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Introduction

The main goal of the theory of dynamical system is the study of the global orbit structure
of maps and flows. In these notes, we review some fundamental concepts and results in the
theory of dynamical systems with an emphasis on differentiable dynamics.

Several important notions in the theory of dynamical systems have their roots in the work
of Maxwell, Boltzmann and Gibbs who tried to explain the macroscopic behavior of fluids
and gases on the basic of the classical dynamics of many particle systems. The notion of
ergodicity was introduced by Boltzmann as a property satisfied by a Hamiltonian flow on its
constant energy surfaces. Boltzmann also initiated a mathematical expression for the entropy
and the entropy production to derive Maxwell’s description for the equilibrium states. Gibbs
introduced the notion of mixing systems to explain how reversible mechanical systems could
approach equilibrium states. The ergodicity and mixing are only two possible properties in
the hierarchy of stochastic behavior of a dynamical system. Hopf invented a versatile method
for proving the ergodicity of geodesic flows. The key role in Hopf’s approach is played by
the hyperbolicity. Lyapunov exponents and Kolmogorov—Sinai entropy are used to measure
the hyperbolicity of a system.

Dynamical Systems come in two flavors: discrete and continuous:

Discrete Systems. We have a set X of possible states/configurations. X is often is equipped
with a metric. There exists amap f : X — X that is often continuous (or even more regular).
We set z,, = f™(z) and call the sequence (z, : n € N*) the orbit starting from the initial
state xg = x:

Continuous Systems. X is now a nice manifold, and we have a flow on X. That is, a
family of homeomorphisms/diffeomorphisms ¢, : X — X, t € R such that

do(r) =, Pres(x) = Gr(9s(7)).

The path (¢:(a) : t € R) is an orbit starting from the initial state ¢o(a) = a. For example,
x(t) = ¢¢(a) solves an ODE: & = b(x) where b is a vector field on the manifold X. Ideally
we wish to have a complete (explicit) description of orbits.

If this can be achieved, we have a completely integrable/exactly solvable model. This is
rarely the case for models we encounter in nature. Failing this, we may wish to find some
qualitative information about some/most/all orbits. This was originated in the work of
Poincare 1890-1899 [Pol-2]; the birth of the theory of dynamical systems.

What qualitative descriptions do we have in mind? Many of our models in dynamic
systems have their roots in celestial mechanics and statistical physics. We already mentioned
that the work of Poincare in celestial mechanics led to many fundamental concepts in the



the theory of dynamical systems. This include the notion of symplectic maps and the birth
of symplectic geometry (the flow maps ¢, in celestial mechanics are examples of symplectic
maps). Moreover, several important notions in the theory of dynamical systems can be traced
back to the work of Maxwell, Boltzmann and Gibbs who tried to explain the macroscopic
behavior of fluids and gases on the basic of the classical dynamics of many particle systems.

Boltzmann’s Ergodicity. In the microscopic description of a solid or a fluid/gas, we are
dealing with a huge number of particles: (Avogadro number) 10% for a fluid, and 10 for
a dilute gas. It is not practical or even useful to analyze the exact locations/ velocities of
all particles in the system. A more realistic question is that what a generic particle does
in average. Boltzmann formulated the following question: If A is a set of states (subset of
X), then what fraction of time the orbit ¢;(z) spends in the set A? Boltzmann formulated
the following ansatz to answer the above question for models that are governed by Newton’s
law: For generic initial state z,

% {t€]0,€]: ¢i(z) € A} = volume of A.

as { — oo. Here we have an example of an ergodic dynamical system. The above ansatz is not
true in general and requires some polishing. We now have more realistic reformulation of the
above ansatz in the form of a conjecture that is still wide open. Sinai made a breakthrough
in 1960s when he established the above conjecture for a planar billiard with two balls (elastic
collision).

Entropy. The entropy comes in two flavors: metric (measure theoretical) and topological.
The rough idea goes back to Boltzmann: In microscopic model the number of states N is
exponentially large. The entropy is proportional to log N. How this can be formulated for
a dynamical system associated with f : X — X7 Introduce a resolution ¢ > 0. When two
states are within distance 9, regard them the same. In this way we replace our infinite state
space with a finite set!

Number of orbits up to time n ~ e™er(f),

for large n and small 6. Metric (Kolmogorov-Sinai) entropy was defined by Kolomogorov
as an invariance of a dynamical system: He wanted to associate a number to a dynamical
system that does not change if we make a change of variable: In other words if we have two
dynamical systems 7": X — X, T:X — X, and a homeomorphism % : X — X, such that
T =hoToh™!, then we would like to have entropy(T) = entropy(T). Motivated by the
work of Boltzmann (Statistical Mechanics) and Shannon (Information Theory), Kolmogorov
define the entropy as the rate of gain in information as we observe more and more of our
system: Introduce a (measure theoretical) resolution. That is, a finite partition of X, so that
if all points in a member of the partition is regarded as one. In this way we are dealing with
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a finite set. Suppose the n-orbit (x, f(z),..., f"(z)) of a point with respect to a partition
is known. How accurately we can locate z7 In chaotic dynamical systems the accuracy
improves exponentially fast. The exponential rate of the improvement/gain of information
is the entropy : h,(T). We need a measure p to measure the size of the set of possible
location of x based on the information available.



1 Invariant Measures and Ergodic Theorem

By a discrete dynamical system we mean a pair (X,T), where X = (X,d) is a complete
separable metric space (in short Polish space) with metric d, and T': X — X is a continuous
map. By an orbit of (X,T’) we mean sequences of the form O(z) = (z, = T"(z) : n € N*),
where N* denotes the set of nonnegative integers. Here are some examples of dynamical
systems that should be kept in mind for understanding various notions that will be developed
in this Chapter.

Example 1.1(i) (Rotation) X = T? is the d-dimensional torus. We may regard T as the
interval [0,1] with 0 = 1. Given a vector a = (ay,...,aq) € [0,1)¢, we define T : T¢ — T¢
by T(x) = z + a (mod 1). In other words, when z € [0,1]%, then = + « is understood as the
sum of points x and « in R%. Though if x +« ¢ [0, 1)¢, then by dropping its integer parts of
its coordinates, we obtain a point in [0, 1)¢. Alternatively, if we regard the circle T as the set
of complex numbers z = ¢*™ such that |z| = 1, and set 8 = (B4,. .., Bq), with B; = e*™,
then T'(z1,...,24) = (B121, .- -, Baza)-
(ii) (Ezpansion) Given an integer m > 2, we define ' =T, : T — T, by T'(z) = ma (mod 1).
Alternatively, if we regard the circle T as the set of complex numbers z = 2™ such that
|z| =1, then T'(z) = 2™.
(iii) (Shift) Given a Polish space E, set X = EN (respectively E7) for the space of sequences
w = (w, : n€N) (respectively w = (w, : n € Z)) in E. Consider the shift map 7: X — X
that is defined by (Tw), = wnt1.
(iv) (Contraction) Let (X, T) be a discrete dynamical system, ans assume that there exists
A € (0,1) such that d(T'(z),T(y)) < Ad(z,y). Then there exists a unique a € X such that
T(a) = a and

d(T™(z),a) < XN'd(z,a).
As a consequence d(T"(x), a) — 0, as n — oo, for every x € X. O

Given a dynamical system (X, T'), we may wonder how often a subset of X is visited by
an orbit of T'. For example, in the dynamical systems described in Example 1.1, most orbits
(for “most” « in part (i)) are dense and every nonempty open set is visited infinitely often
for any such orbit. To measure the asymptotic fraction of times a set is visited, we may look
at the limit points of the sequence

n—1
1 .
- J
(1.1 =S ()
Jj=0
as n — 0o. More generally, we may wonder whether or not the limit

(12) lim @,()(x) = lim © 3 (1)

n—oo
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exists for a function f : X — R. Let us write C,(X) for the space of bounded continuous
functions f : X — R. Given z € X, if the limit of (1.2) exists for every f € Cy(X), then the
limit ®*(f) enjoys some obvious properties:

(i) f=20=2%(f) 20, 2*(1) = 1.
(i) ®*(f) is linear in f.

(iii) |@*(f)] < supyex [f()]-

(iv) ®*(foT) = 0.(f).

If X is also locally compact, then we can use Riesz Representation Theorem to assert that
there exists a unique (Radon) probability measure p such that ®,(f) = [ f du. Evidently,
such a measure p(A) measures how often a set A is visited by the orbit O(z). Motivated by
(iv), we make the following definition:

Definition 1.1(i) Given a Polish space X, with a metric d, we write B(X) for the Borel
o-algebra of (X, d), and M(X) for the set of Borel Radon probability measures on X.

(ii) We write Zr for the set of Radon probability measures p such that

(13 [etdu= [ ran

for every f € Cy(X). Any such measure p is called an invariant measure of T'. Equivalently,
€ Iy iff p(A) = p(T~1(A)) for every B € B(X). O

It seems natural that for analyzing the limit points of (1.1), we should first try to under-
stand the space Zr of invariant measures. Note that in (1.2), what we have is [ f du?® where
= %Z;:S O7i(z)- We also learned that if (1.2) exists for every f, then pf has a limit and
its limit is an invariant measure. Of course there is a danger that the limit (1.2) does not
exist in general. This is very plausible if the orbit is unbounded and some of the mass of
the measure p? is lost as n — oo because T7(x) goes off to infinity. This would not happen
if we assume X is compact. To this end, let us review the notion of weak convergence for
measures.

Definition 1.2 We say a sequence {ii, }nen in M(X) converges weakly to p € M(X) (in
short p, = p), if

(1.4) /f dpin — /f dp,

for every f € Cy(X). O



It turns out that for the weak convergence, we only need to verify (1.4) for f € Uy(X)
where U,(X) denotes the space of bounded uniformly continuous functions. Since Uy(X) is
separable, we can metrize the space of probability measures M(X). (See for example [P].)

Theorem 1.1 Suppose X is a compact metric space.

(i) (Krylov—Bogobulov) Let {z,} be a sequence in X. Then any limit point of the sequence
{usr} is in Ip. In particular, Ip # .

(ii) If Zr = {i} is singleton, then

lim > (T(e)) = [ £ dn

n—oo N

uniformly for every f € C(X). In fact D(u*, i) — 0 uniformly in x.

(iii) If{®.(f)} converges pointwise to a constant for functions f in a dense subset of C'(X),
then Iy is a singleton.

Proof(i) This is an immediate consequence of Exercise (ii) below at the end of this chapter,
and what we have seen in the beginning of this chapter.

(ii) Let {z,} be any sequence in X and put v, = p». Since any limit point of {v,} is in
Zr = {u}, we deduce that v, = . From this we can readily deduce that in fact u? = p
uniformly.

(iii) We are assuming that ®,(f) converges to a constant f for f in a dense set 7 C C/(X).
Since the sequence {®,,(f)} is uniformly bounded for f € C'(X), and

[t du= [ .

for every p € Zr, we deduce that the constant f can only be [ f du. As a consequence, if
p,v € Ip, then [ f du= [ f dv for a dense set of functions f. This implies that g = v and
we conclude that Zr is a singleton. O

From Theorem 1.1 we learn that when Zr is a singleton, the statistics of the orbits are
very simple. However, this is a rather rare situation and when it happens, we say that the
transformation 7' is uniquely ergodic.

Example 1.2(i) Consider the dynamical system of Example 1.1(i), when d = 1, and o = p/q
a rational number with p and ¢ coprime. Note that every orbit is periodic of period q.
Moreover, for every x € T, the measure

-1

£y

x
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is invariant for 7. One can show that any u € Zr can be expressed as

= /T/f 0(dx),

where 6 is a probability measure on T. To avoid repetition, we only need to take a probability
measure that is concentrated on the interval [0, ¢!), or the interval [0, ¢~!], with 0 = ¢~ 1.

(ii) Again, consider the dynamical system of Example 1.1(i), but now in any dimension and
for any a. We wish to find the necessary and sufficient for 7" to be uniquely ergodic. We note
that the Lebesgue measure ¢ on T¢ is always invariant for T. To apply Theorem 1.1(iii), let
us take A to be the set of trigonometric polynomials

§ : 2mij-x
;€ 5
JjeA

with A any finite subset of Z%. For calculating the limit of ®,(f) as n — oo, it suffice to
consider the case f(x) = f;(z) = €*™*. Indeed since

n—1 n—1 2ming o
l 2 627r7,] (z+La) — 271'1] T l 62771@] «@ 627rij~gc 1—e
n n 1 — e2mija |7
(=0 /=0

whenever j - « ¢ Z, we have

lim @n(f):{o ) it jrag¢,

e2mije if j-a€Z.

From this and Theorem 1.1(iii) we deduce that 7" is uniquely ergodic iff the following con-
dition is true:

(1.5) jeZi\{0} = j-ad¢lZ

We note that the ergodicity of the Lebesgue measure also implies the denseness of the
sequence {x + na}. This latter property is known as the topological transitivity.

(iii) Consider the dynamical system of Example 1.1(i), when d = 2, and a = («,0) with
a; ¢ Q. Let u™ denotes the one-dimensional Lebesgue measure that is concentrated on the
circle

T,, = {(z1,22) € T>: 27 € T}.

Clearly this measure is invariant. In fact all invariant measures can be expressed as

= //ﬁ 7(dx2),
T
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where 7 is a probability measure on T. We also note

n—oo

lim ®,(f) (21, 22) = / F (1, 22) dy.

(iii) Consider the dynamical system of Example 1.1(iv). Then Zy = {4, }. O

Remark 1.1(i) When d = 1, the condition (1.6) is equivalent to o ¢ Q. The fact that
Lebesgue measure is the only invariant measure when « is irrational is equivalent to that
fact that the sequence {na} is dense on the circle T. To see this, observe that if u € Zr,
then

[ @ na) utdn) = [ ) ntaa)

for every continuous f and any n € N. Since {na} is dense, we deduce that y is translation
invariant. As is well known, the only translation invariant finite measure on T is the Lebesgue
measure.

(i) According to a classical result of Poincaré, if an orientation preserving homeomorphism
T : T — T has a dense orbit, then it is isomorphic to a rotation (i.e. there exists a change
of coordinates h : T — T such that h™! o T o h is a rotation). O

As we mentioned earlier, in most cases Zr is not a singleton. There are some obvious
properties of the set Zr which we now state. Note that Zr is always a convex and closed
subset of M(X). Also, Zr is compact when X is compact because M(X) is compact. Let
us recall a theorem of Choquet that can be used to get a picture of the set Zr. Recall that
if C is a compact convex set then a point a € C is extreme if a = 0b + (1 — 6)c for some
0 € [0,1] and b,c € C implies that either a = b or a = ¢. According to Choquet’s theorem,
if C is convex and compact, then any p € C can be expressed as an average of the extreme
points. More precisely, we can find a probability measure 6 on the set of extreme points of
C such that

(1.6) = /w a 0(da).

Motivated by (1.6) and Example 1.2, we formulate two natural concepts:

Definition 1.3(i) We write Z¢* for the set of extreme points of Zr.
(ii) Given p € Z¢¥, we set

(1.7) X, ={z:p, = pasn— oo}
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Example 1.3 In Example 1.1(i), we have Z¢" = {4* : z € [0,¢"")}. Example 1.2(iii), we
have 77" = {,ugc2 D X9 € T}. 0

Given p € Zf, clearly the set X, is invariant under 7. That is, if € X, then
T(z) € X,. Also, if uy # pe € I, then X,, N X,, = 0. Our second Ergodic Theorem
below implies that p(X,) = 1. This confirms the importance of extreme measures among
the invariant measures. Later we find more a practical criterion for the extremity in terms
of the invariant sets and functions.

One way to study the large n limit of the sequence ®,,(f) is by examining the convergence
of the empirical measures { uﬁ}neN. Alternatively, we may fix an invariant measure p and
examine the convergence of the sequence ®,(f) in LP(u). Observe that if ®,f — f, then f
must be invariant with respect to the dynamics. This suggests studying the set of invariant
functions. Moreover, the pairing (f, ) — [ f du suggests considering functions that are
orthogonal to invariant functions, namely functions of the form f=goT — g.

Definition 1.4(i) Let p € M(X). We write Fr (respectively F#) for the set of bounded
measurable functions f : X — R such that f oT = f (respectively foT = f, p-a.e.). Also,
set

(1.8) L) ={fel’(n): foT=f p—ael.

We refer to functions in Fr as T-conserved or invariant functions. With a slight abuse of
notation, by A € Fr (respectively A € Fr) we mean that 14 € Fr (respectively 14 € Fr).
Note that A € Fr iff A € B(X) with T-'(A) = A. Similarly, A € F; iff A € B(X) with

p(TH(A)AA) = 0.
(ii) We define

Hey(p)={goT —g: g L*(n)}.
0

Theorem 1.2 (von Neumann) Let T : X — X be a Borel measurable transformation and
let p € Tp. If f € L*(u), then ®,(f) = 23°07" f o T converges in L?-sense to Pf, where

T on

Pf is the projection of f onto Li(mu).

Proof. Observe that if f € L%(u), then p(A;) = 1, where

A ={reX: f(&)= [(T()) = - = f(T"(2))}.

Since p € Zr, we deduce that p(7™(A4;)) = 1. Hence p(A,) = 1. This implies that for such
f, we have that ®,(f) = f p-a.e.
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We note that ®,, : L?(u) — L*(u) is a bounded linear operator with
[@a (Al < 1f 122,

because || fi o T7||z2 = || fllz2 by invariance. Also observe that if f = go T — g for some
g € L? then @,(f) — 0 asn — oo. If f € H, then we still have ®,(f) — 0 as n — oo.
Indeed if f; € H converges to f in L?, then

[P ()2 < [[Pu(fi)llz + 1F = fell 2,

Since || P, (fx)||zz — 0 asn — oo and || f — fx||zz2 — 0 as k — oo, we deduce that ®,,(f) — 0
as n — 00.

Given any f € L?(u), write f = g+h with g € H and hLH. If hLH, then [h poT du =
[ he dpu, for every ¢ € L?(u). Hence [(hoT — h)? du = 0. This means that hoT = h. As
aresult, h € L2(u), and @,(f) = @,(g9) + ®,(h) = ®,(g) + h. Since ®,,(g) — 0, we deduce
that ®,,(f) — h with h = Pf. O

Theorem 1.2 is also true in L'(u) setting. To explain this, let us first make sense of
Pf for f € L'(u). For example, we may approximate any f € L'(u) by the sequence
fr = fL(|f| < k), and define

Pf= lin Pl

The limit exists because the sequence {Pf;} is Cauchy in L'(u) (this is an immediate
consequence of Exercise (ii) below). We are now ready to state and prove the Ergodic
Theorem for L'-functions.

Corollary 1.1 Suppose u € Iy and f € L'(u). Let Pf be as above. Then ®,(f) converges
to Pf in L' sense.

Proof Clearly,
1@l 1y < 11l

by the invariance of y. From this and [ |Pg| du < [ |g| dp (see Exercise 1.2(ii) below) we
learn

[Pn(f) = Pl [Pn(fi) = Pfellory + 19n(f = felllLrg + 1P = fill

<
< N @ulfe) = Phllorg + 21 = frllorw,

where k € N, fi, = f1(|f| < k). The proof follows because by Theorem 1.2 the first term
goes to 0 as n — oo, and by approximation, the second term goes to 0, as k — oo. O

Remark 1.2 We note that if 4 € Zp, then the operator U f = f o T is an isometry of L?(u)
and the subspace L%(u) is the eigenspace associated with the eigenvalue one. Hence von
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Neumann’s theorem simply says that %([ +U+---+U"') - P, with P representing the
projection onto the eigenspace associated with the eigenvalue 1. Note that if A = €? is an
eigenvalue of U and if XA # 1, then (14 X+ -+ + A" 1) = % — 0 as n — oo. This
suggests that Theorem 1.2 may be proved using the Spectral Theorem for unitary operators.
The above theorem also suggests studying the spectrum of the operator U for a given T'.
Later we will encounter the notion of mixing dynamical systems. It turns out that the
mixing condition implies that discrete spectrum of the operator U consists of the point 1

only. 0

From Theorem 1.2 we learn the relevance of the invariant (conserved) functions for a
dynamical system. One possibility is that the only invariant function in the support of u
is the constant function. In fact if there are non constant functions in L?(u), we may use
them to decompose p into invariant measures with smaller support. The lack of nontrivial
conserved functions is an indication of the irreducibility of our invariant measure. We may
check such irreducibility by evaluating p at T-invariant subsets of X. More precisely, we
have the following definition.

Definition 1.5 An invariant measure p is called ergodic if u(A) € {0,1} for every A € Fr.
The set of ergodic invariant measures is denoted by Z¢. 0

We will see in Exercise (vi) below that the sets in Fh differ from sets in Fr only in a
set of measure 0. Also, we will see later that Z¢ = Z¢. In view of (1.6), any u € Zr can be
expressed as an average of ergodic ones.

Remark 1.3 By Theorem 1.2, we know that if f € L?*(u), then Pf is the projection of
f onto the space of invariant functions. For f € L'(u), we may define Pf as the unique
Fr-measurable function such that

(1.9) | pran= [ fau

for every A € Fr. Note that since Pf is Fr-measurable, we have
PfoT = PJ,

p-almost everywhere. Alternatively, Pf is uniquely defined as the Radon—Nikodym deriva-
tive of fu with respect to p, if we restrict it to Fp — o-algebra. More precisely

_ d(fplF)
Pf— d:U"J:T .

As our next goal, we consider an almost everywhere mode of convergence.
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Theorem 1.3 (Birkhoff Ergodic Theorem) Suppose i € Iy and f € L'(u). Then

,u{a: : lim @, (f)(z) = Pf(a:)} =1.

n—oo

Proof Set g = f — Pf — e for a fixed € > 0. Evidently Pg = —e < 0 and ®,(f — Pf —¢) =
®,(f) — Pf — e. Hence, it suffices to show

limsup ®,,(¢9) <0 u—ae.

n—o0

We expect to have
g+goT+---+goT" ' = —cn+o(n).

From this, it is reasonable to expect that the expression g+---+goT "~1 to be bounded above
p-a.e. Because of this, let us define G,, = max;<, Z‘é_l goT". Set A = {x : lim,_,o G, (z) = +00}.
Without loss of generality, we may assume that ¢ is finite everywhere. Clearly A € Fr be-
cause G111 = g + max(0,G, o T'). Note also that if z ¢ A, then limsup,, . ®,.(g) < 0. To
complete the proof, it remains to show that p(A) = 0. To see this, observe

0 < /(Gn-i-l = Gp)dp = /(Gn+1 — GpoT)du
A A

= /[g + max(0,Gp,0T) — GpoT)dpu = /(g —min(0,G, o T))dpu.
A A
On the set A, —min(0,G,, oT) | 0. On the other hand, if
hy, =g —min(0,G, o T),

then g < h, < hy = g+ (9o T)". Hence by the Dominated Convergence Theorem, 0 <
Sy9dn= [, Pgdp < —ep(A). Thus we must have p(A) = 0. O

Remark 1.4(i) If p is ergodic, then the o-algebra Fr is trivial and any Fr measurable
function is constant. Hence Pf is constant and this constant can only be [ f du.

(ii) Since p% = p iff [ f dut — [ f du, for f in a countable dense set of continuous
functions, we learn from Part (i) that x(X,) = 1, where X, was defined by (1.6). However,
if 41 is not ergodic, then P f is not constant in general and if pp(z, dy) denotes the conditional
distribution of y given Fr, then

Pi) = [ furlo.dy)
From this we deduce that in this case,
f {x tlim g = pr(z, ~)} =1,
n—oo
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Moreover, pr(z,-) € Z¢, for p-almost all z.

(iii) If T is invertible, then we can have an ergodic theorem for T—! as well. Since Fr = Fp-1,
it is clear that Prf = Ppr-1f. As a consequence we have

n—1 n—1
.1 oL -
fim 52 foT!=lim o) foT ™ =Pf

I — a.e. U
Our proof of Theorem 1.2 implies that any f € L?(u) can be written as

f=Pf+gioT — gp+ hy,

such that gy, hy € L*(p) with ||hyl[z2q — 0, as k — oo. A similar decomposition is also
valid for f € L'(p) with g, € L®(u), i, € L' (), [[hellri) — 0, as k — oo. We note that
for every g € L (),

lim (IDn(goT—g) =0,

n—oo

p-a.e. Because of this, we may wonder whether or not Theorem 1.3 can be established with
the aid of such a decomposition. For this however we need to show that the error term
®,,(hy) does not contribute to the pointwise limit. This can be done by a maximal type
inequality. Put

M, (h) = sup ®;(h), M(h)=sup®;(h).

1<j<n 1<;

Theorem 1.4 If, then
p({z: M(h)(z)>t}) <t hllpgw-

First Proof If g = h — ¢, and

= p— DY nil
E = {r}g{c@n(g) >0} = {I{ngf((g-i- +goT )>0},

/gduz()-
E

Gn=max(g+---+goT" ), F,=max(0,G,),

1<i<n

then it suffices to show

Note that if

then F = U, E,,, where E,, = {F,, > 0}. Since E,, C E, 1, it suffices to show that fEn gdu >
0, for every n. Observe that on the set E,, we have F,, = G,, > 0, and

g+ F,oT =max(g,g+goT,...,g+---+goT") > F,.

15



Hence,

/gd#z/(Fn_FnoT)dM:/Fndyf_/ FnOTdMZ/(Fn—FnOT)dMZO,
n n X n X

as desired. Here we have used F,, > 0, and that F,, =0 on Ef.

Second Proof We now offer a proof that is based on a discrete Hardy-Littlewood mazimal
inequality. To motivate our strategy, let us consider examine our inequality when X = Z
and T = 7 is the shift 7(i) =i+ 1. Note that the counting measure m is the only (o-finite)
invariant measure. For F': Z — R,

Bu(F)) = S FG+),  TF)) = sup 8(F)()

and the analog of our maximal inequality reads as
(i MP)0) > 1) <30 |FG)
JET

Accepting this inequality for now, let us take any f € L'(u) and (z,n) € X x N, and define
the sequence '
F*n) = f(T'z) 1(0 < i < n).

Evidently,
j—1
M(f)(T*z) = sup j~ Zf (T*(z)) = sup j’lex’"(k—H) < M(F*™)(k),
1<5<¢ 1<5<¢ i=0

whenever ¢ + k < n. As a result,

¢
p(Me(f)>t) = (n—=+1)7" Y u(M(f)oT" > 1)

0
-/

3
|

=
Il

3

<(n =L+ p(M(F*™) (k) > 1)

i
o)

<3(tn—L+1)7" F p(dx)

=3n(t(n — £+ 1)) /f dp.
We finally send n — oo and ¢ — oo in this order to complete the proof. O
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Remark 1.5 Given a = {a, : n € N}, a family of non-negative sequences a,, = (al' : i €
N*), with Y. a’, = 1, we define

A(f)=> aifoT'
1€N*

Note that if ai = n7'1(0 < ¢ < n — 1), then ®* = ®&,. We may wonder under what
conditions on a, we have ®2(f) — f in large n limit. It turns out that for L?(u) convergence,
the necessary and sufficient condition is the existence of the limit

n—1
lim a,(a) = lim E a’e’e,
n—o0 n—o0 4 5 J

]:

for every a. The necessity of this condition is immediate because this condition is equivalent
to the convergence when T is the rotation of Example 1.1(i). For the analog of Theorem
1.4, we may repeat our Second Proof to argue that the following discrete Hardy-Littlewood
maximal inequality

i s B006)> o <0 X 0

with R A
O3 () () = Y ah(i + ),
implies

(@) > ) < oot / f dp,

The converse is also true. According to a result of Bellow and Calderon [BC], the above
maximal inequality holds if a satisfies the following condition: There exists a constant cq,
and a € (0,1] such that

|a?+j —al| <a

for every n and (4, 7), with 2|j| <. O
a As an immediate consequence of Theorem 1.4, we have the following pointwise ergodic
theorem with varying function.

Corollary 1.2 Suppose i € Iy and { fo}nen+ is a sequence in L'(u) such that f, — f as
n — 00, pi-a.e., and in L'-sense. Then

17



Proof To ease the notation, let us set g; = | f; — f|, and

R = SUP gn.

n>m

On account of Theorem 1.3, it suffices to check

n—1

(1.10) T}Lrgon_l Zgi (T"(z)) =0,

=0

for p-a.e. x. To prove this, observe that for any positive m < n,

n—1 m—1 n—1 m—1 n—1
nflzgioTZ:nl + gon’<nIZgloTi—|—n 1thoTl
=0 1=0 i=m =0 i=m
e
<n IZQiOTH‘M(hm)
i=0
Sending n — oo yields
n—1
limsupn ™! Zgi oT" < M(hyy,).
n—o0 i—0

This implies (1.10) because
i ({M(hm) > 0}) <367 hl| 22 (),

by Theorem 1.4, and
Tim || 1) = 0.

We continue with more consequences of Theorem 1.3.

Proposition 1.1 We have Z%* = Z. Moreover, if 11 and pe are two distinct ergodic
measures, then py and ps are mutually singular.

Proof Suppose that u € Zp is not ergodic and choose A € Fr such that u(A) € (0,1). If

we define
_ wANB) u(A°N B)

i (B) = AN B)
B =" (A
then py, po € Zr and p = apy + (1 — a)pg for o = p(A). Hence ¢ C Z¢"

, H2(B) =

18



Conversely, let 1 be ergodic and p = oy + (1 — ) pg for some pg, g € Iy and o € (0, 1).
Note that we also have that p;(A) =0or 1if A € Frand i =1or 2. Asaresult, g, us € Z¢
and p(X,) = (X)) = po(X,,) = 1. But g = gy + (1 — @), and p(X,) = 1, imply
that ”1<Xu) = ,ug(XM) = 1. This is compatible with puy (X,“) = ,uz(Xm) = 1, only if

= pf1 = pa.
Finally, if if py and p are two distinct ergodic measures, then X,, N X,, = (. This
implies that p; L o, because 1 (Xm) = lo (Xm) =1 O

1.1 Mixing

As we mentioned in the introduction, many important ergodic measures enjoy a stronger
property known as mixing.

Definition 1.6 A measure pu € Zp is called mizing if for any two measurable sets A and B,

lim pu(T"(A) N B) = u(A)u(B).

n—oo

The set of mixing invariant measures is denoted by Z/® = T (X)), O

Remark 1.6 Mixing implies the ergodicity because if A € Fp, then T7"(A) = A and
T(A)NA°=0. As a result,

p(A) = lim p(T7"(A) N A) = p(A)p(A),
which implies that either p(A) =0 or pu(A) = 1. Also note that if u is ergodic, then

n—1
1 .
u{:v:— ]leTJ—>u(A)}:1,
n
0

which in turn implies

n—oo

1 n—1 _
lim (EXO:]IAOTJ> Ig du= p(A)u(B).

Hence the ergodicity means

n—1
1 .
N _ _
(1.11) Jim -~ EO (T (A) N B) = p(A)u(B).
So, the ergodicity is some type of a weak mixing. 0
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Example 1.4 Let T : T¢ — T¢ be a translation T(z) = = + « (mod 1) with a satisfying
(1.5). We now argue that 7" is not mixing. To see this, take a set B with fi(B) > 0 and
assume that B is not dense. Pick zy ¢ B and let § = dist.(zo, B) > 0. Take any set A open
with p(A) > 0 and diam(A) < 6/2. By topological transitivity, zo € T~"(A) for infinitely
many n € N. Since diam(7T"(A)) = diam(A), we deduce that T-"(A) N B = {) for such n’s.
Clearly p(T-™(A) N B) = 0 does not converge to fi(A)iu(B) # 0 as n — oc. O

Before discussing examples of mixing systems, let us give an equivalent criterion for
mixing.

Proposition 1.2 A measure p is mizing iff

(1.12) lim [ foT" g du:/fdu/gdu

n—o0

for f and g in a dense subset of L*(j).

Proof If 11 is mixing, then (1.12) is true for f = 14, g = 5. Hence (1.12) is true if both

f and g are simple, ie., f = 37" ¢;lla, g = >, ;1. We now use the fact that the

space of simple functions is dense in L?(u) to deduce that (1.12) is true for a dense set of
functions.

