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Introduction

The main goal of the theory of dynamical system is the study of the global orbit structure
of maps and flows. In these notes, we review some fundamental concepts and results in the
theory of dynamical systems with an emphasis on differentiable dynamics.

Several important notions in the theory of dynamical systems have their roots in the work
of Maxwell, Boltzmann and Gibbs who tried to explain the macroscopic behavior of fluids
and gases on the basic of the classical dynamics of many particle systems. The notion of
ergodicity was introduced by Boltzmann as a property satisfied by a Hamiltonian flow on its
constant energy surfaces. Boltzmann also initiated a mathematical expression for the entropy
and the entropy production to derive Maxwell’s description for the equilibrium states. Gibbs
introduced the notion of mixing systems to explain how reversible mechanical systems could
approach equilibrium states. The ergodicity and mixing are only two possible properties in
the hierarchy of stochastic behavior of a dynamical system. Hopf invented a versatile method
for proving the ergodicity of geodesic flows. The key role in Hopf’s approach is played by
the hyperbolicity. Lyapunov exponents and Kolmogorov–Sinai entropy are used to measure
the hyperbolicity of a system.

Dynamical Systems come in two flavors: discrete and continuous:

Discrete Systems. We have a setX of possible states/configurations. X is often is equipped
with a metric. There exists a map f : X → X that is often continuous (or even more regular).
We set xn = fn(x) and call the sequence (xn : n ∈ N∗) the orbit starting from the initial
state x0 = x:

x, f(x), f(f(x)) = f 2(x), . . . , fn(x), . . .

Continuous Systems. X is now a nice manifold, and we have a flow on X. That is, a
family of homeomorphisms/diffeomorphisms ϕt : X → X, t ∈ R such that

ϕ0(x) = x, ϕt+s(x) = ϕt(ϕs(x)).

The path (ϕt(a) : t ∈ R) is an orbit starting from the initial state ϕ0(a) = a. For example,
x(t) = ϕt(a) solves an ODE: ẋ = b(x) where b is a vector field on the manifold X. Ideally
we wish to have a complete (explicit) description of orbits.

If this can be achieved, we have a completely integrable/exactly solvable model. This is
rarely the case for models we encounter in nature. Failing this, we may wish to find some
qualitative information about some/most/all orbits. This was originated in the work of
Poincare 1890-1899 [Po1-2]; the birth of the theory of dynamical systems.

What qualitative descriptions do we have in mind? Many of our models in dynamic
systems have their roots in celestial mechanics and statistical physics. We already mentioned
that the work of Poincare in celestial mechanics led to many fundamental concepts in the
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the theory of dynamical systems. This include the notion of symplectic maps and the birth
of symplectic geometry (the flow maps ϕt in celestial mechanics are examples of symplectic
maps). Moreover, several important notions in the theory of dynamical systems can be traced
back to the work of Maxwell, Boltzmann and Gibbs who tried to explain the macroscopic
behavior of fluids and gases on the basic of the classical dynamics of many particle systems.

Boltzmann’s Ergodicity. In the microscopic description of a solid or a fluid/gas, we are
dealing with a huge number of particles: (Avogadro number) 1023 for a fluid, and 1019 for
a dilute gas. It is not practical or even useful to analyze the exact locations/ velocities of
all particles in the system. A more realistic question is that what a generic particle does
in average. Boltzmann formulated the following question: If A is a set of states (subset of
X), then what fraction of time the orbit ϕt(x) spends in the set A? Boltzmann formulated
the following ansatz to answer the above question for models that are governed by Newton’s
law: For generic initial state x,

1

ℓ
{t ∈ [0, ℓ] : ϕt(x) ∈ A} ≈ volume of A.

as ℓ→ ∞. Here we have an example of an ergodic dynamical system. The above ansatz is not
true in general and requires some polishing. We now have more realistic reformulation of the
above ansatz in the form of a conjecture that is still wide open. Sinai made a breakthrough
in 1960s when he established the above conjecture for a planar billiard with two balls (elastic
collision).

Entropy. The entropy comes in two flavors: metric (measure theoretical) and topological.
The rough idea goes back to Boltzmann: In microscopic model the number of states N is
exponentially large. The entropy is proportional to logN . How this can be formulated for
a dynamical system associated with f : X → X? Introduce a resolution δ > 0. When two
states are within distance δ, regard them the same. In this way we replace our infinite state
space with a finite set!

Number of orbits up to time n ≈ enhtop(f),

for large n and small δ. Metric (Kolmogorov-Sinai) entropy was defined by Kolomogorov
as an invariance of a dynamical system: He wanted to associate a number to a dynamical
system that does not change if we make a change of variable: In other words if we have two
dynamical systems T : X → X, T̂ : X̂ → X̂, and a homeomorphism h : X → X̂, such that
T̂ = h ◦ T ◦ h−1, then we would like to have entropy(T ) = entropy(T̂ ). Motivated by the
work of Boltzmann (Statistical Mechanics) and Shannon (Information Theory), Kolmogorov
define the entropy as the rate of gain in information as we observe more and more of our
system: Introduce a (measure theoretical) resolution. That is, a finite partition of X, so that
if all points in a member of the partition is regarded as one. In this way we are dealing with
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a finite set. Suppose the n-orbit (x, f(x), . . . , fn(x)) of a point with respect to a partition
is known. How accurately we can locate x? In chaotic dynamical systems the accuracy
improves exponentially fast. The exponential rate of the improvement/gain of information
is the entropy : hµ(T ). We need a measure µ to measure the size of the set of possible
location of x based on the information available.
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1 Invariant Measures and Ergodic Theorem

By a discrete dynamical system we mean a pair (X,T ), where X = (X, d) is a complete
separable metric space (in short Polish space) with metric d, and T : X → X is a continuous
map. By an orbit of (X,T ) we mean sequences of the form O(x) =

(
xn = T n(x) : n ∈ N∗),

where N∗ denotes the set of nonnegative integers. Here are some examples of dynamical
systems that should be kept in mind for understanding various notions that will be developed
in this Chapter.

Example 1.1(i) (Rotation) X = Td is the d-dimensional torus. We may regard T as the
interval [0, 1] with 0 = 1. Given a vector α = (α1, . . . , αd) ∈ [0, 1)d, we define T : Td → Td

by T (x) = x+ α (mod 1). In other words, when x ∈ [0, 1]d, then x+ α is understood as the
sum of points x and α in Rd. Though if x+α /∈ [0, 1)d, then by dropping its integer parts of
its coordinates, we obtain a point in [0, 1)d. Alternatively, if we regard the circle T as the set
of complex numbers z = e2πiθ such that |z| = 1, and set β = (β1, . . . , βd), with βj = e2πiαj ,
then T (z1, . . . , zd) = (β1z1, . . . , βdzd).

(ii) (Expansion) Given an integerm ≥ 2, we define T = Tm : T → T, by T (x) = mx (mod 1).
Alternatively, if we regard the circle T as the set of complex numbers z = e2πiθ such that
|z| = 1, then T (x) = zm.

(iii) (Shift) Given a Polish space E, set X = EN (respectively EZ) for the space of sequences
ω = (ωn : n ∈ N) (respectively ω = (ωn : n ∈ Z)) in E. Consider the shift map τ : X → X
that is defined by (τω)n = ωn+1.

(iv) (Contraction) Let (X,T ) be a discrete dynamical system, ans assume that there exists
λ ∈ (0, 1) such that d

(
T (x), T (y)

)
≤ λd(x, y). Then there exists a unique a ∈ X such that

T (a) = a and
d
(
T n(x), a

)
≤ λnd(x, a).

As a consequence d
(
T n(x), a

)
→ 0, as n→ ∞, for every x ∈ X. □

Given a dynamical system (X,T ), we may wonder how often a subset of X is visited by
an orbit of T . For example, in the dynamical systems described in Example 1.1, most orbits
(for “most” α in part (i)) are dense and every nonempty open set is visited infinitely often
for any such orbit. To measure the asymptotic fraction of times a set is visited, we may look
at the limit points of the sequence

(1.1)
1

n

n−1∑
j=0

11A(T
j(x))

as n→ ∞. More generally, we may wonder whether or not the limit

(1.2) lim
n→∞

Φn(f)(x) := lim
n→∞

1

n

n−1∑
j=0

f(T j(x))
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exists for a function f : X → R. Let us write Cb(X) for the space of bounded continuous
functions f : X → R. Given x ∈ X, if the limit of (1.2) exists for every f ∈ Cb(X), then the
limit Φx(f) enjoys some obvious properties:

(i) f ≥ 0 ⇒ Φx(f) ≥ 0, Φx(11) = 1.

(ii) Φx(f) is linear in f .

(iii) |Φx(f)| ≤ supy∈X |f(y)|.

(iv) Φx(f ◦ T ) = Φx(f).

If X is also locally compact, then we can use Riesz Representation Theorem to assert that
there exists a unique (Radon) probability measure µ such that Φx(f) =

∫
f dµ. Evidently,

such a measure µ(A) measures how often a set A is visited by the orbit O(x). Motivated by
(iv), we make the following definition:

Definition 1.1(i) Given a Polish space X, with a metric d, we write B(X) for the Borel
σ-algebra of (X, d), and M(X) for the set of Borel Radon probability measures on X.

(ii) We write IT for the set of Radon probability measures µ such that

(1.3)

∫
f ◦ T dµ =

∫
f dµ,

for every f ∈ Cb(X). Any such measure µ is called an invariant measure of T . Equivalently,
µ ∈ IT iff µ(A) = µ

(
T−1(A)

)
for every B ∈ B(X). □

It seems natural that for analyzing the limit points of (1.1), we should first try to under-
stand the space IT of invariant measures. Note that in (1.2), what we have is

∫
f dµx

n where

µx
n = 1

n

∑n−1
j=0 δT j(x). We also learned that if (1.2) exists for every f , then µx

n has a limit and
its limit is an invariant measure. Of course there is a danger that the limit (1.2) does not
exist in general. This is very plausible if the orbit is unbounded and some of the mass of
the measure µx

n is lost as n→ ∞ because T j(x) goes off to infinity. This would not happen
if we assume X is compact. To this end, let us review the notion of weak convergence for
measures.

Definition 1.2 We say a sequence {µn}n∈N in M(X) converges weakly to µ ∈ M(X) (in
short µn ⇒ µ), if

(1.4)

∫
f dµn →

∫
f dµ,

for every f ∈ Cb(X). □
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It turns out that for the weak convergence, we only need to verify (1.4) for f ∈ Ub(X)
where Ub(X) denotes the space of bounded uniformly continuous functions. Since Ub(X) is
separable, we can metrize the space of probability measures M(X). (See for example [P].)

Theorem 1.1 Suppose X is a compact metric space.

(i) (Krylov–Bogobulov) Let {xn} be a sequence in X. Then any limit point of the sequence
{µxn

n } is in IT . In particular, IT ̸= ∅.

(ii) If IT = {µ̄} is singleton, then

lim
n→∞

1

n

n−1∑
j=0

f(T j(x)) =

∫
f dµ̄

uniformly for every f ∈ C(X). In fact D(µx
n, µ̄) → 0 uniformly in x.

(iii) If {Φn(f)} converges pointwise to a constant for functions f in a dense subset of C(X),
then IT is a singleton.

Proof(i) This is an immediate consequence of Exercise (ii) below at the end of this chapter,
and what we have seen in the beginning of this chapter.

(ii) Let {xn} be any sequence in X and put νn = µxn
n . Since any limit point of {νn} is in

IT = {µ}, we deduce that νn ⇒ µ̄. From this we can readily deduce that in fact µx
n ⇒ µ

uniformly.

(iii) We are assuming that Φn(f) converges to a constant f̂ for f in a dense set T ⊆ C(X).
Since the sequence {Φn(f)} is uniformly bounded for f ∈ C(X), and∫

Φn(f) dµ =

∫
f dµ,

for every µ ∈ IT , we deduce that the constant f̂ can only be
∫
f dµ. As a consequence, if

µ, ν ∈ IT , then
∫
f dµ =

∫
f dν for a dense set of functions f . This implies that µ = ν and

we conclude that IT is a singleton. □

From Theorem 1.1 we learn that when IT is a singleton, the statistics of the orbits are
very simple. However, this is a rather rare situation and when it happens, we say that the
transformation T is uniquely ergodic.

Example 1.2(i) Consider the dynamical system of Example 1.1(i), when d = 1, and α = p/q
a rational number with p and q coprime. Note that every orbit is periodic of period q.
Moreover, for every x ∈ T, the measure

µx =
1

q

q−1∑
j=0

δT j(x),
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is invariant for T . One can show that any µ ∈ IT can be expressed as

µ =

∫
T
µx θ(dx),

where θ is a probability measure on T. To avoid repetition, we only need to take a probability
measure that is concentrated on the interval [0, q−1), or the interval [0, q−1], with 0 = q−1.

(ii) Again, consider the dynamical system of Example 1.1(i), but now in any dimension and
for any α. We wish to find the necessary and sufficient for T to be uniquely ergodic. We note
that the Lebesgue measure ℓ on Td is always invariant for T . To apply Theorem 1.1(iii), let
us take A to be the set of trigonometric polynomials∑

j∈A

cje
2πij·x,

with A any finite subset of Zd. For calculating the limit of Φn(f) as n → ∞, it suffice to
consider the case f(x) = fj(x) = e2πij·x. Indeed since

Φn(f) =
1

n

n−1∑
ℓ=0

e2πij·(x+ℓα) = e2πij·x

(
1

n

n−1∑
ℓ=0

e2πiℓj·α

)
=

1

n
e2πij·x

(
1− e2πinj·α

1− e2πij·α

)
,

whenever j · α /∈ Z, we have

lim
n→∞

Φn(f) =

{
0 if j · α /∈ Z,
e2πij·x if j · α ∈ Z.

From this and Theorem 1.1(iii) we deduce that T is uniquely ergodic iff the following con-
dition is true:

(1.5) j ∈ Zd \ {0} ⇒ j · α /∈ Z.

We note that the ergodicity of the Lebesgue measure also implies the denseness of the
sequence {x+ nα}. This latter property is known as the topological transitivity.

(iii) Consider the dynamical system of Example 1.1(i), when d = 2, and α = (α1, 0) with
α1 /∈ Q. Let µx2 denotes the one-dimensional Lebesgue measure that is concentrated on the
circle

Tx2 =
{
(x1, x2) ∈ T2 : x1 ∈ T

}
.

Clearly this measure is invariant. In fact all invariant measures can be expressed as

µ =

∫
T
µx2 τ(dx2),
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where τ is a probability measure on T. We also note

lim
n→∞

Φn(f)(x1, x2) =

∫
T
f(y1, x2) dy1.

(iii) Consider the dynamical system of Example 1.1(iv). Then IT =
{
δa
}
. □

Remark 1.1(i) When d = 1, the condition (1.6) is equivalent to α /∈ Q. The fact that
Lebesgue measure is the only invariant measure when α is irrational is equivalent to that
fact that the sequence {nα} is dense on the circle T. To see this, observe that if µ ∈ IT ,
then ∫

f(x+ nα) µ(dx) =

∫
f(x) µ(dx)

for every continuous f and any n ∈ N. Since {nα} is dense, we deduce that µ is translation
invariant. As is well known, the only translation invariant finite measure on T is the Lebesgue
measure.

(ii) According to a classical result of Poincaré, if an orientation preserving homeomorphism
T : T → T has a dense orbit, then it is isomorphic to a rotation (i.e. there exists a change
of coordinates h : T → T such that h−1 ◦ T ◦ h is a rotation). □

As we mentioned earlier, in most cases IT is not a singleton. There are some obvious
properties of the set IT which we now state. Note that IT is always a convex and closed
subset of M(X). Also, IT is compact when X is compact because M(X) is compact. Let
us recall a theorem of Choquet that can be used to get a picture of the set IT . Recall that
if C is a compact convex set then a point a ∈ C is extreme if a = θb + (1 − θ)c for some
θ ∈ [0, 1] and b, c ∈ C implies that either a = b or a = c. According to Choquet’s theorem,
if C is convex and compact, then any µ ∈ C can be expressed as an average of the extreme
points. More precisely, we can find a probability measure θ on the set of extreme points of
C such that

(1.6) µ =

∫
Cex

α θ(dα).

Motivated by (1.6) and Example 1.2, we formulate two natural concepts:

Definition 1.3(i) We write Iex
T for the set of extreme points of IT .

(ii) Given µ ∈ Iex
T , we set

(1.7) Xµ = {x : µx
n ⇒ µ as n→ ∞}.

□
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Example 1.3 In Example 1.1(i), we have Iex
T =

{
µx : x ∈ [0, q−1)

}
. Example 1.2(iii), we

have Iex
T =

{
µx2 : x2 ∈ T

}
. □

Given µ ∈ Iex
T , clearly the set Xµ is invariant under T . That is, if x ∈ Xµ, then

T (x) ∈ Xµ. Also, if µ1 ̸= µ2 ∈ Iex
T , then Xµ1 ∩ Xµ2 = ∅. Our second Ergodic Theorem

below implies that µ(Xµ) = 1. This confirms the importance of extreme measures among
the invariant measures. Later we find more a practical criterion for the extremity in terms
of the invariant sets and functions.

One way to study the large n limit of the sequence Φn(f) is by examining the convergence
of the empirical measures

{
µx
n

}
n∈N. Alternatively, we may fix an invariant measure µ and

examine the convergence of the sequence Φn(f) in L
p(µ). Observe that if Φnf → f̄ , then f̄

must be invariant with respect to the dynamics. This suggests studying the set of invariant
functions. Moreover, the pairing (f, µ) 7→

∫
f dµ suggests considering functions that are

orthogonal to invariant functions, namely functions of the form f = g ◦ T − g.

Definition 1.4(i) Let µ ∈ M(X). We write FT (respectively Fµ
T ) for the set of bounded

measurable functions f : X → R such that f ◦ T = f (respectively f ◦ T = f , µ-a.e.). Also,
set

(1.8) Lp
T (µ) = {f ∈ Lp(µ) : f ◦ T = f µ− a.e.} .

We refer to functions in FT as T -conserved or invariant functions. With a slight abuse of
notation, by A ∈ FT (respectively A ∈ Fµ

T ) we mean that 11A ∈ FT (respectively 11A ∈ Fµ
T ).

Note that A ∈ FT iff A ∈ B(X) with T−1(A) = A. Similarly, A ∈ Fµ
T iff A ∈ B(X) with

µ
(
T−1(A)∆A

)
= 0.

(ii) We define
HT (µ) =

{
g ◦ T − g : g ∈ L2(µ)

}
.

□

Theorem 1.2 (von Neumann) Let T : X → X be a Borel measurable transformation and
let µ ∈ IT . If f ∈ L2(µ), then Φn(f) =

1
n

∑n−1
0 f ◦ T j converges in L2-sense to Pf , where

Pf is the projection of f onto L2
T (mu).

Proof. Observe that if f ∈ L2
T (µ), then µ(A1) = 1, where

An =
{
x ∈ X : f(x) = f(T (x)) = · · · = f(T n(x))

}
.

