(s, T ) such that for every w ∈ Z(s, T ), we have

c < g(q(T ))−
∫ T

s

L̂
(
q(θ), q̇(θ);w(θ)

)
dθ −

∫ s

t

L̂
(
q(θ), q̇(θ); y(θ)

)
dθ,

This is achieved by setting
γq(s)[w] = α[y ⊕ w],

where

(y ⊕ w)(θ) =

{
y(θ), θ ∈ [t, s],

w(θ) θ ∈ [s, T ].

�
As our next step we show that we can always restrict α in (5.17) to those with bounded

range:

Proposition 5.3 If g is Lipschitz with Lipschitz constant r, then the supremum in (5.17)
can be restricted to those α such that

(5.19) M(α) := sup
z∈Z(t,T )

M(α, z) := sup
z∈Z(t,T )

[
1

T − t

∫ T

t

∣∣α[z](θ)
∣∣η0 dθ] 1

η0

≤ C0,

where

C0 = C0(r, δ0, η0, a0) = 2α0 +

(
r + 1

δ0

) 1
η0−1

.

Proof Assume that g ∈ Λr. Write

A
(
q;α, z(·)

)
:= g(q(T ))−

∫ T

t

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ,

with q(·) as in (5.16). We certainly have

A
(
q;α, z(·)

)
≤ g(q) + r

∣∣∣∣∫ T

t

α[z] dθ

∣∣∣∣+ a0(T − t)− δ0(T − t)M(α)η0

≤ g(q) + r(T − t)M(α) + a0(T − t)− δ0(T − t)M(α)η0 .
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On the other hand,

A
(
q; 0, z(·)

)
= g(q)−

∫ T

t

L̂
(
q, 0; z(θ)

)
dθ ≥ g(q)− a0(T − t).

In (5.16), we may ignore those α such that

inf
z∈Z(t,T )

A
(
q;α, z(·)

)
< g(q)− a0(T − t).

For this, it suffices that for some z(·) ∈ Z(t, T ), we have

r(T − t)M(α, z) + a0(T − t)− δ0(T − t)M(α, z)η0 < −a0(T − t)

Equivalently,
δ0M(α, z)η0 − rM(α, z)− 2a0 > 0.

This inequality is valid if

M(α, z) > C0 := 2α0 +

(
r + 1

δ0

) 1
η0−1

.

In summary, we may ignore those α such that

sup
z∈Z(t,T )

M(α, z) > C0.

We are done. �
With the aid of (5.19), we can show the regularity of of u = Vt(g).

Theorem 5.7 Assume that g ∈ Λr. Then the following statements are true:

(i) The value of u(q, t) =
(
VTt g

)
(q) depends only on the restriction of g to the set

BC0(T−t)(q) :=
{
q′ : |q′ − q| ≤ C0(T − t)

}
.

(ii) The value of u(q, t) =
(
VTt g

)
(q) depends only on the restriction of Ĥ to the set

BC0(T−t)(q)× Rd × Z =
{

(q′, p, z) ∈ R2d × Z : |q′ − q| ≤ C0(T − t)
}
.

(iii) We have

(5.20) −a0(T − t) ≤ u(q, t)− g(q) ≤ C1(T − t),

where C1 = C1(r) = a0 + c1r
η1, for constants η1 = (η0 − 1)/η0, and c1 = c1(δ0, η0).

70



(iv) Assume that s ∈ [t, T ]. Then

(5.21) −a0(s− t) ≤ u(q, t)− u(q, s) ≤ C1(s− t).

(v) For every t < T , and q, q′ ∈ Rd, we have

(5.22) |u(q′, t)− u(q, t)| ≤ (C1 + a0 + r)|q′ − q|.

Proof(i) The dependence of u on the final data is of the form g(q(T )) with

|q(T )− q| =
∣∣∣∣∫ T

t

α[z] dθ

∣∣∣∣ ≤ C0(T − t),

by Proposition 5.19.

(ii) The spatial dependence of L̂ is q(θ) with θ ∈ [t, T ]. We are done because |q(θ) − q| ≤
C0(T − t).
(iii) By choosing the strategy α = 0 in the definition of u we get

u(q, t) ≥ g(q)− a0(T − t).

On the other hand, by the Lipschitzness of g and (5.15),

u(q, t) ≤ g(q) + sup
α∈∆(t,T )

inf
z∈Z(t,T )

[
r|q(T )− q| −

∫ T

t

L0

(
q̇(θ)

)
dθ

]
≤ g(q) + sup

α∈∆(t,T )

inf
z∈Z(t,T )

[
r|q(T )− q| − (T − t)L0

(
q(T )− q(t)
T − t

)]
= g(q) + sup

Q

[
r|Q− q| − (T − t)L0

(
Q− q
T − t

)]
= g(q) + (T − t) sup

a≥0

[
ra− δ0a

η0 + a0

]
= g(q) + (T − t)

[
a0 + c1r

η1
]
,

as desired.