For the converse, it suffices to show that if (1.12) is true for a dense set of functions, then
it is true for every f € L2(p). Observe that if || f — f||z2 and |lg — §||z2 are small, then

‘/foT"gdu—/foT”Qdu‘,
is small. Indeed,
’/foT"gdu—/foT”g?du‘ < ‘/(foT"—foT”)gdu’Jr‘/foT”(g—ﬁ)du
< \If = Flllgll +11£ g — 4l

by invariance and Schwartz Inequality. 0J

Remark 1.7 We learn from Proposition 1.2 that p is mixing iff for every f € L2 (i), we
have foT™ — f, as n — oo, where the constant f is [ f dpu. O

Before working out some examples of mixing invariant measure, we discuss isomorphic
systems who are dynamically equivalent.
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Definition 1.7(i) Let X and Y be two Polish spaces, and let A : X — Y be a Borel map.
Then hy : M(X) = M(Y) is defined as

(ii) Let (X, T) and (Y, S) be two dynamical systems. A continuous surjective transformation
h: X — Y is called a factor map if Soh = hoT. If such a map exists, then we refer to
(Y, S) as a factor of (X,T'). If the map h is also injective, then we say (X,7T) and (Y, S) are
1somorphic. O

Note that p € Zp = Z(X) iff Ty(p) = p. The following result is straightforward and its
proof is left as an exercise.

Proposition 1.3 If h is a factor map between (X,T) and (Y,S), then

h™'(Fs) € Fr. hy(Zr(X)) € Zs(Y),
hy(Z7 (X)) CZG(Y),  hy(Zy™ (X)) S g™ (Y).

Example 1.5(i) Let (X, 7) be as in Example 1.1(iii) and assume that the corresponding is
a compact metric space. Given 8 € M(E), let us write u” € M(X) for the product measure
with marginals 3. Clearly ® € Z.. We now argue that indeed p” is mixing. To see this,
write Aj,. for the space of L?(u” ) functions that depend on finitely many coordinates. We
claim that Aj. is dense in L?(u? ) This can be shown in two ways:

(1) Use Stone-Weirstrass Theorem to show that the space of A;,.NC(X) is dense in C(X),
and then apply Lusin’s Theorem to deduce that A;,. is dense in L? (/ﬁ )

(2) Write Fj, for the o-algebra of sets that depend on the first k& coordinates. Now, given
fel? (,uﬂ), write fj, = i (f|]-"k) for the conditional expectation of f, given Fj. Note
that f; € Ajie. On the other hand f, — f in L? (uﬁ) as k — oo by the celebrated
Martingale Convergence Theorem.

In view of Proposition 1.2, 4” is mixing if we can show

lim fof"gduﬂszduﬂ/gduﬂ,

n—o0

for every f,g € Ajo.. Indeed if f and g depend on the first k variables, then we simply have

/fOT”gduﬁz/fduﬁ/gduﬁ,
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whenever n > k.
Also note that if @ € X is a periodic sequence of period exactly k, then

k-1
Z 5.,.1‘(@) € Iﬁr.
=0

| =

pe =

Though p% is not mixing unless k = 1.

(ii) We next consider 7' = T,,, : T — T of Example 1.1(ii). Observe that if (X, 7) is as in
Part (i), for £ ={0,...,m — 1}, and F': X — [0, 1] is defined by

o0

—1

F(wl,wg,...,wk,...):g wym™*,
i=1

then F' is continuous. In fact, if we equip X with the metric

d(w,w') = Zm‘ﬂwi — Wi,
i=1
then
|F(w) = Fo')] < d(w, o).

Given any p = (po, ..., Pm-1) With p; > 0 and py + - - - + pm—1 = 1, we can construct a
unique probability measure j, such that

Ppl-wr - Wy W . wg m*) = Py, Py - - Dy s

where

W .. W = wlm_l + wgm_2 + -+ wkm_k,

is a base m expansion with wy,...,w; € {0,1,...,m —1}. Clearly p, = Fyu?. From this we
learn that p, € Z/"* by Proposition 1.3.
Here are some examples of 1,

(1) If p; = 1 for some j € {0,1,...,m — 1}, then p, = 0,, with
gy = j/(m —1) = jm/(m —1) (mod1).
Note that yo = y,m—1; otherwise, yo, ..., ym—2 correspond to the (distinct) fixed points.
(2) Ifpo=--=pm_1 = %, then f, is the Lebesgue measure.

(3) If for example m = 3 and py = po = 1/2, then the support of the measure p, is the
classical Cantor set of Hausdorff dimension a = logs 2 (solving 37 = 271).
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Note also that if z is a periodic point of period k, then u = %Zf;é dri(g) 18 an ergodic
measure. Such g is never mixing unless k = 1.

d
a,b,c,d € Z, then T'(z) = Az (mod 1) defines a transformation on the 2-dimensional torus
T2. Here we are using the fact that if z = y (mod 1), then Az = Ay (mod1). If we assume
det A = 1, then the Lebesgue measure ¢ on T? is invariant for the transformation 7. To
have ¢ mixing, we need to assume that the eigenvalues of T are real and different from 1
and —1. Let us assume that A has eigenvalues @ and o~ with @ € R and |a] < 1. By
Proposition 1.1, ¢ is mixing if we can show that for every n,m € Z?2,

(1.13) im | (o 0 T dl = /gok dﬁ/gpm de

n—oo

(iii) Consider a linear transformation on R? associated with a 2 X 2 matrix A = {Z 1 If

where ¢k (z) = exp(2mik - z). If m = 0 or k = 0, then (1.13) is obvious. If k,m # 0, then
the right-hand side of (1.13) is zero. We now establish (1.13) for m, k # 0 by showing that
the left-hand side is zero for sufficiently large n. Clearly

where AT denotes the transpose of A. To show that (1.14) is zero for large n, it suffices to
show that (AT)"k + m # 0 for large n. For this, it suffices to show that lim,, .. (AT)"k is
either oo or 0. Write v; and v, for eigenvectors associated with eigenvalues o and a~!. We
have lim,, o (AT)"k = oo if k is not parallel to v; and lim,,_,.(AT)"k = 0 if k is parallel to
V1. O

1.2 Continuous dynamical systems

We now turn our attention to the notion of the ergodicity of continuous dynamical system.

Definition 1.8(i) Let X be a Polish space. By a continuous flow we mean a continuous
map ¢ : X x R — X such that if ¢,(x) = ¢(x,t), then the family {¢, : ¢t € R}, satisfies the
following conditions: ¢y = id, and ¢s o ¢ = ¢syy for all s, € R.

(ii) Given a continuous flow ¢, we set

Fo—{f €BX): foo—f VieR)
Fy={feBX): fod,=f pae VieR}

Ias:{ueM )i [roddu= [ 1 V<f,t>ecb<X>xR}
Z5 ={n €Ly : p(A) € {0,1} for every A€ Fy}.
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Theorem 1.5 Assume that p € I, and f € L*(u). Then

u({osiim 7 [ roota do=rr}) -

where Pf = u(f|]-"¢).

Proof (Step 1) We first claim

(1.15) 1 ({ Pf:= tlggo t/ f oge(x) db ex1sts}) =1

(1.16) hm o g — Pf’ dp = 0.

t—oo ¢

To reduce this to the discrete case, let us define 2 = [[;;;Rand I : X — Q by

P(e) = (wi(x) - j € Z) = (/ o n >d0yez)

Clearly I'o ¢y = 7o I'. Also, if u € Zy, then fi defined by fi(A) = p(I'"*(A)) belongs to Zr.

Indeed,
/gord/]:/QOToqu:/goFoqﬁl du:/gofdu:/gdﬂ.

We now apply Theorem 1.6 to assert

i, Z%
Hence, (1.15) and (1.16) are true for Pf = Ao T, if the convergence occurs along n € N in
place t € R. To complete the proof of (1.15) and (1.16), observe

I RENe 1/
Z/Ofoqﬁgd@—?m i f0¢9d9+¥/[t]f0¢9d9-
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Hence it suffices to show
1 n+1
(1.17) lim — |fogel dd =0 p—ae. andin L'(n)

n—oco N J,

To prove this, observe

o1
lim —
n—oo N

/ |f o ¢g| df exists u — a.e. and in L' (p),
0

and this implies

1 n+1 1 n+1 1 n
—/ fodd do = —/ |fo¢e|d9——/ 1 o ol df
n J, 0 n Jo

n

+1 1 n+1 1 n
_ " / |f0<be\d9——/ f o ol df
0 n Jo

n n+1

converges to 0 p — a.e., proving (1.17). This in turn implies (1.15) and (1.16).

(Step 2) It remains to check that P = P. To see this, take any bounded g € Fg and observe
that by (1.16)

(1.18) lim [%/g fodg dQ} g dy = /pf g dpu.

t—o0

On the other hand, since g is invariant, we have

/f0¢tgdu—/f90¢—tdu—/fgdu

Hence the left-hand of side (1.18) is [ fg dp. This means that Pf=P f, as desired. 0J

Example 1.7 A prime example for a continuous dynamical system is a flow associated
with and ODE & = b(x) on a Riemannian manifold where b is a Lipschitz vector field.
More precisely we write ¢.(a) for a solution with initial condition x(0) = a. Here are some
examples for the invariant measures:

(i) If b(a) = 0, then p = J, is an invariant measure. If ¢r(a) = a for some T > 0, then

T
() =770 [ 8,0 (do) at,
0

with support v = {(bt(a) : telo, T)} In fact since b(gbt(a)) dt = dl, is the length element,
alternatively we may represents du as the measure |b|~! df on 7.

(ii) When div b = 0, the normalized volume measure is invariant. O
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1.3 Subadditive ergodic theorem

The following generalization of Theorem 1.3 has many applications in probability theory
and dynamical system. We will see several of its applications in Chapter 4 where we discuss
Lyapunov exponents.

Theorem 1.6 (Kingman) Let u € ¢ and suppose that {S,(-) :n=0,1,...} is a sequence
of LY (i) functions satisfying

(1.19) Snam () < Sn(2) 4+ S (T (2)),
Then 1
S(z) = nlggo ESn(x),

exists for p-almost all x. Moreover S is T-invariant, and

/s u(dz) = X = 1nf{ /s du} [—00, +00).

The following short proof of Theorem 1.6 is due Avila and Bochi [AB]. This proof also
provides us with a new proof of the ergodic theorem (Theorem 1.3). The main ingredient
for the proof is the following Lemma.

Lemma 1.1 Let S, be sequence that satisfies the assumptions of Theorem 1.6, and set

S(x) := liminf n~ 'S, (x).
n—o0
Then SoT =S, p-a.e., and [ S dp =\

Proof From S, 11 < 51 + S, o T, we learn that S(x) < S(T'(x)). This means that for any
acR,
{z: S(z)>a} CT'({z: S(z) >a}).

Since these two sets have equal p-measure, we learn that their difference is g-null. From this
we deduce that S = S o T, u-a.e. As a consequence, if

={z: S(I(z)) = S(x) forall j € N},

then p(Xo) = 1. B
Let us first assume that S,, > cgn, for a finite constant cg, so that S > ¢y. Given € > 0,
and k£ € N, we define

Xy ={z: m'S,(z) <S(z)+e for somem e {1,...,k}},
so that Up X = X. Given k € N, define a (possibly finite) sequence
mo = 0<m(z) <mi(z) < <mix) <myz) <.,

inductively in the following manner:
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e Given m;_1, we choose n; as the smallest n > m;_; such that T"(z) € Xj. f T"(x) ¢ Ej
for all n > m;_1, we set n; = oo, and our sequence ends.

e Since y = T"(x) € Xy, we can find r; = r;(z) € {1,...,k} such that r; 'S, (y) <
S(y) + . We then set m; = n; + r;, for a choice of ;.

Given n > k, let us write £ for the largest integer such that m, < n. Note that we always have
mey1 > n, though ngq > n or nygry < n are both possible (ny1 = 0o is alsso a possibility).
We then use subadditivity to write

L(x)
Z S (T (x)) + Z Sri(ay (T (2)),
jEAR(T) i=1

where A,, consists of those integers j that are in the set
U [mi_1,ms) U [me, n).
Note that if A/ consists of those integers in the set
U [zt ms) U [me,n A nggy).
then T7(z) ¢ Ejx, whenever j € A!. Because of this, we define
fi(z) = max{S(z), S(z) + e}l (z ¢ Ex) + (S(z) + )1 (x € Ex),

to assert that if x € Xy, then

£(x)
Sam) < > Si(TV()L(T(x) € Ey) + Z Fo(T9 (@) + (S(2) +€) 3 ri2)
J€AR (2)\A7, (2) ;eA x) i=0

< ¥ Sl(Tﬂ'(x))n(Tf(:c)eEk)+ka(Tj(w))

JE€An(2)\A7, (z)

Since n — (n A ngpr) < myrr — nesr < k, we learn that §(A,(z) \ A (z)) < k. As a result,

n>k — /Sndugk/|51|dp+n/fkdu,

which in turn implies

As/fkdu.
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Since pu(Xy) — 1 as k — oo, we deduce that A < [ S du + . We then send € — 0 to arrive
at A < [ S du. The reverse inequality is a consequence of Fatou’s lemma.

For general case, pick any ¢ € R, and set S = max{S,,cn}. Then S¢ satisfies the
subadditivity condition. Note

liminfn 'S¢ = max{9, c},
n—oo

As a result,

/ﬁ du = inf/max{ﬁ, ¢} dp = inf inf/n_lel du

= inf inf/n_lsfl dp=inf lim [ n™'SS du

n c n c——oo
= inf/nlSn dp,

where the Monotone Convergence Theorem is used for the last equality. This completes the
proof. O

We note that if we apply Lemma 1.1 to S,, = ®,(f) and S, = ®,(—f), then we deduce
Theorem 1.3.

Proof of Theorem 1.6 (Step 1) Set

S(z) == limsupn 'S, (z).

n—oo
We first claim
(1.20) limsupn 'S, < limsup(nk) 'S,
n—oo n—oo

for every k € N. To see this, write n = kq,, + 1, with ¢, = [n/k], and r,, € {0,1,...,k — 1,
and use subadditivity to write

STL S Sk'(In + STn Oqun S Sk(In + hoqu’n’

where

h:maX{Sfr,...,S,j_l}.

From this, and (kg,)/n — 1, we learn

limsupn 'S, < limsup(kn) 'Sk, + limsupn thoT™.

n—oo n—oo n—o0
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On the other hand, for € > 0,

Z,u(n_lhoT”>5 Zu 1h>n _/5_1hdp<oo,
n=1

which implies
lim sup nthoT™ < 0,

n—0o0

by Borel-Cantelli Lemma. This completes the proof of (1.20).
Fix k € N, and use (1.20) and the subadditivity to assert

n—1

S < limsup(kn) S, < limsup(kn)~* Z S o T% =: k=" lim sup ®F (Sy).

n—00 n—00 i—0 n—00

The expression ®%(S},) is an additive sequence for the dynamical system (X, T*). Hence by
Theorem 1.3, or even Lemma 1.1,

/limsupfbﬁ(sk) dp = /Sk djt.

n—00

/S d,uS/k:_ISk du.
/Sdug)\:/ﬁdu.

This completes the proof. O

As a result,

This and Lemma 1.1 imply

Second Proof of Theorem 1.6 Fix m > 0. Any n > m can be written as n = gm +r for

some g € N*andr € {0,1,...,m—1}. Asaresult,if k € {0,...,m—1}, then n = k+¢'m+7r’
if r >k —k ifr>k

¢ SRR r'(k) = " nren By subadditivity,

ith ¢ = ¢'(k) = ,
with ¢ = q'(k) qg—1 ifr<k r—k+m ifr<k

Su(x) < Sp(@) + Sy (T () + Sy (T ()
< Sk(@) + Y ST (@) + Sy (TH™ ().

J=0

We now sum over k£ to obtain
17 s L i
- 5 _m =57 Sy (T Gm
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where Sy = 0. Hence

n

1n1
_Zﬁ +an()
0

where || Ry |11 < constant x 2, because [ |S;(T")|dp = [ |S|dp. By the Ergodic Theorem,

3

lim sup — S / —dy.
n—oo N
Since m is arbitrary,
) 1
(1.21) limsup —S,,(z) < A,
n—oo 1

almost everywhere and in L'-sense.
For the converse, we only need to consider the case A\ > —oo. Let us take a function
¢ : R™ — R that is nondecreasing in each of its arguments. We certainly have

/go(Sl,...,Sn)du = /gp(SloTk,...,SnoTk)d,u
> /@(Skﬂ — Sks Skv2 — Sk - -+, Sk — Sk)dp

for every k. Hence
N-1
(1.22) / (S Sy)dp > lz/g)(s - S Shin — Si)dp
. 4;0 1y« MPn - Nk:O k+1 ks--+ 9y Pk+tn k

= /@(Skﬂ — Sks s Sk — Sk)dp vy (dE)

where vy = % Zév ~' 0. We think of k as a random number that is chosen uniformly from

0 to N — 1. To this end let us define Q@ = R?" = {w : Z* — R} and T : M x N — Q such
that T'(z, k) = w with w(j) = Sky;(x) — Sktj—1(x). We then define a measure py on Q by
pun(A) = (u x vy)(T7(A)). Using this we can rewrite (1.22) as

(1.23) /go(Sl, cey Sp)dp > /gp(w(l), w(l) +w(2),...,w(l) + - +wn))puy(dw).

We want to pass to the limit N — oco. Note that €2 is not a compact space. To show that
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iy has a convergent subsequence, observe

/ W) pv(dw) = [ (Ses(2) = Seror (@) pu(da) vy (da)

=

(]

AN
=
— — —

(Ses () = Spyo (@) * pu(de)

2= S~

=2
| <

(Su(TH1 () () = / S,

=2

[ wtnstin) = (Sies(2) — Seesr (2))plde)

—

T
=[]

i+ N —1 1
(Sjsn—1— Sj_1)dp > A]T — N/Sj—1du

>

|
8

Y

uniformly in N. As a result [ w(j)”pn(dw) is uniformly bounded. Hence

sy\lfp/ \wj|dpy = B; < 00

for every j. We now define

The set K is compact and
c 1 —JjQ—
pun (K5) < 522 IB7tB; = 6.
J

From this and Exercise 1.1(iv) we deduce that puy has a convergent subsequence. Let i be
a limit point and set S; = w(1) +--- 4+ w(j). By (1.23),

(1.24) /@(Sl,...,Sn)du > /@(Sl,...,gn)du,

for every continuous monotonically decreasing ¢. We now define 7 : Q@ — Q by (tw)(j) =
w(j + 1). It is not hard to see i € Z.. By Ergodic Theorem, %S‘n — Z for almost all w.
Moreover, [ Zdjp = [w(1)a(dw) = limy_e [ +(Sy — So)dp = A. We use (1.24) to assert
that for every bounded continuous increasing v,

. S’I’L . S’n —
/@D (kglrlbgl Z) a2 /w (krgrlbgl 7) 4
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We now apply the bounded convergence theorem to deduce
[onz [z

where S = liminf,,_,o 2. Choose ¥(z) = ¥"!(2) = (zv(—1)) Ar, ¥ (z) = zv(—1). We then
have

[uduz [ Syinz [oi2n
After sending r — oo, we deduce
(1.25) [z [ zip = or
() - Nau =0

Recall S < lim sup % < A. But (1.25) means

| (8= Ndu+ (<= s < -1} =0
S>—1

Since A > —oo, we can choose [ large enough to have — — A < 0. For such [, S — A =0
on the set {S > —I}. By sending | — 400 we deduce S = X almost everywhere, and this
completes the proof. 0

Exercises

(i) Show that the topology associated with (1.4) is metrizable with the metric given by

S — |ffnd,u_ffndy‘
Dipv)=Y 27" ,
(,v) ;1 U+ [ fudpt — [ fadv|

where {f,, : n € N} is a countable dense subset of Uy(X).

(ii) Let w, = p and p(0A) = 0. Deduce that u,(A) — u(A). (Hint: For such A, we can
approximate the indicator function of A with continuous functions.)

(iii) Show that if X is a compact metric space, then M(X) is compact.

(iv) Let X be a Polish space. Suppose that {uy} is a sequence of probability measures on
X. Assume that for every ¢ > 0 there exists a compact set K such that supy un(K§) < 4.
Show that {un} has a convergent subsequence.

(v) Show that if X is compact and f,, : X — R is a sequence of continuous functions, then
fn — f uniformly iff
T, > x = lim f,(z,) = f(x).

n—oo
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(vi) Assume that u € Zp. Let A be a measurable set with u(AAT~1(A)) = 0. Show that
there exists a set B € Fr such that u(AAB) = 0.

(vii) Show that [ |Pf|du < [|f|dpu.

(viii) Show that the decimal expansion of 2" may start with any finite combination of digits.
(Hint: Use T': T — T defined by T'(z) = v + o (mod 1) with o = log;, 2.)

(ix) In the case of an irrational rotation 7" : T — T, T'(z) = = + a (mod 1), show that
the operators ®,, = n~! (I +U+---+ U”_l) do not converge to the projection operator P
strongly. More precisely,

liminf sup || P,(f) — Pfllz2 > 0.

0 fllp2=1

(x) Show that if 4 € Zr and f € LP(y) for some p € [1,00), then the ||®,,(f) —PfHLp(M) —0
as n — oco. (Hint: Approximate f by bounded functions and use Theorem 1.3.)

(xi) Let a be a periodic point for T" of period ¢. Show that pu = %Eﬁ;é 73 (z) is not mixing
if £ > 1.

(xii) Show that if p is mixing and f o T = Af, then either A =1 or f = 0.

(xiii) Show that the Lebesgue measure ¢ is ergodic for T'(x1,x2) = (21 + a, 21 + x3) (mod 1)

iff o is irrational. Show that m is never mixing.

(xiv) Let m > 1 be a prime number and assume that p € Z§" \ Z¢,.. Show that there exists
a measurable set A such that p(A) = m™, the collection & = {A, T7'(A),..., T~ (A)}
is a partition of X, and the set of T™ invariant sets Frm is the o-algebra generated by &.

(xv) Assume that f € L*(u) with u € Zp. Let {a, }nen+ be a sequence of positive numbers
with the following properties:

e The sequence {a, }nen is either non-decreasing or non-increasing.
e The sequence {a, }nen+ satisfies

lim a,'(ag + -+ a,) = 0.
n—oo

Show

lim B, (f) = lim 20 oSOl any JOT"

n—00 n—00 ag+ay+ -+ an_1

in L2(u).

(xvi) Assume that f € L2(p) with p € Zp. Let {aptnen- and ®,(f) be as in (xv). prove
the analog of Theorem 1.4 for the sequence {®,(f) : n € N*} when this sequence satisfies
[BC] condition of Remark 1.5. O
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2 Transfer Operator, Liouville Equation

In the previous section we encountered several examples of dynamical systems for which it
was rather easy to find “nice” ergodic invariant measures. We also observed in the case of
expanding map that the space of invariant measures is rather complex. One may say that
the Lebesgue measure is the “nicest” invariant measure for an expanding map. Later in
Section 3, we show how the Lebesgue measure stands out as the unique invariant measure
of maximum entropy.

In general, it is not easy to find some natural invariant measure for our dynamical sys-
tem. For example, if we have a system on a manifold with a Riemannian structure with a
volume form, we may wonder whether or not such a system has an invariant measure that
is absolutely continuous with respect to the volume form. To address and study this sort of
questions in a systematic fashion, let us introduce an operator on measures that would give
the evolutions of measures with respect to our dynamical system. This operator is simply
the dual of the operator Uf = f o T, namely U* = T;. Even though we have some general
results regarding the spectrum of U, the corresponding questions for the operator T are far
more complex. We can now cast the existence of an invariant measure with some proper-
ties as the existence of a fixed point of T} with those properties. The operator T} is called
Perron—Frobenious, Perron—Frobenious—Ruelle or Transfer Operator, once an expression for
it is derived when p is absolutely continuous with respect to the volume form. To get a feel
for the operator T}, let us state a Proposition and examine some examples.

Proposition 2.1 Recall ®, =n~' (I +Ty+---+T;'"").
(1) @0, = pE. Moreover any limit point of ®iv is an invariant measure.
(ii) A measure p € I8 iff ®Xv converges to p in high n limit, for every v << p.

(iii) A measure p is a mizing invariant measure iff Ti'v converges to pu in high n limit, for
every v << [L.

The elementary proof of Proposition 2.1 is left as an exercise.

Example 2.1(i) 7 : T¢ — T% T(z) = z + a (mod 1). The operator T} simply translates
a measure for the amount . We assume that the numbers «; ... ay, and 1 are rationally
independent. We can study the asymptotic behavior of 7'y for a given p. The sequence
{T}'1} does not converge to any limit as n — oo. In fact the set of limit points of the
sequence {111} consists of all translates of . However

n—1
1 ,
1 —_ J =
(2.1) r}ggon EOTﬂ,u l,
J:



where ¢ denotes the Lebesgue measure. The proof of (2.1) follows from the unique ergodicity
of T" that implies

Q)n(f)—>/fd)\

uniformly for every continuous f. This implies

n—1
1 .
: — 3 — J e
nh_)rgo O, (f)du = nh_{go fd (n EOTﬁ M) /f dA,
J:

proving (2.1).

(ii) Let (X, d) be a complete metric space and suppose T': X — X is a contraction. In other
words, there exists a constant o € (0,1) such that d(T(z),T(y)) < ad(z,y). In this case
T has a unique fix point z and lim,,_, ., T"(x) = Z for every = (the convergence is locally
uniform). As a consequence we learn that lim,, .. 7, = 0z for every measure p € M(X).
For example, if X = R and T'(z) = ax with a € (0,1), then du = p dzx results in a sequence
Ty = pn dx with
. (T

pu(x) =a"p (J) :
In other words, the measure p under 7 becomes more concentrated about the origin.
(iii) Let 7 : T — T be the expansion T'(x) = 2z(mod 1). If du = p dr and T'u = p, dx,
then py(z) = 5 (p (3) +p (%57)) and

1% [z
7=0
From this, it is clear that if p is continuous, then lim,,_,., p,(z) = 1. Indeed

- L2 E 5 8) - (2)

J=0

2" -1 .
.1 J
i s 30 (55) = f otz =1

= lim
n—oo

lim
n—oo

This can also be seen by looking at the Fourier expansion of p. For the following argument,
we only need to assume that p € L2[0,1]. If

p($) _ Zan627rinw’
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then ap = 1 and

p1<=73> = Z CLlezmkmy

k
and by induction,

pn(z) = Z Qg€
k

As a result,

1
/ lpn(z) — 1|*dx = Za%nk — 0.
0 k40

O
There is a couple of things to learn from Example 2.1. First, when there is a contraction,
the operator 7} makes measures more concentrated in small regions. Second, if there is an
expansion then 7} has some smoothing effect. In hyperbolic systems we have both expansion
and contraction. In some sense, if we have more contraction than the expansion, then it is
plausible that there is a fractal set that attracts the orbits as n — oo. If this happens, then
there exists no invariant measure that is absolutely continuous with respect to the volume
measure. Later in this section, we will see an example of such phenomenon. As a result, to
have an absolutely continuous invariant measure, we need to make sure that, in some sense,
the expansion rates and the contraction rates are balanced out. Let us first derive a formula
for Ty when g is absolutely continuous with respect to a volume form. As a warm up, first
consider a transformation 7" : T¢ — T? that is smooth. We also assume that 7" is invertible

with a smooth inverse, i.e., T" is a diffeomorphism. We then consider dyu = pdx. We have

TdfoTpdﬂU:/TdfpoT1|JT1] dy

where JT™1 = det DT~'. As a result, if Ty = p dx, then p = |[JT Y poT ! = ‘J’iﬁz;,ll‘.
This suggests defining

poT_1

(2.2) Tp(r) = JToT 1|’

regarding 7 as an operator acting on probability density functions. More generally, assume
that X is a smooth manifold and 7" is C*°. Let w be a volume form (non-degenerate d-form
where d is the dimension of X). Then T*w, the pull-back of w under T, is also a k-form and
we define JT'(x) to be the unique number such that T*w, = JT(z)wp). More precisely,
T*wy(vr ... v) = wr) (DT (z)vy, ..., DT (2)vy) = JT(x)wp@)(v1 - .. v). We then have

Jtempw= [ spor T
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Hence (2.2) holds in general.
If T is not invertible, one can show

(2.3 Tow= Y AU

The next proposition demonstrates how the existence of an absolutely continuous invari-
ant measure forces a bound on the Jacobians.

Proposition 2.2 Let X be a smooth manifold with a volume form w. Let T : X — X be a
diffeomorphism with JT > 0. The following statements are equivalent:

(i) There exists p = pw € Iy for a bounded uniformly positive p.
(i) The set {JT™(x): x € X, n € Z} is uniformly bounded.

Proof (i) = (ii) Observe
n, _ _pPoT™"
T"p= ST g T n € N.

Also, T'p=(poT)JT, and by induction
T="p = (po T")JT"

Hence -
pol™
= 7
T"p STn g €
If pw is invariant, then T"p = p for all n € Z. As a result, (JT" oT")p=po T~ ™, or
P
JIT" = ; 7.
o T’ n e

Now it is clear that if p is bounded and uniformly positive, then {JT"(z) :n € Z, v € X}
is uniformly bounded.

(ii) = (i) Suppose {JT"(z) : n € Z and x € X} is bounded and define
p(z) = sup JT"(z).

neZ

We then have
JT(z)(poT)(z) = sup(JT")oT(z)JT ()

ne”L

= sup J(T" o T)(x) = p(x).

nez
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Hence T p = p. Evidently p is bounded. Moreover
1/p=inf[1/JT"(z)] =inf JT "o T" =inf JT" o T7"
is uniformly bounded by assumption. 0

Recall that expansions are harmless and have smoothing effect on 7 p. As a test case, let
us consider an expansion of [0, 1] given by

~ Ti(z) xe€0,60) =1
Tla) = {Tg(x) v € [0, 1] = Iy

with T4, Ty smooth functions satisfying |77 (z)| > A for « € I;. We assume A > 1 and that
T;(I;) = [0,1]. In this case

_ M ol '(x)  poTy'(x)

(2.4) Tolz) = T{oT '(z) TjoTy '(x)

Writing ¢(dz) = dx for the Lebesgue measure, clearly T : L'(¢) — L'({) is a linear operator
such that

p>0 = Tp=>0, /Tpdx:/pdx,
/‘Tpl—'rpg)‘ dac§/|p1—p2| dx.

Theorem 2.1 If Ty, Ty, € C?, then there exists y € Iy of the form du = pdx with p of finite
variation.

Proof Write S; = T;! so that
Tp=(poS1)S+ (poS)S;.
Using S < %, we learn

1 1 1
/ (T p)|dx < )\_1/ T\ dx + ﬁo/ Tp dx,
0 0 0

where

_ S()]
o = e I, SH)
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Hence ) .
y/ Kpruxf;A—{/‘nﬂdx+—ﬂ@
0 0
By induction,
1 1 1 o )\—n
Jyias <x [igide + sy

From this we learn that
sup || T"pl|py < 0.
n

Hence 7" p has convergent subsequences in L'[0, 1]. But a limit point may not be an invariant
density. To avoid this, let us observe that we also have

1 n—1 -
2T

Hence the sequence { Pn=mn"" Zg_l T p}n has convergent subsequences by Helley Selection
Theorem. If p is a limit point, then 7p = p by Proposition 2.1. Also, for every periodic

ped
1 1
_ Bo
/d /nd
/Osopx /Osop z o

Hence p € BV. 0

sup < 0.

n

BV

= lim < l@llzee limsup |[pn]| sy < (| 1] oo
n—00 n—00

A review of the proof of Theorem 2.1 reveals that in fact
ABa g Ba)\*l-i-ﬁoa

where B, denotes the space of probability densities p such that fol |p'| dz < a. In particular,
if a is sufficiently large, then aA™' + By < @ and A maps the set B, to a strictly smaller
subset of B,. From this, we may wonder whether A is a contraction with respect to a suitable
metric on B,. Such a contraction for sure guarantees the existence of a fixed point and the
convergence of A"p, and this is exactly what we are looking for. Instead of working on the
space B,, we would rather work on smaller space which yields the convergence of 7"p even
with respect to the uniform topology. Let us consider the following function space:

(2.5) Co ={e? : |g(x) — g(y)| < alx —y| for z,y € [0, 1]}.
We note that p € C, U {0}, iff p > 0 and for all z,y € [0, 1],

p(z) < ply)e™ .

|57 ()|
Si(z) -

Recall that S; = T, ! and ) = Max;e (1,2} Max,
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Lemma 2.1 We have that TC, C Cqu,, whenever a > a_ﬁ)‘\’_l and o > AL

Proof Let p=e9 € C,. Then

2
Tp(x) = > poSi(x)S(x)
=1
2
Y poSiy)e S WIs) ()
=1
2
= Z po SZ.(y)ea\si(z)—si(y)\Sz{(y)elog(S,‘(x))—log(Sé(y))
=1
2
< D poSiy)ISi(y)le el
i=1
= Tp(y)el@ el

As a result, TC, C Cyr-145, C Coa- O

IN

What we learn from Lemma 2.1 is that if o € (A7}, 1], then we can find a function space
C, that is mapped into itself by 7. Note that indeed C, is a cone in the sense that

if p € Cg, then A\p € C, for A > 0,
if p1,p2 € Cy, then p; + py € C,,.