Since µ ∈ IT , we deduce that µ
(
T n(A1)

)
= 1. Hence µ(An) = 1. This implies that for such

f , we have that Φn(f) = f µ-a.e.
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We note that Φn : L2(µ) → L2(µ) is a bounded linear operator with∥∥Φn(f)
∥∥
L2 ≤ ∥f∥L2 ,

because ∥fk ◦ T j∥L2 = ∥fk∥L2 by invariance. Also observe that if f = g ◦ T − g for some
g ∈ L2, then Φn(f) → 0 as n → ∞. If f ∈ H̄, then we still have Φn(f) → 0 as n → ∞.
Indeed if fk ∈ H converges to f in L2, then

∥Φn(f)∥L2 ≤ ∥Φn(fk)∥L2 + ∥f − fk∥L2 ,

Since ∥Φn(fk)∥L2 → 0 as n→ ∞ and ∥f − fk∥L2 → 0 as k → ∞, we deduce that Φn(f) → 0
as n→ ∞.

Given any f ∈ L2(µ), write f = g+h with g ∈ H̄ and h⊥H. If h⊥H, then
∫
h φ◦T dµ =∫

hφ dµ, for every φ ∈ L2(µ). Hence
∫
(h ◦ T − h)2 dµ = 0. This means that h ◦ T = h. As

a result, h ∈ L2
T (µ), and Φn(f) = Φn(g) + Φn(h) = Φn(g) + h. Since Φn(g) → 0, we deduce

that Φn(f) → h with h = Pf . □

Theorem 1.2 is also true in L1(µ) setting. To explain this, let us first make sense of
Pf for f ∈ L1(µ). For example, we may approximate any f ∈ L1(µ) by the sequence
fk = f11(|f | ≤ k), and define

Pf = lim
k→∞

Pfk.

The limit exists because the sequence {Pfk} is Cauchy in L1(µ) (this is an immediate
consequence of Exercise (ii) below). We are now ready to state and prove the Ergodic
Theorem for L1-functions.

Corollary 1.1 Suppose µ ∈ IT and f ∈ L1(µ). Let Pf be as above. Then Φn(f) converges
to Pf in L1 sense.

Proof Clearly, ∥∥Φn(f)
∥∥
L1(µ)

≤
∥∥f∥∥

L1(µ)
,

by the invariance of µ. From this and
∫
|Pg| dµ ≤

∫
|g| dµ (see Exercise 1.2(ii) below) we

learn

∥Φn(f)− Pf∥L1(µ) ≤ ∥Φn(fk)− Pfk∥L1(µ) + ∥Φn(f − fk)∥L1(µ) + ∥P (f − fk)∥L1(µ)

≤ ∥Φn(fk)− Pfk∥L1(µ) + 2∥f − fk∥L1(µ),

where k ∈ N, fk = f11(|f | ≤ k). The proof follows because by Theorem 1.2 the first term
goes to 0 as n→ ∞, and by approximation, the second term goes to 0, as k → ∞. □

Remark 1.2 We note that if µ ∈ IT , then the operator Uf = f ◦ T is an isometry of L2(µ)
and the subspace L2

T (µ) is the eigenspace associated with the eigenvalue one. Hence von
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Neumann’s theorem simply says that 1
n
(I + U + · · · + Un−1) → P , with P representing the

projection onto the eigenspace associated with the eigenvalue 1. Note that if λ = eiθ is an
eigenvalue of U and if λ ̸= 1, then 1

n
(1 + λ + · · · + λn−1) = λn−1

n(λ−1)
→ 0 as n → ∞. This

suggests that Theorem 1.2 may be proved using the Spectral Theorem for unitary operators.
The above theorem also suggests studying the spectrum of the operator U for a given T .
Later we will encounter the notion of mixing dynamical systems. It turns out that the
mixing condition implies that discrete spectrum of the operator U consists of the point 1
only. □

From Theorem 1.2 we learn the relevance of the invariant (conserved) functions for a
dynamical system. One possibility is that the only invariant function in the support of µ
is the constant function. In fact if there are non constant functions in L2(µ), we may use
them to decompose µ into invariant measures with smaller support. The lack of nontrivial
conserved functions is an indication of the irreducibility of our invariant measure. We may
check such irreducibility by evaluating µ at T -invariant subsets of X. More precisely, we
have the following definition.

Definition 1.5 An invariant measure µ is called ergodic if µ(A) ∈ {0, 1} for every A ∈ FT .
The set of ergodic invariant measures is denoted by Ier

T . □

We will see in Exercise (vi) below that the sets in Fµ
T differ from sets in FT only in a

set of measure 0. Also, we will see later that Ier = Iex. In view of (1.6), any µ ∈ IT can be
expressed as an average of ergodic ones.

Remark 1.3 By Theorem 1.2, we know that if f ∈ L2(µ), then Pf is the projection of
f onto the space of invariant functions. For f ∈ L1(µ), we may define Pf as the unique
Fµ

T -measurable function such that

(1.9)

∫
A

Pf dµ =

∫
A

f dµ

for every A ∈ FT . Note that since Pf is Fµ
T -measurable, we have

Pf ◦ T = Pf,

µ-almost everywhere. Alternatively, Pf is uniquely defined as the Radon–Nikodym deriva-
tive of fµ with respect to µ, if we restrict it to FT − σ-algebra. More precisely

Pf =
d(fµ|FT

)

dµ|FT

.

□

As our next goal, we consider an almost everywhere mode of convergence.
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Theorem 1.3 (Birkhoff Ergodic Theorem) Suppose µ ∈ IT and f ∈ L1(µ). Then

µ
{
x : lim

n→∞
Φn(f)(x) = Pf(x)

}
= 1.

Proof Set g = f − Pf − ϵ for a fixed ϵ > 0. Evidently Pg ≡ −ϵ < 0 and Φn(f − Pf − ϵ) =
Φn(f)− Pf − ϵ. Hence, it suffices to show

lim sup
n→∞

Φn(g) ≤ 0 µ− a.e.

We expect to have
g + g ◦ T + · · ·+ g ◦ T n−1 = −εn+ o(n).

From this, it is reasonable to expect that the expression g+· · ·+g◦T n−1 to be bounded above
µ-a.e. Because of this, let us defineGn = maxj≤n

∑j−1
0 g◦T i. SetA = {x : limn→∞Gn(x) = +∞}.

Without loss of generality, we may assume that g is finite everywhere. Clearly A ∈ FT be-
cause Gn+1 = g +max(0, Gn ◦ T ). Note also that if x /∈ A, then lim supn→∞ Φn(g) ≤ 0. To
complete the proof, it remains to show that µ(A) = 0. To see this, observe

0 ≤
∫
A

(Gn+1 −Gn)dµ =

∫
A

(Gn+1 −Gn ◦ T )dµ

=

∫
A

[g +max(0, Gn ◦ T )−Gn ◦ T ]dµ =

∫
A

(g −min(0, Gn ◦ T ))dµ.

On the set A, −min(0, Gn ◦ T ) ↓ 0. On the other hand, if

hn = g −min(0, Gn ◦ T ),

then g ≤ hn ≤ h1 = g + (g ◦ T )−. Hence by the Dominated Convergence Theorem, 0 ≤∫
A
gdµ =

∫
A
Pgdµ ≤ −ϵµ(A). Thus we must have µ(A) = 0. □

Remark 1.4(i) If µ is ergodic, then the σ-algebra FT is trivial and any FT measurable
function is constant. Hence Pf is constant and this constant can only be

∫
f dµ.

(ii) Since µx
n ⇒ µ iff

∫
f dµx

n →
∫
f dµ, for f in a countable dense set of continuous

functions, we learn from Part (i) that µ(Xµ) = 1, where Xµ was defined by (1.6). However,
if µ is not ergodic, then Pf is not constant in general and if µT (x, dy) denotes the conditional
distribution of µ given FT , then

Pf(x) =

∫
f(y)µT (x, dy).

From this we deduce that in this case,

µ
{
x : lim

n→∞
µx
n = µT (x, ·)

}
= 1,
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Moreover, µT (x, ·) ∈ Ier
T , for µ-almost all x.

(iii) If T is invertible, then we can have an ergodic theorem for T−1 as well. Since FT = FT−1 ,
it is clear that PTf = PT−1f . As a consequence we have

lim
n→∞

1

n

n−1∑
0

f ◦ T j = lim
n→∞

1

n

n−1∑
0

f ◦ T−j = Pf.

µ− a.e. □
Our proof of Theorem 1.2 implies that any f ∈ L2(µ) can be written as

f = Pf + gk ◦ T − gk + hk,

such that gk, hk ∈ L2(µ) with ∥hk∥L2(µ) → 0, as k → ∞. A similar decomposition is also
valid for f ∈ L1(µ) with gk ∈ L∞(µ), hk ∈ L1(µ), ∥hk∥L1(µ) → 0, as k → ∞. We note that
for every g ∈ L∞(µ),

lim
n→∞

Φn

(
g ◦ T − g

)
= 0,

µ-a.e. Because of this, we may wonder whether or not Theorem 1.3 can be established with
the aid of such a decomposition. For this however we need to show that the error term
Φn(hk) does not contribute to the pointwise limit. This can be done by a maximal type
inequality. Put

Mn(h) = sup
1≤j≤n

Φj(h), M(h) = sup
1≤j

Φj(h).

Theorem 1.4 If , then

µ
({
x : M(h)(x) > t

})
≤ t−1∥h∥L1(µ).

First Proof If g = h− t, and

E =

{
max
n≥1

Φn(g) > 0

}
=

{
max
n≥1

(g + · · ·+ g ◦ T n−1) > 0

}
,

then it suffices to show ∫
E

g dµ ≥ 0.

Note that if
Gn = max

1≤i≤n
(g + · · ·+ g ◦ T i−1), Fn = max(0, Gn),

then E = ∪nEn, where En = {Fn > 0}. Since En ⊆ En+1, it suffices to show that
∫
En
g dµ ≥

0, for every n. Observe that on the set En, we have Fn = Gn > 0, and

g + Fn ◦ T = max(g, g + g ◦ T, . . . , g + · · ·+ g ◦ T n) ≥ Fn.
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Hence,∫
En

g dµ ≥
∫
En

(Fn − Fn ◦ T ) dµ =

∫
X

Fn dµ−
∫
En

Fn ◦ T dµ ≥
∫
X

(Fn − Fn ◦ T ) dµ = 0,

as desired. Here we have used Fn ≥ 0, and that Fn = 0 on Ec
n.

Second Proof We now offer a proof that is based on a discrete Hardy-Littlewood maximal
inequality. To motivate our strategy, let us consider examine our inequality when X = Z
and T = τ is the shift τ(i) = i+ 1. Note that the counting measure m is the only (σ-finite)
invariant measure. For F : Z → R,

Φn(F )(i) = n−1

n−1∑
j=0

F (i+ j), M̂(F )(i) = sup
n≥1

Φn(F )(i),

and the analog of our maximal inequality reads as

♯
{
i : M̂(F )(i) > t

}
≤ 3t−1

∑
j∈Z

|F (j)|.

Accepting this inequality for now, let us take any f ∈ L1(µ) and (x, n) ∈ X ×N, and define
the sequence

F x,n(i) = f(T ix) 11(0 ≤ i ≤ n).

Evidently,

Mℓ(f)(T
kx) = sup

1≤j≤ℓ
j−1

j−1∑
i=0

f(T k+i(x)) = sup
1≤j≤ℓ

j−1

j−1∑
i=0

F x,n(k + i) ≤ M̂(F x,n)(k),

whenever ℓ+ k ≤ n. As a result,

µ
(
Mℓ(f) > t

)
= (n− ℓ+ 1)−1

n−ℓ∑
k=0

µ
(
Mℓ(f) ◦ T k > t

)
≤ (n− ℓ+ 1)−1

n−ℓ∑
k=0

µ
(
M̂(F x,n)(k) > t

)
≤ 3(t(n− ℓ+ 1))−1

∫ ∑
k

F x,n(k) µ(dx)

= 3n(t(n− ℓ+ 1))−1

∫
f dµ.

We finally send n→ ∞ and ℓ→ ∞ in this order to complete the proof. □
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Remark 1.5 Given a = {an : n ∈ N}, a family of non-negative sequences an = (ani : i ∈
N∗), with

∑
i a

i
n = 1, we define

Φa
n(f) =

∑
i∈N∗

ainf ◦ T i.

Note that if ai
n = n−111(0 ≤ i ≤ n − 1), then Φa

n = Φn. We may wonder under what
conditions on a, we have Φa

n(f) → f in large n limit. It turns out that for L2(µ) convergence,
the necessary and sufficient condition is the existence of the limit

lim
n→∞

ân(α) = lim
n→∞

n−1∑
j=0

anj e
ijα,

for every α. The necessity of this condition is immediate because this condition is equivalent
to the convergence when T is the rotation of Example 1.1(i). For the analog of Theorem
1.4, we may repeat our Second Proof to argue that the following discrete Hardy-Littlewood
maximal inequality

♯

{
j : sup

n
Φ̂a

n(h)(j) > t

}
≤ c0

∑
j

|h(j)|,

with
Φ̂a

n(h)(j) =
∑
i

ainh(i+ j),

implies

µ (Φa
n(f) > t) ≤ c0t

−1

∫
f dµ,

The converse is also true. According to a result of Bellow and Calderon [BC], the above
maximal inequality holds if a satisfies the following condition: There exists a constant c1,
and α ∈ (0, 1] such that

|ani+j − ani | ≤ c1
|j|α

iα+1
,

for every n and (i, j), with 2|j| ≤ i. □
a As an immediate consequence of Theorem 1.4, we have the following pointwise ergodic

theorem with varying function.

Corollary 1.2 Suppose µ ∈ IT and {fn}n∈N∗ is a sequence in L1(µ) such that fn → f as
n→ ∞, µ-a.e., and in L1-sense. Then

µ

{
x : lim

n→∞
n−1

n−1∑
i=0

fi
(
T i(x)

)
= Pf(x)

}
= 1.

17



Proof To ease the notation, let us set gi = |fi − f |, and

hm = sup
n≥m

gn.

On account of Theorem 1.3, it suffices to check

(1.10) lim
n→∞

n−1

n−1∑
i=0

gi
(
T i(x)

)
= 0,

for µ-a.e. x. To prove this, observe that for any positive m ≤ n,

n−1

n−1∑
i=0

gi ◦ T i =n−1

[
m−1∑
i=0

+
n−1∑
i=m

]
gi ◦ T i ≤ n−1

m−1∑
i=0

gi ◦ T i + n−1

n−1∑
i=m

hm ◦ T i

≤n−1

m−1∑
i=0

gi ◦ T i +M(hm).

Sending n→ ∞ yields

lim sup
n→∞

n−1

n−1∑
i=0

gi ◦ T i ≤M(hm).

This implies (1.10) because

µ
({
M(hm) > δ

})
≤ 3δ−1∥hm∥L1(µ),

by Theorem 1.4, and
lim

m→∞
∥hm∥L1(µ) = 0.

□

We continue with more consequences of Theorem 1.3.

Proposition 1.1 We have Iex
T = Ier

T . Moreover, if µ1 and µ2 are two distinct ergodic
measures, then µ1 and µ2 are mutually singular.

Proof Suppose that µ ∈ IT is not ergodic and choose A ∈ FT such that µ(A) ∈ (0, 1). If
we define

µ1(B) =
µ(A ∩B)

µ(A)
, µ2(B) =

µ(Ac ∩B)

µ(Ac)
,

then µ1, µ2 ∈ IT and µ = αµ1 + (1− α)µ2 for α = µ(A). Hence Iex ⊆ Ier
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Conversely, let µ be ergodic and µ = αµ1+(1−α)µ2 for some µ1, µ2 ∈ IT and α ∈ (0, 1).
Note that we also have that µi(A) = 0 or 1 if A ∈ FT and i = 1 or 2. As a result, µ1, µ2 ∈ Ier

T

and µ
(
Xµ

)
= µ1

(
Xµ1

)
= µ2

(
Xµ2

)
= 1. But µ = αµ1 + (1 − α)µ2, and µ

(
Xµ

)
= 1, imply

that µ1

(
Xµ

)
= µ2

(
Xµ

)
= 1. This is compatible with µ1

(
Xµ1

)
= µ2

(
Xµ2

)
= 1, only if

µ = µ1 = µ2.
Finally, if if µ1 and µ2 are two distinct ergodic measures, then Xµ1 ∩ Xµ2 = ∅. This

implies that µ1 ⊥ µ2, because µ1

(
Xµ1

)
= µ2

(
Xµ2

)
= 1. □

1.1 Mixing

As we mentioned in the introduction, many important ergodic measures enjoy a stronger
property known as mixing.

Definition 1.6 A measure µ ∈ IT is called mixing if for any two measurable sets A and B,

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B).

The set of mixing invariant measures is denoted by Imix
T = Imix

T (X). □

Remark 1.6 Mixing implies the ergodicity because if A ∈ FT , then T−n(A) = A and
T−n(A) ∩ Ac = ∅. As a result,

µ(A) = lim
n
µ(T−n(A) ∩ A) = µ(A)µ(A),

which implies that either µ(A) = 0 or µ(A) = 1. Also note that if µ is ergodic, then

µ

{
x :

1

n

n−1∑
0

11A ◦ T j → µ(A)

}
= 1,

which in turn implies

lim
n→∞

∫ (
1

n

n−1∑
0

11A ◦ T j

)
11B dµ = µ(A)µ(B).

Hence the ergodicity means

(1.11) lim
n→∞

1

n

n−1∑
0

µ(T−j(A) ∩B) = µ(A)µ(B).

So, the ergodicity is some type of a weak mixing. □

19



Example 1.4 Let T : Td → Td be a translation T (x) = x + α (mod 1) with α satisfying
(1.5). We now argue that T is not mixing. To see this, take a set B with µ̄(B) > 0 and
assume that B is not dense. Pick x0 /∈ B and let δ = dist.(x0, B) > 0. Take any set A open
with µ(A) > 0 and diam(A) < δ/2. By topological transitivity, x0 ∈ T−n(A) for infinitely
many n ∈ N. Since diam(T−n(A)) = diam(A), we deduce that T−n(A)∩B = ∅ for such n’s.
Clearly µ̄(T−n(A) ∩B) = 0 does not converge to µ̄(A)µ̄(B) ̸= 0 as n→ ∞. □

Before discussing examples of mixing systems, let us give an equivalent criterion for
mixing.

Proposition 1.2 A measure µ is mixing iff

(1.12) lim
n→∞

∫
f ◦ T n g dµ =

∫
fdµ

∫
gdµ

for f and g in a dense subset of L2(µ).

Proof If µ is mixing, then (1.12) is true for f = 11A, g = 11B. Hence (1.12) is true if both
f and g are simple, i.e., f =

∑m
j=1 cj11Aj

, g =
∑m

j=1 c
′
j11Bj

. We now use the fact that the

space of simple functions is dense in L2(µ) to deduce that (1.12) is true for a dense set of
functions.