(iv) Set δ = s− t. From (5.17) and since L̂ does not depend on t,

u(q, t) =
(
VTs−δg

)
(q) =

(
VT−δs−δ

(
VTT−δg

))
(q) =

(
VTs
(
VTT−δg

))
(q).

From this, u(q, t) = VTs g(q), and the contraction of the operator VTs ,

inf
(
VTT−δg − g

)
≤ u(q, t)− u(q, s) ≤ sup

(
VTT−δg − g

)
.
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This and (5.20) yield (5.21).

(v) Set ρ = |q − q′|. First we assume that ρ ≥ T − t. We then use (5.20) to write

u(q′, t)− u(q, t) ≤ (C1 + a0)(T − t) + g(q′)− g(q)

≤ (C1 + a0)(T − t) + r|q′ − q|
≤ (C1 + a0 + r)|q′ − q|.

Hence

(5.23) |q′ − q| ≥ T − t =⇒ |u(q′, t)− u(q, t)| ≤ (C1 + a0 + r)|q′ − q|.

On the other hand, when ρ < T − t, we use (5.12) and Proposition 5.3 to write

u(q, t) = sup
α∈∆(t,t+ρ)

inf
z∈Z(t,t+ρ)

[
u
(
q(t+ ρ), t+ ρ

)
−
∫ t+ρ

t

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ

]
.

From this and (5.21) we learn

u(q, t) ≥ sup
α∈∆(t,t+ρ)

inf
z∈Z(t,t+ρ)

[
u
(
q(t+ ρ), t

)
−
∫ t+ρ

t

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ

]
− C1ρ.

Pick a vector e and choose the constant strategy α[z] = e to assert

u(q, t) ≥ inf
z∈Z(t,t+ρ)

[
u(q + ρe, t)−

∫ t+ρ

t

L̂
(
q + θe, e; z(θ)

)
dθ

]
− a0ρ

≥ u(q + ρe, t)− (C1 + a0)ρ.

We now choose e = (q′ − q)/|q′ − q| to conclude

u(q, t)− u(q′, t) ≥ −2a0ρ,

which yields

|q′ − q| ≤ T − t =⇒ |u(q′, t)− u(q, t)| ≤ (C1 + a0)|q′ − q|.

This and (5.23) yield (5.22). �

Proof of Theorem 5.5 Fix (q0, t0), and assume that φ ∈ C1 with

u(q0, t0) = φ(q0, t0), u ≤ φ, p0 = φq(q0, t0), r0 = φt(q0, t0).
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Pick δ > 0, and write ∆′(t0, t0 + δ) for the set of α ∈ ∆(t0, t0 + δ) such that

M(α) := sup
z∈Z(t0,t0+δ)

[
δ−1

∫ t0+δ

t0

∣∣α[z](θ)
∣∣η0 dθ] 1

η0

≤ C0.

By Theorem 5.6,

u(q0, t0) = sup
α∈∆′(t0,t0+δ)

inf
z∈Z(t0,t0+δ)

[
u
(
q(t0 + δ), t0 + δ

)
−
∫ t0+δ

t0

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ

]
,

where q(θ) = q0 +
∫ θ
t0
α[z](θ) dθ. To ease the notation, we write ∆′δ and Zδ for ∆′(t0, t0 + δ)

and Z(t0, t0 + δ). This implies

0 ≤ sup
α∈∆′δ

inf
z∈Zδ

[
φ
(
q(t0 + δ), t0 + δ

)
− φ(q0, t0)−

∫ t0+δ

t0

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ

]
= sup

α∈∆′δ

inf
z∈Zδ

[∫ t0+δ

t0

(
φt(q(θ), θ) + q̇(θ) · φq(q(θ), θ)− L̂

(
q(θ), q̇(θ); z(θ)

))
dθ

]
≤ sup

α∈∆′δ

inf
z∈Zδ

[∫ t0+δ

t0

(
φt(q(θ), θ) + Ĥ

(
q(θ), φq(q(θ), θ); z(θ)

))
dθ

]
≤ sup

α∈∆′δ

inf
z∈Z

[∫ t0+δ

t0

(
φt(q(θ), θ) + Ĥ

(
q(θ), φq(q(θ), θ); z

))
dθ

]
,

where for the last inequality, we take the infimum over constant paths in Z(t0, t0 + δ). On
the other hand, since M(α) ≤ C0, with C0 independent of δ,

(5.24) |q(θ)− q0| ≤
∫ θ

t0

∣∣α[z](θ′)
∣∣ dθ′ ≤ δM(α) ≤ C0δ,

for θ ∈ [t0, t0 + δ]. Hence, using the continuity of H as in (5.15),

φt(q(θ), θ) + Ĥ
(
q(θ), φq(q(θ), θ); z

)
≤ φt(q0, t0) + Ĥ

(
q0, φq(q0, t0); z

)
+ c1(δ),

for a constant c1(δ) such that c1(δ)→ 0 as δ → 0. As a result

0 ≤ δ sup
α∈∆′δ

inf
z∈Z

[
φt(q0, t0) + Ĥ

(
q0, φq(q0, t0); z

)
+ c1(δ)

]
= δ inf

z∈Z

[
r0 + Ĥ(q0, p0; z) + c1(δ)

]
= δ [r0 +H(q0, p0) + c1(δ)] .