Define a partial order
(2.6) p1 < p2 iff po — p1 € C, U {0}

In other words, p; < ps iff p1 < po and

(2.7) pa(w) = pr(x) < (paly) — pr(y))e™™ ™, 2,y € [0,1].
Hilbert metric associated with our cone C, is defined as
(2.8) da(p1, p2) = log(Ba(p1, p2)Ba(p2, p1)),

where ,(p1, p2) = inf{\ > 0 : py < Ap1}. By convention, S,(p1, p2) = oo if there exists no
such A\. We certainly have

(2.9) do(p1,p2) = igf i%f {logg tap X P2 X ﬁpl}

=inf {v:ap < p2 < €’ap; for some o > 0} > 0.
Y
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, B e =Y p, (1)) — po() pa()
( ) Ba(pla pQ) - }:‘1}; ea|m—y|p1(y) — pl(fE) 2 Slip Pl(x) .

Lemma 2.2

(ii) dq is a quasi-metric with d,(p1, p2) = 0 iff p1 = Apa for some A > 0.
(iii) If a1 < ag then do, (p1, p2) > day(p1, p2) for p1, p2 € Co, .
Proof (i) If po < Ap1, then ps < Ap; and

etle—yl (_pz(y) + Apy (?J))v
N=pi(x) + €7V py (y)).

—p2(x) + Apr(7)
—pa(z) + eV py(y)

IN N

From this we deduce

_ pa(z) el py(y) — pa(x)
Bulpr, p2) = max {Sgp (@) ety € pi(y) — p(a) } '
Note that if sup p2(2) e (_) then
= p(z) ;o (JU)

alz—x = edz—T p2(%) p2(z)
eltlpy(7) = paa) _ @ FG — m@EG o)
el=7lpy (z) — p1() ete=lpy(z) — pi(z) B

This completes the proof of (i)

(ii) The triangle inequality is a consequence of the fact that if po < Aip; and ps < Agpe,
then p3 < A1 Agp1.

(iii) First observe C,, C C,,. Hence ps < Ap; in C,, implies the same inequality in C,, .
O

Recall that we are searching for a fixed point for the operator 7. By Lemma 2.1, if
o€ (A1 1) and a > /\ —20— then T(C,) C Cop € C,. As our next step,, we show that 7 is
a contraction on C,. But first let us demonstrate that in fact that the set C,, is a bounded
subset of C,.

—l— 2a0.

1
Lemma 2.3 diam C,, = sup du(p1,p2) < b:=2log o
p1,p2€Ca0 -

Proof From py(x) < pa(y)e =¥ and py(z) < p1(y)e®* ¥ we deduce

ea‘xfyl — efaakt*y' p2(y)

€a|m—y| — eao\x—y| P1 (y)

Bal(p1, p2) < sup
zy
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To calculate this, set z = a|z — y|. Then z > 0 and

. efF—e 9" l1+o
lim = )
z—0 e* — g% 1—0

On the other hand,
e? —e %% < 1+o0

e —e’* T 1—-o0
which is the consequence of the convexity of the exponential function;

20 l1—0

oz < z —0Zz

- 1+a€ +1+<7€

e

As a result,

1 1 ac/2 1
Ba(p1, p2) < e sup P2(y) < +0 payo)e _ p2(Yo) 0o + o

l—o y ply) ~ L—opi(yo)e/?  pi(yo) 1-—o0

for yo = % Hence

1 2
+U) eQaa’
1—0

Ba(:thQ)Ba(pQ)pl) S (
completing the proof of lemma. O
We are now ready to show that 7 is a contraction.

Lemma 2.4 For every pi, ps € C,,

b
0u(T 1, Tpa) < tanh (1) dulpr. ).

Proof By Lemma 2.3, diam(7C,) < b. As a consequence if Sp; = ps = ap;, then

da(T(p2 — ap1), T(Bpr—p2)) <b

for every p1,ps € C, and a, 8 > 0. This means that we can find two constants A;, Ao > 0
such that log i—f < b and

B+Oé)\2 B—I—a)\l
ST S Tpe < T
1+ A Tpi <Tp2 1+ Ay T p1
As a result,
5“‘05)\1 1—|—)\2 ﬁ+)\1 1—|—)\2
d, (T pr, <1 — Jog & ] .
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Minimizing over 5/« yields

eda(prp2) | A 14+ )\
da(TplaTIOQ) S log eda(l)l,ﬂ2) + AQ - 1Og 1 + )\2

da(p1,02) 69(/\2 _ /\1)
40 < d,(ps,
/0 CESNICES Y (p1, p2)

l'(/\g—/\l) _\/)\_2_\//\_1

Va2 — VA
Vs + VA

b = . Finally f log22z < b btai
ecause Iiltlgf{ (1‘ i )\1)(1: i )\2) \//\_2 n \/)\_1 Inally 1rom [og N D we optaln
ezt — 1 b
do(Tp1, Tp2) < da(pr, p2)——— = da(p1, p2) tanh | — | .
ez’ +1 4

O

This evidently gives us a contraction on C, for any a > 0_6;\’,1 provided that o € (A\71, 1),

because tanh (%) < 1 always. We may minimize the rate of contraction tanh (%) by first

choosing the best a, namely a = J_B%, and then minimizing b in o as o varies in (A7%, 1).

Our goal is to show that lim,,_,,, 7" p converges to a unique invariant density p. For this, let
us establish an inequality connecting d,(p1, p2) to ||p1 — p2||L:-

1 1
Lemma 2.5 For every pi, ps € C,, with / p1 dx = / p2 dxr =1, we have
0 0

1
/ o1 = pa| da < (e — 1), |py — pof < (™42 —T)p,.
0

Proof Let us write d,(p1, p2) = logg with ap; < p2 < Sp1. This in particular implies that
apy < py < Bp1. Integrating this over [0,1] yields o < 1 < f, which in turn implies that
apy < py < Bpy. As a result,

(@a=B)p1 <p2—p1 < (B—a)pr.
Thus
lp1 —pal < (B—a)p < (B/a—1)p1 < (eda(m,pz) —1) p1,

1 —
/|p2—p1|dl’§ﬁ—a§5 a:é_lzeda(mm)_l'
0 (6 [0

We are now ready to state and prove the main result of this section.
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Theorem 2.2 Let a = —2 and 0 € (A1, 1). Then for every p € C, with folp = 1,

o—\"1
lim, oo T"p = p exists uniformly and p dv € Iy with p € Cur. Moreover, there exists a

constant ¢; such that

1 1 1
/foT”gdm—/gdm/ fp dx
0 0 0

where \ = tanh (%), b=2log }f—g +2a0, f € L', and g is Lipschitz.

(2.10) < a X" flleUglles + 119 ll)

An immediate consequence of Theorem 2.2 is the mixing property of p because we may
choose g = hp/ [ hp to deduce

1 1 1
lim foT" hp dx = / fpda:/ hpdzx.

Proof of Theorem 2.2 We first show that if p € C,, then T"p converges to a function
p € C, in L'-sense. Indeed

1T = T"pll < exp(da(T™"p, T"p)) = 1
exp(A" N (T p, Tp)) — 1

An—1 F P An—1 [P
e)\ b_lg)\n lbe)\ bSCo)\nl

IAIA

IN

for a constant ¢y that depends on b only. This implies that 7"p is Cauchy in L. Let
p = lim p,, where p, = T"p. Since p,(7) < pn(y)e®*=¥ and p,, — p a.e. for a subsequence,
we deduce that p(z) < p(y)e®!*=¥! for a.e. x and y € [0, 1]. By modifying p on a set of zero
Lebesgue measure if necessary, we deduce that p € C,,. Note that p is never zero, because
if p(zo) = 0 for some xg, then p(z) < p(xg)e® ™~ implies that p(x) = 0 for every z. But
fol pdx = 1 implies that fol pdx = 1. So p > 0, completing the proof of p € C,.

We now show that 7"p — p uniformly. Indeed from 7"p — p in L' we deduce that
[ foT™pdx — [ fpdx for every bounded f, which implies that 7p = p. Moreover

T —pl = |T'p—=T"p| < (e“T"PT"P —1)T"p
< (@RI _1)p < (P = 1)p
S j\n—lbez\"’lbﬁ S COS\nﬁ

with ¢y depending on b only. From this we learn that
1T p = pllre < coX*(| ] Lo

for every p € C, with fol pdx = 1.
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We now turn to the proof of (2.13). Without loss of generality, we may assume that
g > 0. Given such a function g, find [ > 0 large enough so that p = g + [p € C,. Indeed, for
y > z, we have that p(y) < g(y) + lp(x) exp(ac(y — x)) =: exp(h(y)). On the other hand

¢(y) +laop()e v _ |1 | laop(@)e =) _|lg']g~ 1

h(y) = _
W) 9@+ @) D = i) T lp@)ewm® = imfp 1%
This is at most a if we choose ,
R I
a(l—o)infp’
Hence l
ng+ ﬁ — In =
HT —7 P =@l 17| Lo
LOO

where Z = fol (9 +lp)dz. Since Tp = p, we deduce

Trg 1 Q
—0—p < A?’l 0 [ee]
[T+ g0-0| < allal-

1779 = (Z = Dplle < coA"plle=Z.

1
HAng_p/ gdal| < Vg dx+l} < e Ug dx+||g’HLoo}
0 L

From this, we can readily deduce (2.13). UJ

Hence

Example 2.2 Let
T(z) = = for x € [?,%),
2z — 1 forxe[i,l].

Note that for this example, the condition |7"(x)| > 1 is violated at a single point z = 0. It
turns out 7" has no invariant measure which is absolutely continuous with respect to Lebesgue
measure. We omit the proof and refer the reader to [LaYo]. O

As our next scenario, let us study an example of a 2-dimensional system that has ex-
panding and contracting direction but there is no absolutely continuous invariant measure.
As a toy model for such a phenomenon, we consider a (generalized) baker’s transformation:

(%,ﬂxg) if 0 <z <a,
(zlgavﬂ"‘al@) ifa§w1<1.

T:T? = T T(vy,75) = {
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with o, f > 0 and a+ 8 = 1. Observe that if we project a T" orbit onto the z-axis, we obtain
an orbit of an expanding dynamical system associated with the map S : T — T, that is given

by
o fo<z <a
S =< @ - ’
(1) {mﬁ_a ifa<xz <1,

We can readily show that in fact the Lebesgue measure is an invariant measure for S. The
same cannot be said about the projection onto the zs-axis.
Note

g ifo0<z<a,
(0%
¢ fa<z<l.

|JT (21, 22)| = {_
8

As we will see later, the transformation 7" does not have an absolutely continuous invariant
measure unless o = § = % To analyze Perron—Frobenious operator, let us define

F(a1,22) = Fu(21, 22) = p([0, 1] x [0, z]).
If FF = Fr,, then

F(azy,x9/8) if 0 <z <0,
F(ax1,1)+F(ﬁ:B1+a,z2;B)—F(a,%) if B <uxy < 1.

(2.11) F(x1>$2) = {

To see this, recall that F(z1,x5) = u(T7([0, z1] x [0, 22])). Also

<04x1,%2> if 0 <xy < f,

(a+ Bz, 2L) if B<a, <1

Note that T is discontinuous on z; = a, and T~'. Now if 0 < x5 < 3, then T71([0, ;] X

0, 29]) = [0, auq] X [O, %2] which implies that F'(zy,z5) = F (&ml, %) in this case. On the
other hand, if 8 < x5 <1, then

T7H[0,21] x [0,22]) = T7H([0, 4] x [0, B]) UTH([0, 2] x [B, 2]),
T7H[0,21) x [0,8]) = [0,az1] x [0,1],

T(0,21] x (8, 22)) =:[awv+ﬁxﬂ><(&

Clearly ([0, az4] x [0,1]) = F(axy,1). Moreover,
M([a,a—f-ﬁxl] X (Oa xZ;B:|) = F(Oé—’—ﬁl’l,

(10,0 x (,

- F(O["‘B.Tl,

(2.12) T Yz, mp) = {

$1—5}

)
=)
(=),
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completing the proof of (2.11). Since the expanding and contracting directions are the x;
and z, axes, we may separate variable to solve the equation TF F = F. In other words,
we search for a function F(zy,25) = Fy(x1)Fs(x;) such that TF = F. Since the Lebesgue
measure is invariant for the map S, we may try Fj(z;) = z7. Substituting this in TF yields
7A'F(3:1, To) = $1F2<332) where

aF (%) 0 <z, < B,
atBF (F) B<a <L

BF2 = FQ(CEQ) = {

Here we are using F5(1) = 1. We are now searching for F;, such that BF, = F;. It turns out
that this equation has a unique solution F5 that has zero derivative almost everywhere. Hence
our invariant measure ji = A\; X Ao with A\; the Lebesgue measure and A\ a singular measure.
One can show that the support of the measure A, is of fractal dimension % =: A.
To explain this heuristically, let us first propose a definition for the fractal dimension of a
measure. To motivate our definition, observe that if a measure p is absolutely continuous
with respect to the Lebesgue measure A = Ay, with du = fd\;, then by a classical theorem
of Lebesgue,
lim (28) 'z — 6,2 + §) = f(x),

6—0

for almost all z. This means that if [,,(z) = (z — n™',z + n'), then

lim MUn(x))

A e

for almost all x. In the support of u, we can assert

. M(In(x))
0< 7}1—>H§o )\l(jn(x))

because f(z) > 0, y-almost everywhere. We may say that a measure p is of fractal dimension
D if

< 00,

M(In(x))

M < lim inf 5

< 00,
D =50 )\1(]”@))

(2.13) 0 < limsup
=0 )\ (In(qj))

p-almost everywhere. This requires that the fractal measure p to be rather regular and if
true, (2.13) is often hard to establish. To have a less ambitious definition, we may require

(2.14) lim log p(In(@)) =D w— a.e.

n—o0 log A1 (In())
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In fact, we may try to establish (2.14) for a sequence of intervals I,,(x) with z € I,(x),
Npln(x) = {x}. With this definition in mind, let us write A for the set of points x such that

L logXa(L(x)) _
(2.15) i log Ay (In(x)) &

We wish to show that \y(A) = 1. To construct I,, let us first define a family of intervals

Loy, With ay,...,a, € {0,1}, so that [0 =[0,5), I = [8,1), and if I,, = [p,q), then
Iay,.an0 = [p,p+ B¢ —p)), and I, =[p+B(q@—p),q. By mdUCtIOH on n, it is not
hard to show

(216) )\2(1111 ..... an) - O‘LnﬂRn7 Al([al ..... an) - BLnaRn7

where L,, and R,, denote the number of 0 and 1 in the sequence a4, ..., a,, respectively. Given

x, we can find a sequence w(z) = (ay,...,a,,...) € Q= {0, 1}, such that z € I, . for
every n. The transformation x — w(x) pushes forward the measure Ay to the product
measure A\, such that each a, is 0 with probability «. If L, (z) and R,(z) denote the number

of 0 and 1 in ay,...,a, with w(z) = (a1,...,an,...), then by Birkhoff Ergodic Theorem

A2 ({$ lim Ln(z) =qa, lim Fn() = ﬁ}) =1.
n—o00 n n—oo n

From this and (2.16) we can readily deduce that A(A) = 1. Note that the support of i is
of dimension 1+ A. Evidently A < 1 unless a = = %

What we have constructed is the Sinai-Ruelle-Bowen (SRB) measure i of our baker’s
transformation 7. Note that this measure is absolutely continuous with respect to the
expanding direction z-axis. A remarkable result of Sinai-Ruelle-Bowen asserts

,}:HgoanT’ )= | s

for almost all z with respect to the Lebesgue measure. This is different from Birkoff’s
ergodic theorem that only gives the convergence for fi-a.e. and f is singular with respect to
the Lebesgue measure. We may define the SRB measure as the invariant measure of the
mazimum metric entropy. The metric entropy will be discussed thoroughly in Chapter 4.

We end this section with a discussion regarding the flow-analog of Perron—Frobenious
equation. Given a flow ¢, associated with the ODE % = b(x), let us define

Tig = go ¢y
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This defines a group of transformations on the space of real-valued functions g. The dual of
T, acts on measures. More precisely, 77 1 is defined by

/thduz /det*u,

or equivalently T7u(A) = u(¢;'A) = u(¢_+(A)). The following theorem of Liouville gives
an infinitesimal description of 7} when p is absolutely continuous with respect to Lebesgue
measure.

Theorem 2.3 Suppose that there exists a differentiable function p(x,t) such that d(T; ) =
p(x,t)dx. Then p satisfies the Liouville’s equation

pe + div(ph) = 0.
Proof Let g be a differentiable function of compact support. We have
/g(y)p(y,Hh)dy = /g(¢t+h(fv))p(w,0)dx
— [ s(n(@a))pta,0)is
— [ s(onwntu. iy
— [ oly-+ hbiw) + o(W)p(y. 1y

— [ swptvds+h [ 3 o) bty iy
+o(h).

This implies that £ [ g(y)p(y, t)dy = [b(y) - Vg(y)p(y,t)dy. After an integration by parts,

d :
o | 9Wely t)dy = /g(pt + div(pb))dy.
Since ¢ is arbitrary, we are done. 0

In particular a measure pdx is invariant if
div(pb) = 0,

or equivalently pVb+p div f = 0. The generalization of this to manifolds is straightforward.
If £, denotes the Lie derivative and f is the velocity of the flow, then pw is invariant if and
only if

Lyp+ p div b= 0.
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Exercises
(i) Prove Proposition 2.1.

(ii) Show that the generalized baker’s transformation is reversible in the following sense: If
O(z1,79) = (1 — 22,1 — z1) then ®? = identity and T~ = TP.

(iii) Let 7" and @ be as in (ii). Show that if 4 € Zp, then ®yu € Tp-1.

(iv) Let T : (0,1] — (0,1] by T'(z) = {1} where {-} means the fractional part. Derive the

corresponding Perron-Frobenious equation. Show that p(x) = 102;21% is a fixed point for

the corresponding Perron—Frobenious operator.

(v) Let T: [0,1] — [0,1] by T'(z) = 4x(1 — x). Derive the corresponding Perron—Frobenious
equation and show that p(z) = 7~!(x(1 — x))~"/? is a fixed point.

(vi) Let u(z,t) = Tog(x) = g(¢4(z)). Show that u satisfies u; = Lu where Lu = b(x) - 2.
(vii) Show that p € Z, iff [ Lg du = 0 for every g € C* of compact support. 0

Notes The proof of Theorem 2.2 was taken from [Li]. The example of the generalized baker’s
transformation was taken from [D].
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3 Entropy

Roughly speaking, the entropy measures the exponential rate of increase in dynamical com-
plexity as a system evolves in time. We will discuss two notions of entropy in this section,
the topological entropy that was defined by Bowen, and (Kolmogorov—Sinai) metric entropy
that was formulated by Kolmogorov.

We start with some some definition and elementary facts that will prepare us for the
definition of the topological entropy.

Definition 3.1(i) Let (X, d) be a compact metric space and 7 : X — X be a continuous
transformation. Define By(z,7) = {y : d(z,y) < r}, and

dn(,y) = d} (z,y) = max{d(z,y),d(T(x), T(y)), ..., d(T" (), T} (y))},
B"(z,r) = B%d(x,r) = By, (z,r) ={y: dp(x,y) <r}
= By(z,r) NT'By(T(z),r) N---NT " By(T" (z),7).

(ii) We define S7. 4(r) as the smallest number & for which we can find a set A of cardinality
k such that X =, 4 Bt 4(7, 7).

z€A

(iii) We define S%d(r) as the smallest number £k for which we can find an open cover O of
X cardinality k such that for every A € O, the diameter of the set A with respect to the
metric d,, is at most 2r.

(iv) We define N7 ,(r) to be the maximal number of points in X with pairwise d,-distances
at least r. 0

As the following Proposition indicates, the numbers Sz ,(r), S’%d(r), and Nf,(r) are
closely related as r — oo.

Proposition 3.1 We have

(3.1) N7.4(2r) < S74(r) < N7 o(r),
(3.2) Sta(2r) < S74(r) < St (r),
(3.3) Sga"(r) < Sg(r)Sga(r)-

Proof The first inequality in (3.1) follows from the fact that no d,-ball of radius r can
contain two points that are 2r-apart. The second inequality in (3.1) follows from the fact
that if N*(r) = L and {z1,...,2.} is a maximal set, then X = U;?:l By, (xj,7).

The second inequality in (3.2) is obvious, and the first inequality is true because if O is
an open cover of X such that for every A € O, the diameter of the set A with respect to the
metric d,, is at most 2r, then we can pick a4 € A and form a cover of the form

X = UAGOB%d(aAa 27‘).
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To show (3.3), take two collections of sets O and O’ with O (respectively O') an open
cover of X with respect to the metric d,, (respectively d,,) such that

Ae O = diamg, (A) <2r,
BeO = diamg, (B) < 2r.

Then O consisting of the sets of the form ANT™(B) with A € O and B € O’ is an open
cover of X with respect to the metric d,,,,. Moreover diamg,, ., (A NT-"™(B )) < 2r, follows
from

dpin(x,y) = max {dm(x, Y),dy, (Tm(:z:), Tm(y)) }
0
As an immediate consequence of (3.3), we learn that the sequence a, = log S’%’d(r) is

subadditive. The following standard fact guarantees the convergence of the sequence a, /n
as n — o0.

Lemma 3.1 Let a, be a sequence of numbers such that a,ym < ap+an,. Thenlim, . %an =
inf,, <.

Proof Evidently liminf, . %* > inf, %*. On the other hand, if n = ¢m + r with m, ¢ € N,
r € [0,m), then

IN

Qg + ar < gam + ay,
ma,, a,

Ap = Qpm+r
Qn

IN

n nm n
After sending n — 0o, we obtain,
Qn

. A
limsup — < —
n—oo 1 m

for every m € Z™. This completes the proof. O

The topological entropy is define so that “higher entropy” would mean “more orbits”.
But the number of orbits is usually uncountably infinite. Hence we fix a “resolution” r, so
that we do not distinguish points that are of distance less than r. Hence N"(r) represents
the number of distinguishable orbits of length n, and this number grows like e™er(T)  We
are now ready to define our topological entropy.

Definition 3.2 We define

1 A 1 N
hiop(T; d) =hiop(T) = lim lim —log ST ,(r) = supinf — log S7 4(r).
) n )

r—0n—oo N r>0 N

52



As an immediate consequence of (3.1) and (3.2), we also have

1
htop(T; d) = lim lim sup log Sra(r) = hm lim inf —log S7. 4(r),

=0 5500 —0 n—oo N

1 1
=lim lim sup — log Nz 4(r) = lim lim inf — log Ny q(r).

=0 5500 r—0 n—oo

O

We will see below that hip(7'; d) is independent of the choice of the metric and depends
on the topology of the underlying space. Here are some properties of the topological entropy.

Proposition 3.2 (i) If the metrics d and d' induce the same topology, then hyp(T;d) =
htop (T, d,) .

(i) If F: X =Y is a homeomorphism, T : X — X, S:Y =Y, and SoF = FoT, then
op(T) = huap(S).
(iii) iop(T™) = nhiop(T). Moreover, if T is a homeomorphism, then hiop(T) = hiop(T71).

Proof(i) Set n(e) = min{d'(x,y) : d(z,y) > €}. Then

d'(z,y) <nle) = d(z,y) <e
As a result, lim.,on(e) = 0 and Bf 4 (z,m(€)) € Bf4(x,€). Hence S}, (n(e)) > St 4(€).
Thus hiep (T, d) < heop (T, ).

(ii) Given a metric d on X, define a metric d’ on Y by d'(z,y) = d(F~(z), F~(y)). Evi-
dently hiop (1 d) = hiop(S; d').

(iii) Evidently By (z,7) € Bja 4(z,r). Hence
Sta(r) = Staa(r),  heop(T™) < nhuop(T).

For the converse, use the continuity of 7" to find a function 7 : (0,00) — (0,00) such that
n(r) < rand By(x,n(r)) € By (x,r). Then Bf. 4(z,n(r)) C Bfy(x,r). This implies that
Sécwn,d(n(T)) > ngj(r), which in turn implies

1
7 log S’“n,d(n(r)) >n

kE—1 1
Zlog St .
P gomax g logSry(r)

From this, it is not hard to deduce that hiop(T™) > nhiop(T).
For hiop(T~1) = hiop(T), observe that dZ(z,y) = di (" '(x), 7" '(y)). This means
that T "(Bg 4(z,7)) = Bj i J(T" '(2),r). Hence X = Ule B 4(;,7) is equivalent to
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X = Ujf:l Ty (T (2;),r). From this we deduce S}, ,(r) = SF,(r). This implies that
hiop(T™1) = htop(T). O

Example 3.1(i) Let T : T¢ — T be a translation. Since T is an isometry, d,(z,y) = d(x,y)
for d(z,y) = | — y|. Thus S"(r) is independent of n and ht.,(7") = 0.

(ii) Let X = {0,1,...,m—1}%. Givenw = (w; : j € Z) € X, define (7w); = w;;1. Consider

the metric .
V= -l
jEL
with n > 1. Fix a € X and take any w € X. Evidently

an\a —wj| <2(m—1) Zn 3

|7]>¢ r=0+1

Also, if w; # «; for some j € {—/(,...,(}, then

Z ey —wjl >~

lj1<¢

Evidently d induces the product topology on X no matter what 7 € (1, 00) we pick. Choose

)

n large enough so that 2 < 1. For such a choice of 7,

By (04,77’ ) = {w:wj =q; for j € {—ﬁ,...,é}}.

Since
{w:d(T'(w), 7 (@) <™} ={w: wjsi = a4, for j € {—L,....0}},
we deduce
By, (a,n") ={w:w; =a; for j € {—(,... .0 +n—1}}.

Evidently every two d,-balls of radius ¢ are either identical or disjoint. As a result,
ny (n7f) = m**". Thus

20+n

hiop(T') = lim lim sup — logm = logm.
n

£—=00 pooco

(iii) Let T, : T — T be the expansion map as in Example 1.5(ii). From Part (ii) and
Exercise 3.1(i), we deduce that hy,(T,,) < logm. We will see later in Example 3.4 below
that in fact hyy,(1,) = logm.

(iv) Let (X, 7) be as in the Part (ii) and let A = [a;;] be an m x m matrix with a;; € {0,1}
for all 4,5 € {0,1,...,m — 1}. Set

Xa={weX:ayu, =1foralicZ}.

W1
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Evidently X4 is an invariant set and the restriction of 7 to X4 gives a dynamical system.
Write 7,4 for this restriction. To have an irreducible situation, we assume that each row and
column of A contains at least one 1 (if for example ag; = 0 for all j, we may replace X with

{1,2,...,m — 1}%). For such A,

St (n_z) — 4 of balls of radius ¢ with nonempty intersection with X,

TA,
= # of (a_g, ..., Qpyn—1) With a0, =1 for =0 <i<l4n—1

m—1
= Z #{(a,g,...,a@rn,l): Aoy, = Lior —0<i<l+n—1

r,s=0

and a_p =71, apip_1 = s}

7,8

m—1
_ Z a2n+€fl _ |’A22+n71”

r,s=0

where a;, is the (r,s) entry of the matrix A*, and ||A]| denotes the norm of A, i.e., Al =

> s |ars|. We now claim

1
htop(T4) = lim limsup - log [| A2 || = logr(A),

- =00 poo
where r(A) = max {|)| : X an eigenvalue of A}. To see this, first observe that if Av = Av,
then A*v = A\*v. Hence

AP mmase o] < D oyl < 3l lul < (1A% max o]
J 0,J

As a result, ||A¥|| > |\|¥. This shows that hop(74) > logr(A). For the converse, we choose
a basis so that the off-diagonal entries in Jordan normal form of A become small. Using this
we can show that |Av| < (r(A) + 6)|v| which in turn implies that |A*v| < (r(A) + §)*|v].
From this we deduce that hiop(74) < log(r(A) + d). Finally send 6 — 0 to deduce that
htop(Ta) < logr(A). This completes the proof of hyp(74) = logr(A).

(v) Let T : T? — T? is given by T'(x) = Bx (mod 1), where B is an integer-valued matrix
with eigenvalues A, Ap satisfying |Ao| < 1 < |Aj| = |A2|™!. For the sake of definiteness, let

34v6 )\ — 326

us take B = ﬁ ﬂ with eigenvalues \; = =5 5

1
and eigenvectors v; = [\/51] ,
2

1
Vg = {_ \/5_1]. T is a contraction along vy and an expansion along v;. We now draw the
2

eigen lines from the origin and let them intersect several times to separate torus into disjoint
rectangles. Let us write Ry and Ry for these rectangles and study T'(R;) and T'(Rs). We set

T(Rl)le - ZQUZl, T(Rl)ﬂRz 2237 Rl - ZoLJZlUZQ.
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We then define Z, so that Ry = Z3U Z,;. One can then show that T'(Rs) = Z,U Z;. We now
define X = {0,1,2,3,4}% and F : X, — T? with

11010
11010
A:[aij]: 11010 5
00101
00101

where F'(w) = z for {z} = (,cz T "(Zs,). In other words, F(w) = x iff T"(x) € Z,,
for all n € Z. If 74 denotes the shift on X4, then we have T'o F' = F o 74. Here we
are using the fact that if + € Z; and T'(z) € Z;, then a;; = 1. This also guarantees that
Npez T "(Z.,) # 0. Also, since T is contracting in vs-direction and 7' is contracting in
vi-direction, then (1, ., T~ "(Z,,) has at most one point. Clearly the transformation F is

onto. However, h is not one-to-one. For example if & denotes a = (w,, : n € Z) with w, = «
for all n, then 0,1,4 € X4 (but not 2 and 3). Moreover 74(0) = 0, 74(1) = 1, 74(4) = 4.

On the other hand the only x with T'(z) = z is = 0. In fact F(0) = F(1) = F(4) is equal
to the origin. From T o F = F o T, Exercise 3.1(i) and Example 3.1(iv) we conclude that
htop(T) < hiop(Ta) = logr(A). A straightforward calculation yields r(A) = A\; = %5 Later
we discuss the metric entropy, and using the metric entropy of 7" we will show in Example
3.4 below that indeed hyop(1") = log % O

The metric entropy is the measure-theoretic version of the topological entropy. As a
preparation, we make a definition.

Definition 3.2 Let T : X — X be a measurable transformation and take u € Zp.

(i) A countable collection £ of measurable subsets of X is called a p-partition if pf(ANB) =0
for every two distinct A, B € £, and p (X \ Usee A) = 0. We also write C¢(x) for the unique
A € & such that € A. Note that C¢(z) is well-defined for p-almost all z.

(ii) If £ and 7 are two p-partition, then their common refinement £ \VV 1 is the partition
Evn={AnNB:Aec& Ben, u(AnB) > 0}.
Also, if ¢ is a p-partition, then we set
Te={T""(A): Aeg},
which is also a p-partition because p € Zp.