For the converse, it suffices to show that if (1.12) is true for a dense set of functions, then
it is true for every f ∈ L2(µ). Observe that if ∥f − f̂∥L2 and ∥g − ĝ∥L2 are small, then∣∣∣∣∫ f ◦ T n g dµ−

∫
f̂ ◦ T n ĝ dµ

∣∣∣∣ ,
is small. Indeed,∣∣∣∣∫ f ◦ T n g dµ−

∫
f̂ ◦ T n ĝ dµ

∣∣∣∣ ≤
∣∣∣∣∫ (f ◦ T n − f̂ ◦ T n)g dµ

∣∣∣∣+ ∣∣∣∣∫ f̂ ◦ T n (g − ĝ) dµ

∣∣∣∣
≤ ∥f − f̂∥∥g∥+ ∥f̂∥∥g − ĝ∥

by invariance and Schwartz Inequality. □

Remark 1.7 We learn from Proposition 1.2 that µ is mixing iff for every f ∈ L2(µ), we
have f ◦ T n ⇀ f̂ , as n→ ∞, where the constant f̂ is

∫
f dµ. □

Before working out some examples of mixing invariant measure, we discuss isomorphic
systems who are dynamically equivalent.
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Definition 1.7(i) Let X and Y be two Polish spaces, and let h : X → Y be a Borel map.
Then h♯ : M(X) → M(Y ) is defined as

h♯(µ)(A) = µ
(
h−1(A)

)
.

(ii) Let (X,T ) and (Y, S) be two dynamical systems. A continuous surjective transformation
h : X → Y is called a factor map if S ◦ h = h ◦ T . If such a map exists, then we refer to
(Y, S) as a factor of (X,T ). If the map h is also injective, then we say (X,T ) and (Y, S) are
isomorphic. □

Note that µ ∈ IT = I(X) iff T♯(µ) = µ. The following result is straightforward and its
proof is left as an exercise.

Proposition 1.3 If h is a factor map between (X,T ) and (Y, S), then

h−1
(
FS

)
⊆ FT , h♯

(
IT (X)

)
⊆ IS(Y ),

h♯
(
Ier
T (X)

)
⊆ Ier

S (Y ), h♯
(
Imix
T (X)

)
⊆ Imix

S (Y ).

Example 1.5(i) Let (X, τ) be as in Example 1.1(iii) and assume that the corresponding is
a compact metric space. Given β ∈ M(E), let us write µβ ∈ M(X) for the product measure
with marginals β. Clearly µβ ∈ Iτ . We now argue that indeed µβ is mixing. To see this,
write Aloc for the space of L2

(
µβ
)
functions that depend on finitely many coordinates. We

claim that Aloc is dense in L2
(
µβ
)
. This can be shown in two ways:

(1) Use Stone-Weirstrass Theorem to show that the space of Aloc∩C(X) is dense in C(X),
and then apply Lusin’s Theorem to deduce that Aloc is dense in L2

(
µβ
)
.

(2) Write Fk for the σ-algebra of sets that depend on the first k coordinates. Now, given
f ∈ L2

(
µβ
)
, write fk = µβ

(
f |Fk

)
for the conditional expectation of f , given Fk. Note

that fk ∈ Aloc. On the other hand fk → f in L2
(
µβ
)
as k → ∞ by the celebrated

Martingale Convergence Theorem.

In view of Proposition 1.2, µβ is mixing if we can show

lim
n→∞

∫
f ◦ τn g dµβ =

∫
f dµβ

∫
g dµβ,

for every f, g ∈ Aloc. Indeed if f and g depend on the first k variables, then we simply have∫
f ◦ τn g dµβ =

∫
f dµβ

∫
g dµβ,
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whenever n > k.
Also note that if ω̄ ∈ X is a periodic sequence of period exactly k, then

µω̄ =
1

k

k−1∑
i=0

δτ i(ω̄) ∈ Ier
τ .

Though µω̄ is not mixing unless k = 1.

(ii) We next consider T = Tm : T → T of Example 1.1(ii). Observe that if (X, τ) is as in
Part (i), for E = {0, . . . ,m− 1}, and F : X → [0, 1] is defined by

F (ω1, ω2, . . . , ωk, . . . ) =
∞∑
i=1

ωim
−i,

then F is continuous. In fact, if we equip X with the metric

d(ω, ω′) =
i∑

i=1

m−i|ωi − ω′
i|,

then
|F (ω)− F (ω′)| ≤ d(ω, ω′).

Given any p = (p0, . . . , pm−1) with pj ≥ 0 and p0 + · · · + pm−1 = 1, we can construct a
unique probability measure µp such that

µp[·ω1 . . . ωk, ·ω1 . . . ωk +m−k) = pω1pω2 . . . pωk
,

where
.ω1ω2 . . . ωk = ω1m

−1 + ω2m
−2 + · · ·+ ωkm

−k,

is a base m expansion with ω1, . . . , ωk ∈ {0, 1, . . . ,m− 1}. Clearly µp = F♯µ
p. From this we

learn that µp ∈ Imix
T by Proposition 1.3.

Here are some examples of µp:

(1) If pj = 1 for some j ∈ {0, 1, . . . ,m− 1}, then µp = δyj with

yj = j/(m− 1) = jm/(m− 1) (mod 1).

Note that y0 = ym−1; otherwise, y0, . . . , ym−2 correspond to the (distinct) fixed points.

(2) If p0 = · · · = pm−1 =
1
m
, then µp is the Lebesgue measure.

(3) If for example m = 3 and p0 = p2 = 1/2, then the support of the measure µp is the
classical Cantor set of Hausdorff dimension α = log3 2 (solving 3−α = 2−1).
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Note also that if x is a periodic point of period k, then µ = 1
k

∑k−1
j=0 δT j(x) is an ergodic

measure. Such µ is never mixing unless k = 1.

(iii) Consider a linear transformation on R2 associated with a 2× 2 matrix A =

[
a b
c d

]
. If

a, b, c, d ∈ Z, then T (x) = Ax (mod 1) defines a transformation on the 2-dimensional torus
T2. Here we are using the fact that if x = y (mod 1), then Ax = Ay (mod 1). If we assume
detA = 1, then the Lebesgue measure ℓ on T2 is invariant for the transformation T . To
have ℓ mixing, we need to assume that the eigenvalues of T are real and different from 1
and −1. Let us assume that A has eigenvalues α and α−1 with α ∈ R and |α| < 1. By
Proposition 1.1, ℓ is mixing if we can show that for every n,m ∈ Z2,

(1.13) lim
n→∞

∫
(φk ◦ T n)φm dℓ =

∫
φk dℓ

∫
φm dℓ

where φk(x) = exp(2πik · x). If m = 0 or k = 0, then (1.13) is obvious. If k,m ̸= 0, then
the right-hand side of (1.13) is zero. We now establish (1.13) for m, k ̸= 0 by showing that
the left-hand side is zero for sufficiently large n. Clearly

(1.14)

∫
φk ◦ T nφm dℓ =

∫
φ(AT )nk+m dℓ,

where AT denotes the transpose of A. To show that (1.14) is zero for large n, it suffices to
show that (AT )nk +m ̸= 0 for large n. For this, it suffices to show that limn→∞(AT )nk is
either ∞ or 0. Write v1 and v2 for eigenvectors associated with eigenvalues α and α−1. We
have limn→∞(AT )nk = ∞ if k is not parallel to v1 and limn→∞(AT )nk = 0 if k is parallel to
v1. □

1.2 Continuous dynamical systems

We now turn our attention to the notion of the ergodicity of continuous dynamical system.

Definition 1.8(i) Let X be a Polish space. By a continuous flow we mean a continuous
map ϕ : X ×R → X, such that if ϕt(x) = ϕ(x, t), then the family {ϕt : t ∈ R}, satisfies the
following conditions: ϕ0 = id, and ϕs ◦ ϕt = ϕs+t for all s, t ∈ R.
(ii) Given a continuous flow ϕ, we set

Fϕ =
{
f ∈ B(X) : f ◦ ϕt = f ∀t ∈ R

}
Fµ

ϕ =
{
f ∈ B(X) : f ◦ ϕt = f µ a.e. ∀t ∈ R

}
Iϕ =

{
µ ∈ M(X) :

∫
f ◦ ϕt dµ =

∫
f dµ ∀ (f, t) ∈ Cb(X)× R

}
Ier
ϕ = {µ ∈ Iϕ : µ(A) ∈ {0, 1} for every A ∈ Fϕ} .
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□

Theorem 1.5 Assume that µ ∈ Iϕ and f ∈ L1(µ). Then

µ

({
x : lim

t→∞

1

t

∫ t

0

f ◦ ϕθ(x) dθ = Pf

})
= 1,

where Pf = µ
(
f |Fϕ

)
.

Proof (Step 1) We first claim

µ

({
x : P̂ f := lim

t→∞

1

t

∫ t

0

f ◦ ϕθ(x) dθ exists

})
= 1(1.15)

lim
t→∞

1

t

∫ ∣∣∣∣∫ t

0

f ◦ ϕθ − P̂ f

∣∣∣∣ dµ = 0.(1.16)

To reduce this to the discrete case, let us define Ω =
∏

j∈ZR and Γ : X → Ω by

Γ(x) = (ωj(x) : j ∈ Z) =
(∫ j+1

j

f ◦ ϕθ(x) dθ : j ∈ Z
)
.

Clearly Γ ◦ ϕ1 = τ ◦ Γ. Also, if µ ∈ Iϕ, then µ̃ defined by µ̃(A) = µ(Γ−1(A)) belongs to IT .
Indeed, ∫

g ◦ τ dµ̃ =

∫
g ◦ τ ◦ Γ dµ =

∫
g ◦ Γ ◦ ϕ1 dµ =

∫
g ◦ Γ dµ =

∫
g dµ̃.

We now apply Theorem 1.6 to assert

µ̃

({
ω : A(ω) := lim

n→∞

1

n

n−1∑
0

ωj exists

})
= 1,

lim
n→∞

∫ ∣∣∣∣∣ 1n
n−1∑
0

ωj − A(ω)

∣∣∣∣∣ µ̃(dω) = 0.

Hence, (1.15) and (1.16) are true for P̂ f = A ◦ Γ, if the convergence occurs along n ∈ N in
place t ∈ R. To complete the proof of (1.15) and (1.16), observe

1

t

∫ t

0

f ◦ ϕθ dθ =
[t]

t

1

[t]

∫ [t]

0

f ◦ ϕθ dθ +
1

t

∫ t

[t]

f ◦ ϕθ dθ.
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Hence it suffices to show

(1.17) lim
n→∞

1

n

∫ n+1

n

|f ◦ ϕθ| dθ = 0 µ− a.e. and in L1(µ)

To prove this, observe

lim
n→∞

1

n

∫ n

0

|f ◦ ϕθ| dθ exists µ− a.e. and in L1(µ),

and this implies

1

n

∫ n+1

n

|f ◦ ϕθ| dθ =
1

n

∫ n+1

0

|f ◦ ϕθ| dθ −
1

n

∫ n

0

|f ◦ ϕθ| dθ

=
n+ 1

n

1

n+ 1

∫ n+1

0

|f ◦ ϕθ| dθ −
1

n

∫ n

0

|f ◦ ϕθ| dθ

converges to 0 µ− a.e., proving (1.17). This in turn implies (1.15) and (1.16).

(Step 2) It remains to check that P̂ = P . To see this, take any bounded g ∈ Fµ
ϕ and observe

that by (1.16)

(1.18) lim
t→∞

∫ [
1

t

∫ t

0

f ◦ ϕθ dθ

]
g dµ =

∫
P̂ f g dµ.

On the other hand, since g is invariant, we have∫
f ◦ ϕt g dµ =

∫
f g ◦ ϕ−t dµ =

∫
fg dµ

Hence the left-hand of side (1.18) is
∫
fg dµ. This means that P̂ f = Pf , as desired. □

Example 1.7 A prime example for a continuous dynamical system is a flow associated
with and ODE ẋ = b(x) on a Riemannian manifold where b is a Lipschitz vector field.
More precisely we write ϕt(a) for a solution with initial condition x(0) = a. Here are some
examples for the invariant measures:

(i) If b(a) = 0, then µ = δa is an invariant measure. If ϕT (a) = a for some T > 0, then

µ(dx) = T−1

∫ T

0

δϕt(a)(dx) dt,

with support γ =
{
ϕt(a) : t ∈ [0, T )

}
. In fact since b

(
ϕt(a)

)
dt = dℓ, is the length element,

alternatively we may represents dµ as the measure |b|−1 dℓ on γ.

(ii) When div b = 0, the normalized volume measure is invariant. □
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1.3 Subadditive ergodic theorem

The following generalization of Theorem 1.3 has many applications in probability theory
and dynamical system. We will see several of its applications in Chapter 4 where we discuss
Lyapunov exponents.

Theorem 1.6 (Kingman) Let µ ∈ Ier
T and suppose that {Sn(·) : n = 0, 1, . . . } is a sequence

of L1(µ) functions satisfying

(1.19) Sn+m(x) ≤ Sn(x) + Sm(T
n(x)),

Then

S(x) := lim
n→∞

1

n
Sn(x),

exists for µ-almost all x. Moreover S is T -invariant, and∫
S(x) µ(dx) = λ := inf

m

{
1

m

∫
Sm dµ

}
∈ [−∞,+∞).

The following short proof of Theorem 1.6 is due Avila and Bochi [AB]. This proof also
provides us with a new proof of the ergodic theorem (Theorem 1.3). The main ingredient
for the proof is the following Lemma.

Lemma 1.1 Let Sn be sequence that satisfies the assumptions of Theorem 1.6, and set

S(x) := lim inf
n→∞

n−1Sn(x).

Then S ◦ T = S, µ-a.e., and
∫
S dµ = λ.

Proof From Sn+1 ≤ S1 + Sn ◦ T , we learn that S(x) ≤ S(T (x)). This means that for any
a ∈ R, {

x : S(x) ≥ a
}
⊆ T−1

({
x : S(x) ≥ a

})
.

Since these two sets have equal µ-measure, we learn that their difference is µ-null. From this
we deduce that S = S ◦ T , µ-a.e. As a consequence, if

X0 =
{
x : S(T j(x)) = S(x) for all j ∈ N

}
,

then µ(X0) = 1.
Let us first assume that Sn ≥ c0n, for a finite constant c0, so that S̄ ≥ c0. Given ε > 0,

and k ∈ N, we define

Xk =
{
x : m−1Sm(x) ≤ S(x) + ε for some m ∈ {1, . . . , k}

}
,

so that ∪kXk = X. Given k ∈ N, define a (possibly finite) sequence

m0 = 0 ≤ n1(x) < m1(x) ≤ · · · ≤ ni(x) < mi(x) ≤ . . . ,

inductively in the following manner:
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� Givenmi−1, we choose ni as the smallest n ≥ mi−1 such that T n(x) ∈ Xk. If T
n(x) /∈ Ek

for all n ≥ mi−1, we set ni = ∞, and our sequence ends.

� Since y = T ni(x) ∈ Xk, we can find ri = ri(x) ∈ {1, . . . , k} such that r−1
i Sri

(
y
)
≤

S(y) + ε. We then set mi = ni + ri, for a choice of ri.

Given n ≥ k, let us write ℓ for the largest integer such thatmℓ ≤ n. Note that we always have
mℓ+1 > n, though nℓ+1 > n or nℓ+1 ≤ n are both possible (nℓ+1 = ∞ is alsso a possibility).
We then use subadditivity to write

Sn(x) ≤
∑

j∈An(x)

S1

(
T j(x)

)
+

ℓ(x)∑
i=1

Sri(x)

(
T ni(x)(x)

)
,

where An consists of those integers j that are in the set

∪ℓ
i=1[mi−1, ni) ∪ [mℓ, n).

Note that if A′
n consists of those integers in the set

∪ℓ
i=1[mi−1, ni) ∪ [mℓ, n ∧ nℓ+1).

then T j(x) /∈ Ek, whenever j ∈ A′
n. Because of this, we define

fk(x) = max{S1(x), S(x) + ε}11
(
x /∈ Ek

)
+ (S(x) + ε)11

(
x ∈ Ek

)
,

to assert that if x ∈ X0, then

Sn(x) ≤
∑

j∈An(x)\A′
n(x)

S1

(
T j(x)

)
11
(
T j(x) ∈ Ek

)
+

∑
j∈An(x)

fk
(
T j(x)

)
+ (S(x) + ε)

ℓ(x)∑
i=0

ri(x)

≤
∑

j∈An(x)\A′
n(x)

S1

(
T j(x)

)
11
(
T j(x) ∈ Ek

)
+

n−1∑
j=0

fk
(
T j(x)

)
.

Since n− (n ∧ nℓ+1) ≤ mℓ+1 − nℓ+1 ≤ k, we learn that ♯
(
An(x) \ A′

n(x)
)
≤ k. As a result,

n ≥ k =⇒
∫
Sn dµ ≤ k

∫
|S1| dµ+ n

∫
fk dµ,

which in turn implies

λ ≤
∫
fk dµ.
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Since µ(Xk) → 1 as k → ∞, we deduce that λ ≤
∫
S dµ+ ε. We then send ε→ 0 to arrive

at λ ≤
∫
S dµ. The reverse inequality is a consequence of Fatou’s lemma.

For general case, pick any c ∈ R, and set Sc
n = max{Sn, cn}. Then Sc

n satisfies the
subadditivity condition. Note

lim inf
n→∞

n−1Sc
n = max{S, c},

As a result, ∫
S dµ = inf

c

∫
max{S, c} dµ = inf

c
inf
n

∫
n−1Sc

n dµ

= inf
n
inf
c

∫
n−1Sc

n dµ = inf
n

lim
c→−∞

∫
n−1Sc

n dµ

= inf
n

∫
n−1Sn dµ,

where the Monotone Convergence Theorem is used for the last equality. This completes the
proof. □

We note that if we apply Lemma 1.1 to Sn = Φn(f) and Sn = Φn(−f), then we deduce
Theorem 1.3.

Proof of Theorem 1.6 (Step 1) Set

S̄(x) := lim sup
n→∞

n−1Sn(x).

We first claim

(1.20) lim sup
n→∞

n−1Sn ≤ lim sup
n→∞

(nk)−1Snk,

for every k ∈ N. To see this, write n = kqn + rn, with qn = [n/k], and rn ∈ {0, 1, . . . , k − 1,
and use subadditivity to write

Sn ≤ Skqn + Srn ◦ T kqn ≤ Skqn + h ◦ T kqn ,

where
h = max

{
S+
1 , . . . , S

+
k−1

}
.

From this, and (kqn)/n→ 1, we learn

lim sup
n→∞

n−1Sn ≤ lim sup
n→∞

(kn)−1Skn + lim sup
n→∞

n−1h ◦ T n.
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On the other hand, for ε > 0,

∞∑
n=1

µ
(
n−1h ◦ T n > ε

)
=

∞∑
n=1

µ
(
ε−1h > n

)
≤
∫
ε−1h dµ <∞,

which implies
lim sup
n→∞

n−1h ◦ T n ≤ 0,

by Borel-Cantelli Lemma. This completes the proof of (1.20).
Fix k ∈ N, and use (1.20) and the subadditivity to assert

S̄ ≤ lim sup
n→∞

(kn)−1Skn ≤ lim sup
n→∞

(kn)−1

n−1∑
i=0

Sk ◦ T ik =: k−1 lim sup
n→∞

Φk
n(Sk).