We divide both sides by δ and send δ → 0 to arrive at 0 ≤ r0 +H(q0, p0), as desired. (Note
that since we are solving a backward HJE, this is the correct inequality.)
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We next assume that φ ∈ C1 with

u(q0, t0) = φ(q0, t0), u ≤ φ, p0 = φq(q0, t0), r0 = φt(q0, t0).

After a repetition of what we did above, we now have

0 ≥ sup
α∈∆′δ

inf
z∈Zδ

[∫ t0+δ

t0

(
φt(q(θ), θ) + q̇(θ) · φq(q(θ), θ)− L̂

(
q(θ), q̇(θ); z(θ)

))
dθ

]
.

Using (5.22),
φt(q(θ), θ) +H

(
q(θ), φq(q(θ), θ)

)
≥ r0 +H(q0, p0)− c1δ,

for some constant c1. From this and (5.21) we deduce

0 ≥ δ [r0 +H(q0, p0) + c1δ] .

We divide both sides by δ and send δ → 0 to arrive at 0 ≥ r0 +H(q0, p0), as desired. �

Example 5.5(i) When Z is a singleton, H is convex in p, the the set ∆(t, T ) is isomorphic
to the set V (t, T ), and (5.16) simply reads as

Vt(g)(q) = sup
q̇∈V (t,T )

{
g(q(T ))−

∫ T

t

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ : q(0) = q

}
= sup

q∈C1(t,T )

{
g(q(T ))−

∫ T

t

L̂
(
q(θ), q̇(θ); z(θ)

)
dθ : q(0) = q

}
.

(ii) We now assume that Z =
{
z1, . . . , zk

}
is finite, and that H i(p) = Ĥ(p; zi) are inde-

pendent of position for each i = 1, . . . , k. We also write Li(v) = L(v; zi). We make some
definitions:

• We write I for the set of finite sequences of the form i = (i0, . . . , i`) of indices in
I = {1, . . . , k} such that ij 6= ij+1 for j = 0, 1, . . . , ` − 1. We write |i| = ` for the size
of the sequence i.

• We write ΘΘΘ(t, T ) for the set of finite sequences of the form θθθ =
(
θ0, θ1, . . . , θ`

)
, with

θ0 = t < θ1 < · · · < θ` < θ`+1 = T.

We write |θθθ| = ` for the size of the sequence θθθ.

• We write Ẑ(t, T ) for the set of pairs (i, θθθ) ∈ I×ΘΘΘ(t, T ) with |i| = |θθθ|. By a slight abuse
of notation, we think of (i, θθθ)(·) ∈ Z(t, T ), with (i, θθθ)(s) = zij , for s ∈ [θj, θj+1), j =
0, 1, . . . , `.
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• We write V for the set of finite sequences of the form v = (v0, . . . , v`) of vectors in Rd.
We write |v| = ` for the size of the sequence v.

• We write V̂ (t, T ) for the set of pairs (v, θθθ) ∈ V × ΘΘΘ(t, T ) with |v| = |θθθ|. By a
slight abuse of notation, we think of (v, θθθ)(·) ∈ V (t, T ), with (v, θθθ)(s) = vj, for s ∈
[θj, θj+1), j = 0, 1, . . . , `.

Pick α ∈ ∆(t, T ), (i, θθθ) ∈ Ẑ(t, T ), and write vj : [θj, θj+1) for the restriction of α
[
(i, θθθ)(·)

]
to

the interval [θj, θj+1). We then have∫ T

t

L(q̇(θ); z(θ)) dθ =
∑̀
j=0

∫ θj+1

θj

Lij(vj(θ)) dθ.

Recall that q(s) =
∫ s
t
α[z](θ) dθ, with q(t) = t and z = (i, θθθ). We may define a sequence

q0 = q, q1, . . . , q`+1 inductively by

qj+1 = qj +

∫ θj+1

θj

vj(θ) dθ.

Since ∫ θj+1

θj

Lij(vj(θ)) dθ ≥
(
θj+1 − θj

)
Lij
(
qj+1 − qj
θj+1 − θj

)
,

we learn that the action cannot decrease if we switch from the path (v0, v1, . . . , vk) to a
collection of appropriate constant paths on the same intervals. Motivated by this, we now
define ∆̂ for maps ααα : I→ V such that the following two conditions hold:

• |i| = |v|.