(iii) For m < n, we define

m,n) =&m,n) =T VT ™V - VT,

o6



O

As we discussed in the introduction, the metric entropy measures the exponential gain in
the information. Imagine that we can distinguish two points z and y only if z and y belong
to different elements of the partition &. Now if the orbits up to time n —1 are known, we can
use them to distinguish more points. The partition £7(0,n — 1) represents the accumulated
information gained up to time n — 1. Except for a set of zero p-measure, each x belongs to
a unique element

Co(z) = Ce(x) NTH(Ce(T(2))) N---NT(Ce(TH(x))) € £(0,n — 1).
Let’s have an example.

Example 3.2(i) Let (X, 7) be as in Example 1.1(iii), with £ = {0,1,...,m — 1}. Choose
& = {Ao,...,Am_l}, with A; = {w owp = z} Given p = (po,- .- ,Pm-1), with p; > 0,
> ;p; =1, recall p, € 7 is the product measure with tp(A;) = pi. Systems of the form

(E%, 7, 1,) are known as Bernoulli Shifts.
We have
Chla) = {w: w; =« for 1= 1,...,n}.

We certainly have p,(Cy (@) = pay - - - Do, and

n—1
1 |
—log j1,(C Zlogpa] = Zlog f(r(a))
0

where f(a) = pa,. By the Ergodic Theorem,

(3.4) lim — log pp(C Z p;logp;.

n—oo 1

(ii) Let (T, 7,,) be the expansion map as in Example 1.5(ii). Let
J J+1 .
g_{[g,7>‘j_o,,m—1}

nnzﬁT(O,n—l):{[-al...an,-al...an+m_"): al...ane{O,l,...,m—l}}.

Then

Given z, let -ajas...a, * *... denote its base m expansion. Note that for points on the
boundary of the intervals in 7,,, we may have two distinct expansions. Since we have chosen
closed-open intervals in &, we dismiss expansions which end with infinitely many m. In
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other words, between .a; ...ax(m —1)(m —1)..., with ay, <m —1 and .a;...a}00... for
aj, = ay + 1, we choose the latter. we have

Cy,(z) = [-al R s R/ O m_”) )
For y, as in Example 1.5(iii), we have p,(C,, (%)) = pa, - - - Da,, and

n—1
! logup Zlogpa = Zlogf(Tj(a:))
0

where f(-ajas...) = p,,. By the Ergodic Theorem,

lim — log i (C Z pjlog p;.

n—oo N,

O

In general, since we are interested in the amount of information the partition n, =
€(0,n — 1) carries out, perhaps we should look at u(C,(z)) where C,(x) = C,,(x). This
is typically exponentially small in n. Motivated by Example 3.2, we make the following
definition.

Definition 3.3(i) Let 4 € M and £ be a u-partition. The entropy of £ with respect to u is

defined by
Hu(f ) = / Z w(C)log u(C

ceg
where I¢(z) = —log u(Ce(x)).
(ii) Given two p-partitions n and &, the conditional entropy of £, given 7 is defined by

ANB
H,(&|n) = /I£|77 dp = —Aegenu(fm B)log %,

where (Celw) N Cy(a)
Iy () = —log u(Ce(x) | Cy(x)) = —log & : (”“"CM; =27

(iii) Given a dynamical system (X,T'), an invariant measure p € Zr, and a p-partition &,
we define

B (T.€) = lim ~H,(£(0,n — 1)),

n—oo N
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The existence of the limit follows from the subadditivity of a, = H,({(0,n — 1)), which is
an immediate consequence of Proposition 3.2(ii) below.

(iv) The entropy of T' with respect to p € Zr is defined by
hu(T) = Sup T, ),

where the supremum is over all finite p-partitions.

(v) We write a < § when  is a refinement of a. This means that for every B € 3, there
exists a set A € a such that u(B\ A) = 0. O

Proposition 3.3 Let &, 1, and v be three p-partitions.

(i) We have
Tevn = Iy + g, H,(EVn)=H,n)+ HuS | n)
More generally,

Lievmy = nh(x) + Ie| (v Hu(g vV ly) = Hu(ﬁ | ) + Hu(f |7V )

(ii) Hu(& [n) < Hu(S)

(iii) Hu(§ V) < Hu(§) + Hyu(n).

(iv) We have Ip-1¢ = I o T, and Ip-igp—1,y = Igy, o T. Moreover, H,(T7'¢) = H,(§) , and
H,(T7€ [ T"'n) = Hu(& | ).

(v) If n <, then

w(n) < Hu(v),  Hu(&]n) = Hu(& ] 7).

Proof(i) By definition,

O\/n xXr O T Cn T C»y T
Fente) = =g KT - g ML SN
_ e MCe@) N Cpr () p(Colx) N Cy(x)) ) 1(Cel) N o (2))
T 1(Cy(x)) =~ los M(Cy($)> log M(an(x))

= Ly () + Igj vy ().

(ii) Set ¢(z) = xlogx and use the convexity of ¢ to assert

d(u(A) = ¢ <Zu AﬂB) > u(B) (A(—;)B>>

Ben Ben

1(AN B)

= Z,u(AﬂB) log (B)

Ben
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(iii) This follows from (i) and (ii).
(iv) This part is an immediate consequence of the invariance u(7T-*(A)) = p(A) for every
A€k

(iv) We only prove the second inequality as the proof of the first inequality is similar. By
definition,

Hu&lo)=~ ) M<A“C>10g—”(f<2>0):‘ 2 A (M(f<2>0)>'

A€ea,Ce€ Aca,Ceg

Fix A and choose a family J C 3, so that

p(AA(U{B:BeJ})) =

Hence
ANC) (B) i COB (B) (pu(CNB
. ( ( > 3 p( e 2 u( A2, ( . )) |
Hd) e ey M H(B)
From this we deduce H,(¢ | o) > H, (& | B). O

We now show that the limits (3.4) in Example 3.2 are always true if p is ergodic.

Theorem 3.1 (Shannon—McMillan—Breiman) If p € IS, then

n—oo

(3.5) lim / ’%bg 1(Co(2)) + hy(T, 5)‘ dp = 0.

Proof Recall {(n,m) =TV TV - VT whenever n < m. We have

Ten-1) = leven-1) = Lean-1) + lgen-1) = leon-2) © T+ Igen-1),
because Cr-1,(x) = C,(T'(x)). Applying this repeatedly, we obtain

1 1 — n— n—

~Teon-1) = — [Telean—) + lagan-2 0 T+ -+ Igean o T + Igroag o T + Ie o T
If it were not for the dependence of I¢¢(1,,—j) on n — j, we could have used the Ergodic
Theorem to finish the proof. However, if we can show that lim,, o I¢jg(1,m) = I exists, say

in L'(p)-sense, then we are almost done because we can replace I¢e1,,—j) with [ with an
error that is small in L'-sense. We then apply the ergodic theorem to assert

1 ~
lim —I¢0-1) = /Id,u.

n—oo 1N
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Note that if we write F,, for the o—algebra generated by 7, then ;(Ce¢(x)|C,(z)) is nothing

other than
w(Ce | Cy)(w) = (A | Fp)(a)lLa(w),
Aet
i.e. the conditional expectation of the indicator function of the set Cg, given the o-field F,,.
Hence, we simply have

f@)z—bg{ggEZMA|ﬂLn»@ﬂA@%ﬂz—Ejbng&MAIﬂLMXﬂ}ﬂA@~

Aeg Aeg

This suggests studying lim,, o, (A | £(1,n)). The existence and interpretation of the limit
involve some probabilistic ideas. We may define F; ,, to be the o-algebra generated by the
partition £(1,n). We then have Fy5 C Fi 3 C ... and if Fj o is the o-algebra generated by
all £(1,n)’s, then

(3.6) Tim p(A[E(1,n)) = p(A | Fieo),

p-almost surely and in L'(u)-sense. The right-hand side is the conditional measure of A
given the o-algebra Fj .. The proof of (3.6) follows the celebrated martingale convergence
theorem. We refer the reader to any textbook on martingales for the almost sure convergence.
For our purposes, we need something stronger, namely log pu(A | F1,) — log (A | Fieo) in
L'(u). The proof of this will be carried out in Lemma 3.2 below. O

Lemma 3.2 Let F be a o-algebra, and let F,, be a family of o-algebras with F,, C Fu,
and F, C Fni1 for all n. Then for any A € Fu,

(37) | (sup (- tog a4 £1,) ) di < ) o () + ),
A n
(3.8) Tim log p(A | ) = log p(A | Foo).

Proof (3.9) is an immediate consequence of (3.6), (3.7), and the Lebesgue’s dominated
convergence. As for (3.7), pick £ > 0, and define

A=Az p(A| Fipn) (@) <e ™, p(A|Fip)(z)>e’ fork=1,2,...,n—1},

then A, € F1, and we can write

i {x € A:sup(—logpu(A | Fin)(z)) > E} =pu(ANUZ A, = Z,u(A NA,)
" 1
= Z/ (A | Fip)du < Z/ e fdu=e"* ZM(A“) <e ™
1 n 1 JAn 1
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From this we deduce

n

/A (sup (—log (A | Fin)) (ac)) dp = /Ooou {:c €A: sup (—log u(A | Fin)(w)) > E} de
< /Ooo min{p(A), e}l = —p(A)log u(A) + p(A).

This completes the proof of (3.7). O

Remark 3.1 The convergence n'u(Cy(z)) — h,(T,€) is also true p-a.e. This can be
established with the aid of Corollary 1.2, when T is invertible. To see this, set

n(m,n) =TmEANT™EN - ANTTE,
and observe that since £(m,n) =T ""n(m,n), we can write

15(0»7171) = In(O,nfl) o ! = []g\n(l,nfl) + Ifln(l,an) oT ! 4+t ]€ o Tl—n] o1
= I§|77(1,n—1) o Tn_l + I§|’r](1,n—2) ¢ Tn_2 + .-+ ‘[f

On the other hand, since 3
im Jejp1n-1) = 1,

n— o0
exists in L' (), with

F= =3 log (u(A| L)) L,
Aeg

where F denotes the s-algebra generated by all T°¢, i € N, we can apply Corollary 1.2 to
establish the p-a.e. convergence. 0

The proof of Theorem 3.1 suggests an alternative formula for the entropy. In some sense
h, (T, §) is the entropy of the “present” { relative to its “past” £(1, 00). To make this rigorous,
first observe that by Proposition 3.2(i),

n—1

(3.9) Hu(6On=1) =3 Hu(€]£01.5)

where H, (¢ ] £(1,1)) means H, (). In fact we have

Proposition 3.4 h,(T,¢) = inf, H,(¢ | £(1,n)) and the sequence H, (| £(1,n)) is nonde-
creasing.
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Proof The monotonicity of the sequence a,, = H,, (€ | £(1,n)) follows from Proposition 3.2(iv).
We then use (3.9) to assert

lim “H,(€(0,n—1) = lim ~ ZH (€] €(1,9))

n—oo 1 n—oo 1

= Jggoﬂu(é | €(1,n)) = inf H, ([ (1, n)).

We continue with some basic properties of the entropy.
Proposition 3.5 (i) h,(T*) = kh,(T) and if T is invertible, then h,(T) = h,(T~1).
(ii) If0 € [0,1], uLlv and p,v € Ip, then houya—ow(T) = 0h,(T) + (1 = 0)h,(T).

Proof(i) We have

J=0

nk— n—1
( VA ) Hy, (\/(T’“)‘j@ VI V.-V T"““g)) :
h

Hence kh,(T,€) =
kh,(T) = h,(T*).
The claim h,(T~') = h,(T) follows from the invariance of p and the fact

L(TF ) where n = VTV -+ - VT FHIE Since n > €, we deduce that

E0,n—1) =€V VT e = T (v .y Tl

(ii) Let A be such that u(A) =1, v(A) = 0. Set B =, _(psm T "(A). We can readily
show that T7~'B = B and that u(B) = 1, ¥»(B) = 0. Set # = {B, X \ B} and given a
partition &, define { =&V 5. If v =0u+ (1 — 0)v, then

(3.10) H, (&) = 0Hu(&) + (1 = 0)H, (&) — 0log 6 — (1 — 60) log(1 — 0),

where &, = £(0,n — 1) and ) = f(O,n — 1). To see this, observe that if C' € ¢, and
¢(z) = zlog z, then

 [00(C) log(0(C)) it CC B,
o(1(0)) = {(1 —)(C)log((1 — O)w(C)) if C C X\ B.

This clearly implies (3.10). Hence,
ho(T,€) = Ohy(T,€) + (1 = ) (T ).
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From this we deduce
hv(T) < QhH(T) + (1 —=0)h,(T).

This and Exercise (viii) complete the proof. O

In practice, we would like to know whether h,(T") = h,(T,&) for a partition £. In the
next theorem, we provide a sufficient condition for this.

Theorem 3.2 (i) Let & be a finite u-partition and assume that the smallest o-algebra con-
sisting of T™"(C), n € N, C € &, equals to the Borel o-algebra. Then h,(T) = h,(T\§).

(ii) If T is invertible, then in part (1), we only need to assume that the smallest o-algebra
consisting of T"(C), n € Z, C' € &, equals to the Borel o-algebra.

As a preparation we prove an inequality.

Lemma 3.3 For every pair of finite partitions n and & we have

Proof Recall {(m,n) =TV --- VT "¢, We certainly have
H,(&0,n—-1)) < H,(n(0,n—1))+ H,({(0,n—1) | n(0,n —1)).

We are done if we can show that H,(£(0,n — 1) | n(0,n — 1)) < nH,(& | n). Indeed using
Proposition 3.2(i), we can assert

Hy(€(0,n = 1) | n(0,n = 1)) < Hu(& [n(0,n—1)) + H,(E(L,n—1) [n(0,n - 1) VE)
< Hu(€ | n) + Hu(E(Ln = 1) | n(l,n—1))
< Hu(§|n)+ HJT7'E(0,n —2) | T '9(0,n — 2))
= Hu(&[n)+ Hu(&(0,n —2) [n(0,n —2))
< nH,(E|n)

O

Proof of Theorem 3.2 We only give a proof for part (i), because (ii) can be shown by
verbatim argument.
For a given partition 7, we apply Lemma 3.1 to assert

(3.11) h,u(T, n) < hu(T’f \ - \/T_n‘Hg) + Hu(n Y, T_n+1f).
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From the definition, it is not hard to see that indeed h,(T,&V --- VvV T ") = h, (T, €).
From this and (3.11), it suffices to show that for every partition 7,

(3.12) Tim Hy(n[§V---V T-"t¢) = 0.

To believe this, observe that if n < «, then H,,(n | ) = 0 because
H(CH) N Cal@) _ plCaw)
#(Ca()) (Ca())

Now if the o-algebra generated by all &, = £V --- VT "¢ n € N* is the full o-algebra, then
n < &, at least asymptotically. We may prove this by the Martingale Convergence Theorem.
In fact if F,, is the o-algebra generated by &,,, then

w(Cy() | Ce,(x)) = Y Ta(@)p(A| Fp)(x)

Lyja(x) = —log = 0.

Aen
— Z ]lA A | f Z IIA 1,
Aen Aen

p-a.e. By Lemma 3.1, the convergence is also true in L'(u) sense because of the uniform
integrability. the This and (3.6) imply that H,(n | &) = — [log u(Cy () | Ce, (x))p(dz) — 0,
which is simply (3.12). O

Example 3.3(i) Consider the dynamical system of Example 3.2. Let £ be as in Example 3.2.
The condition of Theorem 3.2 is satisfied for such £ and we deduce

m—1
= — Z pjlog p;.
0

(ii) Consider a translation T'(z) = z+a (mod 1) in dimension 1. If & € Q, then 7™ = identity
for some m € N. This implies that h,(T) = Lh,(T™) = 0 where 1 is the Lebesgue measure.
If « is irrational, then set £ = {[0,1/2),[1/2,1)}. By the denseness of {T"""(a) : n € N}
for @ = 0 and 1/2, we deduce that ¢ satisfies the condition of Theorem 3.2. As a result,
hu(T) = hy(T,€). On the other hand &, := £V -+ VT "¢ consists of 2n elements. To
see this, observe that if we already know that &, has 2n elements, then as we go to &,,1, we
produce two more elements because 7"(0) and 7™(1/2) bisect exactly two intervals in &,.
From this and Exercise (vi), H,(£(0,n — 1)) <log(2n). As a result, h,(T, &) = 0, which in
turn implies that h,(T") = 0. O

In fact we can show that the entropy of a translation is zero using the fact that the
topological entropy of a translation zero. More generally we always have the following
fundamental formula.
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Theorem 3.3 For any compact metric space X and continuous transformation T, we have

(3.13) hiop(T') = sup h,(T) = sup h,(T).
pELr HELGF

Note that by the second equality in (3.13) is an immediate consequence of Proposi-
tion 3.4(ii).

Motived by the thermodynamics formalism in statistical mechanics, we may formulated
a variant of the variational problem (3.12) for which the maximizing measure if exists is a
variant of the SRB measure; it may be regarded as the analog of Gibbs Measures with respect
to the SRB measure. For this we need a variant of Definition 3.1:

Definition 3.4(i) Let (X, d) be a compact metric space and 7 : X — X and f: X — R be
two continuous functions. Define

Sta(r; mm{Ze”q’” @. X = UBTdajr}

€A T€EA

Niq(r; f) = max {Ze"‘b”(f)(‘”’ cabeAatb = dy(a,b) > 7’} .

z€EA

(ii) Given a continuous potential function f : X — R, its topological pressure Pi,(f;T) is
defined by

Pop(f;T) = hmhmsup logNTd( f) = suplimsup — logNTd( f)

n—o00 r>0 n—oo

1
= lim lim sup — logSTd( f)—suphmsup log S7.4(75 f).

=0 poco r>0 n—oo

The third equality is an immediate consequence of Proposition 3.6 below. Evidently, h,,(T) =
P,y (0;T). O

Proposition 3.6 For any continuous function f: X — R,
(3.14) N%d@?" e < S%d( f) < N%d( : f),

where w(-) denotes the modulus of continuity of f. Moreover, Piy,(k®i(f); T*) = kPiop(f; T)
for every k € N.
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Theorem 3.4 For every continuous dynamical system (X,T), and continuous function f,

(3.15) Poop(f,T) = sup ( [ # dus )

WELT

Proof (Step 1) Let £ = {C4,...,Cy} be a p-partition. Pick ¢ > 0, and choose compact sets
Ky, ..., K, with K; C C} such that u(C;\K;) <eforj=1,...,0 Let Ko = X\ K U---UK,
and put n = {Ky, K1, ..., K;}. Evidently 7 is a partition and

¢ e ¢
(G0 K) u(G: N Ko)
H, (&) n(Cin Kj)l il %) w(Ci N Ky)log ———
| 2; W(K;) 2 ( o) 1(Ko)
¢
ZMC ﬂKQ (C’iﬂKO) S#(Ko)logggeglogﬁ,
- 1(Ko)

by Exercise (vi). From this and Lemma 3.2 we deduce,

(3.16) h(T,€) < hy(T,n) + ellog .

(Step 2) Set 1, =n(0,n — 1), and given A € 7, let

My (A) = sup O (f)(2).

€A

We certainly have,

CHA) + [ du= )+ [ @) du< T ML) = p(4) og ()]
(3.17) S% log Z eMn(4)

To bound the right-hand side, set
1
ro = Emin{dist(Ki,Kj) i A£G, 1,7 €41, .. ,6}}.
and choose r = r(¢) € (0,ry) so that

dz,y) <r = |fx) = fly)l <e

This in turn implies
(3.18) do(z,y) <r = |®u(f)(x) = Pu())] <&
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Pick a set E,(r) such that
UpeB, () Ba, (2,7) = X.

Clearly a ball By(z,r) intersects at most two elements of 7, one K; with j € {1,...,n} and
perhaps Ky. We now argue that By, (z,r) intersects at most 2" elements of 7,. To see this,

observe

By, (x,7) = By(z,r)NT! (Bd(T(x), 7")) n...nT " (Bd(T"’l(:I:), r))

Also, if A € n,,, then A= AgNT 1 (A)N---NT 1 (A,_,) with A; € n. Now if B¥(z,7)N
A # 0, then T~9(By(T?(x),r))NTI(A;) # O for j =0,...,n—1. Hence By(T?(z),r)NA; # 0
for j =0,...,n— 1. As a result, there are at most 2"-many choices for A. Recall that we
wish to bound M,,(A) with A € n,. Since A is covered by Balls { By, (z,r) :

we can find #(A) € E,(r) such that
M, (A) = My (Ba,(z(A),r)), AN Bq, (x(A),r) # 0,
By (3.18),
(3.19) M (A) = My (Bq, (2(A), 7)) < @u(f)(2(A)) +e,
and since A N By, (x(A),r) # 0,
t{Aen,: 2(A) =z} <2",

for every x € E,(r). From this and (3.19) we deduce

Z 6nMn(A) < on ene Z enén(f)(;t)

Acny z€En (1)

From this, and (3.17) we learn
1 1.
—H,, (1) + | f dp <log2+ sup —log 57 4(r; f).
n r>0 1 ’
We now send n — oo and use (3.16), to deduce
h,(T,€) + /f dp < Poop(f; T) + ellog  + € + log 2.
Sending ¢ — 0 yields
(3.20) BT + [ £ d < Puy(£:T) + 1og2.
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(Step 3) Taking supremum over partition ¢ and invariant measure p in (3.20) yields

(321) sup (1) + [ £ d) < Puy(F:T) + g2

WELT

This is half of (3.15) except for the term log 2 on the right-hand side. To get rid of log 2, we
replace T with 7™, and f with m®,,(f) in the equation (3.21):

sup (hu(Tm) + / m®,,(f) du) < Py (m®,,(f); T™) + log 2.

WELT

From this, Proposition 3.6, and Proposition 3.4(i) we learn

5;111; ( / f du) < Piop(f;T) +

After sending m to infinity, we arrive at

log 2

(3.22) sup ( )+ [ 1 du) < Puy(fi 7).

HEIT

(Step 4) On account of (3.22), it remains to show
(3.23) Piop(f;T) < sup ( /f du)
wEIT

For every r > 0, we may select a finite set E,(r) such that
r,y € En(r), x #y = dn(z,y) 21,

and

Zy(r) = Ny 4(r, Z et

z€En(r)

To prove (3.23), it suffices to show that for every r > 0, there exists a partition £ = &(r),
and an invariant measure i = i, , such that

(3.24) limsupllog Zyn(r) < hy(T, &) + /f dip = hu(T,§) + /@n(f) dji.

n—oo N

To find the measure fi, we first define

ne(f)(x) 5

ern
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Now take a partition £, such that diamy(C) < r/2 for every C' € &, where diam4(C') denotes
the diameter of C' with respect to the metric d. This implies that diamg, (C') < r/2 for every
Ce& =EV---vTI ¢ Hence,

v€E,(r), Ce& = #(E,(r)nC) € {0,1}.

As a result,
(3.25) WU HL (6 + [ BF) dun = og Z,(0)

(Step 5) From a comparison of (3.25) and (3.24), we are tempted to choose i any limit
point of the sequence {, }nen. This would not work because such a limit point may not be
an invariant measure. Moreover, the function H,(7n) is not a continuous function of p with
respect to the weak topology. To treat the former issue, we define

n—1
1 ,
o1 j
Hn 0 E T Hon,
0
where Tv = Tyv as before. Equivalently

/ e dfin = %i / (T () (da) = nZi(T) SN W(T (@) e,

for any continuous function h. Let us choose an increasing subsequence n; — oo such that

1 1
limsup — log Z,,(r) = lim —log Z,,,(r), and  lim fi,, =: i exists.

n—oo 1 1—00 T; i—00

It is not hard to show that i € Zp because
Afi — ji = Tim (A" py — pp) /n = 0.

n—oo

Pick a partition £ such that diam(C') < r for every C' € £. We wish to use (3.25) to deduce
(3.24). To achieve this, pick k& and m such that 0 < k < m < n = n; and set a(k) = [=£]
so that we can write

{0,1,....n—1}={k+tm+i:0<t<a(k), 0<i<m}UR

with R = {0,1,...,k — 1} U{k + ma(k), k +ma(k)+1,...,n — 1} = Ry U Ry. Clearly
#Ry < m, #Ry < m. We then write

a(k)—1

Sn _ \/ T_(tm+k)(£ VAR, T_m+1€) V. \/ T_Zf
t=0

i€ER
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From Proposition 3.3(ii) and Exercise (iv) below we learn,

a(k)—1

Hun(fn) S Z H T (tm-&-k)g +Z T_Z§
i€ER
k) 1

= Z HT“”““ £m +Z

i€ER
(k)fl

< S Hypony, (6m) + 2m log(46).
t=0

This is true for every k. Hence

—1a(k)—1

> Hyuniiy, (6m) + 2m* log(#)

t=0

E

mHMn (gn)

IA
3‘??'
LI

IN

Hrsy, (Em) + 2m* log(#€)
0

Hy, (&m) + 2m* log(#¢),

where for the last inequality we used Exercise (viii) below. As a result,

IN
T.

1 m

[ uls) dia= [ £ i

108 Zy(1) < -y (&) + [ 1 dit -+ 2 og(e).

We now send n = n; to infinity to deduce

From this and

we learn

lim sup — logZ (r) = lim —loan]( r) < H (&m) /f dp,

n—oo T J—0o0 Ny

provided that we have

(3.26) lim Hy, (&n) = Ha(&m),

1—00

for every m. We now send m to infinity to deduce (3.24). This completes the proof provided
that (3.26) holds.
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(Step 6) It remains to verify (3.26). For this we need to be more selective about the partition
€. We first would like to find a partition & = {C; ... Cy} such that diam(C;) < § :=r/2 for
j=1,...,¢ and p(0C;) = 0 where dC; denotes the boundary of C;. The construction of
such a partition ¢ is straightforward. First, if By(x,a) is a ball of radius a, then we consider

U {8Bd(x, a):a—e<d < a},

to observe that there exists a' € (a — €,a) such that @(0By(x,a’)) = 0. From this, we
learn that we can cover X by finitely many balls B;, j = 1,...,¢ of radius at most g
such that (0B;) = 0 for j = 1,...,¢. We finally define ¢ = {C,...C¢} by Cy = By,
Cy=By\ By,...,C, = B, \ U;L;ll B;. Since 9C; C U£:1 0By, we are done. We now argue
that the partition &, = £V -+ - VT "¢ enjoys the same property; ji(9C) = 0if C' € &,. This
is because 9C' C [ 4¢, UZ;S T=7(0A) and by invariance, fi(T7(0A)) = ji(0A) = 0. For such
a partition we have (3.26) because by Exercise (ii) in Chapter 1, u,(A) — p(A) for every
Aeé,. O

Remark 3.2(i) Recall that y+— h,(T') is concave (Exercise (vii)), and that f — P,,(f;T)
is convex. Our Theorem 3.4 establishes a conjugacy between the entropy and the pressure.
If h,(T) is also upper semi-continuous, then we also have:

(3.27) h(T) = inf (Ptop(f;T)— / f dﬂ).

fed(x)

The upper semi-continuity also guarantees the existence of a maximizer in (3.15). According
to a result of Griffith and Ruelle, there exists a unique maximizer in (3.15) in the case of
Example 3.1(i) (provided that A* has positive entries for some k € N).

(ii) If we set
I(p) = ht0p<T) - hu(T) = Pwp(O;T) - hu(T)> ptOp(f;T) = th(f? T) - Pt0p(0§ T),

then [ is convex, and (3.15) and (??) can be rewritten as

(3.28)  Pip(f;T) = sup (/f du—l(u)), I(p) = sup (/f du—ﬁtop(f;T)>-

MEIT fec(x)

In the case of the dynamical system (EZ, T), the functional I serves as the large deviation
rate function as was demonstrated by Donskar and Varadhan.

Assume X = EZ  with £ = {0,1,...,m — 1}, as in Example 3.1(i). We also write v for
the measure of maximum entropy, namely v is a product measure such that v|big{x : x; =
j}) = m~!. Since any continuous function f can be approximated by local functions, and
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both sides of (3.15) are continuous functionals of f, we may assume that f is local without
loss of generality. That is, f(x) = g(xq,...,z,_1), for some function g : E¥ — R. Clearly,

TL(I)n(f)<C(7) - g($07 o 7Ik—1) ++ g(xn—ly ce 7xn+k—2)-

Moreover,

/ nF) gy (k1) 3 ()

(20 s T k—2) EETTE—2

Observe that if the metric d is as in Example 3.1(i), and A is a minimal set with the property
X = UyenBy, (z,7), with r=mn7",

then any distinct pair x and 2’ € A must differ on {—¢,...,f/+n —1}. We may assume that

all x € A agree outside the set {—¢,...,¢ +n — 1} to avoid a repetition in our covering by
d,-balls. Now if £ > k, then for such a set A,

Z e ®n((@) _ p20—k+1 Z en®n(f)(@) _ o n+20 / () gy,

€A (xo,...7xn+k_2)€E"+k_2

From this we learn
Piop(f;7) =logm + lim [ ") du.

n—oo
Hence the first equation in (3.28) means

(3.29) lim llog/e”‘bn(f) dv = sup </f dp — I(,u)) :

n—,oo N, MEIT

This after some manipulation is an immediate consequence of Donskar-Varadhan large de-
viation principle (LDP). To explain this, we need some preparations.

Given 2 € X, we build a n-periodic sequence 2™ from it by z7, ., = ;, fori € {0,...,n—
1}, and r € Z. Evidently,

[B,(F)(@) = () ("] < kmax gl

Moreover, if we set
~T z"

/’LTL = Mn Y
then 4 € Z,, and

D, (f)(a") = / f dic.

Hence, for n > ¢,

log Z (N = 1og Z " NE L O (k)

zeFE zelR
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Because of this, (3.29) is equivalent to the statement

1
(3.30) lim —log/ n ARy (de) = sup (/f dp—I(p )

n—oo M uEL—

In fact what Donskar-Varadhan LDP entails to a stronger statement, namely for and con-
tinuous function F : Z, R,

(3.31) lim ~ log / P () = sup (F(n) — I(1)

n—oo 1 WEL,

which is the same as (3.30) when F' is linear. It turns out that if (3.31) is true for all
continuous functions F', then roughly speaking,

v({z: i is near p}) ~ e MW,

As we saw before, if we choose choose £ = {Ao, . ,Am,l}, with A; = {w : wy = i}, then
h, (1) = h,(7,€). Since v(A) =m™™", for every A € §, :=&£(0,n — 1), we deduce

A)

I(1) = logm — h lim = )1
(1) =logm — hy,(7,&) = n;ﬂ;@ﬂ%ﬂ og ot

Indeed if we write F,, for the og-algebra generated by &,, and write h,, for the Radon-Nikodym
derivative fl—’lf for the restriction of v and u to F,,, then

when

Hg, (,u|y) = /hn log h,, dv,

represents the relative entropy of u with respect to i in F,,. We refer to [R] for more details.

(iii) If X is a manifold with a volume measure m, then there exists a unique i = psgpp € Ir
such that hyop(T) = ha(T), and if I(p) = hiop(T) — by (T) = ha(T) — by (T'), then, we still
have a LDP with rate I as in part (ii). O

Example 3.5 Consider T' : T? — T? Tx = Az (mod1) with A an integer matrix with
det A = 1. We assume that A is symmetric and its eigenvalues A\, Ay = A\]' satisfy |A;| >
1 > |Xg]. We claim that if x is the Lebesgue measure, then h,(T") > log|A;|. In case of
T = ? 1 , we can use our result hyp(7") < log|A;| from Example 3.6 to conclude that in
fact h, (1) = hiop(T') = log [A1].
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For h,(T') > log|A|, observe that by the invariance of y with respect to T', H,(T~"¢ V
cVTME) = Hy(EV -+ - VT2E). Hence it suffices to study limy, e 5= H,(T"EV -+ VTTE).
For estimating this, we show that the area of each C € n,, = T7"¢V - - - VT™E is exponentially
small. This is achieved by showing that diam(C) = O(|A;|™"). For example, let us choose
& =A{Zy,...,Zs} where Z;’s are the rectangles of Example 3.6. It is not hard to see that if
the side lengths of Z;’s are all bounded by a constant ¢, then 7, consists of rectangles with
side lengths bounded by cA;™. Hence u(A) < A" for every A € n,.