The expression Φk
n(Sk) is an additive sequence for the dynamical system (X,T k). Hence by

Theorem 1.3, or even Lemma 1.1,∫
lim sup
n→∞

Φk
n(Sk) dµ =

∫
Sk dµ.

As a result, ∫
S̄ dµ ≤

∫
k−1Sk dµ.

This and Lemma 1.1 imply ∫
S̄ dµ ≤ λ =

∫
S dµ.

This completes the proof. □

Second Proof of Theorem 1.6 Fix m > 0. Any n > m can be written as n = qm+ r for
some q ∈ N∗ and r ∈ {0, 1, . . . ,m−1}. As a result, if k ∈ {0, . . . ,m−1}, then n = k+q′m+r′

with q′ = q′(k) =

{
q if r ≥ k

q − 1 if r < k
, r′ = r′(k) =

{
r − k if r ≥ k

r − k +m if r < k
. By subadditivity,

Sn(x) ≤ Sk(x) + Sq′m(T
k(x)) + Sr′(T

k+q′m(x))

≤ Sk(x) +

q′−1∑
j=0

Sm(T
k+jm(x)) + Sr′(T

k+q′m(x)).

We now sum over k to obtain

Sn(x) ≤
1

m

m−1∑
0

Sk(x) +
n−1∑
0

Sm

m
(T i(x)) +

1

m

m−1∑
0

Sr′(k)(T
k+q′(k)m(x)),
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where S0 = 0. Hence

1

n
Sn(x) ≤

1

n

n−1∑
0

Sm

m
(T i(x)) +Rn,m(x),

where ∥Rn,m∥L1 ≤ constant× m
n
, because

∫
|Sl(T

r)|dµ =
∫
|Sl|dµ. By the Ergodic Theorem,

lim sup
n→∞

1

n
Sn(x) ≤

∫
Sm

m
dµ.

Since m is arbitrary,

(1.21) lim sup
n→∞

1

n
Sn(x) ≤ λ,

almost everywhere and in L1-sense.
For the converse, we only need to consider the case λ > −∞. Let us take a function

φ : Rn → R that is nondecreasing in each of its arguments. We certainly have∫
φ(S1, . . . , Sn)dµ =

∫
φ(S1 ◦ T k, . . . , Sn ◦ T k)dµ

≥
∫
φ(Sk+1 − Sk, Sk+2 − Sk, . . . , Sk+n − Sk)dµ

for every k. Hence∫
φ(S1, . . . , Sn)dµ ≥ 1

N

N−1∑
k=0

∫
φ(Sk+1 − Sk, . . . , Sk+n − Sk)dµ(1.22)

=

∫
φ(Sk+1 − Sk, . . . , Sk+n − Sk)dµ νN(dk)

where νN = 1
N

∑N−1
0 δk. We think of k as a random number that is chosen uniformly from

0 to N − 1. To this end let us define Ω = RZ+
= {w : Z+ → R} and T : M × N → Ω such

that T (x, k) = w with w(j) = Sk+j(x) − Sk+j−1(x). We then define a measure µN on Ω by
µN(A) = (µ× νN)(T

−1(A)). Using this we can rewrite (1.22) as

(1.23)

∫
φ(S1, . . . , Sn)dµ ≥

∫
φ(w(1), w(1) + w(2), . . . , w(1) + · · ·+ w(n))µN(dw).

We want to pass to the limit N → ∞. Note that Ω is not a compact space. To show that
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µN has a convergent subsequence, observe∫
w(j)+µN(dw) =

∫
(Sk+j(x)− Sk+j−1(x))

+µ(dx)νN(dx)

=
1

N

N−1∑
0

∫
(Sk+j(x)− Sk+j−1(x))

+µ(dx)

≤ 1

N

N−1∑
0

∫
(S1(T

k+j−1(x)))+µ(dx) =

∫
S+
1 dµ,∫

w(j)µN(dw) =
1

N

N−1∑
0

∫
(Sk+j(x)− Sk+j−1(x))µ(dx)

=
1

N

∫
(Sj+N−1 − Sj−1)dµ ≥ λ

j +N − 1

N
− 1

N

∫
Sj−1dµ

> −∞,

uniformly in N . As a result
∫
w(j)−µN(dw) is uniformly bounded. Hence

sup
N

∫
|wj|dµN = βj <∞

for every j. We now define

Kδ =

{
w : |wj| ≤

2j+1βj
δ

}
.

The set Kδ is compact and

µN(K
c
δ) ≤

1

2

∑
j

2−jβ−1
j δβj = δ.

From this and Exercise 1.1(iv) we deduce that µN has a convergent subsequence. Let µ̄ be
a limit point and set S̄j = w(1) + · · ·+ w(j). By (1.23),

(1.24)

∫
φ(S1, . . . , Sn)dµ ≥

∫
φ(S̄1, . . . , S̄n)dµ̄,

for every continuous monotonically decreasing φ. We now define τ : Ω → Ω by (τw)(j) =
w(j + 1). It is not hard to see µ̄ ∈ Iτ . By Ergodic Theorem, 1

n
S̄n → Z for almost all w.

Moreover,
∫
Zdµ̄ =

∫
w(1)µ̄(dw) = limN→∞

∫
1
N
(SN − S0)dµ = λ. We use (1.24) to assert

that for every bounded continuous increasing ψ,∫
ψ

(
min
k≤n≤l

Sn

n

)
dµ ≥

∫
ψ

(
min
k≤n≤l

S̄n

n

)
dµ̄.

31



We now apply the bounded convergence theorem to deduce∫
ψ(S)dµ ≥

∫
ψ(Z)dµ̄

where S = lim infn→∞
Sn

n
. Choose ψ(z) = ψr,l(z) = (zv(−l)) ∧ r, ψl(z) = zv(−l). We then

have ∫
ψl(S)dµ ≥

∫
ψr,l(S)dµ ≥

∫
ψr,l(Z)dµ̄.

After sending r → ∞, we deduce∫
ψl(S)dµ ≥

∫
Zdµ̄ = λ, or(1.25) ∫

(ψl(S)− λ)dµ ≥ 0.

Recall S ≤ lim sup Sn

n
≤ λ. But (1.25) means∫

S≥−l

(S − λ)dµ+ (−l − λ)µ{S ≤ −l} ≥ 0.

Since λ > −∞, we can choose l large enough to have −l − λ < 0. For such l, S − λ = 0
on the set {S ≥ −l}. By sending l → +∞ we deduce S = λ almost everywhere, and this
completes the proof. □

Exercises

(i) Show that the topology associated with (1.4) is metrizable with the metric given by

D(µ, ν) =
∞∑
n=1

2−n

∣∣∫ fndµ−
∫
fndν

∣∣
1 +

∣∣∫ fndµ−
∫
fndν

∣∣ ,
where {fn : n ∈ N} is a countable dense subset of Ub(X).

(ii) Let µn ⇒ µ and µ(∂A) = 0. Deduce that µn(A) → µ(A). (Hint: For such A, we can
approximate the indicator function of A with continuous functions.)

(iii) Show that if X is a compact metric space, then M(X) is compact.

(iv) Let X be a Polish space. Suppose that {µN} is a sequence of probability measures on
X. Assume that for every δ > 0 there exists a compact set Kδ such that supN µN(K

c
δ) ≤ δ.

Show that {µN} has a convergent subsequence.

(v) Show that if X is compact and fn : X → R is a sequence of continuous functions, then
fn → f uniformly iff

xn → x ⇒ lim
n→∞

fn(xn) = f(x).
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(vi) Assume that µ ∈ IT . Let A be a measurable set with µ(A∆T−1(A)) = 0. Show that
there exists a set B ∈ FT such that µ(A∆B) = 0.

(vii) Show that
∫
|Pf |dµ ≤

∫
|f |dµ.

(viii) Show that the decimal expansion of 2n may start with any finite combination of digits.
(Hint: Use T : T → T defined by T (x) = x+ α (mod 1) with α = log10 2.)

(ix) In the case of an irrational rotation T : T → T, T (x) = x + α (mod 1), show that
the operators Φn = n−1

(
I + U + · · · + Un−1

)
do not converge to the projection operator P

strongly. More precisely,

lim inf
n→∞

sup
∥f∥L2=1

∥Φn(f)− Pf∥L2 > 0.

(x) Show that if µ ∈ IT and f ∈ Lp(µ) for some p ∈ [1,∞), then the
∥∥Φn(f)−Pf

∥∥
Lp(µ)

→ 0

as n→ ∞. (Hint: Approximate f by bounded functions and use Theorem 1.3.)

(xi) Let a be a periodic point for T of period ℓ. Show that µ = 1
ℓ

∑ℓ−1
j=0 δT j(x) is not mixing

if ℓ > 1.

(xii) Show that if µ is mixing and f ◦ T = λf , then either λ = 1 or f = 0.

(xiii) Show that the Lebesgue measure ℓ is ergodic for T (x1, x2) = (x1 +α, x1 + x2) (mod 1)
iff α is irrational. Show that m is never mixing.

(xiv) Let m > 1 be a prime number and assume that µ ∈ Ier
T \ Ier

Tm . Show that there exists
a measurable set A such that µ(A) = m−1, the collection ξ =

{
A, T−1(A), . . . , T−m+1(A)

}
is a partition of X, and the set of Tm invariant sets FTm is the σ-algebra generated by ξ.

(xv) Assume that f ∈ L2(µ) with µ ∈ IT . Let {an}n∈N∗ be a sequence of positive numbers
with the following properties:

� The sequence {an}n∈N∗ is either non-decreasing or non-increasing.

� The sequence {an}n∈N∗ satisfies

lim
n→∞

a−1
n (a0 + · · ·+ an) = ∞.

Show

lim
n→∞

Φ̂n(f) := lim
n→∞

a0 f + a1 f ◦ T + · · ·+ an−1 f ◦ T n−1

a0 + a1 + · · ·+ an−1

= Pf,

in L2(µ).

(xvi) Assume that f ∈ L2(µ) with µ ∈ IT . Let {an}n∈N∗ and Φ̂n(f) be as in (xv). prove

the analog of Theorem 1.4 for the sequence {Φ̂n(f) : n ∈ N∗} when this sequence satisfies
[BC] condition of Remark 1.5. □
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2 Transfer Operator, Liouville Equation

In the previous section we encountered several examples of dynamical systems for which it
was rather easy to find “nice” ergodic invariant measures. We also observed in the case of
expanding map that the space of invariant measures is rather complex. One may say that
the Lebesgue measure is the “nicest” invariant measure for an expanding map. Later in
Section 3, we show how the Lebesgue measure stands out as the unique invariant measure
of maximum entropy.

In general, it is not easy to find some natural invariant measure for our dynamical sys-
tem. For example, if we have a system on a manifold with a Riemannian structure with a
volume form, we may wonder whether or not such a system has an invariant measure that
is absolutely continuous with respect to the volume form. To address and study this sort of
questions in a systematic fashion, let us introduce an operator on measures that would give
the evolutions of measures with respect to our dynamical system. This operator is simply
the dual of the operator Uf = f ◦ T , namely U∗ = T♯. Even though we have some general
results regarding the spectrum of U , the corresponding questions for the operator T are far
more complex. We can now cast the existence of an invariant measure with some proper-
ties as the existence of a fixed point of T♯ with those properties. The operator T♯ is called
Perron–Frobenious, Perron–Frobenious–Ruelle or Transfer Operator, once an expression for
it is derived when µ is absolutely continuous with respect to the volume form. To get a feel
for the operator T♯, let us state a Proposition and examine some examples.

Proposition 2.1 Recall Φ∗
n = n−1

(
I + T♯ + · · ·+ T n−1

♯

)
.

(i) Φ∗
nδx = µx

n. Moreover any limit point of Φ∗
nν is an invariant measure.

(ii) A measure µ ∈ Ier
T iff Φ∗

nν converges to µ in high n limit, for every ν << µ.

(iii) A measure µ is a mixing invariant measure iff T n
♯ ν converges to µ in high n limit, for

every ν << µ.

The elementary proof of Proposition 2.1 is left as an exercise.

Example 2.1(i) T : Td → Td, T (x) = x + α (mod 1). The operator T♯ simply translates
a measure for the amount α. We assume that the numbers α1 . . . αd, and 1 are rationally
independent. We can study the asymptotic behavior of T n

♯ µ for a given µ. The sequence
{T n

♯ µ} does not converge to any limit as n → ∞. In fact the set of limit points of the
sequence {T n

♯ µ} consists of all translates of µ. However

(2.1) lim
n→∞

1

n

n−1∑
j=0

T j
♯ µ = ℓ,
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where ℓ denotes the Lebesgue measure. The proof of (2.1) follows from the unique ergodicity
of T that implies

Φn(f) →
∫
fdλ

uniformly for every continuous f . This implies

lim
n→∞

∫
Φn(f)dµ = lim

n→∞

∫
f d

(
1

n

n−1∑
j=0

T j
♯ µ

)
=

∫
f dλ,

proving (2.1).

(ii) Let (X, d) be a complete metric space and suppose T : X → X is a contraction. In other
words, there exists a constant α ∈ (0, 1) such that d(T (x), T (y)) ≤ αd(x, y). In this case
T has a unique fix point x̄ and limn→+∞ T n(x) = x̄ for every x (the convergence is locally
uniform). As a consequence we learn that limn→∞ T n

♯ µ = δx̄ for every measure µ ∈ M(X).
For example, if X = R and T (x) = αx with α ∈ (0, 1), then dµ = ρ dx results in a sequence
T n
♯ µ = ρn dx with

ρn(x) = α−nρ
( x
αn

)
.

In other words, the measure µ under T♯ becomes more concentrated about the origin.

(iii) Let T : T → T be the expansion T (x) = 2x(mod 1). If dµ = ρ dx and T n
♯ µ = ρn dx,

then ρ1(x) =
1
2

(
ρ
(
x
2

)
+ ρ

(
x+1
2

))
and

ρn(x) =
1

2n

2n−1∑
j=0

ρ

(
x

2n
+

j

2n

)
.

From this, it is clear that if ρ is continuous, then limn→∞ ρn(x) ≡ 1. Indeed

lim
n→∞

∣∣∣∣∣ρn(x)− 1

2n

2n−1∑
j=0

ρ

(
j

2n

)∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 12n
2n−1∑
j=0

(
ρ

(
x

2n
+

j

2n

)
− ρ

(
j

2n

))∣∣∣∣∣ = 0,

lim
n→∞

1

2n

2n−1∑
j=0

ρ

(
j

2n

)
=

∫
ρdx = 1.

This can also be seen by looking at the Fourier expansion of ρ. For the following argument,
we only need to assume that ρ ∈ L2[0, 1]. If

ρ(x) =
∑
n

ane
2πinx,
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then a0 = 1 and
ρ1(x) =

∑
k

a2ke
2πikx,

and by induction,

ρn(x) =
∑
k

a2nke
2πikx.

As a result, ∫ 1

0

|ρn(x)− 1|2dx =
∑
k ̸=0

a22nk → 0.

□
There is a couple of things to learn from Example 2.1. First, when there is a contraction,

the operator T♯ makes measures more concentrated in small regions. Second, if there is an
expansion then T♯ has some smoothing effect. In hyperbolic systems we have both expansion
and contraction. In some sense, if we have more contraction than the expansion, then it is
plausible that there is a fractal set that attracts the orbits as n→ ∞. If this happens, then
there exists no invariant measure that is absolutely continuous with respect to the volume
measure. Later in this section, we will see an example of such phenomenon. As a result, to
have an absolutely continuous invariant measure, we need to make sure that, in some sense,
the expansion rates and the contraction rates are balanced out. Let us first derive a formula
for T♯µ when µ is absolutely continuous with respect to a volume form. As a warm up, first
consider a transformation T : Td → Td that is smooth. We also assume that T is invertible
with a smooth inverse, i.e., T is a diffeomorphism. We then consider dµ = ρdx. We have∫

Td

f ◦ T ρ dx =

∫
Td

f ρ ◦ T−1|JT−1| dy

where JT−1 = detDT−1. As a result, if T♯µ = ρ̂ dx, then ρ̂ = |JT−1|ρ ◦ T−1 = ρ◦T−1

|JT◦T−1| .
This suggests defining

(2.2) T ρ(x) = ρ ◦ T−1

|JT ◦ T−1|
,

regarding T as an operator acting on probability density functions. More generally, assume
that X is a smooth manifold and T is C∞. Let ω be a volume form (non-degenerate d-form
where d is the dimension of X). Then T ∗ω, the pull-back of ω under T , is also a k-form and
we define JT (x) to be the unique number such that T ∗ωx = JT (x)ωT (x). More precisely,
T ∗ωx(v1 . . . vk) = ωT (x)(DT (x)v1, . . . , DT (x)vk) = JT (x)ωT (x)(v1 . . . vk). We then have∫

X

(f ◦ T )ρ ω =

∫
X

f(ρ ◦ T−1)|JT−1| ω.
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Hence (2.2) holds in general.
If T is not invertible, one can show

(2.3) T ρ(x) =
∑

y∈T−1({x})

ρ(y)

|JT (y)|
.

The next proposition demonstrates how the existence of an absolutely continuous invari-
ant measure forces a bound on the Jacobians.

Proposition 2.2 Let X be a smooth manifold with a volume form ω. Let T : X → X be a
diffeomorphism with JT > 0. The following statements are equivalent:

(i) There exists µ = ρω ∈ IT for a bounded uniformly positive ρ.

(ii) The set {JT n(x) : x ∈ X, n ∈ Z} is uniformly bounded.

Proof (i) ⇒ (ii) Observe

T nρ =
ρ ◦ T−n

JT n ◦ T−n
, n ∈ N.

Also, T −1ρ = (ρ ◦ T )JT , and by induction

T −nρ = (ρ ◦ T n)JT n

= (ρ ◦ T n)JT−n ◦ T n; n ∈ N.

Hence

T nρ =
ρ ◦ T−n

JT n ◦ T−n
; n ∈ Z.

If ρω is invariant, then T nρ = ρ for all n ∈ Z. As a result, (JT n ◦ T−n)ρ = ρ ◦ T−n, or

JT n =
ρ

ρ ◦ T n
; n ∈ Z.

Now it is clear that if ρ is bounded and uniformly positive, then {JT n(x) : n ∈ Z, x ∈ X}
is uniformly bounded.

(ii) ⇒ (i) Suppose {JT n(x) : n ∈ Z and x ∈ X} is bounded and define

ρ(x) = sup
n∈Z

JT n(x).