• If i, i′ ∈ I, and v = ααα[i],v′ = ααα[i′], with ir = i′r for r = 0, 1, . . . ,m, then vr = v′r for
r = 0, 1, . . . ,m.

We now have a simpler expression for the viscosity solution:

Vt(g)(q) = sup
ααα∈∆̂

inf
(i,θθθ)∈Ẑ(t,T )

g(Q(q; i, θθθ)
)
−
|i|∑
j=0

(
θj+1 − θj

)
Lij(vj) : q(0) = q

 ,

where

Q(q; i, θθθ) = q +

|i|∑
j=0

(
θj+1 − θj

)
vj, v = ααα(i).
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(iii) If in (ii) we assume that k = 2, and write L± for L1 and L2, then i ∈ I is fully
determined by its length and i0. Hence Ẑ(t, T ) = Z+(t, T ) ∪ Z−(t, T ), where Z±(t, T ) is
isomorphic to {±} ×ΘΘΘ(t, T ). �

Exercise(i) Assume that d = 1 and u is a (continuous) viscosity solution of (1.10). Let U
be an open set in R× (0,∞) and assume that u is C1 in U \ Γ, where

Γ =
{

(a(t), t)) : t ∈ (t0, t1)
}
⊂ U,

with a : (t0, t1)→ R a C1 function. Assume that u = u+ and u−, on the right and left side
of Γ in U and both u± solve (1.10) classically. Use Example 5.3 to show the following:

• ȧ(t) = H
[
u+
q (a(t), t), u−q (a(t), t)].

• The pair
(
u−q (a(t), t), u+

q (a(t), t)
)

satisfies the Oleinink Condition for every t ∈ (t1, t2).
�
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6 Second Variation

Let M be a closed manifold and set X = T ∗M . Consider a Hamiltonian function H : X → R
and write φHt = φt for its flow. Consider a Lagrangian bundle (Lx : x ∈ X) that is invariant
for the flow. That is (

dφt)xLx = Lφt(x).

We assume that L is a graph: for some symmetric Sx : TqM → T ∗q M , we have

Lx =
{

(q̂, Sq q̂) : q̂ ∈ TqM
}
.

If x̂(t) = (q̂(t), p̂(t)) = (dφt)xx̂(0), then we have

dq̂

dt
(t) = Hqp(x(t))q̂(t) +Hpp(x(t))p̂(t),

dp̂

dt
(t) = −Hqq(x(t))q̂(t)−Hqp(x(t))p̂(t).

Assuming p̂ = Sxq̂,

dq̂

dt
(t) =

(
Hqp(x(t)) +Hpp(x(t))Sx(t)

)
q̂(t),

dp̂

dt
(t) = −

(
Hqq(x(t)) +Hqp(x(t))Sx(t)

)
q̂(t).

On the other hand,

dp̂

dt
(t) =

d

dt

(
Sx(t)

)
q̂(t) + Sx(t)

dq̂

dt
(t) =

d

dt

(
Sx(t)

)
q̂(t) + Sx(t)

(
Hqp(x(t)) +Hpp(x(t))Sx(t)

)
q̂(t).

As a result,

d

dt

(
Sx(t)

)
+ Sx(t)Hpp(x(t))Sx(t) + Sx(t)Hqp(x(t)) +Hqp(x(t))Sx(t) +Hqq(x(t)) = 0.

Writing S(t) = Sx(t), we get a Ricatti type equation

(6.1) Ṡ + SHppS + SHqp +HqpS +Hqq = 0.

We next take two such Lagrangian bundles L and L′ associated with S and S ′, and set

S(t) = Sφt(x), S ′(t) = S ′φt(x), x(t) = φt(x).

We have that if x̂(t) = (q̂(t), S(t)q̂(t)) ∈ Lx(t), and x̂′(t) = (q̂(t), S ′(t)q̂(t)) ∈ L′x(t), then

ω(t) := ωx(t)

(
x̂(t), x̂′(t)

)
= (S(t)− S ′(t))q̂(t) · q̂(t).
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As a result

ω̇(t) = 2(S(t)− S ′(t)) ˙̂q(t) · q̂(t) + (Ṡ(t)− Ṡ ′(t))q̂(t) · q̂(t)
= 2(S(t)− S ′(t))

(
Hqp +HppS(t)

)
q̂(t) · q̂(t)

−
(
S(t)HppS(t)− S ′(t)HppS

′(t)
)
q̂(t) · q̂(t)

+
(
(S(t)− S ′(t))Hqp +Hqp(S(t)− S ′(t)

)
q̂(t) · q̂(t)

= (S(t)− S ′(t))Hpp(x(t))(S(t)− S ′(t))q̂(t) · q̂(t).
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