This evidently implies that 5-H,(n,) > log |\i| + o(1), and as n — oo we deduce that
hu(T) > log |A1]. O

We finish this Chapter with a variant of the entropy that was defined by Katok.

Definition 3.5 Given r,§ > 0, we define Sr_’ﬁ’d(r, 9) to be the smallest k such that there exists
aset B with #E = k and p (U,cp Blg(x,7)) > 1 — 6. We then define

. 1
h,(T) = lim lim lim sup - log Sz 4(7, ).

0—0 70 ;o0

Evidently A, (T) < hyop(T). Moreover,
Theorem 3.5 (Katok) For every ergodic i € Ty, we have hy,(T) < h,(T).

Proof Given a partition £ = {Cl, e ,Cg}, build a partition 7+ {KO, Ky, ... ,KZ} as in Step
1 of the proof of Theorem 3.4, so that (3.13) holds. Recall that by Theorem 3.1,

1

lim —log pu(Cy(z)) = —hu(T',7)

n—oo N,

in L'-sense, when C,(z) = C,, (x). Pick ¢ > 0 and choose a subsequence {n; : j € N} such
that if

1

Xy = {aj € X : —log u(Cy, (x)) < =h,(T,n) + €' for nj > N},
nj

then p(Xy) - 1 as N — oo. Pick § > 0, and find N such that u(Xy) > 1 —4. Let

1
r= §min{dist(Ki,Kj) 1#£ g, 0,] € {1,...,€}}.

As in Step 2 of the proof of Theorem 3.4, a ball By, (z,r) intersects at most 2" elements of
M. Now assume that 1 (U,cp Ba, (z,7)) > 1 — 8. We would like to bound #FE from below.
First observe

1-2 < /L(U Bdn(a:,r)ﬂXN>gZu(Bdn(x,r)ﬂXN)

z€EE €l
= Z Z 1t(Ba, (z,7) N Xy N A).
zeE Aeny,

5



But if By, (z,7) N Xy NA#Q for n =n; > N, then
11(Ba, (z,7) N Xy N A) < p(A) < e nhuTm=<),

As a result,
1—26 < 2me uTm=<) (4R,
Hence 1
h,.(T,n) < limsup — log S77,(r,8) + €’ + log 2.
N —>00 J '
From this we deduce that h,(T,7n) < fLM(T) + ¢’ +log 2. From this and (3.13) we learn that

h,(T,€) < iALM(T) + ellogl + & +log2. By sending ¢, — 0 and taking supremum over
we deduce

(3.32) hu(T) < h,(T) + log 2.

We wish to modify (3.32) by getting rid of log2. To achieve this, we would like to replace
T with T™ in the equation (3.32). A repetition of the proof of Proposition 3.2(iii) yields
Lh,(T™) = h,(T). If p € Z¢,, then we will have

- log 2
=h,(T
m m m w(T) + m

log 2
L log

which is desirable because of the factor m~"! in front of log 2; this factor goes to 0 in large

m limit. However, it is possible that p € Z¢ \ Z¢.,.. If this is the case, then we may apply
Exercise (viii) of Chapter 1, to assert that if m a prime number, then all 7™ invariant sets
come from a finite partition ( with exactly m elements. This suggests replacing the partition
n with 7 =n A ¢ so that we still have

lim n~'1 p = —h;

lim n~log (C(x)) = —hy(p),

where C,, () = Cy, (x), and 7, = n AT™™H A --- AT™I5. Here we are using the fact that
the ergodic theorem is applicable because the limit is constant on members of the partition
(. Repeating the above proof for 7™, we can only assert that By(z,r) can intersect at most
2m elements of 7, and that By, (z,r) can interest at most (2m)™ elements of 7),. This leads

to the bound )
h(T™,€) < hy(T™) + ellog € + &' + log(2m),

which in turn yields R
h(T) < h,(T) +m~ " log(2m),

for every prime number m. We arrive at h,(T) < h,(T), by sending m to infinity. O
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Remark 3.3 Theorem 3.4 provides us with a rather local recipe for calculating the en-
tropy. It turns out that there is another local recipe for calculating the entropy that is
related to h,(T). A theorem of Brin and Katok[BK] asserts that if y € Zr is ergodic, then
Llog u(Ba, (x,r)) approximates h,(T). More precisely,

1
h,(T) = lim limsup |—— log p(By, (z,7))

=0 5500 n

for p-almost all . 0

Exercises

(i) Let F': X — Y be a continuous function with F(X) =Y. Let T: X - X, T":Y =Y
be continuous and F' o T =T" o F. show that hp(T") < hop(T).

(ii) Let (Xi,dy), (X32,d2) be two compact metric spaces and let 7; : X; — X;, ¢ = 1,2 be
two continuous functions. show that hiop (71 X T3) = hiop(T1) + hiop(T2)-
Hint: For T'=T; x T, and a suitable choice of a metric d for X; x X5, show that

;,d(lr‘) S S%l,dl (T)S%Q,dg (r)’ N'}L,d(r) 2 Ntibdl (rl)N'}L,dg (TQ)'

(iii) Let A be as in Example 3.1(v). show that r(A) = %5

(iv) Show that if 7,, denotes the shift map of Example 3.1(ii) or (iv) on m many sym-
bols, then 7% may be regarded as a shift map on a set of m* many symbols. (Define a
homeomorphism F': X — X,

X=A0,...,m—1}%, X =({0,...,m—1}%)"*,
such that F o 7% = 7 o F, where 7 denotes the shift operator on X.) Use this to show that
if h(m) = hiop(Tim), then h(m*) = kh(m).

(v) According to the Perron-Frobenius Theorem, for any matrix A with non-negative entries
we can find an nonnegative eigenvalue with a corresponding nonnegative eigenvector. Use
this theorem to show that the matrix A in Example 3.1(iv) has a real eigenvalue A > 1. For
such a matrix A, what is necessary and sufficient condition for this eigenvalue to be 17

(vi) If £ has m elements, then 0 < H,(§) < logm.
(vii) If & < 3, then H, (o) < H,(B) and h,(T, ) < h, (T, 5).
(viii) If py, uo € Zr and 0 € [0, 1], then

H¢9m+(1—9)#2 (5) > OHM (5) + (1 - Q)HM (5)7
h6u1+(179)u2 (T> g) > ehm (Ta f) + (1 - e)huz (Ta 5)7
Pops+(1-0)s2 (T) = 0hy, (T) + (1 = 0)hy, (T).
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(ix) (Rokhlin Metric) Define d(n, &) = H,,(n | ) + H, (¢ | n). Show that d is a metric on the
space of p-partitions.

(x) We say that the matrix A in Example 3.1(iv) is irreducible and aperiodic or primitive
if A™ has positive entries for some ny € N. In the case of a primitive A, Perron-Frobenius
Theorem asserts that the largest eigenvalue A > 1 of A is of multiplicity 1 and the corre-
sponding right and left eigenvectors u” and u’ can be chosen to have positive components.
We may assume that u” - u* = 1. Define measure p on X4 with the following recipe:

k-1
1 (XA N {w W= QW = Oék}) =m(ay) Hp(ai,aiﬂ),

=1

where

T

j
=
Au;

Show that the measure p is well-defined and is invariant for 7. Show

Q;5U

m(i) = ubul,  p(i,j) =

() = = Y m0)p(i, ) log . 3) = oA

(xi) Work out the measure p of part (x) in the case of Example 3.1(v).
(xii) Show that Pi,,(f;T) is convex in f.
(xiii) Verify Proposition 3.6.
(xiv) Verify
sup (z-a— H(z)) = P(a),

xeM

where M is the set of vectors © = (z1,...,x4) with ; > 0, and 1 + --- + x; = 1, and

k k
H(z) = le logz;, Pla)= logZe‘”.
i=1 i=1

More generally show

sup ([ av— 1)) = (1),

h

where the supremum is over probability densities h > 0, f h dv =1, and

H(h) = /hlogh dv, P(f) zlog/ef dv.
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4 Lyapunov Exponents

For the expanding map of Examples 3.1(iii) and 3.3(i),and Arnold’s map of Example 3.4
we saw that the entropy was indeed the logarithm of the expansion rate. In this chapter, we
learn how to define the exponential rates of expansions and contractions of a transformation
with respect to its invariant measures. These rates are called the Lyapunov Fxponents, and
can be used to bound the entropy. In fact for the so-called hyperbolic dynamical system, the
entropy can be expressed as the sum of positive Lyapunov exponents by Pesin’s formula.
In general an inequality of Ruelle implies that the entropy is bounded above by the sum of
positive Lyapunov exponents.

Consider a transformation 7 : X — X where X is a compact C' manifold and 7T is a
C! transformation. We also assume that M is a Riemannian manifold. This means that
for each x there exists an inner product (-,-), and (an associated norm | |,) that varies
continuously with x. To study the rate of expansion and contraction of T, we may study
(dT”)x : To X — Trn@mX. We certainly have

(4.1) (dT")x = (dT)pn-1(zy 0 -+ 0 (dT)p(g) © (dT),.
If we write A(x) = (dT') : T, X — T X, then (4.1) can be written as
(4.2) Ap(z) = (dT™) = A(T" (z)) o0 A(T(x)) o A(x).

Here we are interested in the long time behavior of the dynamical system associated with
dT : TX — TX that is defined by dT'(z,v) = (T'(z), (dT).(v)) = (T(z), A(x)v).

The formula (4.1) suggests an exponential growth rate for (dT”)z. Let us examine some
examples first.

Example 4.1(i) Consider the dynamical system T : T¢ — T¢ that is given by T'(z) =
Az (mod 1), where A is a d x d matrix. Identifying 7T? with T¢ x R? we learn that
A(x) = Ais constant and A,(x) = A”. We may use a Jordan normal form to express A as
a diagonal block matrix. More precisely, we can express

(4.3) Rl=Gi @ @G,

where each G corresponds to an eigenvalue \; of A and r; = dim G represents the multi-
plicity of ;. If A; is complex, we use the same G; for both A; and its complex conjugate, and
r; is twice the multiplicity. For real A;, the space G is the generalized eigenspace associated
with A;:

G;={veR?: (A— \;)"v =0 for some r € N}.

In the case of a complex pair of eigenvalues «; & ¢3;, the space G; is spanned by real and
imaginary parts of the generalized eigenvectors. In the case of real \;, the restriction of the
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map x — Az to G has a diagonal block matrix representation, with each block of the form

A0 0 0
|t N 0 0
0 0 ... 1 )

In the case the complex eigenvalue «; £i3;, in A" we replace A; by the 2 x 2 matrix

Qa; —BJ:|

J
Bi o«

and the 1’s below the diagonal are replaced by the 2 x 2 identity matrix. For our purposes,
we would like to replace the off-diagonal entries with some small number 6. (When A’ is
¢ x ¢, we make the change of coordinates (x1,...,xy) ((lel, e ,5*%5).) From this, it is
not hard to show

|

(I = 6)"Jvl < A" < (IA\g] + 6) "ol
By sending 6 to 0 we learn that for v € G, \ {0},

1
(4.4) lim —log |A"v| = log | ).
n

n—o0

(ii) Consider a dynamical system (X, T), with X a smooth Riemmanian manifold of dimen-
sion d. Let us take a fixed point a of T" so that A = A(a) = (dT), and A, (a) = A™ map
T.X to itself. We may identify 7,X with R? and represent A as a d x d matrix. Using the
decomposition of Part (i), and (4.4), we deduce that for v € G, \ {0},

1
lim —log |A"(a)v| = log |A|.

n—oo M,

(iii) Let us now assume that 7" : X — X is a diffeomorphism, and the orbit associated with
a is periodic of period N. This means that 7% (a) = a and (dT"), maps 7,X to itself. If
we write n = mN +r with m € N and r € {0,..., N — 1}, Then we have A,,(a) = C o B™,
where

B = (dI"™M), = A(T" *(a)) o -0 A(a),

O A(T™(a)) o0 Afa) for r > 0,
I for r = 0.

From this, we learn
co ' |B™v] < |An(a)v] < | B™]
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for co = (max(1, [|A])) V=1 We use the generalized eigenspaces of B to decompose 7, X = R
as in(4.4). We now have that for v € G, \ {0},

1 1
lim —log|A"(a)v| = —

N300 1 Nlogl)\3|7

where )\; is an eigenvalue of B. O

As a preparation for the definition of Lyapunov exponents, let us observe that if we set
Sn(z) =log||An(x)]|, then Sy = 0 and

by (4.2). The following theorem guarantees the existence of the largest Lyapunov exponent.
This theorem is an immediate consequence of the Kingman’s subadditive ergodic theorem.

Theorem 4.1 Let T be a diffeomorphism and assume that y € Z9*. Then there exists ¢ € R
such that

lim 1 log || (dT”)

n—oo N, z‘

=

for p-almost all x.

Proof 4.1 On the account of Theorem 1.6, we only need to show ¢ # —oo. Clearly,
id = (A7) gy (@77),0 1< |(@77)p | [1@27), -

On the other hand, if we write
a:=sup ||(dT7) |,

then

(@7 || = [ @7) 0 (@) sy 0 (@) g | < 07
Hence H(dT”)xH > o~ " which implies that ¢ > —log . O

We now state the Oseledets Theorem that guarantees the existence of a collection of
Lyapunov exponents.

Theorem 4.2 Let T : X — X be a C*-diffeomorphism with dim X = d and let yp € Z%".
Let A be a measurable function such that A(z) : T,X — Tp@X is linear for each x and
log® ||A(z)|] € L*(n). Define An(z) = AT (z)) o---0 A(T(x)) o A(z). Then there exists
a set X' C X with p(X') = 1, numbers Iy < ly < --+ < I and nq,...,n, € N with
ny+ -+ +n, =d, and a linear decomposition T,X = E} & .- @® EF with x — (EL,... EF)
measurable such that .

lim —log|A,(z)v| =1

n—oo N,

forz e X' andv € FI\ FI7', where FJ == E' & --- @ EJ.
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Example 4.2(i) Let T : T? — T be a translation. Then d7™ = id and the only Lyapunov
exponent is zero.

(ii) Let T': T™ — T™ be given by T'(x) = Az (mod 1) with A a matrix of integer entries. Let
A1, ..., Ag denote the eigenvalues of A. Let [} <y < --- <l be numbers with {ly,...,l;} =
{log | 1], ..., log |A;|}. We also write n; for the sum of the multiplicities of eigenvalues \; with
log |\i| = {;. The space spanned by the corresponding generalized eigenvectors is denoted by
E;. We certainly have that if v € E; then lim,,_, % log |A™v| = ;.

(iii) If « € X is a periodic point of period N, then p = N_lz;.v:_ol Ori(q) is an er-

godic invariant measure. In this case the Oseledets Theorem follows from our discus-
sion in Example 4.1(iii). Indeed if \y,...,)\, denote the eigenvalues of B = (dT%),,
then ¢; < -+ < {4 are chosen so that {{,...,0.} = {N"'log|\i|,...,N"'log|)\,|} and
El = @{V;: N~tlog|\| = ¢;} where G; = {v € T,M; (A(a) — N\;)"v = 0 for some r} is the
generalized eigenspace associated with \;.

(iv) When d = 1, Theorem 4.3 (or 4.1) is an immediate consequence of the Ergodic Theorem
and the only Lyapunov exponent is l; = [log|A(x)| p(dz). O

Remark 4.1(i) The identity A, (T(x))A(z)v = A,1(x)v implies

A@)F € Fl,,

for y =1,..., k. By invertiblity, we can also show that

A(x)F] D Fj,.

(ii) By Ergodic Theorem,

n—

1
1 1 ,

—log|det A, (z)| = — E log | det A(T7(z))| — /log\det(dT)x] du,
n n 4

As we will see later,

k
/log | det(dT)a|dp = njl;.
1

(iii) Theorem 4.1 allows us to determine the largest Lyapunov exponent, whereas Part (ii)
offers a way of getting the sum (with multiplicity) of all Lyapunov exponents. A combination
of both ideas will be used to obtain all Lyapunov exponents by studying the norm of the
exterior powers of A,,, which involves the determinant of submatrices of A,,. O
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(iii) It turns out that the most challenging part of Theorem 4.3 is the existence of the limit.
Indeed if we define

1
[(xz,v) = limsup — log | A, (z)v],
n

n—oo

then we can show that as in Theorem 4.3 there exists a splitting 7,X = E! & --- & E* with
l(z,v) =1; for v € Fj(z). O

Proof of Theorem 4.3 for d = 2 We only prove Theorem 4.3 when A = dT'. The proof
of general case is similar. By Theorem 4.1, there exist numbers [; and [ such that if

1 1
Xy = {x: lim —log ||(dT™).|| = s, Jirgoﬁlogﬂ(dT’")xH = —11}

n—oo M

then u(Xo) = 1. Evidently |A,v]?> = (A% A,v,v) = |B,v|* where B, = (AXA,)%. Clearly

Ar A, > 0and B, is well-defined. Since B,, > 0, we can find numbers pf(z) > pf(z) > 0 and

vectors aj (z), ay(x) such that |a}| = |ay| = 1, (a},ay), = 0 and Ba} = p}a} for j =1,2.
Note that since ||A,(2)|| = || Bn(2)]l,

.1 n

(4.6) ly = nh_{](r)lo - log ph.
To obtain a similar formula for [y, first observe that

(d1™) (dr™), =id = A, (x):=(dT™"), = (A, (T"(x))) .

T="(z)

If we set S_,,(z) = log||A_,(z)| and R,(z) = log||A,(x)"!|| then both {S_,(z) : n € N}
and {R,(x) : n € N} are subadditive;

S—n—m S S—n o™ + S—m> Rn—i—m S Rn o™ + Rm~

Clearly,

—l; = lim lS,n = infl/Sn dp, = lim an — mfl/Rn du.
n M n n

n—oo N, n—oo N

Since S_, = R, o T™", we have [ R, du= [S_, du. This in turn implies that [ =—1;. As
a result,
1 1
—l; = lim —log||A}|| = lim —log || A7
n—oo M n—oo 1

(Recall that [|A|| = ||A*||.) We then have

1 1
(4.7) —Il; = lim —logH(AZAn)*l/QH = lim ~log|B;!||
n—oo N n—oo 1}
: 1 n ny __ : 1 n
=~ lim —log(py A piz) = — lim —~log piy.
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Naturally we expect E? to be the limit of the lines {ta} : t € R} as n — oo. For this
though we need to assume that [; < lo. To see this, let us first estimate |ay ™ (z) — a3 (z)].

We may assume that (a3 a%), > 0 for all n. Indeed if this is true for all n < m but

(ad™ af), < 0, replace @y, 1 With —a,, 1.

We Certainly have
gt = g =2 2 ag), 1= [agT = (gt al) 4 (g ap)
From this and the elementary inequality 1 — 22 < /1 — 22, we learn
a3t — g =2 - 2(1 {3, a)) 2 < 2apt, ap)?
= 2(Buaiay ™ /pnt al)? = 2(uy ) ey, Bupaal)?
< 2057 Braal = 2 2 Apra
= 2(uy ™) AT (2)) An(2)al ()] < 2(uy ™) ol An(@)ai (@)
= 20 ) ol Buaf | = 2e0(u™ /1)
for ¢y = max, | A(x)||. From this, (4 6) and (4.7) we deduce

lim sup — log|a”4rl ay| < —(ly — 1y).

n—oo
Let us now assume that Iy — [ > 5 > 0. We then have that for constants ¢, s,
‘a’n+1 o a;‘ S Cleﬂsn, |an+r o a;‘ S 0267671

for all positive n and r. As a result, lim,,_,,, a} = by exists for z € X and
|a§ — bg‘ S Cgeién

for all n. This being true for all § € (0 ly — l1), means

(4.8) lim sup —log lad — by| < —(lo — 1y).

n—oo

We now define E§ = {tby(z) : t € R}. To show that lim, o = log|A,(z)bs(2)| = l2, observe
[Anbe| < [Anag| + |An(ag — b2)| < [Bnas| + [[Anlllas — bo| = py + [|Anll|as — ba,
[Anbe| > [Anag| — [An(as — by)| = |Bpaz| — [[Anlllag — ba| = p — [[Anll[as — be]

From this and (4.6)-(4.8) we deduce

n—oo n—o0 n—oo

1 1
lim sup — log|A bo| < max (hmsup log p15, limsup — log(HA ||ab —bgl))

S maX(lg, ll) = l2,

n—o0

1 1 1
lo = lim —log py < max (liminf —log|A,by|, lim sup -~ log (|| A,]l|ay — b2|>)
n—oo M n—oo M

1
< max (liminf —log | A,bal, ll) .
n—oo M
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From this we can readily deduce

1
lim —log [Ay(2)ba| = lo,
n—oo N
for x € X.
To find E?, replace T with T~! in the above argument. This completes the proof when
ll 7é lg.

It remains to treat the case [; = [5. We certainly have
|Apol* = [Byvl? = (v, a7)*(u?)? + (v, a5)*(p)?.

Hence
g o] < |Apv| < pylvl.

We are done because lim % log pf = lim % log ut =1, = ls. 0

From (4.6) and (4.7) we learned that when d = 2, we may use the eigenvalues of the
matrix

(4.9) A(2) = (An(2)* 0 Ap(2))* = By(2)* : ToX — ToX,

to find the Lyapunov exponents. In fact the same is true in any dimension. To explain this,
observe that

1 1
lim —logdet B,(z) = lim —log|det 4,(z)|,
n—oo M

n—oo N,
should yield a way of getting the sum of all Lyapunov exponents. In dimension 2, and
when there are two Lyapunov exponents, we can use the determinant to get our hand on [y,
because by Theorem 4.1 we already have a candidate for l5. To generalize this idea to higher
dimension, we use the notion of the exterior power of a linear transformation and a vector
space.

Definition 4.1(i) Given a vector space V, its r-fold exterior power A"V is a vector space
consisting of
ANV = {vl/\---/\vr: Ul,...,UTEV}.

By convention, vy A---Av, = 0if vy,..., v, are not linearly independent. The wedge product
is characterized by two properties: it is multilinear and alternative. By the former we mean
that for all scalers ¢ and ¢/,

(cvr + V) Avg A=~ Avp=c(ogp Avg A= Avp) + (V] Avg A -+ Awy).

By the latter we mean that interchanging two vectors in a = v; A --- A v, changes the sign
of a. If {eq,...,eq} is a basis for V| then

{Ciyig. iy =€y N Ney o Gy < -0 <y},
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is a basis for A"V. In particular dim A"V = (d).

r

(ii) If (-,-) is an inner product on the vector space V', then we equip A"V with the inner
product

r

ij=1"

(v A= Avp, g A= Aol) = det [(v;, 0])]

The quantity

r

3,7=1"

Jor Ao Avp | = (1 Ao Ay, vr A Awy) = det [(vg,05)]

represents the r-dimensional volume of the parallelepiped generated by vectors vy, ..., v,.

(iii) Let V and V'’ be two vector spaces and assume that A : V — V' is a linear transforma-
tion. We define
ANA: ANV = NV,
by
NA(y A= ANvp) = (Avy) A -+ A (Av,).

(vi) (Grassmanian of a vector space) Given a vector space V of dimension d, we write
Gr(V,r) for the set of r-dimensional linear subspaces of V. If V is equipped with an inner
product and the corresponding norm is denoted by | - |, then we may define a metric dg, on
Gr(V,r) as follows: Given W, W' € Gr(V,r), write

W={weW: |w=1}, W={weW: [|=1},

and set

de (W, W') = max (ma;c min |z — y|, maxmin |z — y|) :
zeW yeW’ yeW'’ zeWw

(v) Given a smooth d-dimensional Riemannian manifold X, the manifold A"X is a vector
bundle that assign to each point x € X, the vector space ALX = A"T,X. The metric on X
induces a metric on A"X by using (-, ), to produce an the inner on product AL X as Part
(ii).

O

What we have in mind is that the r-vector vy A --- A v, represents the r-dimensional
linear subspace that is spanned by vectors vq,...,v,. We list a number of straightforward
properties of the r-vectors in Proposition 4.1 below. The elementary proof of this proposition
is omitted.

Proposition 4.1 (i) Two sets of linearly independent vectors {vy,...,v,} and {v],..., v.
span the same vector space iff vy A -+ Av, = Avy A --- Al for some nonzero scalar \.
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(ii) If (-,-) is an inner product on the vector space V, and {ay,...,aq} is an orthonormal
basis for V', then the set {ail AN Nag, o 1< <0 < @'r} 15 an orthonormal basis for
A"V,

(iii) If V,V'. V" are three vector spaces and A : V. — V', B : V! — V" are linear, then
N (B o A) = (/\T Bo /\TA). If A is invertible, then A"A™! = ( N A)fl. If V and V' are
inner product spaces and A* : V' — V is the transpose of A, then N\"A* = (/\T A)*.

(iv) If A : R? — R? is represented by a d x d matriz, then the transformation A"A is

represented by a (f) X (f) matrix we obtain by taking the determinants of all r X r submatrices

of A
(iv) Suppose that'V is an inner product space of dimension d, and A : V — V is a symmetric
linear transformation. If {ay,...,aq} is an orthonormal basis consisting of eigenvectors,

associated with eigenvalues Ay < --- < Ay, then the set {ail AN Nag, o 1 <4 <0 <
ir} s an orthonormal basis consisting of eigenvectors of N"A associated with eigenvalues
{)\21/\“ << <l7~}

(v) For an inner product space V', the space (GT(V, ), dGT) 1S a compact metric space.

Proof of Theorem 4.3 for general d (Step 1) Recall that if B, = (A*A,)Y2, then
|A,v| = |Byv| with B, > 0. Let us write pu} < --- < pufj for the eigenvalues of B,, and

at,...,ay for the corresponding eigenvectors with |a| = 1, (af', a}), = 0 for i # j. We now
claim that
(4.10) lim n~'log ul'(x) =: my,

n—oo

exists p-almost surely. Indeed since
Aun() = A, (T (2) 0 Ay (),
we may apply Proposition 4.1(ii) to assert
N Apin() = (A A,) (T (2)) 0 A" Ap ().
This in turn implies
1A Al < [|(A” A0 (T @) | 1A An(a)]

This allows us to apply Subadditive Ergodic Theorem (Theorem 1.6) to deduce

1
(4.11) lim —log||A" A, (x)]| := 1",

n—oo M
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exists for p-almost all = and every r € {1,...,d}. On the other hand, Proposition 4.1 allows
us to write

I A H fo N Ay(w))?
0 An(2))"?]

= | (A" Aty 0 An@)) ]

‘ = |A"By(z)| = pl ... p

From this and (4.10) we deduce,

d
. -1 n
lim [ > ntlogp (x)],

i=d—r+1
exists for p-almost all x and every r € {1,...,d}. This certainly implies (4.10)
(Step 2) Choose I < - -+ <l so that {my,...,mq} = {l1,...,lx}. We also set

Lj = {Z .m; < lj}
We define
Zcia?(ac) g eR foriel; p CT,X
1€L;

We wish to show that the sequence {F a{”} is convergent with respect to dg;, so that we can
define

(4.12) FJ = lim F7".
n—oo
We only prove this for j = k — 1; the proof for other j can be carried out in an analogous
way.
To establish (4.12), we show first that if b, € Ff~1" with |b,| = 1, then there exists
Upy1 € FF71TL guch that

1 n
(4.13) lim sup — log |b,, — Untl —(l — lp—1).
n—oo N |un+1’

For this, it suffice to show

(4.14) lim sup — - log b — tps1| < —(lx — lk—1),

n—oo
because
Unp Un,
b, — ’U ii, S ’bn - un+1’ + Un41 — ’U—ii’ = ’bn _un+l| + |1 - |un+1H S 2 |bn — Up+1] -
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In fact we may simply choose u,,; to be the projection of b, onto FF-1n+l  More
precisely, we write b, = Un 1 + Vpy1 With u, 1 € FELH g 0 1 FF1n+1 and show

1
(4.15) limsup — log |v41| < — (I — lg—1),
n

n—oo

which implies (4.14). For (4.15), observe that we can find scalars ¢} and c?“ such that

— n . n _ n+1_n-+1
b, = E car, Upt1 = E i art.

i€LK_1 i¢Ly,_q
As a result,
2
A 2 _ B 2 _ n+l, n+l ntl| _ nt+1\2( nt1\2
‘ n+1vn+1‘ —’ n+lvn+1‘ = Z G MG = Z (Cz‘ ) (z )
7:%ka1 Z‘¢Lk71
2 ) 2
> (i ) X0 (@) = (v 0™ o
i¢Ly_1 i¢ L i¢ L1
In summary,
(4.16) (ingLlin M?H) (V41| < }An+1vn+1"
k—1

On the other hand, observe
<An+1un> An+lvn> == <AZ+1 o An+lun7 Un) = <Bi+1una Un> = 07

because the space F¥~1*+! i invariant under the action of B,,;. This and A, b, =
Apg1tpy1 + Apy1vngr imply

(4.17) | Ape1ba]” = [Anirtn|* + [Ansrva]” > [Anrrva]”

Furthermore,
| Aniiba|” = |A(T™(2)) 0 Au(@)ba]* < |A(T™(@))|* |An(2)ba|”

2

< C2|An(2)by|? = C2| Ba()by| = C2 > cuta}

i€Lp 4
2 2
a3 @) = (max ) X (@) =i (ot
i€Ly_1 e i€LL_1 ek
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where Cj is the maximum of the function ||A|| over X. From this, (4.16) and (4.17) we

deduce .
v < Cy | max u? min p?t! )
[vnta] < Co (ZELH/%> <¢¢L,€_1ul

This implies (4.13).

(Step 3) Repeating the above argument and using the boundedness of ||[A7!|| on X, we can
show that if b, € F*1"F1 and u/, is the projection of b, onto F*~1" then

1 /
limsup —log {bpy1 — —~| < —(lp — lp—1).
n—oo M uj,|
From this and (4.12) we deduce
1
(4.18) limsup — log dg, (F*~1", FF 1) < — (1), — lyy).
n—oo T

This in turn implies that the limit
F*!i= lim F*b",

exists.

(Step 4) We wish to show that if v € F¥\ F¥1 |v| = 1, then

(4.19) lim llog ‘Anv‘ =,

n—oo N,

p-a.e. We already know,

lim sup 1 log }Anv} = lim sup 1 log ‘an| < lim sup 1 log (HBnHM)
n—oo N n—oo 1 n—ooo N

1 1
(4.20) = lim sup — log HBnH = lim sup — log py; = .
Hence, for (4.19), we only need to show

1
(4.21) liminf — log ‘Anv‘ >y,

n—oo N

For this we decompose v as

k-1 k-1
V=Up + U, U, € FTOT v, = E cral L FyT0"
i¢ L1
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Since v ¢ F¥~1 we must have

1
(4.22) lim sup — log |v,| > 0.
n

n—oo

Simply because if (4.22) were not true, then

lim
n—oo

=0,

|un|

which contradicts v ¢ F*~!. On the other hand, since A,u, L A,v, as in (4.14), we can
assert

Aol 2 [Awon| = [ Buva|" = | 37 erufa| = D ()" (ud)”
i¢Ly_4 i€ L1

2 2
. 2
> n n\4 — n 2
= (;“ “@) gk_l () (m Mz) [on]

This and (4.22) imply (4.21), completing the proof of (4.19).