We then have

JT (x)(ρ ◦ T )(x) = sup
n∈Z

(JT n) ◦ T (x)JT (x)

= sup
n∈Z

J(T n ◦ T )(x) = ρ(x).
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Hence T ρ = ρ. Evidently ρ is bounded. Moreover

1/ρ = inf
n
[1/JT n(x)] = inf

n
JT−n ◦ T n = inf

n
JT n ◦ T−n

is uniformly bounded by assumption. □

Recall that expansions are harmless and have smoothing effect on T ρ. As a test case, let
us consider an expansion of [0, 1] given by

T (x) =

{
T1(x) x ∈ [0, θ0) = I1

T2(x) x ∈ [θ0, 1] = I2

with T1, T2 smooth functions satisfying |T ′
i (x)| ≥ λ for x ∈ Ii. We assume λ > 1 and that

Ti(Ii) = [0, 1]. In this case

(2.4) T ρ(x) = ρ1 ◦ T−1
1 (x)

T ′
1 ◦ T−1

1 (x)
+

ρ ◦ T−1
2 (x)

T ′
2 ◦ T−1

2 (x)
.

Writing ℓ(dx) = dx for the Lebesgue measure, clearly T : L1(ℓ) → L1(ℓ) is a linear operator
such that

ρ ≥ 0 =⇒ T ρ ≥ 0,

∫
T ρ dx =

∫
ρ dx,∫ ∣∣T ρ1 − T ρ2)

∣∣ dx ≤
∫ ∣∣ρ1 − ρ2

∣∣ dx.
Theorem 2.1 If T1, T2 ∈ C2, then there exists µ ∈ IT of the form dµ = ρdx with ρ of finite
variation.

Proof Write Si = T−1
i so that

T ρ = (ρ ◦ S1)S
′
1 + (ρ ◦ S2)S

′
2.

Using S ′
i ≤ 1

λ
, we learn∫ 1

0

|(T ρ)′|dx ≤ λ−1

∫ 1

0

T |ρ′| dx+ β0

∫ 1

0

T ρ dx,

where

β0 = max
x

max
i∈{1,2}

|S ′′
i (x)|
S ′
i(x)

.
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Hence ∫ 1

0

|(T ρ)′|dx ≤ λ−1

∫ 1

0

|ρ′|dx+ β0.

By induction, ∫ 1

0

|(T nρ)′|dx ≤ λ−n

∫ 1

0

|ρ′|dx+ β0
1− λ−n

1− λ−1
.

From this we learn that
sup
n

∥T nρ∥BV <∞.

Hence T nρ has convergent subsequences in L1[0, 1]. But a limit point may not be an invariant
density. To avoid this, let us observe that we also have

sup
n

∥∥∥∥∥ 1n
n−1∑
0

T jρ

∥∥∥∥∥
BV

<∞.

Hence the sequence
{
ρn = n−1

∑n−1
0 T jρ

}
n
has convergent subsequences by Helley Selection

Theorem. If ρ̄ is a limit point, then T ρ̄ = ρ̄ by Proposition 2.1. Also, for every periodic
φ ∈ C1,∣∣∣∣∫ 1

0

φ′ρ̄ dx

∣∣∣∣ = lim
n→∞

∣∣∣∣∫ 1

0

φ′ρn dx

∣∣∣∣ ≤ ∥φ∥L∞ lim sup
n→∞

∥ρn∥BV ≤ β0
1− λ−1

∥J∥L∞ .

Hence ρ̄ ∈ BV . □

A review of the proof of Theorem 2.1 reveals that in fact

ABa ⊆ Baλ−1+β0
,

where Ba denotes the space of probability densities ρ such that
∫ 1

0
|ρ′| dx ≤ a. In particular,

if a is sufficiently large, then aλ−1 + β0 < a and A maps the set Ba to a strictly smaller
subset of Ba. From this, we may wonder whether A is a contraction with respect to a suitable
metric on Ba. Such a contraction for sure guarantees the existence of a fixed point and the
convergence of Anρ, and this is exactly what we are looking for. Instead of working on the
space Ba, we would rather work on smaller space which yields the convergence of T nρ even
with respect to the uniform topology. Let us consider the following function space:

(2.5) Ca = {eg : |g(x)− g(y)| ≤ a|x− y| for x, y ∈ [0, 1]}.

We note that ρ ∈ Ca ∪ {0}, iff ρ ≥ 0 and for all x, y ∈ [0, 1],

ρ(x) ≤ ρ(y)ea|x−y|.

Recall that Si = T−1
i and β0 = maxi∈{1,2}maxx

|S′′
i (x)|

S′
i(x)

.
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Lemma 2.1 We have that T Ca ⊆ Caσ, whenever a ≥ β0

σ−λ−1 and σ > λ−1.

Proof Let ρ = eg ∈ Ca. Then

T ρ(x) =
2∑

i=1

ρ ◦ Si(x)S
′
i(x)

≤
2∑

i=1

ρ ◦ Si(y)e
a|Si(x)−Si(y)|S ′

i(x)

=
2∑

i=1

ρ ◦ Si(y)e
a|Si(x)−Si(y)|S ′

i(y)e
log(S′

i(x))−log(S′
i(y))

≤
2∑

i=1

ρ ◦ Si(y)|S ′
i(y)|eaλ

−1|x−y|eβ0|x−y|

= T ρ(y)e(aλ−1+β0)|x−y|.

As a result, T Ca ⊆ Caλ−1+β0
⊆ Cσa. □

What we learn from Lemma 2.1 is that if σ ∈ (λ−1, 1], then we can find a function space
Ca that is mapped into itself by T . Note that indeed Ca is a cone in the sense that{

if ρ ∈ Ca, then λρ ∈ Ca for λ > 0,

if ρ1, ρ2 ∈ Ca, then ρ1 + ρ2 ∈ Ca.

Define a partial order

(2.6) ρ1 ≼ ρ2 iff ρ2 − ρ1 ∈ Ca ∪ {0}.

In other words, ρ1 ≼ ρ2 iff ρ1 ≤ ρ2 and

(2.7) ρ2(x)− ρ1(x) ≤ (ρ2(y)− ρ1(y))e
a|x−y|, x, y ∈ [0, 1].

Hilbert metric associated with our cone Ca is defined as

(2.8) da(ρ1, ρ2) = log(βa(ρ1, ρ2)βa(ρ2, ρ1)),

where βa(ρ1, ρ2) = inf{λ ≥ 0 : ρ2 ≼ λρ1}. By convention, βa(ρ1, ρ2) = ∞ if there exists no
such λ. We certainly have

da(ρ1, ρ2) = inf
α
inf
β

{
log

β

α
: αρ1 ≼ ρ2 ≼ βρ1

}
(2.9)

= inf
γ
{γ : αρ1 ≼ ρ2 ≼ eγαρ1 for some α > 0} ≥ 0.
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Lemma 2.2 (i) βa(ρ1, ρ2) = sup
x,y
x ̸=y

ea|x−y|ρ2(y)− ρ2(x)

ea|x−y|ρ1(y)− ρ1(x)
≥ sup

x

ρ2(x)

ρ1(x)
.

(ii) da is a quasi-metric with da(ρ1, ρ2) = 0 iff ρ1 = λρ2 for some λ > 0.

(iii) If a1 ≤ a2 then da1(ρ1, ρ2) ≥ da2(ρ1, ρ2) for ρ1, ρ2 ∈ Ca1.

Proof (i) If ρ2 ≼ λρ1, then ρ2 ≤ λρ1 and

−ρ2(x) + λρ1(x) ≤ ea|x−y|(−ρ2(y) + λρ1(y)),

−ρ2(x) + ea|x−y|ρ2(y) ≤ λ(−ρ1(x) + ea|x−y|ρ1(y)).

From this we deduce

βa(ρ1, ρ2) = max

{
sup
x

ρ2(x)

ρ1(x)
, sup

x ̸=y

ea|x−y|ρ2(y)− ρ2(x)

ea|x−y|ρ1(y)− ρ1(x)

}
.

Note that if sup
x

ρ2(x)

ρ1(x)
=
ρ2(x̄)

ρ1(x̄)
, then

ea|x−x̄|ρ2(x̄)− ρ2(x)

ea|x−x̄|ρ1(x̄)− ρ1(x)
=
ea|x−x̄|ρ1(x̄)

ρ2(x̄)
ρ1(x̄)

− ρ1(x)
ρ2(x)
ρ1(x)

ea|x−x̄|ρ1(x̄)− ρ1(x)
≥ ρ2(x)

ρ1(x)
.

This completes the proof of (i)

(ii) The triangle inequality is a consequence of the fact that if ρ2 ≼ λ1ρ1 and ρ3 ≼ λ2ρ2,
then ρ3 ≼ λ1λ2ρ1.

(iii) First observe Ca1 ⊆ Ca2 . Hence ρ2 ≼ λρ1 in Ca1 implies the same inequality in Ca2 .
□

Recall that we are searching for a fixed point for the operator T . By Lemma 2.1, if
σ ∈ (λ−1, 1) and a > β0

σ−λ−1 , then T (Ca) ⊆ Caσ ⊆ Ca. As our next step,, we show that T is
a contraction on Ca. But first let us demonstrate that in fact that the set Caσ is a bounded
subset of Ca.

Lemma 2.3 diam Caσ = sup
ρ1,ρ2∈Caσ

da(ρ1, ρ2) ≤ b := 2 log
1 + σ

1− σ
+ 2aσ.

Proof From ρ2(x) ≤ ρ2(y)e
−aσ|x−y| and ρ1(x) ≤ ρ1(y)e

aσ|x−y| we deduce

βa(ρ1, ρ2) ≤ sup
x,y

ea|x−y| − e−aσ|x−y|

ea|x−y| − eaσ|x−y|
ρ2(y)

ρ1(y)
.
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To calculate this, set z = a|x− y|. Then z ≥ 0 and

lim
z→0

ez − e−σz

ez − eσz
=

1 + σ

1− σ
.

On the other hand,
ez − e−σz

ez − eσz
≤ 1 + σ

1− σ

which is the consequence of the convexity of the exponential function;

eσz ≤ 2σ

1 + σ
ez +

1− σ

1 + σ
e−σz.

As a result,

βa(ρ1, ρ2) ≤
1 + σ

1− σ
sup
y

ρ2(y)

ρ1(y)
≤ 1 + σ

1− σ

ρ2(y0)e
aσ/2

ρ1(y0)e−aσ/2
=
ρ2(y0)

ρ1(y0)
eaσ

1 + σ

1− σ

for y0 =
1
2
. Hence

βa(ρ1, ρ2)βa(ρ2, ρ1) ≤
(
1 + σ

1− σ

)2

e2aσ,

completing the proof of lemma. □

We are now ready to show that T is a contraction.

Lemma 2.4 For every ρ1, ρ2 ∈ Ca,

da(T ρ1, T ρ2) ≤ tanh

(
b

4

)
da(ρ1, ρ2).

Proof By Lemma 2.3, diam(T Ca) ≤ b. As a consequence if βρ1 ≽ ρ2 ≽ αρ1, then

da(T (ρ2 − αρ1), T (βρ1 − ρ2)) ≤ b

for every ρ1, ρ2 ∈ Ca and α, β ≥ 0. This means that we can find two constants λ1, λ2 ≥ 0
such that log λ2

λ1
≤ b and

β + αλ2
1 + λ2

T ρ1 ≼ T ρ2 ≼
β + αλ1
1 + λ1

T ρ1.

As a result,

da(T ρ1, T ρ2) ≤ log
β + αλ1
1 + λ1

1 + λ2
β + αλ2

= log
β
α
+ λ1

β
α
+ λ2

+ log
1 + λ2
1 + λ1

.
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Minimizing over β/α yields

da(T ρ1, T ρ2) ≤ log
eda(ρ1,ρ2) + λ1
eda(ρ1,ρ2) + λ2

− log
1 + λ1
1 + λ2

=

∫ da(ρ1,ρ2)

0

eθ(λ2 − λ1)

(eθ + λ1)(eθ + λ2)
dθ ≤ da(ρ1, ρ2)

√
λ2 −

√
λ1√

λ2 +
√
λ1

because max
x≥1

x(λ2 − λ1)

(x+ λ1)(x+ λ2)
=

√
λ2 −

√
λ1√

λ2 +
√
λ1

. Finally from log λ2

λ1
≤ b we obtain

da(T ρ1, T ρ2) ≤ da(ρ1, ρ2)
e

1
2
b − 1

e
1
2
b + 1

= da(ρ1, ρ2) tanh

(
b

4

)
.

□

This evidently gives us a contraction on Ca for any a ≥ β0

σ−λ−1 provided that σ ∈ (λ−1, 1),

because tanh
(
b
4

)
< 1 always. We may minimize the rate of contraction tanh

(
b
4

)
by first

choosing the best a, namely a = β0

σ−λ−1 , and then minimizing b in σ as σ varies in (λ−1, 1).
Our goal is to show that limn→∞ T nρ converges to a unique invariant density ρ̄. For this, let
us establish an inequality connecting da(ρ1, ρ2) to ∥ρ1 − ρ2∥L1 .

Lemma 2.5 For every ρ1, ρ2 ∈ Ca, with
∫ 1

0

ρ1 dx =

∫ 1

0

ρ2 dx = 1, we have

∫ 1

0

|ρ1 − ρ2| dx ≤ (eda(ρ1,ρ2) − 1), |ρ1 − ρ2| ≤ (eda(ρ1,ρ2) − 1)ρ1.

Proof Let us write da(ρ1, ρ2) = log β
α
with αρ1 ≼ ρ2 ≼ βρ1. This in particular implies that

αρ1 ≤ ρ2 ≤ βρ1. Integrating this over [0, 1] yields α ≤ 1 ≤ β, which in turn implies that
αρ1 ≤ ρ1 ≤ βρ1. As a result,

(α− β)ρ1 ≤ ρ2 − ρ1 ≤ (β − α)ρ1.

Thus

|ρ1 − ρ2| ≤ (β − α)ρ1 ≤ (β/α− 1)ρ1 ≤
(
eda(ρ1,ρ2) − 1

)
ρ1,∫ 1

0

|ρ2 − ρ1| dx ≤ β − α ≤ β − α

α
=
β

α
− 1 = eda(ρ1,ρ2) − 1.

□

We are now ready to state and prove the main result of this section.
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Theorem 2.2 Let a = β0

σ−λ−1 and σ ∈ (λ−1, 1). Then for every ρ ∈ Ca with
∫ 1

0
ρ = 1,

limn→∞ T nρ = ρ̄ exists uniformly and ρ̄ dx ∈ IT with ρ̄ ∈ Caσ. Moreover, there exists a
constant c̄1 such that

(2.10)

∣∣∣∣∫ 1

0

f ◦ T n g dx−
∫ 1

0

g dx

∫ 1

0

fρ̄ dx

∣∣∣∣ ≤ c̄1λ̂
n∥f∥L1(∥g∥L1 + ∥g′∥L∞)

where λ̂ = tanh
(
b
4

)
, b = 2 log 1+σ

1−σ
+ 2aσ, f ∈ L1, and g is Lipschitz.

An immediate consequence of Theorem 2.2 is the mixing property of ρ̄ because we may
choose g = hρ̄/

∫
hρ̄ to deduce

lim
n→∞

∫ 1

0

f ◦ T n hρ̄ dx =

∫ 1

0

fρ̄dx

∫ 1

0

hρ̄dx.

Proof of Theorem 2.2 We first show that if ρ ∈ Ca, then T nρ converges to a function
ρ̄ ∈ Ca in L1-sense. Indeed

∥T n+mρ− T nρ∥L1 ≤ exp(da(T n+mρ, T nρ))− 1

≤ exp(λ̂n−1da(T m+1ρ, T ρ))− 1

≤ eλ̂
n−1b − 1 ≤ λ̂n−1beλ̂

n−1b ≤ c0λ̂
n−1

for a constant c0 that depends on b only. This implies that T nρ is Cauchy in L1. Let
ρ̄ = lim ρn where ρn = T nρ. Since ρn(x) ≤ ρn(y)e

aσ|x−y| and ρnk
→ ρ̄ a.e. for a subsequence,

we deduce that ρ̄(x) ≤ ρ̄(y)eaσ|x−y| for a.e. x and y ∈ [0, 1]. By modifying ρ̄ on a set of zero
Lebesgue measure if necessary, we deduce that ρ̄ ∈ Cσa. Note that ρ̄ is never zero, because
if ρ̄(x0) = 0 for some x0, then ρ̄(x) ≤ ρ̄(x0)e

aσ|x0−x| implies that ρ̄(x) = 0 for every x. But∫ 1

0
ρdx = 1 implies that

∫ 1

0
ρ̄dx = 1. So ρ̄ > 0, completing the proof of ρ̄ ∈ Ca.

We now show that T nρ → ρ̄ uniformly. Indeed from T nρ → ρ̄ in L1 we deduce that∫
f ◦ T nρdx→

∫
fρ̄dx for every bounded f , which implies that T ρ̄ = ρ̄. Moreover

|T nρ− ρ̄| = |T nρ− T nρ̄| ≤ (eda(T
nρ,T nρ̄) − 1)T nρ̄

≤ (eλ̂
n−1da(T ρ,T ρ̄) − 1)ρ̄ ≤ (eλ̂

n−1b − 1)ρ̄

≤ λ̂n−1beλ̂
n−1bρ̄ ≤ c0λ̂

nρ̄

with c0 depending on b only. From this we learn that

∥T nρ− ρ̄∥L∞ ≤ c0λ̂
n∥ρ̄∥L∞ ,

for every ρ ∈ Ca with
∫ 1

0
ρdx = 1.
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We now turn to the proof of (2.13). Without loss of generality, we may assume that
g ≥ 0. Given such a function g, find l > 0 large enough so that ρ = g + lρ̄ ∈ Ca. Indeed, for
y > x, we have that ρ(y) ≤ g(y) + lρ̄(x) exp(aσ(y − x)) =: exp(h(y)). On the other hand

h′(y) =
g′(y) + laσρ̄(x)eaσ(y−x)

g(y) + lρ̄(x)eaσ(y−x)
≤ ∥g′∥L∞

lρ̄(x)
+
laσρ̄(x)eaσ(y−x)

lρ̄(x)eaσ(y−x)
≤ ∥g′∥L∞

inf ρ̄

1

l
+ aσ.

This is at most a if we choose

l =
∥g′∥L∞

a(1− σ) inf ρ̄
.

Hence ∥∥∥∥T n g + lρ̄

Z
− ρ̄

∥∥∥∥
L∞

≤ c0λ̂
n∥ρ̄∥L∞

where Z =
∫ 1

0
(g + lρ̄)dx. Since T ρ̄ = ρ̄, we deduce∥∥∥∥T ng

Z
+

l

Z
ρ̄− ρ̄

∥∥∥∥
L∞

≤ c0λ̂
n∥ρ̄∥L∞ ,

∥T ng − (Z − l)ρ̄∥L∞ ≤ c0λ̂
n∥ρ̄∥L∞Z.

Hence ∥∥∥∥Ang − ρ̄

∫ 1

0

g dx

∥∥∥∥
L∞

≤ c1λ̂
n

[∫
g dx+ l

]
≤ c2λ̂

n

[∫
g dx+ ∥g′∥L∞

]
.

From this, we can readily deduce (2.13). □

Example 2.2 Let

T (x) =

{
x

1−x
for x ∈

[
0, 1

2

)
,

2x− 1 for x ∈
[
1
2
, 1
]
.

