
1 Chapter 1

(iii) We have
∆u = ∆ru+ r−2uθθ, where ∆ru = urr + r−1ur.

If −λ is an eigenvalue corresponding to the eigenfunction w(x) = R(r)Θ(θ), then

−λr2 = r2 ∆rR

R
(r) +

Θ′′

Θ
(θ).

This is possible only if Θ′′/Θ is a constant. Since Θ is 2π-periodic, we have

Θ(θ) = an cos(nθ) + bn sin(nθ), n ∈ N

for some constants an and bn. This leads to the equation

∆rR(r) +

(
λ− n2

r2

)
R = 0, R(a) = 0.

Note that since λ is an eigenvalue of −∆, we must have λ > 0 (because 〈∆u, u〉 < 0 unless
u = 0). To replace λ with 1, we rescale ρ =

√
λr, R(r) = R̂(ρ), so that

Rr =
√
λR̂ρ, Rrr = λR̂ρρ,

R̂ρρ + ρ−1R̂ρ +

(
1− n2

ρ2

)
R̂ = 0, R̂(a

√
λ) = 0.

This is the Bessel’s ODE of order n ∈ N. This has a solution that does not blow up at the
origin and satisfies R(0) = 0. Such a solution looks like a constant multiple of ρn near ρ = 0.
A suitable choice of constant, namely 2−n/(n!) leads to the Bessel function of order n that
is denoted by Jn(ρ). It has zeros of the form 0 < λn1 < · · · < λnk < . . . . We need to choose
λ so that

√
λa = λnk for some k. In summary we have eigenvalues of the form

a−1λ2
nk, n, k ∈ N.

The corresponding eigenfunctions can be chosen to be

Jn(
√
λnkr) cos(nθ), Jn(

√
λnkr) sin(nθ).

(v) Let λ̄ be the minimium value of the RHS, and w̄ ∈ H1(Ω) a minimizer. Then for any
v ∈ H1(Ω) such that v ⊥ w1, . . . , wn−1, we have

(1.1) 〈∇w̄,∇v〉 − λ̄〈w̄, v〉 = 0.
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On the other hand, for j = 1, . . . , n− 1,

〈∇w̄,∇wj〉 − λ̄〈w̄, wj〉 = 〈∇w̄,∇wj〉 = −〈w̄,∆wj〉+

∫
∂Ω

w̄
∂wj
∂n

dS = λj〈w̄, wj〉 = 0,

because w̄ ⊥ w1, . . . , wn−1, and ∂wj/∂n = 0 on ∂Ω. From this, (1.1) and Theorem 1.1 we
learn that (1.1) is true for every v satisfying ∂v/∂n = 0. In particular, we can choose an
arbitrary function v that is identically 0 near boundary. For such v we can integrate by parts
to deduce

〈∆w̄ + λ̄w̄, v〉 = 0.

This means that ∆w̄ + λ̄w̄ = 0 strictly inside Ω. Since w̄ ∈ H1(Ω), we deduce that w̄ has
3 weak derivatives, and after a bootstrap we show that w̄ is smooth. In fact, we may use
−∆w̄ = λ̄w̄ to assert that w̄ ∈ H2(Ω), and as a result, we can make sense of ∂w̄/∂n ∈ L2(∂Ω).
We now go back to (1.1) and integrate by parts to assert that for any smooth v,

〈∆w̄ + λ̄w̄, v〉 =

∫
∂Ω

v
∂w̄

∂n
dS.

Since the LHS is zero, and v is arbitrary on ∂Ω, we are done. (To make sense of ∂w̄/∂n on
∂Ω, take a collection of nested Ωn ⊂ Ω such that ∪nΩn = Ω and ∂Ωn strictly inside Ω. If
we write gn for ∂w̄/∂n on ∂Ωn, then we have a compact sequence in L2 because w̄ ∈ H2(Ω).
Any limit point of this sequence serves as a candidate of ∂w̄/∂n.)

(vi) Note that if

Ê(λ) = ∪k∈E(λ)

∏
j

[kj − 1, kj],

then
x ∈ Ê(λ) ⇔ dxe ∈ Q.

Hence ND(λ) = V ol(Ê(λ)) ≤ V ol(Q). For (2.24) it suffices to show that Q− ⊂ Ê(λ). Indeed

x ∈ Q− =⇒ x+ (1, . . . , 1) ∈ Q =⇒ dxe = bx+ (1, . . . , 1)c ∈ Q =⇒ x ∈ Ê(λ).

(viii) Since V ol(Q−) ≤ N (λ) ≤ V ol(Q), it suffices to bound V ol(Q)− V ol(Q−). Define

Q̂ =

{
x = (x1, . . . , xd) : x1, . . . xd ≥ 1,

d∑
j=1

(
xj
`j

)2

≤ λ

π2

}
,

If τ(x1, . . . , xd) = (x1 + 1, . . . , xd + 1), then τQ− = Q̂. Evidently V ol(Q−) = V ol(Q̂), and
Q̂ ⊂ Q. Hence

V ol(Q)− V ol(Q−) = V ol(Q)− V ol(Q̂) = V ol
(
Q \ Q̂

)
=

d∑
i=1

V ol(Qi),
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where

Qi =

{
x = (x1, . . . , xd) : x1, . . . xd ≥ 0, xi ≤ 1,

d∑
j=1

(
xj
`j

)2

≤ λ

π2

}

⊂

{
x = (x1, . . . , xd) : x1, . . . xd ≥ 0, xi ≤ 1,

∑
j 6=i

(
xj
`j

)2

≤ λ

π2

}
=: Q′i.

Note that Q′i is a product of and the interval [0, 1], and a set Q′′i which is the analog of Q
for the variables (xj : i 6= i) in dimension d− 1.

V ol(Qi) ≤ V ol(Q′i) = V ol(Q′′i ) = 2−d+1ωd−1

∏
j 6=i

`j
√
λ

π
.

Hence
d∑
i=1

V ol(Qi) ≤ 2−1(2π)−d+1 ωd−1 λ
(d−1)/2 V ol(∂Ω).

(x) Note that if for s ≤ t,

h(x, s, t) =

∫
Ω

S(x, y, t− s)f(y, s) dy,

then ht = α∆h, and

lim
s→t

h(x, s, t) = lim
δ→0

∫
Ω

S(x, y, δ)f(y, t− δ) dy lim
δ→0

∫
Ω

S(x, y, δ)f(y, t) dy = f(x, t).

Here for the second equality, we have used the continuity of f . From this we learn that if

w(x, t) =

∫ t

0

∫
Ω

S(x, y, t− s)f(y, s) dy ds,

then

wt(x, t) =
∂

∂t

∫ t

0

h(x, s, t) ds = f(x, t) +

∫ t

0

ht(x, s, t) ds

= f(x, t) + α

∫ t

0

∆h(x, s, t) ds = f(x, t) + α∆w(x, t).

(x) Given u, the function w(x, t) = u(x) satisfies

wt =
1

2
∆w + V w,

where V (x) = −∆u/(2u). On the other hand, by Feynman-Kac Formula (and the uniqueness
of solution)

u(x) = w(x, t) = E u(x+B(t))e−
∫ t
0

∆u
2u

(x+B(s)) ds.
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