(Final Step) Inductively, we can construct other FV. For example, for j = k — 2, the analog
of (4.20) is the statement that if v € F*~, then

1
(4.23) lim sup — log | A, (z)v| < li_1,

n—oo N

p-a.e. To prove (4.23), we use the definition of F*~! and (4.18), to find a sequence {u,}
such that u,, € FF 5" and

1
limsup — log [v — u,| < —(lg — lg_1)-
n—oo T

As a result,

1 1 1

lim sup — log |A,v| < max {limsup —log |Anu,|, limsup —log (||A,|| v — un\)}

n—oo N n—oo N n—soo N
<max {lp_1, \p + lem1 — L} = b1,

proving (4.23). O

We now state and prove an inequality of Ruelle.
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Theorem 4.3 Let T : X — X be C' and pp € Z¥. Then

k

<D nlf

1

Proof We only present the proof when dim X = d = 2. First we would like to divide X
into “small squares”. For this we take a triangulation of X; X = U;A; where each A; is
a diffeomorphic copy of a triangle in R? and A; N A, is either empty, or a common vertex,
or a common side. We then divide each triangle into squares of side length ¢ and possibly
triangles of side length at most € (we need these triangles near the boundary of A;’s). The
result is a covering of X that is denoted by &°. Note that we may choose members of &°
such that u(0A) = 0 for A € £°. (If this is not the case, move each element of £ by small
amount and use the fact that for some translation of boundary side we get zero measure.)
As a result, £° is a p-partition. It is not hard to show

(4.24) (1) = lim b (T, €).

E—
Recall that h, (T, &%) = limy o0 [ Teejgendp where E9F = T7HE) V T72(E5) V -+ vV T7H(E9)
and

wu( A N B (A N B)

A€ Begeik
Given z, let B = Bsk( ) be the unique element of ¢5* such that z € B. Such B is of the
form T-1(Cy) N - F(Cy) with Cy...Cy, € &, where C; = Cg(TY(x)). Let us write
simply write C4(x ) for Cgs( (z)). We have
(4.25) Ieepge () < log #{A € & : AN Bey(x) # 0}
< log#{A €& ANT H(C(x) £ 0},

Each Ci(x) is a regular set; either a diffecomorphic image of a small square or a triangle.
Since the volume of C' is of order O(g?), we have

vol(T™H0)) < ¢1? max ‘ det(dT)Z_l|,

for a constant ¢;. If ANT1(C) # 0, then for a constant ay,
A CH{y: |y — w0 < ape for some zy € TH(C)} =: D

We now want to bound vol(D). The boundary of T!(C') is a regular curve. Hence its length
is comparable to the diameter of T7!(C), and this is bounded above by a multiple of the
norm of d7'~*. Using this we obtain

(4.26) vol(D) < ¢y max (14 ||(dD)| + | det(dT)Z!|) €
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for a constant cy. (We could have bounded vol(A) by (H(dT)_lHe)2 but (4.26) is a better
bound.)
We now use (4.26) to obtain an upper bound for the right-hand side (4.25). Indeed

(4.27) #H{Ace&: ANTHC)# 0} <ecs max (14 ||@D)7Y| + | det(dT); )

for a constant c3. This is because the union of such A’s is a subset of D, for two distinct
A, B, we have u(AN B) = 0, and for each A € & we have that vol(A4) > cse? for some
positive constant ¢s. From (4.26) and (4.27) we learn

Tecig=n () < 5+ log max (1 + ||(dT)Z_1H + | det(dT)z_l‘)

for C'= Cy(x). By sending k — oo we deduce

€ -1 -1
(4.28) h(T, &) < cs+ /log zeclg(l%((x)) (1 + H(dT)Z H + ‘det(dT)Z }) dp.

By the invariance of p,

(T, €°) §c5+/log max (1 + ||(dT); || + | det(dT);"|) w(dx).

2€C¢e ()

Send € — 0 to yield

ho(T) < 5 + / (L+]|(dT); || + | det(dT);M|) p(dz).
The constant ¢ is independent of T". This allows us to replace T" with T~" to have

nh,(T) < cs5 + /log (L4 ||d(T™)| + | det d(T™)|) dp.
First assume that there are two Lyapunov exponents. Since

%log |a(T™)| = L, %log | det d(T™)| — 11 + s,

p-a.e., we deduce
(4.29) h(T) < max(0,lo, 1 + 1) <1 +1F.
In the same way we treat the case of one Lyapunov exponent. U

The bound (4.29) may appear surprising because h, (7)) > 0 would rule out the case
l1,l5 < 0. In fact we cannot have [ly,ls < 0 because we are assuming 7' is invertible. An
invertible transformation cannot be a pure contraction. Moreover if h, (1) > 0 we must have
a hyperbolic transformation in the following sense:
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Corollary 4.1 Ifdim X > 2 and h,(T) > 0, then there exists a pair of Lyapunov exponents
a, B such that a > 0, f < 0. In particular, if dim X =2 and h,(T) > 0, then l; <0 < 5.

Proof Observe that if [; < --- < [, are Lyapunov exponents of T', then —[;, < --- < —[; are
the Lyapunov exponents of T-!. Simply because if A, () = D,T", then A_, o T" = A L.
Now by Theorem 4.7,

h(T) = h(T™Y) < Zm(—li)* = Zml;,
ho(T) < ) il

From these we deduce that — Y .17 <0 <Y, I whenever h,(T) > 0. O

Pesin’s theorem below gives a sufficient condition for having equality in Theorem 4.7.
We omit the proof of Pesin’s formula.

Theorem 4.4 Let X be a C'-manifold and assume T : X — X is a C* diffeomorphism.
Assume DT is Hélder continuous. Let y € Zr be an ergodic measure that is absolutely
continuous with respect to the volume measure of X. Then

h(T) =Y il

In the context of Theorem 4.3, the Lyapunov exponents of 71 are —[;, < --- < —I;. Let
us write N
T.X = DE.
for the splitting associated with 7~!. It is natural to define
E=@E.  EB-DE.
1;<0 ;>0
If there is no zero Lyapunov exponent, we have 7, X = E ® EY, p-almost everywhere. If we

write [* = min, [, then we have

lim ~ log [(dT™)pv] < =17

n—oo M

for v € E*\ {0}, and
1
lim —log |(dT™),v| < 1~

n—oo N
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for v € EZ — {0}, p-almost everywhere. If this happens in a uniform fashion, then we say
that p is an Anosov measure. More precisely, we say a that the measure p € Z§" is Anosowv if
there exists a decomposition 7,X = E* & E* and constants K > 0 and « € (0, 1) such that

(A1) By = Ergy, (A7) EL = Ep,
|(dT)2)v| < Ka™|v|  for v € EX,
|(dT™)v| < Ka™v|  forv e EX.

If we define
W) = {v: lm d(T"(2).7"(4)) = 0}
wi@) = {y: lim d(T (@), T (y) = 0}

with d a metric on X, then we have a nice foliation of X. In fact

W @)W (y) #0 = W(x) =W*(y),
W) nWh(y) 20 = W*(z) = W*(y),
Ef =TW"x), B} =TW(x).

We also have a simple formula for the topological entropy:
hiop(T) = / log |[det(dT) gy | p(dx) = il

where (dT")g« denotes the restriction of (dT'), to EY. An obvious example of an Anosov
transformation is the Arnold cat transformation.

In the next section we study the Lyapunov exponents for Hamiltonian systems. As a
prelude, we show that the Lyapunov exponents for a Hamiltonian flow come in a pair of
numbers of opposite signs.

In the case of a Hamiltonian system, we have a symplectic transformation T : X — X.
This means that X is equipped with a symplectic form w and if A(xz) = (dT),, then

(4.30) wy(a,b) = wr) (A(x)a, A(x)b).

By a symplectic form we mean a closed non-degenerate 2-form. As is well-known, dim X = 2d
is always even, and the volume form associated with w (namely the d-wedge product of w) is
preserved under 7. An example of a symplectic manifold is X = R?? that is equipped with
the standard form @: w,(a,b) = w(a,b) with w(a,b) = Ja - b, and

0 I
=[5l
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where [ is the d x d identity matrix. In this case we may represent A as a matrix and the
symplactic property means
A(z)' JA(x) = J.

As is well-known, this in particular implies that det A(x) = 1. Of course we already know
this for Hamiltonian systems by Liouville’s theorem, namely the volume is invariant under
a Hamiltonian flow.

Theorem 4.5 Let (X,w) be a closed symplectic manifold of dimension 2d. Then the Lya-
punov exponents Iy < ly < --- < l satisfy l; + lp—j41 = 0 and n; = ng_j11 for j =
1,2,...,[k/2]. Moreover the space FJ := @, Ei is w-orthogonal complement of EF=9+1.

Proof. Write I(z,v) = lim, o + log |4, (x)v] where A,(z) = (dT™), and v € T,X. Note
that since X is compact, we can find a constant c¢q such that

|wa(a, b)| < colal |b]
for all a,b € T,M and all x € M. As a result,

|wa (@, 0)] = |wrm () (An(z)a, An(2)b)| < col An()al|An(2)b],
and if w,(a,b) # 0, then
(4.31) l(z,a) +(x,b) > 0.
By Theorem 4.4, we can find numbers g1 < 5 < --- < 394 and spaces
{0} =Vo CVi(z) C -+ C Vaga(z) C Vau(z) = T X

such that dim V;(z) = j and if v € Vj441(z) \ Vj(x), then I(z,v) = ;. Of course [; < --- <
are related to fy < -+ < faq by {l1,..., Ik} = {B1,..., Paa} and n; = #{s : B; = [;}. Note
that if W is a linear subspace of T,,M and

WH ={be T,X :w(a,b) =0 for all a € W},

then one can readily show that dim W + dim W™ = 2d. As a result, we can use dim V; +
dim Va4_j41 = 2d+1 to deduce that there exist a € V; and b € Va4_;41 such that w(a,b) # 0.
Indeed the set

A={(a,b) € (T.X)*: a€Vj, b€ Vag_ji1, wia,b) #0}
is a nonempty open subset of V; x V5q_;11. Hence

A={(a,b) € (T.X)*: a€V;\Vj_1, b€ Vag_ji1 \ Vauy, wa(a,b) #0}
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is also nonempty. As a result, we can use (4.31) to assert

(4.32) Bj + Baa—j+1 = 0,
for j € {1,2,...,d}. On the other hand

d

Z(ﬁj + Bad—j+1) = anlz =0,

j=1
by Remark 4.1(ii) because the volume is preserved. From this and (4.32) we deduce that

Bj + Paa—j+1 = 0.

From this we can readily deduce that [; + ;11 = 0 and n; = nj_j41.

For the last claim, observe that since [;+1,_;11 = 0, we have [;+1; < 0 whenever i+j < k.
From this and (4.31) we learn that if i + j < k and (a,b) € E’ x E, then w,(a,b) = 0.
Hence EJ~' C (EF-7t1)L. Since

n1+-~~+nk_j+1+n1+~~+nj_1:n1+~'-+nk_j+1+nk—|—~"+nk_j+2:2d,

we deduce that N o
dim £~ = dim(EF7HHI

This in turn implies that Ei~1 = (EF-7+1)I, O

We continue with a description of an approach that would allow us to approximate E*
and E£°. Recall that (dT”)xE;L = E;in(z). For simplicity, let us assume that d = 2, so that if
we have two Lyapunov exponents [; < 0 < lo, then both EY and E? are straight lines. Now
imagine that we can find a sector C, such that

E} C C,, E;NC, ={0}, (dT).Cr € Cr).

=

(Recall that the E? component of each vector v € C, shrinks under the transformation
A(z) = (dT),.) In other words, A(x)C, is a slimmer sector than Cr(;). As we repeat this,
we get a very slim sector (dT")ngg at the point T"(z) that is approximating Efn(y- To
approximate EY, we may try

C; = (dTn) CT—n(x).

T—"(x)
Observe

C;LH = (dTnH)T—n—l(x)CT*"*l(w) = (dTn)T—”(x) (dT)T*"*I(w)CT*"*I(x)
- (dT”)T,n(x)CTfn(x) =C".

xT
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From this we expect
Ey=n,Cr.

Similarly, if we can find a sector C”, such that
E;CC, E:nC,={0}, (dT7") C.C Cr-iw),

then we expect to have
B == 1,0
where

R

The existence of such sectors also guarantee that we have nonzero Lyapunov exponents. To
see how this works in principle, let us examine an example.

Example 4.3 Consider a matrix-valued function A(z), z € T? such that for almost all z,
A has positive entries and det A(x) = 1. Let T': T? — T? be invariant with respect to the
Lebesgue measure p and define I(z,v) = lim, o = log | A, (2)v|, where

An(z) = A(T" () AT (@) - - A(T () A(2).

U1
V2

Define the sector C(z) = C = {lzl} DU vg > O}. Note that if [z}} = A(x) [
2 2

0= [ 2 e

Qv vh) = vivh = (av;, + bvy)(cvy + dvy) = (1 + 2bc)vvs + acv? + bdv3
> (14 2bc)vivg + 2V achd v1v9 =: AQ(v1, v2).

], and

We can also show that A maps C onto a sector which lies strictly inside C. If

then
n—1
[An(x)o* = 2010y > 2000 [T [MT(2))]

1=0

1 _
lim inf — log | A, (x)v] > /log/\ dp=:1>0,

n—oo MM
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whenever v1v, > 0. This implies that I > 0. Since det A,, = 1, we know that [; + 1, = 0. So
l1 <0 <ly. Asfor EY, let us write 0, (z) for the slope of the lower boundary of C. Since

C;H_l = A(T_l (QT)) Cgfl(w),

we learn

(4.33) Opii(z) = F (T (),0,(T" " (2))),
where

(4.34) F(z.0) = c(x) +d(x)0 _ c(x) N 1 1

a(@)+b@)8  a@) @) b(x) +a(@)f

This follows from the fact that if § = vy/vy; and 6" = vS/v], then 0’ = F(z,0). The slope of
E is given by
0° := lim 6,(x),

n—oo

with 0y(z) = 0 < 01(x) = c(z)/a(x). The last expression of (4.34) may be used to give an
expression for #° as a continued fraction. Observe that the sequence 6, is strictly increasing
with 6,, < (d/b) o T~ for all n. The latter follows fron the fact that F' is increasing in 0: If
we already know that 6, < 6,,, then

Onii(z) = F (T (2),0,(T7"(2)) < F (T (2), 001 (T (2))) = On(z).

The bound 6, < (d/b) o T™' is an immediate consequnce of the monoticity F(z,0) <
F(z,00) = d/b. We may use the whole past history {T""(z) : n € N} to express 6°
as a continued fraction

1
(4.35) 0° = A + )
Ch
By + 1
As +
2 Cy
By + 1
As + —
where c } 4 '
Aj=—oT™, Bi=(ab)oT™, C(C;=a’0T".
a

O

In the continuous case the Lyapunov exponents are defined likewise. Consider a group of
C'-transformations {¢; : t € R}. Here each ¢; is from an m-dimensional manifold M onto
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itself. We then pick an ergodic measure i € Z, and find a splitting T,M = E! & --- & E*
such that forv e El & - - @ FE.\E, ®---® EI Y

o1
lim =~ log |(dn).v] = .

It turns out that we always have a zero Lyapunov exponent associated with the flow direction.
More precisely, if 4¢,(z)|—o = &(), then

1
fim = log|(ddy).¢] = 0.

Intuitively this is obvious because two phase points that lie close to each other on the same
trajectory do not separate exponentially.

With the aid of the subadditive ergodic theorem, we managed to define Lyapunov ex-
ponents for C! diffeomorphism. Needless to say that the Lyapunov exponents and the cor-
responding decomposition of the tangent fibers provide us with valuable information about
the underlying dynamical system. We now take a closer look at the type of linear transfor-
mations A, (z) that we encountered in Theorem 4.3. We write G; = GLy4(R) for the set of
invertible d x d invertible matrix.

Theorem 4.6 Let (X,T) be a dynamical system, and take p € Ir. Let A : X — Gy be a
Borel function with log ||A%|| € L'(u), and set

A, = (AoTn_l)...(AoT)A.

Then
(4.36) A(x) = lim (A,(2) An(2))™,
exists p-a.e. Moreover,
1 1 5
4.37 lim = log ||A,(2)A(z) ]| = lim ~1 H An(@)A@) )7 = 0.
(4.37) Jim —log || An(@)A(x) ™| = lim ~log ||(An(z)A(z)™")

Observe that for any vector v € R,

(4.38) lim llog |A(z)"v| = lim llog | A ()v],

n—oo M, n—oo M,
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which exists by Theorem 4.3. However, (4.39) guarantees the existence of the limit

log A(z) = lim ilog (An ()" An(2)).

n—oo LN

We may interpret A, (z) as a non-commutative ergodic average (or in a probabilist language,
a non-commutative random walk) and (4.36) as a non-commutative analog of our Ergodic
Theorem. To achieve (4.36), we first define a suitable metric on the space of positive definite
matrices.

Definition 4.2(i) We write M for the space of d x d matrices, and S, for the set of d x d
symmetric matrices. Note that Sy is a subspace of M, of dimension d(d + 1)/2. The set of
positive definite matrices is denotes by Py;. On M, we define the inner product and norm

(A,B) = tr(A'B), || A|| = tr (A'A)"*.

(ii) We regard P; as a Riemannian manifold with tangent fiber TpP,; = {PilA A€ Sd},
and the metric
(A,B)p = (P'A,PT'B), || Allp = (A, A

Note
A} = tr (PTTAPT'A) = tr (PT2PAPTVRPTIPAPTYR) = | PP AP,

The Riemannian metric in turn induces a Riemannian distance on Py:
1
D(P,, P2) :inf{ | 1Ol dt: 20 = Pa) = Py o i ol}.
0

(iii) For every A € G4, we define the action ¢4 : Sy — Sy, by pa(B) := A® B := A'BA.
Evidently, ¢4 (Pd) = Py. ]

Proposition 4.2 (i) For every P1, P, € Py, and A € Gq, we have D(Py, Ps) = D(pa(P1), pa(P,)).
(ii) For every Py, Py € Py,

n 1/2
(4.39)  D(Pi,Py) = |[log (P 'Py)|| = || log (P* P Py %) || = (Z(log w) ,
=1

where Ay, ..., \q are the eigenvalues of the matriz Py ' Py . (Note that Ay, ..., A\q > 0, because
the matrices P, ' Py and 1’:’21/2]31*1]:’21/2 are similar, and ]-_’21/21’:’171]321/2 ePy.)
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Proof(i) This is an immediate consequence of

lea(B)]

2
)

—1,—1 2 —1,—1 L g—1,—1
o = [ATICTIBA|" = tr ((A7'C7'BA) (A7'C7'BA))
=tr ((C7'B)(C7'B)) = IBJIé-
(ii) (Step 1) Let us write D(Py, Py) for the right-hand side of (4.39). Evidently, D(Py, P,) =
D(@A(Pl), (pA(PQ)), because
pa(P1)"lpa(Py) = AT P PA,

and P[P, are similar. Hence, we only need to verify (4.39) for P, = I because

D(Pl, PQ) == D((,OP1—1/2(P1), QOP1—1/2(P2)) = D(], (,OP1—1/2<P1)),

[)(Pl, Pg) = D(@Pf1/2<P1), ¢Pf1/2(P2)) = D([, QDP;1/2<P1)).

We may also assume that P, = e for some A € S;. In summary, we only need to show:
D(I,e*) = ||A||, for A € Sy. Observe that if y(t) = €', then

1
/0 1) gy dt = 1Al

Hence D(I,e?) < ||A|. It remains to show

(4.40) D(I,e*) > ||A|.

(Step 2) For (4.40), it suffices to show that if Lp is the derivative of the exponential map:
— i 5—1(,B+C _ B
LB(C)—(lslg(l)(S (e e”),
then
(1.41) [ La(C)] = €]l
Indeed, if (4.43) holds, then we can argue that for any C' path (t) = eA® with A(0) =
0, A(1) = A,

1 1 1 1
[ VO = [ Oy az iAol ez | [ a <
0 0 0 0
It remains to verify (4.43). Note that if B = U'DU,C = U'EU, for a unitary matrix U,
then
e Lal0)] = [P Lol W] = e~ Lol B
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Hence, it suffices to verify
(4.42) e PLp(E)|| = |E| = |IC],

for any diagonal matrix D = diag()1, ..., A\q), and symmetric matrix E. Let us write £;; for
the matrix that has 1 for its (¢, j)-th entry, and 0 for any other entries. We certainly have
e PLp(Ey;) = By, which implies (4.42) when E = Ej;. On the other hand, when i # j,

(D E..)k =
eDHOE; _ Z ( +]j z]) — D + 5Eij + 52(1{;‘)—1()\5—1 + )\?—QAJ, 4+ 4 /\f—l)EZ

k=0 k=2
> )\k — >\k e)‘i — 6/\1
_ D » ¢ J L — oD -
=P +0Ey +5Zk!(A,~—>\j)E” =P+ R Eyj,
k=2
because
As a result,
B e)\i _ €>\j _ B _€>\i — e)‘]' _
e DLDEz‘j = r)\je DEij =e Alr)\je DEij.
This in turn implies
-D ehi — e N Y
€ LD(Eij + Eji) = ﬁ(e "B +e JEji).
(Y]

Hence

A A\ 2
e Lo(Ey + By = (ﬁ) le™ By + e By
1 J

et — eMi ) ’ 2 2X;
=< e e V).
(5=5) ¢ )
To verify (4.42) for E = E;; + Ej;, we need to check
(6)\1' o 6)\]') (6—2>\¢ + 6—2)\]') Z Q(Al . )\])2

Equivalently,
24 e fe P —27 — 27 > 222

for z = A\; — A, which is straightforward to check. Finally, since Lp is linear, the collection

{EZ]+E]Z i,jzl,...,n},
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is a orthogonal basis for S;, and (4.40) is true for members of this basis, we are done. O
We now formulate a general setting for a geometric treatment of a non-commutative
ergodic theorem of Karlsson and Margulis.

(i) As before, we have a dynamical system (X,7), and another metric space (P, D) that is
proper (every bounded closed set is compact).

(ii) We have a topological group G that acts on P. More precisely, for each A € G, there
exists an invertible map ¢4 : X — X that is an isometry:

D(pa(Pr), 0a(P2)) = D(Py, Ps).
To ease the notation, we also use the notation A ® P = w4 (P).

(iii) A measurable map A : X — G is given, and we define
An(2) = A(2)A(T(2)) ... A(T" (z)).

For our non-commutative Ergodic Theorem, we fix I € P, and examine

(4.43) A= lim lD(I, A, (z) ©I) = lim lSn(x).

n—oo N, n—oo N,

Note that since
Sman(z) < D(I, Ap(2) © 1) + D(An(z) © 1, (Ap(2) A (T™(x) © 1)
= Sp(x) + S, (T™(2)),
we may apply the subadditive ergodic theorem to assert that the limit in (4.42) exists.
Definition 4.3(i) For each P € P we set
he(Q) = D(Q, P) - D(I, P).

If we write L for the set of Lipschitz functions h of Lipschitz constant 1, such that h(I) =0,
then U : P — L, defined by ¥(P) = hp, is a continuous injective map, provided that we
equip £ with the topology of local uniform convergence (which is metrizable). We regard
H := U(P) as a compactification of P (note that £ is a compact metric space).

(ii) The group G is also acting on H; Given A € G, we define
(Pah)(Q) == (A h)(Q) =h(A ®Q) —h(A @I).
for h € H. Note
haor(Q) =D(Q,A®P) —D(I,A® P)
=D(A0Q,P)-D(ATOIP)= (A hp)(Q),
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which explain the reason behind our definition of ¢ 4.

(iii) We now define a dynamical system on X :=XxH: Amap T: X — X is defined by

T(x,h) = (T(x), A(x) ™" @ h) = (T(x), F(x, h)),
where F(z, h)(P) = h(A(z) ® P) — h(A(z) ® I). Observe

T"(g;, h) = (T"(x), Au(z) ™ @' h) =: (T™(x), Fu(x, b)),

with F,(z, h)(P) = h(Au(z) © P) — h(Au(z) © I). O

The main idea of Karlsson and Margulis is that this limit can be rewritten as an ergodic
average. To see this, observe that if f(z,h) = h(A(z) ® I), then

f(w,h)+ f(T(@,h)) = h(A(@) © I) + F(a, ) (A(T(x)) © 1)
=h(A(z) © 1) + h(A(z) © (A(T(z)) © 1)) — h(A(z) © )
= h(AQ(x) O] I)
More generally,
(4.44) h(An(z) O 1) = ’_ F(T(x,n)).
Let us observe
(4.45) D(Q) := D(I,Q) = — inf h(Q),

heH

because
_hP<Q>:D<]’P)_D(Q>P)SD(I7Q)7 hQ(Q):_D(I7Q)
From this, (4.42) and (4.44) we learn

(4.46) A= lim lD(I,.An(ac)(D]) = — lim inf —Zf T’ (z,h))

n—oo N n—oo heH n

Exercise (i) Verify the following properties of I(z,v) of Remark 4.1(iii) directly (without
using Theorem 4.3):

(i) l(x,av1) = Uz, v1), l(z,v1 + v2) < max(l(z,v1),l(x,vq)) for every x, vy, and vy and
scalar o # 0.
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(i) (T (z), A(z)v) = l(z,v)
(iii) We have [(x,v) € [—00, +00).

(iv) The space {v : l(z,v) < t} = V,(¢t) is linear and that V,(s) C V,(¢) for s < t,
A@)Valt) € Vg (0.

v) There exists k(x) € N, numbers [;(x) < lo(x) < -+ < I (x) and splitting T, M =
(@) g
E'®---® E" such that if v € EL@---® EJ\ EL @ --- ® EI" then I(z,v) = ;.
Indeed EL @ -+ ® EI = V,(I;).

(ii) Prove Parts (i) and (v) of Proposition 4.1. O
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5 Lorentz Gases and Billiards

So far we have discussed various statistical notions such as ergodicity, entropy and Lyapunov
exponents for dynamical systems. We have examined these notions for a rather limited
number of examples, namely toral automorphisms, translations (or free motions) and one-
dimensional expansions. In this section we study examples coming from classical mechanics.
A Lorentz gas is an example of a gas in which heavy molecules are assumed to be immobile
and light particles are moving under the influence of forces coming from heavy particles.
The dynamics of a light particle with position ¢(¢) is governed by the Newton’s law

d*q

o -VVi(q),

where V(g) = >_; W(lg — ¢;|) with ¢; denoting the center of immobile particles and W(|z|)
represents a central potential function. For simplicity we set the mass of the light particle
to be 1. We may rewrite (5.1) as

dq dp
(5.) Sep L =-vV()

Recall that the total energy H(q,p) = 3|p|* + V(g) is conserved. Because of this, we may
wish to study the ergodicity of our system restricted to an energy shell

{(g,p) - H(q,p) = E}.

When W is of compact support, we may simplify the model by taking

0 if|z]|>¢
5.2 W(|z|) = ’
(5.2 & {OO e
To interpret (5.1) for W given by (5.2), let us first assume that the support of W(|q — ¢l),
i € Z are non overlapping. Assume a particle is about to enter the support of W(|g — ¢i)-
For such a scenario, we may forget about other heavy particles and assume that the potential
energy is simply given by W (|q — ¢;|). For such a potential we have two conservation laws:

d (1
conservation of energy: p (§|p|2 +V(lg— qz|)) =0
conservation of angular momentum: p (px(¢g—q)) =0.

Let us assume that a particle enters the support at a position ¢ with velocity p and exits
the support at a position ¢ with velocity p’. For a support choose a ball of center ¢; and

. —_ . /— . .
diameter €. If n = ‘Z_g?‘ and n' = \Z’—ZZ-I’ then we can use the above conservation laws to
1 1
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conclude that |p'| = |p| and the angle between (p,n) is the negation of the angle between
(', n').

The same conservation laws hold for the case (5.2). We are now ready for interpretation
of dynamics when W is given by (5.2). Draw a ball of diameter € and center ¢; for each 1.
Then the phase space is

X = (Rd\UB€/2<q1’>> x R4 = {(q,p) |lg—q| > ¢ foralli, and p € Rd}.

For ¢ ¢ 0X we simply have % = p. When |¢ — ¢;| = € then the dynamics experiences a jump

discontinuity in p-component. More precisely

(5.3) lg(t) — q;| = implies  p(t+) = p(t—) — 2p(t—) - ni(t)ni(t),

— W—a

where n;(t) = @] As our state, we may consider

X={q:lg—q|>cforali} x{p:|pl =1}
=Y. x §%°L.

Classically two possibilities for the configurations of ¢;’s are considered. As the first possi-
bility, imagine that the ¢;’s are distributed periodically with period 1. Two cases may occur:
Either ¢ < 1 which corresponds to an infinite horizon because a light particle can go off to
infinity; or ¢ > 1 which corresponds to a finite horizon.

As our second possibility we distribute ¢;’s randomly according to a Poissonian probability
distribution.

In this section we will study Lorentz gases on tori. In the periodic case of an infinite
horizon, we simply have a dynamical system with phase space

M= (T?\ B.) x "' = Y. x §71,

where T? \ B. represents a torus from which a ball of radius £/2 is removed. In the case of
finite horizon our M = Y. x S%~! but now Y. is a region confined by 4 concave arcs. In the
random case we may still restrict the dynamics to a torus. For example, we select N points
q1,---,q; randomly and uniformly from the set

Xe={(q1,---,qn) : |gi — q;| > € for i # j},

and then we set
Y.={q:|l¢g—q| >cfori=1...,N}

A Lorentz gas can be regarded as an example of a billiard. For the sake of definiteness
let us focus on the case of finite horizon that can be recast as a billiard in a bounded domain
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with piecewise smooth boundary. More generally, let us take a bounded region Y° in R?

with piecewise smooth boundary and set X =Y x S%!, where Y is the topological closure
of Y°. We set set

0°X ={(¢,p) : ¢ €Y. £(p-v(q)) 20},
where v(q) represents the unit inward normal to Y at ¢. Points in 9~ X and 0" X represent

the pre and post collisional states respectively in our billiard. We now define two closely
related dynamical systems.

(i) A continuous dynamical system ¢.(q,p) = (¢(t),p(t)), that is defined in the following
way: so long as ¢(t) € Y° =Y \ 9Y, we have

Diy=pt), Py =0

However, when ¢(t) reaches a boundary point, p(t) experiences a jump discontinuity. More
precisely, whenever ¢(t) € Y with p(t) - v(q(t)) < 0, then

P/(t) := p(t+) = Rywp(t—) == p(t—) — 2 (p(t—) - v(q(t))) v(q(t)).

(ii) A discrete dynamical system on 07X associated with a map 7' : 07X — 07 X. The
map T'(q,p) = (Q, P) is defined by the following recipe:

Q=q+7(¢,p)p, P=p—-2(p v(Q))r(Q),
where 7(q, p) is the smallest 7 > 0 such that ¢.(q,p) reaches the boundary.

Next we find an invariant measure for the dynamical system (q(¢),p(t)) and the map
T. Regarding the flow ¢; as a Hamiltonian flow, we expect that the normalized Lebesgue
measure m(dx) = Z 'dq dp where Z is a normalizing constant, dq is the Lebesgue measure
on Y, and dp is the standard volume measure on S* ! (compare with Example 1.7(ii)).
To prove the invariance of m, let us take a smooth test function ¢ : X — R such that
C(q, qu) = ((q,p) whenever (¢,p) € 0~ X. Such a test function produces

(T:¢)(x) = ulx, t) = ((de(2)),

that is continuous in (z,t). In fact u satisfies a Liouville-type equation with boundary
conditions:

(5.4) Uy =D - Ug, re X\ oKX,
' u(q, Rgp, t) = u(g,p,t), t>0, (¢,p) € 9 X.

We expect (5.4) to be true weakly; if K is a smooth function, then the expression

di /s
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equals

(5.5) /X u(ar, )p - Ky(z) dqdp + / u(e, K (2)(p - (q)) o(dq)dp,

0X

where o(dq) represents the surface integration on 9Y. To verify this, let us write
T()(l’) =0< 7'1(1’) < Tg(l‘) < ...

for a sequence of functions, such that ¢;(z) € X \ 90X for t € (75(x), 7j41(2)), ¢r;(x)(7) € OX
if j > 0, and each finite interval [0, 7] can have only finitely many 7;’s. Let us explain this
further.

Note that u(x,t) = J(¢:(x)) is as smooth as J in (z,t) provided that ¢;(z) ¢ 0X. This
means that u is as smooth as J with u; = p - u,, provided (z,t) € X x (0,00) \ U; S;, where

S; =A{(z,t) : 7j(x) = t}.