Note that for this example, the condition |T ′(x)| > 1 is violated at a single point x = 0. It
turns out T has no invariant measure which is absolutely continuous with respect to Lebesgue
measure. We omit the proof and refer the reader to [LaYo]. □

As our next scenario, let us study an example of a 2-dimensional system that has ex-
panding and contracting direction but there is no absolutely continuous invariant measure.
As a toy model for such a phenomenon, we consider a (generalized) baker’s transformation:

T : T2 → T2, T (x1, x2) =

{(
x1

α
, βx2

)
if 0 ≤ x1 < α,(

x1−α
β
, β + αx2

)
if α ≤ x1 < 1.
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with α, β > 0 and α+β = 1. Observe that if we project a T orbit onto the x-axis, we obtain
an orbit of an expanding dynamical system associated with the map S : T → T, that is given
by

S(x1) =

{
x1

α
if 0 ≤ x1 < α,

x1−α
β

if α ≤ x1 < 1,

We can readily show that in fact the Lebesgue measure is an invariant measure for S. The
same cannot be said about the projection onto the x2-axis.

Note

|JT (x1, x2)| =

{
β
α

if 0 ≤ x ≤ α,
α
β

if α < x ≤ 1.

As we will see later, the transformation T does not have an absolutely continuous invariant
measure unless α = β = 1

2
. To analyze Perron–Frobenious operator, let us define

F (x1, x2) = Fµ(x1, x2) = µ([0, x1]× [0, x2]).

If F̂ = FT µ, then

(2.11) F̂ (x1, x2) =

{
F (αx1, x2/β) if 0 ≤ x2 < β,

F (αx1, 1) + F
(
βx1 + α, x2−β

α

)
− F

(
α, x2−β

α

)
if β ≤ x2 < 1.

To see this, recall that F̂ (x1, x2) = µ(T−1([0, x1]× [0, x2])). Also

(2.12) T−1(x1, x2) =

{(
αx1,

x2

β

)
if 0 ≤ x2 < β,(

α + βx1,
x2−β
α

)
if β ≤ x2 < 1.

Note that T is discontinuous on x1 = α, and T−1. Now if 0 ≤ x2 ≤ β, then T−1([0, x1] ×
[0, x2]) = [0, αx1]×

[
0, x2

β

]
which implies that F̂ (x1, x2) = F

(
αx1,

x2

β

)
in this case. On the

other hand, if β < x2 ≤ 1, then

T−1([0, x1]× [0, x2]) = T−1([0, x1]× [0, β]) ∪ T−1([0, x1]× [β, x2]),

T−1([0, x1)× [0, β]) = [0, αx1]× [0, 1],

T−1([0, x1]× (β, x2]) = [α, α + βx1]×
(
0,
x1 − β

α

]
.

Clearly µ([0, αx1]× [0, 1]) = F (αx1, 1). Moreover,

µ

(
[α, α + βx1]×

(
0,
x2 − β

α

])
= F

(
α + βx1,

x2 − β

α

)
−µ
(
[0, α)×

(
0,
x2 − β

α

))
= F

(
α + βx1,

x2 − β

α

)
− F

(
α,
x2 − β

α

)
,
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completing the proof of (2.11). Since the expanding and contracting directions are the x1
and x2 axes, we may separate variable to solve the equation T̂ F := F̂ = F . In other words,
we search for a function F (x1, x2) = F1(x1)F2(x2) such that T̂ F = F . Since the Lebesgue
measure is invariant for the map S, we may try F1(x1) = x1. Substituting this in T̂ F yields
T̂ F (x1, x2) = x1F̂2(x2) where

BF2 := F̂2(x2) =

{
αF2

(
x2

β

)
0 ≤ x2 < β,

α + βF2

(
x2−β
α

)
β ≤ x2 < 1.

Here we are using F2(1) = 1. We are now searching for F2 such that BF2 = F2. It turns out
that this equation has a unique solution F2 that has zero derivative almost everywhere. Hence
our invariant measure µ̄ = λ1×λ2 with λ1 the Lebesgue measure and λ2 a singular measure.
One can show that the support of the measure λ2 is of fractal dimension α logα+β log β

α log β+β logα
=: ∆.

To explain this heuristically, let us first propose a definition for the fractal dimension of a
measure. To motivate our definition, observe that if a measure µ is absolutely continuous
with respect to the Lebesgue measure λ = λ1, with dµ = fdλ1, then by a classical theorem
of Lebesgue,

lim
δ→0

(2δ)−1µ(x− δ, x+ δ) = f(x),

for almost all x. This means that if In(x) =
(
x− n−1, x+ n−1

)
, then

lim
n→∞

µ
(
In(x)

)
λ1
(
In(x)

) = f(x),

for almost all x. In the support of µ, we can assert

0 < lim
n→∞

µ
(
In(x)

)
λ1
(
In(x)

) <∞,

because f(x) > 0, µ-almost everywhere. We may say that a measure µ is of fractal dimension
D if

(2.13) 0 < lim sup
δ→0

µ
(
In(x)

)
λ1
(
In(x)

)D ≤ lim inf
δ→0

µ
(
In(x)

)
λ1
(
In(x)

)D <∞,

µ-almost everywhere. This requires that the fractal measure µ to be rather regular and if
true, (2.13) is often hard to establish. To have a less ambitious definition, we may require

(2.14) lim
n→∞

log µ(In(x))

log λ1(In(x))
= D, µ− a.e.
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In fact, we may try to establish (2.14) for a sequence of intervals In(x) with x ∈ In(x),
∩nIn(x) = {x}. With this definition in mind, let us write A for the set of points x such that

(2.15) lim
n→∞

log λ2(In(x))

log λ1(In(x))
= ∆.

We wish to show that λ2(A) = 1. To construct In, let us first define a family of intervals
Ia1,...,an , with a1, . . . , an ∈ {0, 1}, so that I0 = [0, β), I1 = [β, 1), and if Ia1,...,an = [p, q), then
Ia1,...,an,0 = [p, p + β(q − p)), and Ia1,...,an,1 = [p + β(q − p), q). By induction on n, it is not
hard to show

(2.16) λ2(Ia1,...,an) = αLnβRn , λ1(Ia1,...,an) = βLnαRn ,

where Ln and Rn denote the number of 0 and 1 in the sequence a1, . . . , an, respectively. Given
x, we can find a sequence ω(x) = (a1, . . . , an, . . . ) ∈ Ω = {0, 1}N, such that x ∈ Ia1,...,an for
every n. The transformation x 7→ ω(x) pushes forward the measure λ2 to the product
measure λ′2 such that each an is 0 with probability α. If Ln(x) and Rn(x) denote the number
of 0 and 1 in a1, . . . , an with ω(x) = (a1, . . . , an, . . . ), then by Birkhoff Ergodic Theorem

λ2

({
x : lim

n→∞

Ln(x)

n
= α, lim

n→∞

Rn(x)

n
= β

})
= 1.

From this and (2.16) we can readily deduce that λ2(A) = 1. Note that the support of µ̄ is
of dimension 1 + ∆. Evidently ∆ < 1 unless α = β = 1

2
.

What we have constructed is the Sinai–Ruelle–Bowen (SRB) measure µ̄ of our baker’s
transformation T . Note that this measure is absolutely continuous with respect to the
expanding direction x1-axis. A remarkable result of Sinai–Ruelle–Bowen asserts

lim
n→∞

1

n

n−1∑
0

f(T j(x)) =

∫
fdµ̄

for almost all x with respect to the Lebesgue measure. This is different from Birkoff’s
ergodic theorem that only gives the convergence for µ̄-a.e. and µ̄ is singular with respect to
the Lebesgue measure. We may define the SRB measure as the invariant measure of the
maximum metric entropy. The metric entropy will be discussed thoroughly in Chapter 4.

We end this section with a discussion regarding the flow-analog of Perron–Frobenious
equation. Given a flow ϕt associated with the ODE dx

dt
= b(x), let us define

Ttg = g ◦ ϕt.
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This defines a group of transformations on the space of real-valued functions g. The dual of
Tt acts on measures. More precisely, T ∗

t µ is defined by∫
Ttfdµ =

∫
fdT ∗

t µ,

or equivalently T ∗
t µ(A) = µ(ϕ−1

t A) = µ(ϕ−t(A)). The following theorem of Liouville gives
an infinitesimal description of T ∗

t µ when µ is absolutely continuous with respect to Lebesgue
measure.

Theorem 2.3 Suppose that there exists a differentiable function ρ(x, t) such that d(T ∗
t µ) =

ρ(x, t)dx. Then ρ satisfies the Liouville’s equation

ρt + div(ρb) = 0.

Proof Let g be a differentiable function of compact support. We have∫
g(y)ρ(y, t+ h)dy =

∫
g(ϕt+h(x))ρ(x, 0)dx

=

∫
g(ϕh(ϕt(x)))ρ(x, 0)dx

=

∫
g(ϕh(y))ρ(y, t)dy

=

∫
g(y + hb(y) + o(h))ρ(y, t)dy

=

∫
g(y)ρ(y, t)dy + h

∫
∇ g(y) · b(y)ρ(y, t)dy

+o(h).

This implies that d
dt

∫
g(y)ρ(y, t)dy =

∫
b(y) · ∇g(y)ρ(y, t)dy. After an integration by parts,

d

dt

∫
g(y)ρ(y, t)dy =

∫
g(ρt + div(ρb))dy.

Since g is arbitrary, we are done. □
In particular a measure ρdx is invariant if

div(ρb) = 0,

or equivalently ρ∇b+ρ div f = 0. The generalization of this to manifolds is straightforward.
If Lb denotes the Lie derivative and f is the velocity of the flow, then ρω is invariant if and
only if

Lbρ+ ρ div b = 0.
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Exercises

(i) Prove Proposition 2.1.

(ii) Show that the generalized baker’s transformation is reversible in the following sense: If
Φ(x1, x2) = (1− x2, 1− x1) then Φ2 = identity and T−1 = ΦTΦ.

(iii) Let T and Φ be as in (ii). Show that if µ ∈ IT , then Φ♯µ ∈ IT−1 .

(iv) Let T : (0, 1] → (0, 1] by T (x) =
{

1
x

}
where {·} means the fractional part. Derive the

corresponding Perron–Frobenious equation. Show that ρ(x) = 1
log 2

1
1+x

is a fixed point for
the corresponding Perron–Frobenious operator.

(v) Let T : [0, 1] → [0, 1] by T (x) = 4x(1−x). Derive the corresponding Perron–Frobenious
equation and show that ρ(x) = π−1(x(1− x))−1/2 is a fixed point.

(vi) Let u(x, t) = Ttg(x) = g(ϕt(x)). Show that u satisfies ut = Lu where Lu = b(x) · ∂u
∂x
.

(vii) Show that µ ∈ Iϕ iff
∫
Lg dµ = 0 for every g ∈ C1 of compact support. □

Notes The proof of Theorem 2.2 was taken from [Li]. The example of the generalized baker’s
transformation was taken from [D].
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3 Entropy

Roughly speaking, the entropy measures the exponential rate of increase in dynamical com-
plexity as a system evolves in time. We will discuss two notions of entropy in this section,
the topological entropy that was defined by Bowen, and (Kolmogorov–Sinai) metric entropy
that was formulated by Kolmogorov.

We start with some some definition and elementary facts that will prepare us for the
definition of the topological entropy.

Definition 3.1(i) Let (X, d) be a compact metric space and T : X → X be a continuous
transformation. Define Bd(x, r) = {y : d(x, y) < r}, and

dn(x, y) = dTn (x, y) = max{d(x, y), d(T (x), T (y)), . . . , d(T n−1(x), T n−1(y))},
Bn(x, r) = Bn

T,d(x, r) = Bdn(x, r) = {y : dn(x, y) < r}
= Bd(x, r) ∩ T−1Bd

(
T (x), r

)
∩ · · · ∩ T 1−nBd

(
T n−1(x), r

)
.

(ii) We define Sn
T,d(r) as the smallest number k for which we can find a set A of cardinality

k such that X =
⋃

x∈AB
n
T,d(x, r).

(iii) We define Ŝn
T,d(r) as the smallest number k for which we can find an open cover O of

X cardinality k such that for every A ∈ O, the diameter of the set A with respect to the
metric dn is at most 2r.

(iv) We define Nn
T,d(r) to be the maximal number of points in X with pairwise dn-distances

at least r. □
As the following Proposition indicates, the numbers Sn

T,d(r), Ŝ
n
T,d(r), and Nn

T,d(r) are
closely related as r → ∞.

Proposition 3.1 We have

Nn
T,d(2r) ≤ Sn

T,d(r) ≤ Nn
T,d(r),(3.1)

Sn
T,d(2r) ≤ Ŝn

T,d(r) ≤ Sn
T,d(r),(3.2)

Ŝm+n
T,d (r) ≤ Ŝm

T,d(r)Ŝ
n
T,d(r).(3.3)

Proof The first inequality in (3.1) follows from the fact that no dn-ball of radius r can
contain two points that are 2r-apart. The second inequality in (3.1) follows from the fact
that if Nn(r) = L and {x1, . . . , xL} is a maximal set, then X =

⋃L
j=1Bdn(xj, r).

The second inequality in (3.2) is obvious, and the first inequality is true because if O is
an open cover of X such that for every A ∈ O, the diameter of the set A with respect to the
metric dn is at most 2r, then we can pick aA ∈ A and form a cover of the form

X = ∪A∈OB
n
T,d(aA, 2r).
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To show (3.3), take two collections of sets O and O′ with O (respectively O′) an open
cover of X with respect to the metric dm (respectively dn) such that

A ∈ O =⇒ diamdm(A) ≤ 2r,

B ∈ O′ =⇒ diamdn(B) ≤ 2r.

Then O′′ consisting of the sets of the form A ∩ T−m(B) with A ∈ O and B ∈ O′ is an open
cover of X with respect to the metric dm+n. Moreover diamdm+n

(
A∩T−m(B)

)
≤ 2r, follows

from
dm+n(x, y) = max

{
dm(x, y), dn

(
Tm(x), Tm(y)

)}
.

□

As an immediate consequence of (3.3), we learn that the sequence an = log Ŝn
T,d(r) is

subadditive. The following standard fact guarantees the convergence of the sequence an/n
as n→ ∞.

Lemma 3.1 Let an be a sequence of numbers such that an+m ≤ an+am. Then limn→∞
1
n
an =

infn
an
n
.

Proof Evidently lim infn→∞
an
n

≥ infn
an
n
. On the other hand, if n = ℓm+ r with m, ℓ ∈ N,

r ∈ [0,m), then

an = aℓm+r ≤ aℓm + ar ≤ ℓam + ar,
an
n

≤ ℓm

n

am
m

+
ar
n
.

After sending n→ ∞, we obtain,

lim sup
n→∞

an
n

≤ am
m

for every m ∈ Z+. This completes the proof. □

The topological entropy is define so that “higher entropy” would mean “more orbits”.
But the number of orbits is usually uncountably infinite. Hence we fix a “resolution” r, so
that we do not distinguish points that are of distance less than r. Hence Nn(r) represents
the number of distinguishable orbits of length n, and this number grows like enhtop(T ). We
are now ready to define our topological entropy.

Definition 3.2 We define

htop(T ; d) =htop(T ) = lim
r→0

lim
n→∞

1

n
log Ŝn

T,d(r) = sup
r>0

inf
n

1

n
log Ŝn

T,d(r).
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As an immediate consequence of (3.1) and (3.2), we also have

htop(T ; d) = lim
r→0

lim sup
n→∞

1

n
logSn

T,d(r) = lim
r→0

lim inf
n→∞

1

n
logSn

T,d(r),

= lim
r→0

lim sup
n→∞

1

n
logNn

T,d(r) = lim
r→0

lim inf
n→∞

1

n
logNn

T,d(r).

□

We will see below that htop(T ; d) is independent of the choice of the metric and depends
on the topology of the underlying space. Here are some properties of the topological entropy.

Proposition 3.2 (i) If the metrics d and d′ induce the same topology, then htop(T ; d) =
htop(T ; d

′).

(ii) If F : X → Y is a homeomorphism, T : X → X, S : Y → Y , and S ◦ F = F ◦ T , then
htop(T ) = htop(S).

(iii) htop(T
n) = nhtop(T ). Moreover, if T is a homeomorphism, then htop(T ) = htop(T

−1).

Proof(i) Set η(ϵ) = min{d′(x, y) : d(x, y) ≥ ϵ}. Then

d′(x, y) < η(ϵ) ⇒ d(x, y) < ϵ.

As a result, limϵ→0 η(ϵ) = 0 and Bn
T,d′(x, η(ϵ)) ⊆ Bn

T,d(x, ϵ). Hence Sn
T,d′(η(ϵ)) ≥ Sn

T,d(ϵ).
Thus htop(T, d) ≤ htop(T, d

′).

(ii) Given a metric d on X, define a metric d′ on Y by d′(x, y) = d(F−1(x), F−1(y)). Evi-
dently htop(T ; d) = htop(S; d

′).

(iii) Evidently Bnk
T,d(x, r) ⊆ Bk

Tn,d(x, r). Hence

Snk
T,d(r) ≥ Sk

Tn,d(r), htop(T
n) ≤ nhtop(T ).

For the converse, use the continuity of T to find a function η : (0,∞) → (0,∞) such that
η(r) ≤ r and Bd(x, η(r)) ⊆ Bn

T,d(x, r). Then Bk
Tn,d(x, η(r)) ⊆ Bkn

T,d(x, r). This implies that

Sk
Tn,d(η(r)) ≥ Skn

T,d(r), which in turn implies

1

k
logSk

Tn,d(η(r)) ≥ n
k − 1

k
max

(k−1)n≤ℓ≤kn

1

ℓ
logSℓ

T,d(r).

From this, it is not hard to deduce that htop(T
n) ≥ nhtop(T ).

For htop(T
−1) = htop(T ), observe that dTn (x, y) = dT

−1

n

(
T n−1(x), T n−1(y)

)
. This means

that T n−1(Bn
T,d(x, r)) = Bn

T−1,d(T
n−1(x), r). Hence X =

⋃k
j=1B

n
T,d(xj, r) is equivalent to
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X =
⋃k

j=1B
n
T−1,d(T

n−1(xj), r). From this we deduce Sn
T−1,d(r) = Sn

T,d(r). This implies that

htop(T
−1) = htop(T ). □

Example 3.1(i) Let T : Td → Td be a translation. Since T is an isometry, dn(x, y) = d(x, y)
for d(x, y) = |x− y|. Thus Sn(r) is independent of n and htop(T ) = 0.

(ii) Let X = {0, 1, . . . ,m−1}Z. Given ω = (ωj : j ∈ Z) ∈ X, define (τω)j = ωj+1. Consider
the metric

d(ω, ω′) =
∑
j∈Z

η−|j||ωj − ω′
j|,

with η > 1. Fix α ∈ X and take any ω ∈ X. Evidently∑
|j|>ℓ

η−|j||αj − ωj| ≤ 2(m− 1)
∞∑

r=ℓ+1

η−r =
2(m− 1)

ηℓ(η − 1)
.

