1 Chapter 1
(iii) We have
Au = Avu+ 1" 2ugy,  where Ayu = up + 1 tu,.

If —\ is an eigenvalue corresponding to the eigenfunction w(z) = R(r)0(0), then
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This is possible only if ©”/© is a constant. Since © is 2m-periodic, we have
O(0) = a, cos(nf) + b, sin(nd), neN

for some constants a,, and b,. This leads to the equation

n?

AR(r) + ()\ - —) R=0, R(a)=0.

r2

Note that since A is an eigenvalue of —A, we must have A > 0 (because (Au,u) < 0 unless
u = 0). To replace A with 1, we rescale p = v/Ar, R(r) = R(p), so that

Rr = \/XR;h Rrr = )\Rppa

A A 2 A A~
Rop+p 'Ry + (1 - %) R=0, R/ =o0.

This is the Bessel’s ODE of order n € N. This has a solution that does not blow up at the
origin and satisfies R(0) = 0. Such a solution looks like a constant multiple of p" near p = 0.
A suitable choice of constant, namely 27" /(n!) leads to the Bessel function of order n that
is denoted by J,(p). It has zeros of the form 0 < A\,;; < -+- < Ay < .... We need to choose
A so that v Aa = Ay, for some k. In summary we have eigenvalues of the form

a '), nkeN,
The corresponding eigenfunctions can be chosen to be

Jn(vV/ Auir) cos(nf),  Ju(v/Auir) sin(nf).

(v) Let A be the minimium value of the RHS, and w € H'(2) a minimizer. Then for any
v € HY(Q) such that v L wy,...,w,_1, we have

(1.1) (Vw, Vo) — Mw,v) = 0.



On the other hand, for j =1,...,n—1,

(Vi, Vw;) — Mw,w;) = (Vio, Vw;) = — (0, Aw,) —i—/ w% dS = \j(w,w;) =0,
o0
because w L wy, ..., w,_1, and Ow;/On = 0 on 0f). From this, (1.1) and Theorem 1.1 we
learn that (1.1) is true for every v satisfying dv/dn = 0. In particular, we can choose an
arbitrary function v that is identically 0 near boundary. For such v we can integrate by parts
to deduce
(Aw + A, v) = 0.

This means that Aw + A\ = 0 strictly inside Q. Since w € H'(Q), we deduce that @ has
3 weak derivatives, and after a bootstrap we show that w is smooth. In fact, we may use
—Aw = \b to assert that w € H?(Q), and as a result, we can make sense of dw/dn € L%(95).
We now go back to (1.1) and integrate by parts to assert that for any smooth v,

- ow
AG+ a0 = [ v2Y
(Aw + Aw, v) U&n ds.

Since the LHS is zero, and v is arbitrary on 052, we are done. (To make sense of dw/dn on
011, take a collection of nested €2, C Q such that U,Q, = Q and 012, strictly inside 2. If
we write g, for Ow/On on 0%, then we have a compact sequence in L? because w € H?(1).
Any limit point of this sequence serves as a candidate of dw/dn.)

(vi) Note that if
E(N) = Urer H[kg — 1, kyl,

then
re BN & [z]€qQ.

Hence NP ()\) = Vol(E(N)) < Vol(Q). For (2.24) it suffices to show that Q~ C E()). Indeed
reQ = z+(1,....1)eQ = [z]=|z+(1,....1)]ecQ = zeEW).

(viii) Since Vol(Q™) < N(N\) < Vol(Q), it suffices to bound Vol(Q) — Vol(Q~). Define
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If 7(z1,...,2q) = (11 +1,... 24 + 1), then 7Q~ = Q). Evidently Vol(Q™) = Vol(Q), and
@ C Q. Hence

Vol(Q) — Vol(Q™) = Vol(Q) — Vol(Q) = Vol (Q \ Q) Z Vol(Q



where

=
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Note that @ is a product of and the interval [0, 1], and a set @7 which is the analog of @
for the variables (z; : i # i) in dimension d — 1.

Vol(Q;) < VOl(Q;.) = VOI(Q;’) _ gy, M

JF#i
Hence

d
D Vol(Qi) < 271 (2m) ™ way ATV Vol (09).
=1

(x) Note that if for s < ¢,

h(z,s,t) = / S(z,y,t—s)f(y,s) dy,
Q
then h; = aAh, and

iy o ,8) = limy | (2..0) (.t =) dylimg | S(2.9.0)f(.8) dy = a.0)

s—1

Here for the second equality, we have used the continuity of f. From this we learn that if

we) = [ [ St =550, dy .

then
wy(x,t) = %/th($,s,t) ds = f(z,t) + /t hi(z,s,t) ds
0 0
= f(x,t) + oz/t Ah(z,s,t) ds = f(z,t) + aAw(x,t).
0

(x) Given u, the function w(x,t) = u(x) satisfies
1
wy = §Aw + Vw,

where V(z) = —Au/(2u). On the other hand, by Feynman-Kac Formula (and the uniqueness
of solution)

(@) = w(z,t) = E u(z + B(t))eJo 2w @rBE) &