Note that when ¢ is restricted to a finite interval [0, 7|, then finitely many S;’s are relevant,
each S; is of codimension 1 in X x (0,7T), and different S;’s are well-separated. It is a general
fact that if u is continuous and u; = p - u, off |J; Sj, then u, = p - uy weakly in X. To see
this, take a test function R(x,t) with support in an open set U such that exactly one Of
the S;’s bisect U into U* and U~. We then have [u(R; — p- R,)dx dt = fU+ —i—fU_
that if we integrate by parts on each U* we get two contr1but10ns One contribution comes
from carrying out the differentiation on u, i.e., fUi (—ut+p-uy)R do dt, which is 0 because
u; = p - u, in UE. The other contribution comes from the boundary of U%, and they cancel
each other out by the continuity of u.

As a consequence of (5.4) we have that the Lebesgue measure m is invariant. In fact if
initially z is selected according to a probability measure dy = f°(z)dz, then at later times
x(t) is distributed according to du; = f(z,t)dz where f(z,t) = f°(¢_(z)). To see this
observe that if we choose K =1 in (5.5), we have

(5.6 G [ cotnas = [ wan(p-vi) ol

If we integrate over p first and make a change of variable p — p' = p—2p-n n, for n = v(q),
then u does not change and p - n becomes p' - n = —p - n. Also the Jacobian of such a
transformation is 1. As a result, the right-hand side of (5.7) is equal to its negation. This
implies

(5.7) / J(¢(x))dx = / J(z)dz,

for every ¢ and every J continuous with J(q,p') = J(q,p) on 0X. If K and f° have the same
property and we choose

J(z) = [ (o-i(2))K(2),
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then we deduce
/ K () (6 o(x))da = / K (én(a)) £ ().

From this we conclude

(5.8) fla,t) = fO(p-i(x)),
as was claimed before.

Remark 5.1 If ¢, is the flow of the ODE (5.1), and f(x,t) == f°(¢_4(z)), then the function
f satisfies the Liouville’s equation

fi+p-fo—=VVig) - f, =0.
The partial derivatives oo = f, and 8 = f, satisfy
a + agp — o VV(q) = D*V(q)B,
5t + qu - prv(Q) = —a.
Note that if Q(x,t) = f,(z,t) - fp(x,t) = a(x,t) - B(x,t), then

Qitp Qy—VV(a) Qy=DV()8:5— of
or equivalently B o
Qe =D*V(q(t))3- B — lal*
for Q(z,t) = Q(¢(x),t). In the case of a billiard, the function f satisfies

fi+p-f,=0 inside Y x RY,
flg,p,t=) = f(g.p',t+) on Y x R,

where ¢ € 9Y and t is a collision time. Setting a(q,p,t) = f,(¢,p,t), b(q,p,t) = fo(q,p, 1),
we then have

a; + pDgya = 0,
by + pDpa = —a.

Later in this chapter we will learn how to relate a(q, p,t—) to 5(q,p’,t+) on the boundary
0X as we study the evolution of d¢,. 0
Identity (5.7) suggests that the invariant measure m of ¢, induces an invariant measure

dp = (p-v(q)) o(dq)dp,
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on 0T X. To explain this, let us is let us define
X ={(x,t) = (g,p.t): (q.p) €IX, 0<t <7(q,p)},

and F : X — X by F(x,t) = ¢;(z). Tt is not hard to see that F' is invertible. In fact F
is an automorphism between the measure spaces (X,dm) and (X , ,u(dx)dt). This simply
follows from the fact that the Jacobian of the transformation (¢, t) — ¢+ pt, equals p - v(q).
The transformation F' provides us with a useful representation of points in X. Using this
representation we can also represent our dynamical system in a special form that is known
as special flow representation. Let us study F~!o ¢go F:

(,0+1) 0+t<r(x)
(5.9) Qge =FloggoFla,t) =< (T(x),0+t—m7(y) O0+t—7(x)<7(T(x))

The measure u(dz)dt is an invariant measure for the flow ggg. We choose A sufficiently small
in diameter so that we can find 6, 6, and 03 with the following property:

t €[61,60] = 7(x) < O3+t <7(T(x))
for every z € A. This means
Go(A X [01,05)) = {(T(x),05 +t — 1 (x) 1y € A, t € [01,6]}.
Since ¢y has dudt for an invariant measure,
(62 = 01)u(A) = (02 — 61)u(T(A)).

Since T is invariant, we deduce that p is invariant.
We say a billiard table Y is dispersive if there exists § > 0 such that

(5.10) (dv)y > 01,

for every ¢ € 0Y at which v is differentiable. The function v is the celebrated Gauss map,
and the operator dv is known as the shape operator of Y .

As we will see below all dispersive billiards have some positive Lyapunov exponents. This
was shown by Sinai when d = 2, and by Chernov and Sinai when d > 3.

Theorem 5.1 Let Y be a dispersive billiard table satisfying (5.10).

(i) There exists a T-invariant function g > 0 with [ g du > 0, such that for p-almost every
(¢,p) € 07X and any (¢,p) € Tigp0* X, with G-p > 0, we have

(5.11) lim inf n~" log | (dT™) (4 (4, )| > 9(q,p).

n—oo
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(ii) There exists a ¢-invariant function b > 0 with [h dm > 0, such that for m-almost
every (q,p) € X and any (4,p) € R??, withp-p=p-G=20, and G- p > 0, we have

(5.12) lim inf ¢~ log |(dér) (4.) (¢ )| > h(g, p)-

Note that since ¢; is discontinuous, it is not clear that d¢,; and dT" are well-defined. As we
will see in Proposition 5.1 both d¢; and dT' can be defined almost everywhere with respect
to the invariant measure m and g respectively. In fact we have a very precise meaning for
the flow d¢, that will be described shortly.

Recall that if ¢, is the flow associated with an ODE of the form % = b(x), then the

dt
matrix-valued function (d¢;), solves

dA
db o A.

Hence, #(t) = A(x, 1)z solves the equation

dz

= (1) = Bz, )i(t),

where B(z, t) (db)g,(z)- In the case of a Hamiltonian flow of the form (5.2), we have
b(q,p) = (p, —VV(q)) and &(t) = (4(¢), p(t)) solves

%(w = p(t), %(zﬁ) = —D?V(q(t)) q(t).

For our billiard model, some care is needed because ¢.(z) is not even continuous. We
wish to derive an evolution equation for

#(t) = (d¢r). (2(0)).
We think of (z,%) € TX as the initial data for the path

For our purposes, we take a path (.9:*((9) 2 0 € (—dy, (50)) with 2*(0) = z,2*(0) = Z, and keep
track of

(5.13) B(t) = ¢u(2) == xp(t,0).

where 2*(t,0) = ¢;(z*(6)). We use (5.13) to define (). In the same fashion, we define dT":
Take a path z*(6) = (¢*(6),p*(9)), that lies on 07X, such that ¢*(0) = ¢,p*(0) = p, and
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4(0) = G € 9Y,p(0) = p € p*, and if we write T(q,p) = (Q, P), then Q = q+ (g, p)p, and
P = Rgp. We then set (Q(6), P(9)) = T(z*(6)), and define

(5'14) (dT)(q,P)(@ﬁ) = (Q(O),P(O))

In analogy with the Riemannian geometry, we may regard (t) as the Jacobi field asso-
ciated with z(t), and we wish to derive the corresponding Jacobi’s equation. This will be
achieved in the following Proposition.

Proposition 5.1 (i) Let &(t) = ((t),p(t)) be as in (5.13). Then in between collisions, we
simply have

dg _ . dp
5.15 = = = =0.
Moreover, at a collision, the precollisional coordinates (q,p,q,p), with x = (q,p) € 0~ X,
become (q,p',q',p') right after collision, with ¢ = R,q, and

(5.16) P =Rep+2(p-v(q) (RVi(dv)Va)g,

where

_p®v)

R,=1-2 V., =1
: V(@) @), Vi v

(ii) For every (¢,p,q,p) € TO*X, we have T(q,p) = (Q, P), and (dT) ) (q,p) = (Q,P),
with

(5.17) Q =Vgu(d+7(g,p)p), P =Rgp+2(p-v(Q)) (RoV{(dv)oVay) (d+7(q.p)p).

Proof (i) If we take a path (2*(0) : 6 € (=0, o)) with 2*(0) = z,#*(0) = &, and write
(q*(¢,0),p*(¢,0)), for ¢y (x*(6)), then in between collisions, p*(t,#) = p*(6) does not change,
and ¢*(t,6) = ¢*(0) + tp*(¢). This implies (5.15).

For the dynamics at a collision, let us write 7(6), for the first time ¢*(¢, 6) reaches the
boundary of Y. Without loss of generality, we may assume that 7(0) = 0 and that 7(6) > 0
for § > 0. We also write

Q(8) :=q*(7(0).0) = ¢*(0) + 7(O)p*(F), n(0) :=v(Q(H)),

for the hitting location and the normal vector at time 7. Differentiating these equations and
evaluating the derivatives at 8 = 0 yield

A

(5.18) Q=qg+7p, 0= (dv),Q,
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where (7,Q,7n) = (7(0),Q(0),7(0)). Since the path (Q(8) = 0 € (—bo,00)) lies on Y, we
have n - Q = 0, where n = n(0). From this and (5.18) we learn

) q-n A . . peNY . A
(5.19) T=—"—, Q=V,q=Vi= (]— P ) ¢, n=(dv),Vq.

We note that the operator V is the p-projection onto n't. That is (I — V)q is parallel to p
and V§-n = 0. We are now ready to determine p’ and ¢'.
Observe that for > 0 and ¢t > 7(0),

q"(t,0) = Q(0) + (t — 7(0))p™(0) = Q(0) — 7(0)p™' (0) + tp™'(0) == b(0) + tp™'(6).

As we differentiate with respect to 0, and set = 0, we deduce,

§(t) = b(0) + tp.

We learn from this

~
~

d=b0)=Q—# =4+p—7(p—2(p-n)n) =4—2(G-n)n.

Hence ¢’ = R,q.
We now turn our attention to p/. From differentiating

p"'(0) = Rp"(0) := (I — 2n(0) ® n(0))p"(0),
and evaluating the derivative at 6§ = 0, we arrive at
P =Rp—2(A®@n+n®n)p.
On the other hand,

~

(A@n+n®n)p=(p-n)i+ (n@p)a=(p-n) (I+n®p>ﬁ:: (p-n)Vn.

As a result,
(5.20) P = Rp—2(p-n)V(dv),Vi=: Rp—24q
Note that |v| = 1 implies that (dv), map n* onto nt. Also the range of V is nt and

V : pt — nt is an isomorphism. Moreover, V restricted to n* equals I — Z?Z/, and that

V :nt — p/t is an isomorphism, which simply n-projects onto p't. Indeed since Rn = —n
and R =1 on n*,

nOP_p MOP pypg g 2P

RV =R+R
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and RV = V' is the transpose of V' because

w- (RVw = w - (]_Z?;)w':w.w/_w:(Vw).w/7

for every w,w’ € nt. As a result,
A= (p-n)RV'(dv),Vq.

This and (5.20) imply (5.16).

(ii) If we take a path z1(9) = (¢'(9),p ( ), that lies on O X, such that ¢(0) = ¢, p(0) = p,
and ¢'(0) = ¢ € T,(9Y),p'(0) =
and P = Rgp, where 7° = 7(q, p). Let us write 7(0) for 7(z7(#)). Without loss of generality,
we may assume that 7(6) > 0 for § > 0 and small. Note that if we set

z*(0) = ¢.0(21(9)),

then we z* is as part (i) except that ¢ is replaced with ¢ + 7°p. In other words, #*(0) =
(¢ + 7°p, p). From this, the middle equation in (5.19), and (5.20), we deduce (5.18). O

~

p € pt, and if we write T'(q, p) (Q, P), then Q = q+ 1%,

Proof of Theorem 5.1(i) Fix 2 = (¢,p) € 9 X, set (Q,P) = T(q,p), and 7 = 7(¢,p).
To explore the dispersive behavior of a dispersive billiard, we study the evolution of the
quadratic form

Q(q,p) = Qu(4,0) = q - P,
along a T orbit. Here Q, is defined for ¢ € 7,Y, and p € p*. By (5.17),
Q ((dT)(4(d:5)) = Vaould +70)] - [Rap +2(p - v(Q)) ™ (RaVi, (dv)qVay) (a+ )|
=(g+7p)-p+2(p-v(Q) [Vo p(q + )] - [(Vop(dv)eVay) (@ + 75)]
= Q(q.p) + 7IpI* +2(p- (@) [Vanp(d+1h)] - [(dv)oVa,(d + p)]
> Q(G,p) + 7l +20(p- (@) [Vauld+7h)".

Here for the second equality we used RV, = Vi, (Which is true because the restriction of
Rg to TgY is identity), and that Vi 2 - p = 2z - p (which is true because Vg ,z — z is parallel
to p, and p-p = 0), and for the third equality we used Vé,p = Vo p- Observe thatif g =a+0
with a € p*, and b parallel to p, then V(¢ + 7p) = Vg ,(a + 7p), and

Voold+ D)) = [Vapla+19))> > |a+ 7p]° > 4ra - p = 479(4, ).
Hence,

(5.21) Q ((dT) (g (4, D)) > fa,p)Q(d; p),
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where
flg,p) =1+83(p-v(Q)) 7(g,p),
for @ = q + 7(q, p)p. Inductively (5.21) yields

[y

n—

(5.22) Q ((dT™) (g (@. 7)) = [ [ £(T(a.0)) Q4 H).

1=0

We now assume that Q(¢,p) > 0. From (5.22) and the Ergodic Theorem we deduce

n—1
(5.23)  liminfn ' log Q ((dT") ) (4,0)) > lim n~" ) log f(T"(q,p)) =: go(4.p),
1=0

where gy = P, log f, with

/god,u:/logfdu>0.

Finally, given any (¢, p) with Q(q,p) > 0, use (5.23) and

[NIES

[(dT™) (4 (6 P)| > V2Q ((dT™) (g (4:P)) ? ,

to deduce (5.11) for g = 27! gp.

(ii) By Proposition 5.1, the quantity A(t) := p(t) - ¢(¢) is independent of time because in
between collisions A(t) = p(t) - p(t) = 0, and at a collision time ¢,

A(t+) = Rywp(t—) - By d(t—) = p(t=) - 4(t—) = A(t—).
As a result, if initially p - ¢ = 0, then p( )-q(t) =0, for all £ > 0. If we write Q(t) =
Q(q(t), p(t )) then in between collisions, 42 = |p|? and at a collision,

Qt+) = 47 = Ry [Rap +2(p- v(0) ™ (RV,(d¥)Ve)d]

=Q(t—)+2(p-v(q)) (Vapd) - ((d)Vypd)
> Q(t—) +25(p - v(q)) |Vypd

where (¢,p) = (¢q(t), p(t)). We note that since V,,¢ — ¢ is parallel to p, and p L ¢, we learn

Vopd|” > %

As a result,

(5.24) Q(t+) > Q(t—) + 28 (p(t—) - v(q(1)) ™ |at—)|"
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Let us write 7;, for the time at which ¢(t) has reached the boundary for the i-th times, and
set T = T; — Ti_1- By (524),

2

Qrivi+) 2 Q)+ [ B0 de+ 2500 ) [alrea-)

Y]

(i +) +26(pi - nisa) ‘(Z' + Tipi ’
( ) + 867—2 (pz nz-i—l) (qu : ﬁz)
(1+807(pi - misa) ) Qi +),

Q
Q

Vv

where gi11 = q(Tiy1), pi = p(7i+), @ = ¢(7i+), 0 = p(7i+) and ni1 = v(giy1). From this, we
can readily deduce that for a function hg with f ho dm > 0,

(5.25) liminf n~"log Q(7, +) > go(71).
n—oo

It is not hard to show

lim n~'r, =k,
n—oo

exists and is positive m-almost everywhere. This and (5.25) imply

liminf ¢ 'log Q(t) > hy,
t—o00
for a nonnegative and nonzero function h;. This in turn implies (5.12) as in Part (i). O

Remark 5.2(i) Write V for V,, with ¢ € 9Y. The operator W = V'V on p* has a simple
geometric interpretation. For ¢ € p*,

v (522) 2o (52 o)
p-n p.n p.n n.

A 2 A
. n-q b L n-q
n-p n-p n-p
_(;_ Vpeny.
= o ,

where Vp is the n-projection of p onto p*. Moreover,
n-q\>
Vil = wiea =1+ () P
n-p

(ii) For the flow ¢;, we have a zero Lyapunov exponent in the direction of the flow. To avoid
this direction, we assume that ¢-p = 0 in Theorem 5.1. This suggests that we restrict (¢, p)
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D) :G-p=p-p=0}=p*for x = (q,p). Note that if (¢,p) € W(x) initially,
then (q(t),p(t)) € W(¢:(x)) at later times. Let us define a sector

Ce ={(¢,p) e W(x):q-p>0}.

What we have learned so far is that

(5.26) (ddn)e(Cr) G Coyia)

Note that ¢ is gaining in size in between collisions. However the gain in the size of p is
occurring only at collisions.

(iii) As we mention in Remark 5.1, the function f(q,p,t) = f°(¢_4(q,p)), satisfies the
equation f; +p - f, = 0 strictly inside X. To derive an equation for the evolution of a = f,
and 8 = f,, observe that if Ag(c) = {z: f(z) = c}, then

Ai(c) = {(q,p) (g, p,t) = ¢} = ¢ (Ao(c)).

This means that if x € Ay(c), then 2 = ¢4(y), for some y € Ag(c), and the normal z(0) :=
Vf%y) is transported to z(t) = (a(z,t),B(z,t)) = Vf(z,t) after ¢ units of time. This
suggests studying the evolution of a normal vector to a surface of codimention one that
evolves with ¢;. More generally, take a surface A of codimension one in X. The manifold
TA C TX evolves to T¢;(A) and we study its evolution by keeping track of its corresponding
unit normal. If z(t) = (a(t),b(t)) € TX is normal to T (¢:(A)) at all times, then we would
like to derive an evolution equation for it. The vector (a,b) is chosen so that for every t,

a(t) - q(t) + () - p(t) = 0,

where (¢(t),p(t)) € TowAe with Ay = ¢(A). In between collisions, Z(t) = (¢ + tp,p) a
a(t)-(G+tp)+b(t)-p = 0, or a(t)-G+ (ta(t)+b(t))-p = 0. Hence if initially (a(0), b(0 )) (a, )
da __ — —a.

then a(t) = a and b(t) = b — ta. So in between collisions we simply have % = 0, £

At a collision (a,b) experiences a jump discontinuity. If after a collision the normal vector
is given by (@, V'), then

d' - (Ri)+V - (Rp — 24q) =0,
(Ra') - G+ (RY) - p— 2(AV) - G =
This suggests
(5.27) V¥ =Rb, d = Ra+2RA'Rb=: Ra+ 2Bb.
Note that if Q(t) = a(t) - b(t), then in between collisions,
dQ

5 = _’a‘27

dt
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and at a collision
Q(t+)=4d -b = (Ra+2RA'Rb) - Rb
=Q(t—) +2A'Rb - b
= Q(t—)+2b- RAb
= Q(t—) + 2(p - n)(dv)q(VD) - (Vb),
and in the case of a dispersive billiard,

Q(t+) — Q(t—) < 25(p-n)|Vb|* < 0.

Hence Q(t) is decreasing,. O

As we mentioned in Chapter 4, we may use sectors to find the stable and unstable
directions for a dynamical systems. We wish to use Proposition 5.1 to determine how certain
sectors get slimmer along the flow. As a first step, let us observe that since the flow ¢; or
the map are symplectic, then both the stable and unstable subspaces are Lagrangian. Recall
that if £ = (¢,p) and &’ = (¢, p’), then

A~/ ~ Al

w(@, &) =p-¢—q-7p.

Also recall for x = (¢, p),

W,={(4,p): ¢-p=p-p=0}=p-xp-.
We think of W = (Wx cxe X ) as a vector bundle of dimension 2d — 2. A sub-bundle
L= (LI cx € X) is called Lagrangian if w(a,b) = 0 for every a,b € L,. Here we think of w
as a symplectic form on W.
Proposition 5.2 (i) The billiard flow is symplectic.
(ii) Both stable and unstable bundles E*™) are Lagrangian.

(iii) If there exist symmetric linear maps S5, S : p* — pt such that

By ={(q,p): =254, qep"},
then in between collisions,

d

s(u) s(u) \2 _
(5'28) %S@(m) + (Scbt(x)) =0,
or equivalently,
s(u) _ cs(w) s(uw)) 1 _ sy 1)
(5.29) Sivimy = S3 (I +155) 7 = (¢l + (S3) :
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where the last equality holds whenever 53 s invertible. At a collision, S*™ changes to
S5 where

(5.30) S5 = RyS3M R, + RV (dv)gVepRy = RySS™ R, + Ty,

(iv) Assume that there exist positive symmetric linear maps S5, S* : T,07Y — p* such that
(5.31) B ={(g,p): p=254, e T,0"Y}.

Then

(5.32) Sy =Tq, + Rg (T(:L‘)] + (Sj(”))1>1 Ro,

where T(q,p) = (Q, P) and x = (q,p).

Proof(i) For symplectic property observe that if & = (¢, p), T« = (¢«, p«) € W, change to
¥ =(¢,p),z. = (q.,p,) € W, at a collision, then

w(@, @) =p ¢ —q 7.
= (Ryp +2(p - 1) " R,V ,(d)gVypd) - (Ryds)
- (Rqﬁ* +2(p- n)_Rqtip(dV)qqu(j*) ) (qu)
= (p+2(p 1) Vi (d)gVapd) - G — (pe + 2(p - 1) Vi (d)gVipis) -
= w(fc, i*),

where for the last equality, we used the symmetry of V/ (dv),V,,.
(ii) a,b € E?, then by symplectic property

wz(a'a b) - tli)n;lo Wy (z) ((d¢t)xa7 (d¢t>$b) = 07

because both ‘(d@)xa‘ and !(dqbt)xb‘ decay exponentially fast.

(iii) Note that since p(t) stays constant in between collisions, we

0= %g@)(;@) = S(1)q(t) + S(t)%(t) = 5(1)q(t) + SMp(t) = S(1)q(t) + S(t)*4(),

u)

where S(t) denotes S(‘;i(x). This implies the first equation (5.29) because ¢(t) can take any
vector. The second equation of (5.29) also implies the first by differentiation.
Since (d¢t)x W = E;Et‘;), and in between collisions (dqbt)x((j,f)) = (¢ +tp,p), we must
have w
Soniny (@ +155) = 814,
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This is exactly the second equation in (5.29). As for (5.30), we use (5.16) to write

S (Ryd) = RyS:™q + RV! (dv)Vypi,

which yields (5.30).
(iv) The formula (5.32) is an immediate consequence of (5.30) and (5.29). O

Remark 5.3(i) A particularly nice example of A as in Remark 5.2(ii) is a normal bundle of
a g-surface. More precisely, suppose O is a surface of codimension one in Y and set

A ={(¢g,p) : ¢ € O, pis the normal vector at ¢}.

Here we are assuming that A is orientable and a normal vector p at each ¢ € © is specified.
In this case (¢,p, ¢, p) € TA means that ¢ € 7,0 and that p = C,q for a suitable matrix C'(q)
which is known as the curvature matriz. (If p = v(q) is the normal vector, then C, = (dv),.)
The evolution of C' along an orbit is goverened by (5.29) and (5.30).

(ii) If the billiard map is hyperbolic, the we would have dim £* = dim E* = d — 1. This is
the highest dimension a Lagrangian bundle can have because dim W = 2d — 2. In fact the
assumptions (5.28) and (5.31) are based on the fact that if we assume that a Lagrangian
subspace L is non-degenerate, then it must be a graph of a symmetric matrix. To guess
what the stable fiber at a point # = (g, p) is, observe that if we replace z with T-!(z) in
(7?), we obtain

1

——FR
Q>
7'1] + S%
z

-1
Sj = Flel + Rq (7-1(1')[ + (S%—l(x)) 1) Rq = FQquP + Rq

where 27 = T7'(z) = T(¢q, —p) = (¢1,p1) and 71 = 7(T*(z)). From this we guess
I .
. Ro.
I

TQ]‘{—L

(5.33) S5 =T+ R,

7'1]—|—

Pa4Ry Ry

Here we write z; = (g, p;) for T~%(x), and 7; = 7(2;), R; = R,,, and I'; = T, ,._,. To verify
(5.33), we need to make sure that the continued fraction is convergent. This is more or less
equivalent to the convergence

(5.34) Sa" = (dT") 1o 4y ST (a)-

(iii) It is instructive to compare the billiard flow with our Example 4.3. In Example 4.3,
we had the sector C;, = {(¢,p) : ¢p > 0}, that got slimmer under d7™. Its lower boundary
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L ={(¢,0) : ¢ € R} yielded a sequence of lines L = (dT™)p-n(,)L with increasing slopes
0,(x) — 6°. The limit 0° gave the slope of the stable line. We have a similar scenario for
our billiard: the sector

Cx:Cq,p:{(qA7ﬁ : Cjﬁ J‘}
yields a family
Co = (dd)o_.()Co (),

of nested sectors as t — oco. Its lower boundary

b= (d¢t>¢>_t(z)Lx7 with Lx = {((jao) : qA € pJ_}’

is a d-dimensional Lagrangian subspace that is expected to converge to the stable fiber E?.
Similarly, the sector

Cp =Cop = {(quﬁ) 1 € T0Y, p EPL};

yields a family
Cy = (dT")r_,(@)Cr_(2)

of nested sectors as n — oo. Its boundaries are given by

L™= (dT)y Ly, with L {(j L Ge TV},
L;—,n = (dTn>T_n(z)L;’ with L+ { O S pL}'

These are d-dimensional Lagrangian subspaces that are expected to converge to the stable
fiber E? for the billiard map 7. O

To establish the convergence of C}' as n — oo, we may use the strict nested property of
these sequences. For this, we need to define a nice metric for the set of Lagrangian subspaces
so that the strict nested property guarantees the convergence. Indeed if we write

(dT") 7 (2) = [Cn(x) Dn(x)J

then the monotonicity

(dT),C, € Crey, — C2TLC O,

=

means C*B, > 0, and if \" denotes its smallest eigenvalue, then A" — co as n — co. We
then define a metric D on the set of Lagrangian subspaces such that

D(L;", L") < co(A) 7,
for a constant ¢;

Theorem 5.2 For p-almost all x, we have that N, C} =: E? is a Lagrangian subspace.

123



Proof Since
C;H_l — (dT)Tfl(x)Cf?—l(x),
we learn

L™ = (dT) - L3 ).
If

Ly ={(4,8;"q) : 4€ T,0Y},

then from (5.31) we learn

(5.35) SEmt — T, + R (T(q,p)f + (S?;’,Zﬂ > Ro=:¢ <(q>p)v 53212)) )

where T-1(Q, P) = (q,p) so that Q = ¢+ 7(¢,p)p, and P = Rgp. (Compare this to
(4.33).) Note that the function G(x, A) is monotonically increasing in A. Since S™° = 0,
and S™! > 0, we deduce that the sequence {S _’"}n is increasing.

Note that since

Ligr = {(T(va)VQ,pﬁa Rop+2(p- V(Q))_T(q,]?)(V@;(dV)QVQ,p)ﬁ> L pe pL}
= {(@7(a.0) Vapa+ 20 (@) (Vosdr)a)d) : d€ TV},
we have
Siar = T(@.p) Vg, +2(p- Q) Vop(dv)e.

In some sense ST = oo > S™!, which in turn implies that the sequence {S™"} is decreas-
ing.

We now define a metric on the set of Lagrangian subspaces with respect to the sequence
{S i’”}n converges. Since we are dealing with Lagrangian subspaces associated with positive
definite matrices, we define a metric on the set of positive matrices. This metric yields a
metric on the set of corresponding Lagrangian. We write

L(A) = {(a,Aa) : a R},
for the Lagrangian space associated with A. We define

Aa-a

D(L(A),L(B)) =D'(A,B) = Sljé%)

We next study the effect of an invertible symplectic matrix on such Lagrangian subspaces.

If
O {A B}’

log :
a-a

C D

is symplectic, then the the Lagrangian subspace associated with S is mapped to a subspace
associated with

S' = (C+ DS)(A+ BS)™.
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Lemma 5.1 There exist invertible matrices Fy and Fy and a diagonal matriz K such that

A Bl [F7' o)1 I Yool
A= Rk L [7 e

Moreover the matrix K has the same eigenvalues as C*B.
Note that GrLE = LE. From this, Lemma 5.1, and the elementary facts,
GrL(A) = L(F*AF), D'(F*AF,F*BF) = D'(A, B),
we can assert

D(GL,,GL})

D(GrA(K)L;,Gr AK)LY)
D(MK)L;, AN(K)L*z) = D(K, I + K)
—D(I+K 1) =log (1+ (@),

where A\ (G) is the smallest eigenvalue of C*B. On the other hand, since Q(Gp#) = Q(%),

g 20G8) _ oy QAUOE) L K@ p) (G4 D) 4G+ D)
2€Cy Q(a:) 2eCy Q(m) #€Cy Q(I)
< i MleF DD Fblatd) (b 07) b (b+b7)]
a,b>0 ab b>0

= inf (T4 X6 + M0 2+ 20 + 1] =20/ A (A + 1) + 20 + 1
>
Now if
G = Gn = (dTn)T—n(x),

we are done if we can show

n—oo

For this it suffices to show

(5.36) lim 0(G,) := lim inf

n—00 n—o00 £€Cy Q(jj)

Since the set
{zeC,: Q&) =1},

is compact, (5.36) follows if we can show that for each & € C,,

lim —Q (an) =
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This is a consequence of Theorem 5.1. 0]

Exercises

(i) Consider a billiard inside a planar disc D. Write down a explicit formula for the billiard
map T : 0T X — 0t X, where X = D x S. Write (g, ) for a point on 0" X, with ¢ € 9D,
and 0 € (—m, ) for the angle p makes with the tangent vector at q. Show that the set of
{(¢,0) : q € 0D} is invariant for 7.

(ii) Consider a billiard inside a planar domain D, and assume that the set D is strictly
convex. Write (gq,6) for a point on 07X, with ¢ € 9D, and 6 € (—m, ) for the angle p
makes with the tangent vector at q. Given ¢, Q € 9D, write S(q, Q) = |¢ — Q|. Show that if
T(q,0) = (Q,0), then S, = —cosf and Sy = cos ©. O
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6 Ergodicity of Hyperbolic Systems

Lyapunov exponents can be used to measure the hyperbolicity of dynamical systems. Anosov
measures (systems) are examples of uniformly or strongly hyperbolic systems which exhibit
chaotic and stochastic behavior. In reality, dynamical systems are rarely strongly hyperbolic
and those coming from Hamiltonian systems are only weakly (or even partially) hyperbolic.

An argument of Hopf shows that hyperbolicity implies ergodicity. We examine this
argument for two models in this sections; Examples 6.1 and 6.2. To explain Hopf’s argument,
let us choose the simplest hyperbolic model with expansion and contraction, namely Arnold
cat transformation, and use this argument to prove its ergodicity. In fact in Example 1.6 we
showed the mixing of Arnold’s cat transformation which in particular implies the ergodicity.
But our goal is presenting a second proof of ergodicity which is the key idea in proving
ergodicity for examples coming from Hamiltonian systems.