Also, if ωj ̸= αj for some j ∈ {−ℓ, . . . , ℓ}, then∑
|j|≤ℓ

η−|j||αj − ωj| ≥ η−ℓ.

Evidently d induces the product topology on X no matter what η ∈ (1,∞) we pick. Choose

η large enough so that 2(m−1)
η−1

< 1. For such a choice of η,

Bd

(
α, η−ℓ

)
=
{
ω : ωj = αj for j ∈ {−ℓ, . . . , ℓ}

}
.

Since {
ω : d(τ i(ω), τ i(α)) < η−ℓ

}
=
{
ω : ωj+i = αj+i for j ∈ {−ℓ, . . . , ℓ}

}
,

we deduce
Bdn

(
α, η−ℓ

)
=
{
ω : ωj = αj for j ∈ {−ℓ, . . . , ℓ+ n− 1}

}
.

Evidently every two dn-balls of radius η−ℓ are either identical or disjoint. As a result,
Sn
τ,d

(
η−ℓ
)
= m2ℓ+n. Thus

htop(T ) = lim
ℓ→∞

lim sup
n→∞

1

n
logm2ℓ+n = logm.

(iii) Let Tm : T → T be the expansion map as in Example 1.5(ii). From Part (ii) and
Exercise 3.1(i), we deduce that htop(Tm) ≤ logm. We will see later in Example 3.4 below
that in fact htop(Tm) = logm.

(iv) Let (X, τ) be as in the Part (ii) and let A = [aij] be an m×m matrix with aij ∈ {0, 1}
for all i, j ∈ {0, 1, . . . ,m− 1}. Set

XA =
{
ω ∈ X : aωi,ωi+1

= 1 for all i ∈ Z
}
.
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Evidently XA is an invariant set and the restriction of τ to XA gives a dynamical system.
Write τA for this restriction. To have an irreducible situation, we assume that each row and
column of A contains at least one 1 (if for example a0j = 0 for all j, we may replace X with
{1, 2, . . . ,m− 1}Z). For such A,

Sn
τA,d

(
η−ℓ
)
= # of balls of radius η−ℓ with nonempty intersection with XA

= # of (α−ℓ, . . . , αℓ+n−1) with aαi,αi+1
= 1 for − ℓ ≤ i < ℓ+ n− 1

=
m−1∑
r,s=0

#
{
(α−ℓ, . . . , αℓ+n−1) : aαi,αi+1

= 1 for − ℓ ≤ i < ℓ+ n− 1

and α−ℓ = r, αℓ+n−1 = s
}

=
m−1∑
r,s=0

a2n+ℓ−1
r,s = ∥A2ℓ+n−1∥

where akr,s is the (r, s) entry of the matrix Ak, and ∥A∥ denotes the norm of A, i.e., ∥A∥ =∑
r,s |ar,s|. We now claim

htop(τA) = lim
ℓ→∞

lim sup
n→∞

1

n
log ∥A2ℓ+n−1∥ = log r(A),

where r(A) = max
{
|λ| : λ an eigenvalue of A

}
. To see this, first observe that if Av = λv,

then Akv = λkv. Hence

|λ|k max
j

|vj| ≤ |λ|k
∑
j

|vj| ≤
∑
i,j

|aki,j||vi| ≤ ∥Ak∥max
j

|vj|.

As a result, ∥Ak∥ ≥ |λ|k. This shows that htop(τA) ≥ log r(A). For the converse, we choose
a basis so that the off-diagonal entries in Jordan normal form of A become small. Using this
we can show that |Av| ≤ (r(A) + δ)|v| which in turn implies that |Akv| ≤ (r(A) + δ)k|v|.
From this we deduce that htop(τA) ≤ log(r(A) + δ). Finally send δ → 0 to deduce that
htop(τA) ≤ log r(A). This completes the proof of htop(τA) = log r(A).

(v) Let T : T2 → T2 is given by T (x) = Bx (mod 1), where B is an integer-valued matrix
with eigenvalues λ1, λ2 satisfying |λ2| < 1 < |λ1| = |λ2|−1. For the sake of definiteness, let

us take B =

[
2 1
1 1

]
with eigenvalues λ1 = 3+

√
5

2
, λ2 = 3−

√
5

2
and eigenvectors v1 =

[
1√
5−1
2

]
,

v2 =

[
1

−
√
5−1
2

]
. T is a contraction along v2 and an expansion along v1. We now draw the

eigen lines from the origin and let them intersect several times to separate torus into disjoint
rectangles. Let us write R1 and R2 for these rectangles and study T (R1) and T (R2). We set

T (R1) ∩R1 = Z0 ∪ Z1, T (R1) ∩R2 = Z3, R1 = Z0 ∪ Z1 ∪ Z2.
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We then define Z4 so that R2 = Z3 ∪Z4. One can then show that T (R2) = Z2 ∪Z4. We now
define X = {0, 1, 2, 3, 4}Z and F : XA → T2 with

A = [aij] =


1 1 0 1 0
1 1 0 1 0
1 1 0 1 0
0 0 1 0 1
0 0 1 0 1

 ,
where F (ω) = x for {x} =

⋂
n∈Z T

−n(Zωn). In other words, F (ω) = x iff T n(x) ∈ Zωn

for all n ∈ Z. If τA denotes the shift on XA, then we have T ◦ F = F ◦ τA. Here we
are using the fact that if x ∈ Zi and T (x) ∈ Zj, then aij = 1. This also guarantees that⋂

n∈Z T
−n(Zωn) ̸= ∅. Also, since T is contracting in v2-direction and T−1 is contracting in

v1-direction, then
⋂

n∈Z T
−n(Zωn) has at most one point. Clearly the transformation F is

onto. However, h is not one-to-one. For example if ᾱ denotes ᾱ = (ωn : n ∈ Z) with ωn = α
for all n, then 0̄, 1̄, 4̄ ∈ XA (but not 2̄ and 3̄). Moreover τA(0̄) = 0̄, τA(1̄) = 1̄, τA(4̄) = 4̄.
On the other hand the only x with T (x) = x is x = 0. In fact F (0̄) = F (1̄) = F (4̄) is equal
to the origin. From T ◦ F = F ◦ T̂ , Exercise 3.1(i) and Example 3.1(iv) we conclude that

htop(T ) ≤ htop(τA) = log r(A). A straightforward calculation yields r(A) = λ1 =
3+

√
5

2
. Later

we discuss the metric entropy, and using the metric entropy of T we will show in Example
3.4 below that indeed htop(T ) = log 3+

√
5

2
. □

The metric entropy is the measure-theoretic version of the topological entropy. As a
preparation, we make a definition.

Definition 3.2 Let T : X → X be a measurable transformation and take µ ∈ IT .

(i) A countable collection ξ of measurable subsets of X is called a µ-partition if µ(A∩B) = 0

for every two distinct A,B ∈ ξ, and µ
(
X \

⋃
A∈ξ A

)
= 0. We also write Cξ(x) for the unique

A ∈ ξ such that x ∈ A. Note that Cξ(x) is well-defined for µ-almost all x.

(ii) If ξ and η are two µ-partition, then their common refinement ξ ∨ η is the partition

ξ ∨ η = {A ∩B : A ∈ ξ, B ∈ η, µ(A ∩B) > 0}.

Also, if ξ is a µ-partition, then we set

T−1ξ = {T−1(A) : A ∈ ξ},

which is also a µ-partition because µ ∈ IT .

(iii) For m < n, we define

ξT (m,n) = ξ(m,n) = T−mξ ∨ T−m−1ξ ∨ · · · ∨ T−nξ.
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□

As we discussed in the introduction, the metric entropy measures the exponential gain in
the information. Imagine that we can distinguish two points x and y only if x and y belong
to different elements of the partition ξ. Now if the orbits up to time n−1 are known, we can
use them to distinguish more points. The partition ξT (0, n− 1) represents the accumulated
information gained up to time n− 1. Except for a set of zero µ-measure, each x belongs to
a unique element

Cn(x) = Cξ(x) ∩ T−1
(
Cξ(T (x))

)
∩ · · · ∩ T 1−n

(
Cξ(T

n−1(x))
)
∈ ξ(0, n− 1).

Let’s have an example.

Example 3.2(i) Let (X, τ) be as in Example 1.1(iii), with E = {0, 1, . . . ,m− 1}. Choose
ξ =

{
A0, . . . , Am−1

}
, with Ai =

{
ω : ω1 = i

}
. Given p = (p0, . . . , pm−1), with pj ≥ 0,∑

j pj = 1, recall µp ∈ Iτ is the product measure with µp(Ai) = pi. Systems of the form

(EZ, τ, µp) are known as Bernoulli Shifts.
We have

Cn(α) =
{
ω : ωi = αi for i = 1, . . . , n

}
.

We certainly have µp(Cn(α)) = pα1 . . . pαn and

1

n
log µp(Cn(α)) =

1

n

n∑
1

log pαj
=

1

n

n−1∑
0

log f(τ j(α))

where f(α) = pα1 . By the Ergodic Theorem,

(3.4) lim
n→∞

1

n
log µp(Cn(α)) =

m−1∑
0

pj log pj.

(ii) Let (T, Tm) be the expansion map as in Example 1.5(ii). Let

ξ =

{[
j

m
,
j + 1

m

)
: j = 0, . . . ,m− 1

}
.

Then

ηn = ξT (0, n− 1) =
{[

·a1 . . . an, ·a1 . . . an +m−n
)
: a1 . . . an ∈ {0, 1, . . . ,m− 1}

}
.

Given x, let ·a1a2 . . . an ∗ ∗ . . . denote its base m expansion. Note that for points on the
boundary of the intervals in ηn, we may have two distinct expansions. Since we have chosen
closed-open intervals in ξ, we dismiss expansions which end with infinitely many m. In
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other words, between .a1 . . . ak(m − 1)(m − 1) . . . , with ak < m − 1 and .a1 . . . a
′
k00 . . . for

a′k = ak + 1, we choose the latter. we have

Cηn(x) =
[
·a1 . . . an, ·a1 . . . an +m−n

)
.

For µp as in Example 1.5(iii), we have µp(Cηn(x)) = pa1 . . . pan and

1

n
log µp(Cηn(x)) =

1

n

n∑
1

log paj =
1

n

n−1∑
0

log f(T j(x))

where f(·a1a2 . . . ) = pa1 . By the Ergodic Theorem,

lim
n→∞

1

n
log µp(Cηn(x)) =

m−1∑
0

pj log pj.

□

In general, since we are interested in the amount of information the partition ηn =
ξ(0, n − 1) carries out, perhaps we should look at µ(Cn(x)) where Cn(x) = Cηn(x). This
is typically exponentially small in n. Motivated by Example 3.2, we make the following
definition.

Definition 3.3(i) Let µ ∈ M and ξ be a µ-partition. The entropy of ξ with respect to µ is
defined by

Hµ(ξ) =

∫
Iξ(x) µ(dx) = −

∑
C∈ξ

µ(C) log µ(C),

where Iξ(x) = − log µ(Cξ(x)).

(ii) Given two µ-partitions η and ξ, the conditional entropy of ξ, given η is defined by

Hµ(ξ | η) =
∫
Iξ|η dµ = −

∑
A∈ξ,B∈η

µ(A ∩B) log
µ(A ∩B)

µ(B)
,

where

Iξ|η(x) = − log µ(Cξ(x) | Cη(x)) = − log
µ(Cξ(x) ∩ Cη(x))

µ(Cη(x))
.

(iii) Given a dynamical system (X,T ), an invariant measure µ ∈ IT , and a µ-partition ξ,
we define

hµ(T, ξ) = lim
n→∞

1

n
Hµ(ξ(0, n− 1)),
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The existence of the limit follows from the subadditivity of an = Hµ(ξ(0, n − 1)), which is
an immediate consequence of Proposition 3.2(ii) below.

(iv) The entropy of T with respect to µ ∈ IT is defined by

hµ(T ) = sup
ξ
h(T, ξ),

where the supremum is over all finite µ-partitions.

(v) We write α ≤ β when β is a refinement of α. This means that for every B ∈ β, there
exists a set A ∈ α such that µ(B \ A) = 0. □

Proposition 3.3 Let ξ, η, and γ be three µ-partitions.

(i) We have
Iξ∨η = Iη + Iξ|η, Hµ(ξ ∨ η) = Hµ(η) +Hµ(ξ | η).

More generally,

I(ξ∨η)|γ = Iη|γ(x) + Iξ|(η∨γ), Hµ(ξ ∨ η | γ) = Hµ(η | γ) +Hµ(ξ | η ∨ γ)

(ii) Hµ(ξ | η) ≤ Hµ(ξ)

(iii) Hµ(ξ ∨ η) ≤ Hµ(ξ) +Hµ(η).

(iv) We have IT−1ξ = Iξ ◦ T , and IT−1ξ|T−1η = Iξ|η ◦ T . Moreover, Hµ(T
−1ξ) = Hµ(ξ) , and

Hµ

(
T−1ξ | T−1η

)
= Hµ(ξ | η).

(v) If η ≤ γ, then
Hµ(η) ≤ Hµ(γ), Hµ(ξ | η) ≥ Hµ(ξ | γ).

Proof(i) By definition,

I(ξ∨η)|γ(x) = − log
µ
(
Cξ∨η(x) ∩ Cγ(x)

)
µ
(
Cγ(x)

) = − log
µ
(
Cξ(x) ∩ Cη(x) ∩ Cγ(x)

)
µ
(
Cγ(x)

)
= − log

µ(Cξ(x) ∩ Cη∨γ(x)

µ(Cγ(x))
= − log

µ
(
Cη(x) ∩ Cγ(x)

)
µ
(
Cγ(x)

) − log
µ
(
Cξ(x) ∩ Cη∨γ(x)

)
µ
(
Cη∨γ(x)

)
= Iη|γ(x) + Iξ|(η∨γ)(x).

(ii) Set ϕ(x) = x log x and use the convexity of ϕ to assert

ϕ(µ(A)) = ϕ

(∑
B∈η

µ(B)
µ(A ∩B)

µ(B)

)
≤
∑
B∈η

µ(B)ϕ

(
µ(A ∩B)

µ(B)

)
=
∑
B∈η

µ(A ∩B) log
µ(A ∩B)

µ(B)
.
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(iii) This follows from (i) and (ii).

(iv) This part is an immediate consequence of the invariance µ(T−1(A)) = µ(A) for every

A ∈ ξ.

(iv) We only prove the second inequality as the proof of the first inequality is similar. By
definition,

Hµ(ξ | α) = −
∑

A∈α,C∈ξ

µ(A ∩ C) log µ(A ∩ C)
µ(A)

= −
∑

A∈α,C∈ξ

µ(A)φ

(
µ(A ∩ C)
µ(A)

)
.

Fix A and choose a family J ⊆ β, so that

µ
(
A∆
(
∪ {B : B ∈ J}

))
= 0.

Hence

φ

(
µ(A ∩ C)
µ(A)

)
= φ

(∑
B∈J

µ(B)

µ(A)

µ(C ∩B)

µ(B)

)
≤
∑
B∈J

µ(B)

µ(A)
φ

(
µ(C ∩B)

µ(B)

)
.

From this we deduce Hµ(ξ | α) ≥ Hµ(ξ | β). □

We now show that the limits (3.4) in Example 3.2 are always true if µ is ergodic.

Theorem 3.1 (Shannon–McMillan–Breiman) If µ ∈ Ier
T , then

(3.5) lim
n→∞

∫ ∣∣∣∣ 1n log µ(Cn(x)) + hµ(T, ξ)

∣∣∣∣ dµ = 0.

Proof Recall ξ(n,m) = T−nξ ∨ T−n−1ξ ∨ · · · ∨ T−mξ whenever n < m. We have

Iξ(0,n−1) = Iξ∨ξ(1,n−1) = Iξ(1,n−1) + Iξ|ξ(1,n−1) = Iξ(0,n−2) ◦ T + Iξ|ξ(1,n−1),

because CT−1η(x) = Cη(T (x)). Applying this repeatedly, we obtain

1

n
Iξ(0,n−1) =

1

n

[
Iξ|ξ(1,n−1) + Iξ|ξ(1,n−2) ◦ T + · · ·+ Iξ|ξ(1,2) ◦ T n−3 + Iξ|T−1ξ ◦ T n−2 + Iξ ◦ T n−1

]
If it were not for the dependence of Iξ|ξ(1,n−j) on n − j, we could have used the Ergodic

Theorem to finish the proof. However, if we can show that limm→∞ Iξ|ξ(1,m) = Î exists, say

in L1(µ)-sense, then we are almost done because we can replace Iξ|ξ(1,n−j) with Î with an
error that is small in L1-sense. We then apply the ergodic theorem to assert

lim
n→∞

1

n
Iξ(0,n−1) =

∫
Îdµ.
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Note that if we write Fη for the σ–algebra generated by η, then µ(Cξ(x)|Cη(x)) is nothing
other than

µ(Cξ | Cη)(x) =
∑
A∈ξ

µ(A | Fη)(x)11A(x),

i.e. the conditional expectation of the indicator function of the set Cξ, given the σ-field Fη.
Hence, we simply have

Î(x) = − log

{
lim
n→∞

∑
A∈ξ

µ(A | ξ(1, n))(x)11A(x)

}
= −

∑
A∈ξ

log
{
lim
n→∞

µ(A | ξ(1, n))(x)
}
11A(x).

This suggests studying limn→∞ µ(A | ξ(1, n)). The existence and interpretation of the limit
involve some probabilistic ideas. We may define F1,n to be the σ-algebra generated by the
partition ξ(1, n). We then have F1,2 ⊆ F1,3 ⊆ . . . and if F1,∞ is the σ-algebra generated by
all ξ(1, n)’s, then

(3.6) lim
n→∞

µ(A | ξ(1, n)) = µ(A | F1,∞),

µ-almost surely and in L1(µ)–sense. The right-hand side is the conditional measure of A
given the σ-algebra F1,∞. The proof of (3.6) follows the celebrated martingale convergence
theorem. We refer the reader to any textbook on martingales for the almost sure convergence.
For our purposes, we need something stronger, namely log µ(A | F1,n) → log µ(A | F1,∞) in
L1(µ). The proof of this will be carried out in Lemma 3.2 below. □

Lemma 3.2 Let F∞ be a σ-algebra, and let Fn be a family of σ-algebras with Fn ⊆ F∞,
and Fn ⊆ Fn+1 for all n. Then for any A ∈ F∞,∫

A

(
sup
n

(− log µ(A | F1,n))

)
dµ ≤ −µ(A) log µ(A) + µ(A),(3.7)

lim
n→∞

log µ(A | Fn) = log µ(A | F∞).(3.8)

Proof (3.9) is an immediate consequence of (3.6), (3.7), and the Lebesgue’s dominated
convergence. As for (3.7), pick ℓ > 0, and define

An =
{
x : µ (A | F1,n) (x) < e−ℓ, µ (A | F1,k) (x) ≥ e−ℓ for k = 1, 2, . . . , n− 1

}
,

then An ∈ F1,n and we can write

µ

{
x ∈ A : sup

n
(− log µ(A | F1,n)(x)) > ℓ

}
= µ (A ∩ ∪∞

n=1An) =
∞∑
1

µ(A ∩ An)

=
∞∑
1

∫
An

µ(A | F1,n)dµ ≤
∞∑
1

∫
An

e−ℓdµ = e−ℓ

∞∑
1

µ(An) ≤ e−ℓ.
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From this we deduce∫
A

(
sup
n

(− log µ(A | F1,n)) (x)

)
dµ =

∫ ∞

0

µ

{
x ∈ A : sup

n
(− log µ(A | F1,n)(x)) > ℓ

}
dℓ

≤
∫ ∞

0

min{µ(A), e−ℓ}dℓ = −µ(A) log µ(A) + µ(A).