1 o
a l+a
m(a) = a(mod1) and define T : T2 — T2 by T o = 7 o T where T'(a) = Aa. Since o € Z
and det A = 1, we know that T is continuous and that the normalized Lebesgue measure p
on T? is invariant for 7. The eigenvalues of A are

Example 6.1 Let A = { 2} with @ € Z. Let m : R?> — T? be the projection

M= A@) = S22+ 0t~ avIF e <1< do = (Aa)

provided that o > 0. The corresponding eigenvectors are denoted by v; and v,. Define
We(a) = {a+tv, : t € R}, W¥(a) = {a+tvy: t € R}.
We then have that W*(z) and W*(z) defined by
W*(r(a)) = m(W*(a)), W*(x(a)) = m(W*(a))

are the stable and unstable manifolds. Take a continuous periodic f - R? — R. This induces
a continuous f : T? — R such that fow = f. We have that foT™ om = f o T". Define X+
to be the set of points a such that

o1
lim —
n—,oo N,

S (05 (@) = f(a)

exists. Then ’/T(X *) = X+ with X* consisting of points x such that

o1
lim —
n—oo 1

S FTH() = f ()
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exists with f* = fi om. Evidently ffoT :AfjE on X* and fi ol = fi on X*. From
definition, we see that if b € W*(a) (resp. b € W*(a)), then

77 (b) = T™(a)| = A"|a — b,

(resp. |[T7"(b) — T~"(a)| = A"|a — b]).

for n € N. Hence a € X* (resp. X~) implies that W*(a) C X+ (resp. W*(a) C X 7). Let
d(-,-) be the standard distance on the torus. More precisely,

d(z,y) =min{|a — b| : 7(a) = z, 7(b) = y}.
Again if y € W*(x) (resp. y € W*(z)), then

d(T"(z), T"(y)) = X"d(z,y),

(resp. d(T"(x), T""(y)) = A"d(z,y))

for n € N. Similarly € X* (resp. X~) implies that W*(z) C X* (resp. W"(z) C X7). Let
Y (respectively Y denote the set of points x € X~ N X" (respectively = € XN X7 such
that f*(z) = f~(z) (respectively f*(z) = f~(z)). By Remark 1.3(iii), u(Y) = 1 and the
Lebesgue measure of the complement of Y is zero. Choose a point zg such that We(20) \ Y
is a set of 0 length. The function f* is constant on W*(z). The function f~ is constant on
W (y) for every y € W#(z0) NY and this constant coincides with the value f* at y. Hence
f* = f~ is a constant on the set

U W w.
yEWS (wo)ﬂY

But this set is of full measure. So f* = f~ is constant a.e. and this implies that f+ = f~ is
constant a.e. O

Let us call a discrete dynamical system hyperbolic if its Lyapunov exponents are nonzero.
According to a result of Pesin, a hyperbolic diffeomorphism with a smooth invariant measure
has at most countably many ergodic components. Pesin’s theory also proves the existence
of stable and unstable manifolds for hyperbolic systems.

Sinai studied the issue of ergodicity and hyperbolicity for a system of colliding balls in
the late 60’s. These systems can be regarded as hyperbolic systems with discontinuities.
To get a feel for Sinai’s method, we follow a work of Liverani and Wojtkowski [LiW] by
studying a toral transformation as in Example 6.1 but now we assume that a ¢ 7Z so that
the induced transformation is no longer continuous. As we will see below, the discontinuity

128



of the transformation destroys the uniform hyperbolicity of Example 6.1 and, in some sense
our system is only weakly hyperbolic.

Example 6.2 As in Example 6.1, let us write 7 : R* — T? for the (mod 1) projection onto
the torus and set T'(a) = Aa, for
1 o
A= {oz 1+ aQ} '

This induces T : T? — T2, with Tor = moT. If 0 < o < 1, then T is discontinuous.
However the Lebesgue measure p is still invariant for 7. To understand T, let us express
T=TioT,, T="T 0T, Ti(a) = Aja for i = 1,2, where

1 0] 1 «
Al:[a 1|’ AQ:[O 1}'

If we regard T as [0, 1] with 0 = 1, then

" ([ZD - Léfm +£1(mod 1): T (B;D = [‘Tl +O‘x;2(m0d 1)

with x1, 25 € [0,1]. Note that 7; is discontinuous on the circle z; € {0,1}. As a result, T is
discontinuous on the circle x5 € {0,1} and on the curve x; + axy € Z. One way to portray
this is by introducing the sets

I = {(z1,22):0< @ 40z, <1, 0< 2, < 1}
- = {(3717332)30§3?1§1,0§—04331+;1:2§1}

and observing that T maps ['" onto I'™ but T is discontinuous along S = 9I'*. Moreover
T-' =Ty o Ty with T, *(a) = A; 'a for i = 1,2, where

o [0 1 —a
O R

Since T ' is discontinuous on the circle z5 € {0,1} and Ty ' is discontinuous on the circle
z; € {0,1}, we deduce that T—! is discontinuous on S~ = 9I'". Note that the line x5 = 0 is
mapped onto the line x5 = ax; and the line x5 = 1 is mapped onto the line x5 = ax; + 1.
Also note that distinct points on ST which correspond to a single point on T? are mapped
to distinct points on T2.

We now examine the stable and unstable manifolds. For the unstable manifold, we need
to have that if y € W"(x), then d(T"(z), T "(y)) — 0 as n — +oo0. We may try

Wit(z) = {r(a+vqt) : t € R}
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where @ is chosen so that 7m(a) = x and vy is the expanding direction. This would not do
the job because of the discontinuity. Indeed the discontinuity set S— cut the set Wj'(x)
into pieces. Let us write W} (z) for the connected component of W (z) inside I'". Since
crossing S~ causes a jump discontinuity for 77!, we have that d(T"(x), T "(y)) /4 0 if
y € W¥(x) \ Wi(x). However note that if y € W(x), then d(T~(z), T (y)) = \d(z,y).
As a result, d(T~'(x),T7!(y)) gets smaller than d(z,y) by a factor of size A. To have
d(T~"(z), T""(y)) = A"d(z,y), we need to make sure that the segment joining T~"(z) to
T~™(y) is not cut into pieces by S~. That is, the segment zy does not intersect 77 (S™).
Motivated by this, let us pick 2 € T?\ U2 T%(S™) and define W}*(z) to be the component
of W(x) which avoids U/_,T%(S~). We now claim that for pg-almost all points, W*(z) =
N5 Wj'(z) is still a nontrivial segment. (This would be our unstable manifold.) More
precisely, we show that for p-almost all z, there exists a finite N(z) such that

oo N(z)
W(z) = ﬂ Wi(z) = () Wi (z).

=0
To see this, let us observe that for example
W' () = T(T~ W (x) N W(T ' (2))).

In other words, we take W*(x) which is a line segment with endpoints in S~. We apply 7!
on it to get a line segment T7'W}*(x) with T~!(x) on it. This line segment is shorter than
Wi(x); its length is A times the length of W{*(z). If this line segment is not cut by S—, we
set Wi(x) = W(x); otherwise we take the connected component of T7'W(x) which lies
inside S~ and has T~!(x) on it. This connected component lies on W*(T~!(z)). We then
map this back by T. Note that Wi (z) # W (x) only if d(T~'(x), S™) = distance of T~'(x)
from S~ is less than
length(T'W{(z)) = A length(W;*(z)).

More generally, , , .
Wit () = THT W (@) N W (2),

and W}, (z) # W (x) only if
d(T7"(x),S7) < A" length (W}(z)).
Since length (W} (z)) < length (W} (z)) =: ¢o, we learn that if W*(z) = {z}, then

d(T_i(x), ST) < coN,
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for infinitely many i. Set Sy = {z € '™ : d(z,57) < §}. We can write

{z:W @) ={=}} < MUTS,0),

n=1i=n

p (W) = ) < D S p(T(S;,0)

=n

= D e(S)
< i ‘=
> nh—)I{oloZCICO)\ 0

for some constant ¢;. From this we deduce that for u-almost all points z, the set W*(z) is
an interval of positive length with endpoints in (J;2,7%(S™). Moreover, if y € W*(z), then

d(T"(y), T™"(x)) = A"d(z,y) = 0

as n — 00. In the same fashion, we construct W*(z).
We now apply the Hopf’s argument. To this end, let us take a dense subset T of C(T?)
and for f € C(T?) define f* as in Example 6.1. Set Y =nN{Y;: f € A}, where

Yy ={zeT?: f*(z), W(z), W"(z) are well-defined and f*(z) = f~(z)}

So far we know that u(Y) = 1. Regarding T? as [0, 1]> with 0 = 1 and slicing T? into line
segments parallel to v; for i = 0,1, we learn that each stable or unstable leaf intersects Y
on a set of full length, except for a family of leaves of total y-measure 0. Let us pick a leaf
W#(xo) which is not one of the exceptional leaf and define

Z(x) = U {W*(y) 1y € W*(x) and y € Y}.

Since W*(y) is of positive length, for each y € W*(z), we deduce that u(Z(xo)) > 0. On the
other hand [ is constant on W#(zq) and f~ is constant on each W¥(y), y € W5(zo) NY.
Since fT = f~ on W*(xq), we deduce that f* = f~ is constant on Z(xq) for every f € T.

With the aid of Hopf’s argument, we managed to show that f* is constant on a set of
positive pu-measure. But for ergodicity of u, we really need to show this on a set of u-full
measure. This is where Hopt’s argument breaks down, however it does show that p has at
most countably many ergodic components. Indeed if we define

Z'(xg) = {x . f*() exist and f*(z) = fi(xo)},
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then p(Z'(x9)) > 0 because Z'(zq) 2 Z(xo). Since this is true for p-almost all o, we deduce
that 4 can only have countably many ergodic components.

We now explain how Sinai’s method can be used to prove the ergodicity of . To this
end, let us take a box B with boundary lines parallel to v; and vy and define

W*B)={yeBnNY':W*y)NY is of full length and W*(y)
reaches the boundary of B on both ends}

where
V'=Y'(f)={y: f"(y) and f~(y) are defined and f*(y) = f~(y)}.

In the same fashion we define W#(B). We now claim that f* is constant on W*(B), f~ is
constant on W*(B), and these constants coincide. To see this, we fix W*(y) C W*(B) and
take all z € W¥(y)NY’. We have that f~ is constant on W*(y) and that f~(z) = fT(z) for
such z € W¥(y)NY’. Since f* is constant on each W#(z), we deduce that f* is constant on
U.ewugny(W?(2) NY”) and this constant coincides with f~(y). By varying y € W*(B),
we obtain the desired result. (Here we are using the fact that if W*(y) € W*(B) and
We(z) C W#(B), then W*(y) and W*(z) intersect.)

Let us regard the vertical and horizontal axis as the stable and unstable directions. We
now take two boxes which overlap. For example, imagine that By = [} X Ji, By = I3 X Js
in the (v, v1) coordinates, where either J; = Jy and [y NIy # 0, or I = I, and J; N Jy # (.
We wish to show that the constant f* of W“(*)(B;) equal the constant f* of W*()(B,). We
know that f is constant on W*(B;)UW?*(By) and that f~ is constant on W*(By)UW™"(Bsy).
We also know that f* = f~ in Y. Clearly if J; = Jo, [1 NIy # () and W5(By) NW*5(By) # ()
(respect. Iy = I, J1 N Jo # () and W¥(B;) N W*(By) # (), then the constant f* (respect.
f7) for W#(By) (respect. W¥(B;)) coincides with the constant f* (respect. f~) for W*(By)
(respect. W*¥(By)). Let us identify a scenario for which p(W*(By) N W?#(By)) > 0. Given
B € (0,1), let us call a box B f-uconnected if the set

B* = {z € B: W"(z) is defined and reaches the boundary of B on both ends}

satisfies u(B") > fu(B). The set B*® is defined in a similar way and we say that B is (-
sconnected if u(B*) > Bu(B). Note that if u(B“®) > Bu(B), then u(W*)(B)) > Bu(B)
because Y’ is of full-measure. (Here we are using Fubini’s theorem to write the measures of
Y’ as an integral of the lengths of vy or vs slices of Y’.) Now assume that By and B satisfy
the following conditions:

[ Bl = ]1 X Jl, BQ = ]2 X JQ, with Jl = JQ,
e [-sconnected (respect. uconnected),

e | B is to the right of By (respect. By is on the top of By),
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o u(B1N B2) = (1 B) max(u(B), u(B2)),
o (W*(B1)), u((W*(B2)) > 0 (respect. p(W*(B1)), u((W*(B2)) > 0),

then for sure p(W*(B;)NW*(By)) > 0 (respect. u(W"(B;)NW*(By)) > 0). Simply because
WS(Bl) N By C WS(BQ), and ,U(Ws(Bl) N Bg) > 0.
Based on this observation, let us take a box B and cover it by overlapping small boxes.
Pick g € (0,1/2) and take a grid
{éz‘ €B:ic ZQ}
n

and use the points of this grid as the center of squares of side length 711 Each such square
has area =, and two adjacent squares overlap on a set of area (1 — 3)-5. Let us write B2 (B)
for the collection of such overlapping squares. We now state a key result of Sinai regarding
the a-u(s)connected boxes.

Theorem 6.3 There exists ag < 1 such that for every B € (0, ay),

nhi& np (U{B € BL(B) : B is not either B-uconnected or B-sconnected }) = 0.

We now demonstrate how Theorem 6.3 can be used to show that f* and f~ are constant
almost everywhere in B. We choose 3 < a < ag and would like to show that if y, z € YJﬁ N B,
then f~(y) = f*(2). )

To prove this, we first claim that there exists a full column of boxes in B?(B) such that
each box B in this column is a-uconnected and W*(y) reaches two boundary sides of a box
in the column provided that n is sufficiently large. Here y is fixed and since W*(y) is a
nontrivial interval, it crosses ¢;n many columns of total area. If each such column has a box
which is not a-uconnected, then

_ 1
w(U{B € B?(B) : B is not a-uconnected}) > csn - —

2
for some ¢3 > 0 (note that a point = belongs to at most (ﬁ + 1) many boxes). This

contradicts Theorem 2.2 for large n. Hence such a column exists. Similarly, we show that
there exists a full row of boxes in B?(B) such that each box is a-sconnected and at least one
box in this row is fully crossed by W?*(z). Since f < a, we now that f~ is constant (with
the same constant) on UW*(B) with the union over the boxes B on that row, and that f+
is constant on UW"(B) with union over the boxes B on that column. Since the row and
the column intersect on a box, we deduce that f*(y) = f~(z). This completes the proof of
f* = f~ = constant a.e. in B. We now turn to the proof of Theorem 6.3.
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Proof of Theorem 6.3. First we define a sector
C ={(a,b) € R?: |a|] < ~|b|}

which is symmetric about the unstable line v, and contains the two directions of sides of I'".
We use the explicit value of the slope of vy to see that in fact y can be chosen in (0,1). We
now argue that all the line segments in |J;~ 7%(S™) have directions in the sector C. This is
because C already has the directions of S~. On the other hand, since the sides of S~ are not
parallel to v;, T% pushes these lines toward vs.

Now let us measure the set of points not in W*(B) for a box in B2(B). Note that if a
point z € B is not in W*(B), it means that W"(x) is cut by one of T%(S™), i € N* inside
B. Let us first consider the case when B is intersected by precisely one line segment of
U, T"(S™). Since this line segment is in sector C, we learn that (B — W*(B)) < 2. This
means

p(W*(B)) = (1 = v)u(B).

Let us choose ay = %(1 — ) so that if § < oy and B is not [-uconnected, then B must
intersect at least two segments in |J;7°(S7). (This would be true even when g < 1 —
but we need a smaller 3 later in the proof.) We now look at Ry, = (=) T(S~) and study
those boxes which intersect at least two line segments in Ry. Note that each box B is of
length 1/n and the line segments in Ry are distinct. So, a box B € Bf intersects at least
two lines in Ry, only if it is sufficiently close to an intersection point of two lines in R;. More
precisely, we can find a constant ¢; (L) such that such a box is in a Clﬁf) neighborhood of an
intersection point. (In fact ¢;(L) can be chosen to be a constant multiple of L%e” because
there are at most 4L(4L — 1) intersection points and the smallest possible angle between two
line segment in Ry, is bounded below by e~¢% for some constant cy.) Hence the total area of
such boxes is ¢;(L)n~2. Now we turn to those boxes which intersect at most one line in Ry,
and at least one line in R} = J;~; T*(S™). Let us write Dy, for the set of such boxes. Let
us write B — W*(B) = B} U B}, where

B, = {zeB:W“2)NBNRy#0}
B = {zeB:W*(z)NBNR,#0}.

If B € Dy, then B can intersect at most one line segment in Ry. Hence u(B}) < yu(B) <
(1 =2p)u(B). If B € Dy, is not B-uconneted, then

(1 = BYu(B) < (B~ W(B)) < (1 — 26)u(B) + u(BY).
From this we deduce
1 (U{B € Dy, : B is not ﬁ—uconnected}) < Z {,u(B) € Dy, : B is not 5—uconnected}
<pt Z {w(B}) € Dy : B is not S-uconnected }
< B~ lee(B)p (U{B] € Dy, : B is not S-uconnected}),
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where for the last inequity we have used the fact that each point belongs to at most ¢(5) =
(1/(28) + 1)? many boxes in BY. Let x € B} for some B € Dy. This means that W*(z) N B
intersects T°(S™) for some i > L. Hence T~ (W*(z)NB)NS~ # 0. Note that T~*(W*(z)NB)
is a line segment of length at most A™*n~1. As a result, T—*(z) must be within A'n~'-distance
of S~. That is, z € T*(S},, 1). So,

W (B} B DY) <p (D T@'<s»n1>) <3 ({5 )

i=L
= ZM(S’_)\Zn_l) < CQZn N < egn AL
i=L i=L

This yields
p (U{B € BL(B) : B is not a-usconnected}) < ci(L)n"? + ca(B)n ' A*
for every n and L. By choosing L = nlogn for n = (cy — log \) ™!, we get
esn 11108 (10g )2,

for the right-hand side. This completes the proof of Theorem 6.3. 0

7 Classification of Dynamical Systems

Newtonian ODESs of the celestial mechanics are examples of Hamiltonian system that exhibit
both deterministic and stochastic behaviors. A prime example of a deterministic dynamical
system is a rotation (Example 1.1(i) or its infinite dimensional on TV). The simplest example
of a stochastic dynamical system is a shift (Example 1.1(iii)). A dynamical system of
positive entropy has always a stochastic subsystem as the following result confirms.

Theorem 7.1 (Sinai) Let (X,T,u) be an ergodic dynamical system, and let (E%, T, u,) be
a Bernoulli shift as in Example 3.2(i). If h,(T) > h, (1), then there exists a measurable
factor map F : X — EZ.

With the aid of the entropy we can completely classify Bernoulli shifts:
Theorem 7.2 (Ornstein) Two Bernoulli shifts of equal entropy are isomorphic.

Kolmogorov formulated a class of K-automorphisms that includes Bernoulli shifts. A K-
automorphism yields a dynamical system is purely stochastic and has no deterministic factor.
Pinsker had conjectured that any dynamical system can be split into a K-automorphism and
a system of zero entropy. In 1973 Ornstein showed that Pinsker’s conjecture is not true.
However the following weaker version of Pinsker’s conjecture was established in 2017:
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Theorem 7.3 (Austin) Given € > 0, an ergodic system (X, T, u), we can find an isomor-
phism between (Y x Z,S x T,v x 1) such that hs(v) < e, and (Z,1, 1) is a Bernoulli shift.

Definition 7.1(i) Consider a measure space (X,F,u) and a measurable automorphism
T:X — X such that T'\F = TF = F, T*u = pu. The Pinsker class P(T) is defined to be
the set of A € F such that h,(T,£(A)) =0, where {(A) = {4, X \ A}.

(ii) We say T has completely positive entropy if the o-algebra P(T) is trivial. Equivalently,
h(T, &) > 0 for every non-trivial partition .

(iii) Given a partition &, we write .7-"2[ for the o-algebra generated by all {T*"¢ : n > 1}.
We also write J¢' for the o-algebra generated by all {T*¢ : k <n}, and

Foo =N Fe,  FE = U FL

(iv) Given a partition &, we write f(m, n) for T™EV -+ -V T™E.

(v) We say (X,T,B,u) is a (Kolmogorov) K-automorphism if there exists a (countable)
partition such that F, > = {0, X}, F&° = B. Equivalently, if we set K = Fe , then

TKCK, N, "K={0X}, U,TK-=B8.

Theorem 7.4 (i) (Kolmogorov) Let K be a sub-o algebra such that
T7'KCK, U, T"K=B8.

Then

(7.1) P(T)Cnye, T"A.

In particular any K-automorphism is completely positive entropy.

(ii) (Rokhlin-Sinai) There exists a sub-o algebra A with the following properties:
(7.2) TT'TACA U T'A=B, N>, T"A="P(T).

In particular, any transformation of completely positive entropy is a K-automorphism.
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Proof(i) Let ¢ be a finite partition with { C P(T'). Then § C ¢(—o0, —1), which means
that {(—o0, —1) = £(—00,0). Inductively, {(—o0, —n) = £(—00,0) for every n € N. Choose
m € N such that ¢ € T™K. Hence T-*~%¢ ¢ T~'K for every k > m. Hence

£ C &(—o0,—m — 1) C T~'K.

Since ¢ is arbitrary, we are done. ([l

Intuitively, P(T’) represents the deterministic part of the dynamics. After allif h,(T,&) =
0, then the information contained in the past F, determines the present &, y-almost surely.
We will see later that there exists £ that generates the full o-algebra B, and the set of its the
remote past events F, > coincides with P(T). The following will prepare us for the proof of
Theorems 7.4 and 7.5.

Proposition 7.1 (i) The class P(T') is a T-invariant o-algebra.
(ii) For everyn € Z, P(T) = P(T").

(iii) 2 (T,8) =n " Hy(EV - VT FL ).

(iii) hu (T, €V ) = hu(T,€) + Hu(n|F v F,).

(iv) We have

(7.3) P(T) = \/{Fc>: Hu(&) < oo},

(v) Let A be sub-o algebra such that
THACA U2 T"A=2B
Then,

(7.4) P(T) N, T A= A_.

Proof(i) Evidently if A € P(T), then X \ A € P(T'). Next if A, B € P(T), then {(AUB) <
§(A) VE(B), and

hu(T,§(AU B)) < hy(T,6(A) V E(B)) < hy(T,§(A)) + h,(T,€(B)) = 0.

Hence AUB € P(T). Finally, if (A, : n € N) is an increasing sequence of sets in P(7") with
A =U,A,, then

hyu(T,€(A)) < hu(T,€(An)) + Hu(AJAn) = H,,(A]Ay),
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which goes to 0 in large n limit.
Finally, if h,(T,&) = 0, then using

Hﬂ((T_lg)(()?n)) = Hu(T_1(£(07n))) = H#(g(()?n))a
we deduce that h,(T,T7'¢) = 0.

(ii) Assume that ¢ C P(T), and define n = £V TV - v T "¢ C P(T). Hence as in
the proof of Proposition 3.5(i),

h,(T",n) = nh,(T,§) = 0.

This implies P(7") C P(T™). Conversely,
(iii) Given m > n, we write é(m, n) for T™E Vv ... T™E. We have

H(§(0,n = 1)|F¢) = lim H,(§(0,n —1)|¢(—m, —1))
= lim [H,(E|¢(~m, ~1)) + H, (5(1 — D[¢(=m,0))]
= lim [H,(¢]¢(=m, 1)) + Hy (€(0,n = 2)|¢(=m — 1, -1))]
_hM<T7 6) + hu(Taf(Ovn - 2)) == nhM(Ta 5)

(iii) We have
hu(T,gvn) (n+ 1) H,, (£(0,n) V 0(0,n)| F¢ vV F,)
(n+1)7" [H,(£(0,n)|Fe vV Fy) + Hyu(n(0,n)|Fe v F, VEWD,n))]
(n+1)7" [H,(£(0,n)|Fe vV Fy) + Hyu(n(0,n)|F,; Vv &(—o0,n))] .

On the other hand,

HM(U(O,n)‘}"n_ v&(—oo,n)) = (7]‘.7: VE(—oo,n)) + H,( ‘.7-' Vi VE(—oo,n))
Hy(n \f V&(—oo,n)) + H, (77( 1)|F; vV E(—o0,n — 1))
= S I Ve B)

We are done if we can show

(7.5) h(T.€) = lim (n +1)7 H,(£(0,n)| F¢ v F)),
(7.6) H,(n|F; va5 ) = lim H,(n|F,; Vv &(—o00, k).
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The claim (??) is an immediate consequence of Lemma 3.2. As for (7.6), let us write h for
the right-hand side. By part (ii), we certainly have h,(T,&) > h. For the converse, let us
write 7 = £ V 7, and claim

(7.7) lim (n+ 1) H, (v(0,n)|F;) = lim (n+ 1) H, (7(0,n)|F)

n—oo n—oo
To see this, observe

H,(v(0,n)|Fy) = Hu (| Fe ) + Hu(Ty|Fe V) +--- 4+ Hy (T | Fe VA(0,n — 1))

n

=D Hy (T (Fva(0,5 = 1)) = D> Hu (v[e(=00, —j = 1) Vy(—j, ~1))

J=0 J=0

This implies (7.7) because

7(_n7 _1> < 5(_00’ -n- 1) \% 7(_n7 _1) < 7(_00’ _1)’
lim [ﬁ‘(—oo, —n—1) V~y(—n, —1)] = v(—o00, —1).

n—oo

On the other hand,

H, (v(0,m)|F,) = Hu(v(0,n) v £(0,n)| 7))
H,(v(0,n)|F;) = Hu(v(0,n) V £(0,n)| F ) = (g (0,n \f ) M(v(O,n)|F{\/£(O,n)).

From this, (7.7), and part (ii) we deduce

\ |
t
—~
m

\.]
~—
"‘;
—~
=

\,.]

<
7008
=

h= lim (n+1)7"H, (§(0,n)| F7)
= lim (n+ 1)7" [H,(7(0,n)|F,) — H,(v(0,n)|F, Vv £(0,n))]

n—oo
. —1 —
> nh_glo n+1 H v(0,n | ) - H,
= lim (n 1 _1H ( 0 n |]: ) hu(Taf 9

as desired.

(iv) Given a partition & with H,(£) < oo, observe that for any partition n,
nCFX=nI"F = n<¢§ FSCF.
As a result

h(T,€) = hu(T, €V n) = hy(T,n) + Hu (€| F¢ Vv F°) = h(T,n) + Hy (€] F¢)
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which means that h,(T,n) =0, or n C P(T). As a result

VA{F™: Hu(§) < oo} CP(T).
For the converse, let us take any A € P(T). Then for n = £(A), we have n < n(—o0, —1).

Equivalently, n(—o0,0) = n(—oo0, —1). Inductively, n(—o0,0) = n(—oo, —n), for every n € N.
As a result £~ = F . This implies

Aenc Fy=F;>C\/{F>: Hu(& <oo}.
This completes the proof.
(v) For (7.5), we need to show that for every partition &,
ECPT)VA., = ¢CA .
Equivalently,
(7.8) H,(¢|P(T)V A_) = Hu(¢]A-).
O

Definition 7.2(i) Given two spaces (X;,B;), i = 1,2, by a kernel we mean a measurable
map 6 : X; — M(X,). Given a kernel 6 and a measure 7 € M(X7), by a hookup of 6 and
m, we mean a measure on X; X X, of the form

/f d(ﬂxé’)://f(xl,xg) Oy, duy) 7(day).

(ii) Let (X, B, Ti, pi), i = 1,...,k, a collection of dynamical systems. We say (X, B, T, )
is a joining of this collection, if

and g is an invariant measure for 7" with marginals py, ..., f,.

(iii) When k = 2, a kernel 0 is called a stationary channel iff py x 0 is a joining of p; and
2. 0

Example 7.1(i) In the setting of Definition 7.2(i), 4 = H‘Z.izl [1; is a joining.

140



(ii) Assume that & = 2 in the setting of Definition 7.2(i), and given a measurable map
h: X7 — Xs, consider the measure 1 on X; X X5 by

[ Fan= [ i) ).

The marginals of this map are (1, hype1) =: (p11, p12). Observe that for T = (17, T5),

[ an= [ saihte) mde) = [ 7T, 0o T @) ulde)
[ oT du= [ 1T (To W) (e,

Hence p is a joining iff h is a factor, i.e., h o Ty =T o h, py-almost surely. U

Proposition 7.2 (Kakutani-Rokhlin) Let (X, B,T, 1) be an ergodic dynamic system. As-
sume that p is atomless. Then for every n € N, and € > 0, there exists a measurable set A

such that A, T(A),...,T"Y(A) are disjoint, and

(7.9) p(AUT(A)U---UTHA) > 1 —e.

Proof (Step 1) Note that the desired set A necessarily satisfies u(A) < n~'.
To start, we pick m € N, and a set B € B such that 0 < u(B) =: ¢o < m~!. Since by the
ergodic theorem

-1
Jin 3 15(7(0) = u(5),
p-a.e., we deduce that the set Uj>oT~*(B) is of full measure. Put
C =B\ (I'(B)U---UT™(B)).
Observe that since 77(C) C T?(B), and
T/(C) = TH(B)\ (TP (B) U - U T/ (B)),

we learn that T°(C') N T7(C) = @ whenever 1 < i < j < m. Hence the collection of sets
T/(C), 7 = 1,...m are disjoint. We claim that u(C) > 0. To see this, suppose to the
contrary
BCT(B)U---UT™(B),
T-Y(B)CBUT(B)U---UT™YB)CT(B)U---UT™(B),
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modulo a p-null set. Inductively,
T(B)CT(B)U---UT™(B).

for all j € N. Since the set U;>oT~*(B) is of full measure, the set T'(B)U---UT™(B) is also
of full measure. But this is absurd because

w(T(B)U---UT™(B)) <mcy < 1.

In summary p(C) > 0, and the sets C, T(C),...,T™(C) are disjoint.

(Step 2) Choose m > max{n,e '}, and consider the set C' that was constructed in Step 1.
We then define
0(z) = min{k > 0: T"(z) € C}.

Since p(C) > 0, the function 6 < oo, p-a.e. We next define

A={z: 6(z) =kn for some ke N}.
Note that since 6(z) > n for € A, we have 0(T7(z)) = 0(x) — j for j = 0,1,...,n — 1.
(Here we are using the fact that the sets C,T(C),...,T™(C) are disjoint.) In other words

y € TV(A) iff 6(y) = j (modn), O(y) > 1 for every j = 0,1,...,n — 1. This means that the
sets A, T(A),..., T"1(A) are disjoint, and

D:=AUTA)U---UT" Y A) ={x: 0(x) > 1} = X\ C.
On the other hand,
D) =1-p(C) 21— p(B)>1-m" =1—¢,
as desired. 0

Definition 7.3(i) Given a Polish metric space (X, d), define a distance d on M(X) by

d(p,v) = inf {/ d(z,y)a(dzr,dy) : o € M(X x X), uand v are the marginals of a} :
XxX
(ii) Given a Polish metric space (E, d), we define the metric d,, on E™ by
dn(w,w') = dp (w1, ..., wy), (W), ... ,w))) == n"! Z d(wi, w;).
i=1

The corresponding measure on M(A") is denoted by d,,.
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(iii) For (E,d) as above, consider the dynamical system Q = (E% 7). The Ornstein metric
d® is defined on Z. by

d°(u,v) = inf {/d(wo,wg) A(dw,dw') : X is a joining of p and I/} :
0
Note that the product (E%,7) x (E%, 1) is isomorphic to ((E x E)% 7). Hence a joining

of two T-invariant measures is simply a 7T-invariant measure of (E x E)Z. From this, it is not
hard to see that when d is a bounded metric, then

(7.10) d°(u,v) = lim d,(u",v"),
n—oo
where p" and v" are the law of w" = (wy, . ..,w,_1) with respect to u and v respectively.

Lemma 7.1 (i) (Fano) Let E be a finite set, and o € M(E?) with marginals p,v € M(E).
Then

(7.11) H(pulv) < —plogp — (1 —p)log(l — p) + plog(| E| — 1),

where

p= / I(z # y)a(dz, dy).
Proof It is more convenient to think of a as the law of E2-valued random variable (X,Y).
If we write Z = 1(X #Y), then
H(plv)=H(X|Y)=H((X,Z)|Y)=H(Z|Y)+ H(X|(Y,2)) < H(Z)+ H(X|(Y, 2)).
Evidently H(Z) = —plogp — (1 — p)log(1 — p). On the other hand,

H(X|(Y,2)) = (1-p)H(X|Y,1(Z = 1))+pH (X

Y, 1(Z =0)) =pH(X

Y,1(Z = 0)) < plog(|E|-1)
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