This completes the proof of (3.7). □

Remark 3.1 The convergence n−1µ
(
Cn(x)

)
→ hµ(T, ξ) is also true µ-a.e. This can be

established with the aid of Corollary 1.2, when T is invertible. To see this, set

η(m,n) = Tmξ ∧ Tm+1ξ ∧ · · · ∧ T nξ,

and observe that since ξ(m,n) = T−nη(m,n), we can write

Iξ(0,n−1) = Iη(0,n−1) ◦ T n−1 =
[
Iξ|η(1,n−1) + Iξ|η(1,n−2) ◦ T−1 + · · ·+ Iξ ◦ T 1−n

]
◦ T n−1

= Iξ|η(1,n−1) ◦ T n−1 + Iξ|η(1,n−2) ◦ T n−2 + · · ·+ Iξ.

On the other hand, since
lim
n→∞

Iξ|η(1,n−1) = Ĩ ,

exists in L1(µ), with

Ĩ = −
∑
A∈ξ

log
(
µ
(
A | F+

∞
))

11A,

where F+
∞ denotes the s-algebra generated by all T iξ, i ∈ N, we can apply Corollary 1.2 to

establish the µ-a.e. convergence. □

The proof of Theorem 3.1 suggests an alternative formula for the entropy. In some sense
hµ(T, ξ) is the entropy of the “present” ξ relative to its “past” ξ(1,∞). To make this rigorous,
first observe that by Proposition 3.2(i),

(3.9) Hµ

(
ξ(0, n− 1)

)
=

n−1∑
j=1

Hµ

(
ξ | ξ(1, j)

)
where Hµ

(
ξ | ξ(1, 1)

)
means Hµ(ξ). In fact we have

Proposition 3.4 hµ(T, ξ) = infnHµ

(
ξ | ξ(1, n)

)
and the sequence Hµ

(
ξ | ξ(1, n)

)
is nonde-

creasing.
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Proof The monotonicity of the sequence an = Hµ

(
ξ | ξ(1, n)

)
follows from Proposition 3.2(iv).

We then use (3.9) to assert

lim
n→∞

1

n
Hµ(ξ(0, n− 1)) = lim

n→∞

1

n

n−1∑
1

Hµ(ξ | ξ(1, j))

= lim
n→∞

Hµ(ξ | ξ(1, n)) = inf
n
Hµ(ξ | ξ(1, n)).

□

We continue with some basic properties of the entropy.

Proposition 3.5 (i) hµ(T
k) = khµ(T ) and if T is invertible, then hµ(T ) = hµ(T

−1).

(ii) If θ ∈ [0, 1], µ⊥ν and µ, ν ∈ IT , then hθµ+(1−θ)ν(T ) = θhµ(T ) + (1− θ)hν(T ).

Proof(i) We have

k

nk
Hµ

(
nk−1∨

0

T−rξ

)
=

1

n
Hµ

(
n−1∨
j=0

(T k)−j(ξ ∨ T−1ξ ∨ · · · ∨ T−k+1ξ)

)
.

Hence khµ(T, ξ) = hµ(T
k, η) where η = ξ∨T−1ξ∨ · · ·∨T−k+1ξ. Since η ≥ ξ, we deduce that

khµ(T ) = hµ(T
k).

The claim hµ(T
−1) = hµ(T ) follows from the invariance of µ and the fact

ξ(0, n− 1) = ξ ∨ · · · ∨ T−n+1ξ = T−n+1(ξ ∨ · · · ∨ T n−1ξ).

(ii) Let A be such that µ(A) = 1, ν(A) = 0. Set B =
⋃∞

m=0

⋂
n≥m T

−n(A). We can readily
show that T−1B = B and that µ(B) = 1, ν(B) = 0. Set β = {B,X \ B} and given a
partition ξ, define ξ̂ = ξ ∨ β. If γ = θµ+ (1− θ)ν, then

(3.10) Hγ(ξ̂n) = θHµ(ξn) + (1− θ)Hν(ξn)− θ log θ − (1− θ) log(1− θ),

where ξn = ξ(0, n − 1) and ξ̂n = ξ̂(0, n − 1). To see this, observe that if C ∈ ξ̂n and
ϕ(z) = z log z, then

ϕ(γ(C)) =

{
θµ(C) log(θµ(C)) if C ⊆ B,

(1− θ)ν(C) log((1− θ)ν(C)) if C ⊆ X \B.

This clearly implies (3.10). Hence,

hγ(T, ξ̂) = θhµ(T, ξ) + (1− θ)hν(T, ξ).
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From this we deduce
hγ(T ) ≤ θhµ(T ) + (1− θ)hν(T ).

This and Exercise (viii) complete the proof. □

In practice, we would like to know whether hµ(T ) = hµ(T, ξ) for a partition ξ. In the
next theorem, we provide a sufficient condition for this.

Theorem 3.2 (i) Let ξ be a finite µ-partition and assume that the smallest σ-algebra con-
sisting of T−n(C), n ∈ N, C ∈ ξ, equals to the Borel σ-algebra. Then hµ(T ) = hµ(T, ξ).

(ii) If T is invertible, then in part (i), we only need to assume that the smallest σ-algebra
consisting of T n(C), n ∈ Z, C ∈ ξ, equals to the Borel σ-algebra.

As a preparation we prove an inequality.

Lemma 3.3 For every pair of finite partitions η and ξ we have

hµ(T, ξ) ≤ hµ(T, η) +Hµ(ξ | η).

Proof Recall ξ(m,n) = T−mξ ∨ · · · ∨ T−nξ. We certainly have

Hµ(ξ(0, n− 1)) ≤ Hµ(η(0, n− 1)) +Hµ(ξ(0, n− 1) | η(0, n− 1)).

We are done if we can show that Hµ(ξ(0, n − 1) | η(0, n − 1)) ≤ nHµ(ξ | η). Indeed using
Proposition 3.2(i), we can assert

Hµ(ξ(0, n− 1) | η(0, n− 1)) ≤ Hµ(ξ | η(0, n− 1)) +Hµ(ξ(1, n− 1) | η(0, n− 1) ∨ ξ)
≤ Hµ(ξ | η) +Hµ(ξ(1, n− 1) | η(1, n− 1))

≤ Hµ(ξ | η) +Hµ(T
−1ξ(0, n− 2) | T−1η(0, n− 2))

= Hµ(ξ | η) +Hµ(ξ(0, n− 2) | η(0, n− 2))

. . .

≤ nHµ(ξ | η).

□

Proof of Theorem 3.2 We only give a proof for part (i), because (ii) can be shown by
verbatim argument.

For a given partition η, we apply Lemma 3.1 to assert

(3.11) hµ(T, η) ≤ hµ(T, ξ ∨ · · · ∨ T−n+1ξ) +Hµ(η | ξ ∨ · · · ∨ T−n+1ξ).
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From the definition, it is not hard to see that indeed hµ(T, ξ ∨ · · · ∨ T−n+1ξ) = hµ(T, ξ).
From this and (3.11), it suffices to show that for every partition η,

(3.12) lim
n→∞

Hµ(η | ξ ∨ · · · ∨ T−n+1ξ) = 0.

To believe this, observe that if η ≤ α, then Hµ(η | α) = 0 because

Iη|α(x) = − log
µ(Cη(x) ∩ Cα(x))

µ(Cα(x))
= − log

µ(Cα(x))

µ(Cα(x))
= 0.

Now if the σ-algebra generated by all ξn = ξ∨· · ·∨T−n+1ξ, n ∈ N∗ is the full σ-algebra, then
η ≤ ξn at least asymptotically. We may prove this by the Martingale Convergence Theorem.
In fact if Fn is the σ-algebra generated by ξn, then

µ(Cη(x) | Cξn(x)) =
∑
A∈η

11A(x)µ(A | Fn)(x)

→
∑
A∈η

11A(x)µ(A | F∞)(x) =
∑
A∈η

11A(x)11A(x) = 1,

µ-a.e. By Lemma 3.1, the convergence is also true in L1(µ) sense because of the uniform
integrability. the This and (3.6) imply thatHµ(η | ξn) = −

∫
log µ(Cη(x) | Cξn(x))µ(dx) → 0,

which is simply (3.12). □

Example 3.3(i) Consider the dynamical system of Example 3.2. Let ξ be as in Example 3.2.
The condition of Theorem 3.2 is satisfied for such ξ and we deduce

hµp(T ) = −
m−1∑
0

pj log pj.

(ii) Consider a translation T (x) = x+α (mod 1) in dimension 1. If α ∈ Q, then Tm = identity
for some m ∈ N. This implies that hµ(T ) =

1
m
hµ(T

m) = 0 where µ is the Lebesgue measure.
If α is irrational, then set ξ = {[0, 1/2), [1/2, 1)}. By the denseness of {T−n(a) : n ∈ N}
for a = 0 and 1/2, we deduce that ξ satisfies the condition of Theorem 3.2. As a result,
hµ(T ) = hµ(T, ξ). On the other hand ξn := ξ ∨ · · · ∨ T−n+1ξ consists of 2n elements. To
see this, observe that if we already know that ξn has 2n elements, then as we go to ξn+1, we
produce two more elements because T n(0) and T n(1/2) bisect exactly two intervals in ξn.
From this and Exercise (vi), Hµ

(
ξ(0, n− 1)

)
≤ log(2n). As a result, hµ(T, ξ) = 0, which in

turn implies that hµ(T ) = 0. □

In fact we can show that the entropy of a translation is zero using the fact that the
topological entropy of a translation zero. More generally we always have the following
fundamental formula.
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Theorem 3.3 For any compact metric space X and continuous transformation T , we have

(3.13) htop(T ) = sup
µ∈IT

hµ(T ) = sup
µ∈Iex

T

hµ(T ).

Note that by the second equality in (3.13) is an immediate consequence of Proposi-
tion 3.4(ii).

Motived by the thermodynamics formalism in statistical mechanics, we may formulated
a variant of the variational problem (3.12) for which the maximizing measure if exists is a
variant of the SRB measure; it may be regarded as the analog of Gibbs Measures with respect
to the SRB measure. For this we need a variant of Definition 3.1:

Definition 3.4(i) Let (X, d) be a compact metric space and T : X → X and f : X → R be
two continuous functions. Define

Sn
T,d(r; f) = min

{∑
x∈A

enΦn(f)(x) : X =
⋃
x∈A

Bn
T,d(x, r)

}
,

Nn
T,d(r; f) = max

{∑
x∈A

enΦn(f)(x) : a, b ∈ A, a ̸= b =⇒ dn(a, b) > r

}
.

(ii) Given a continuous potential function f : X → R, its topological pressure Ptop(f ;T ) is
defined by

Ptop(f ;T ) = lim
r→0

lim sup
n→∞

1

n
logNn

T,d(r; f) = sup
r>0

lim sup
n→∞

1

n
logNn

T,d(r; f)

= lim
r→0

lim sup
n→∞

1

n
logSn

T,d(r; f) = sup
r>0

lim sup
n→∞

1

n
logSn

T,d(r; f).

The third equality is an immediate consequence of Proposition 3.6 below. Evidently, htop(T ) =
Ptop(0;T ). □

Proposition 3.6 For any continuous function f : X → R,

(3.14) Nn
T,d(2r; f)e

−ω(r)n ≤ Sn
T,d(r; f) ≤ Nn

T,d(r; f),

where ω(·) denotes the modulus of continuity of f . Moreover, Ptop

(
kΦk(f);T

k
)
= kPtop(f ;T )

for every k ∈ N.
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Theorem 3.4 For every continuous dynamical system (X,T ), and continuous function f ,

(3.15) Ptop(f, T ) = sup
µ∈IT

(∫
f dµ+ hµ(T )

)
.

Proof (Step 1) Let ξ = {C1, . . . , Cℓ} be a µ-partition. Pick ε > 0, and choose compact sets
K1, . . . , Kℓ with Kj ⊆ Cj such that µ(Cj\Kj) ≤ ϵ for j = 1, . . . , ℓ. Let K0 = X\K1∪· · ·∪Kℓ

and put η = {K0, K1, . . . , Kℓ}. Evidently η is a partition and

Hµ(ξ | η) = −
ℓ∑

i=1

ℓ∑
j=0

µ(Ci ∩Kj) log
µ(Ci ∩Kj)

µ(Kj)
= −

ℓ∑
i=1

µ(Ci ∩K0) log
µ(Ci ∩K0)

µ(K0)

= −µ(K0)
ℓ∑

i=1

µ(Ci ∩K0)

µ(K0)
log

µ(Ci ∩K0)

µ(K0)
≤ µ(K0) log ℓ ≤ ϵℓ log ℓ,

by Exercise (vi). From this and Lemma 3.2 we deduce,

(3.16) hµ(T, ξ) ≤ hµ(T, η) + εℓ log ℓ.

(Step 2) Set ηn = η(0, n− 1), and given A ∈ ηn, let

Mn(A) = sup
x∈A

Φn(f)(x).

We certainly have,

1

n
Hµ(ηn) +

∫
f dµ =

1

n
Hµ(ηn) +

∫
Φn(f) dµ ≤ 1

n

∑
A∈ηn

[
Mn(A)µ(A)− µ(A) log µ(A)

]
≤ 1

n
log

∑
A∈ηn

eMn(A).(3.17)

To bound the right-hand side, set

r0 =
1

2
min

{
dist(Ki, Kj) : i ̸= j, i, j ∈ {1, . . . , ℓ}

}
.

and choose r = r(ε) ∈ (0, r0) so that

d(x, y) < r =⇒ |f(x)− f(y)| < ε.

This in turn implies

(3.18) dn(x, y) < r =⇒
∣∣Φn(f)(x)− Φn(f)(y)

∣∣ < ε.
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Pick a set En(r) such that
∪x∈En(r)Bdn(x, r) = X.

Clearly a ball Bd(x, r) intersects at most two elements of η, one Kj with j ∈ {1, . . . , n} and
perhaps K0. We now argue that Bdn(x, r) intersects at most 2n elements of ηn. To see this,
observe

Bdn(x, r) = Bd(x, r) ∩ T−1
(
Bd(T (x), r)

)
∩ · · · ∩ T−n+1

(
Bd(T

n−1(x), r)
)
.

Also, if A ∈ ηn, then A = A0 ∩T−1(A1)∩ · · · ∩T−n+1(An−1) with Aj ∈ η. Now if Bdn(x, r)∩
A ̸= ∅, then T−j(Bd(T

j(x), r))∩T−j(Aj) ̸= ∅ for j = 0, . . . , n−1. Hence Bd(T
j(x), r)∩Aj ̸= ∅

for j = 0, . . . , n − 1. As a result, there are at most 2n-many choices for A. Recall that we
wish to bound Mn(A) with A ∈ ηn. Since A is covered by Balls

{
Bdn(x, r) : x ∈ En(r)|big},

we can find x(A) ∈ En(r) such that

Mn(A) =Mn

(
Bdn(x(A), r)

)
, A ∩Bdn(x(A), r) ̸= ∅.

By (3.18),

(3.19) Mn(A) =Mn

(
Bdn(x(A), r)

)
≤ Φn(f)(x(A)) + ε,

and since A ∩Bdn(x(A), r) ̸= ∅,

♯
{
A ∈ ηn : x(A) = x

}
≤ 2n,

for every x ∈ En(r). From this and (3.19) we deduce∑
A∈ηn

enMn(A) ≤ 2nenε
∑

x∈En(r)

enΦn(f)(x).

From this, and (3.17) we learn

1

n
Hµ(ηn) +

∫
f dµ ≤ log 2 + sup

r>0

1

n
logSn

T,d(r; f).

We now send n→ ∞ and use (3.16), to deduce

hµ(T, ξ) +

∫
f dµ ≤ Ptop(f ;T ) + εℓ log ℓ+ ε+ log 2.

Sending ε→ 0 yields

(3.20) hµ(T, ξ) +

∫
f dµ ≤ Ptop(f ;T ) + log 2.
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(Step 3) Taking supremum over partition ξ and invariant measure µ in (3.20) yields

(3.21) sup
µ∈IT

(
hµ(T ) +

∫
f dµ

)
≤ Ptop(f ;T ) + log 2.

This is half of (3.15) except for the term log 2 on the right-hand side. To get rid of log 2, we
replace T with Tm, and f with mΦm(f) in the equation (3.21):

sup
µ∈IT

(
hµ(T

m) +

∫
mΦm(f) dµ

)
≤ Ptop

(
mΦm(f);T

m
)
+ log 2.

From this, Proposition 3.6, and Proposition 3.4(i) we learn

sup
µ∈IT

(
hµ(T ) +

∫
f dµ

)
≤ Ptop(f ;T ) +

log 2

m
.

After sending m to infinity, we arrive at

(3.22) sup
µ∈IT

(
hµ(T ) +

∫
f dµ

)
≤ Ptop(f ;T ).

(Step 4) On account of (3.22), it remains to show

(3.23) Ptop(f ;T ) ≤ sup
µ∈IT

(
hµ(T ) +

∫
f dµ

)
.

For every r > 0, we may select a finite set En(r) such that

x, y ∈ En(r), x ̸= y =⇒ dn(x, y) ≥ r,

and
Zn(r) := Nn

T,d(r, f) =
∑

x∈En(r)

enΦn(f)(x).

To prove (3.23), it suffices to show that for every r > 0, there exists a partition ξ = ξ(r),
and an invariant measure µ̄ = µ̄r,f , such that

(3.24) lim sup
n→∞

1

n
logZn(r) ≤ hµ̄(T, ξ) +

∫
f dµ̄ = hµ̄(T, ξ) +

∫
Φn(f) dµ̄.

To find the measure µ̄, we first define

µn =
1

Zn(r)

∑
x∈En

enΦn(f)(x) δx.
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Now take a partition ξ, such that diamd(C) < r/2 for every C ∈ ξ, where diamd(C) denotes
the diameter of C with respect to the metric d. This implies that diamdn(C) < r/2 for every
C ∈ ξn = ξ ∨ · · · ∨ T 1−nξ. Hence,

x ∈ En(r), C ∈ ξn =⇒ ♯
(
En(r) ∩ C

)
∈ {0, 1}.

As a result,

(3.25) n−1Hµn(ξn) +

∫
Φn(f) dµn = n−1 logZn(r).

(Step 5) From a comparison of (3.25) and (3.24), we are tempted to choose µ̄ any limit
point of the sequence {µn}n∈N. This would not work because such a limit point may not be
an invariant measure. Moreover, the function Hµ(η) is not a continuous function of µ with
respect to the weak topology. To treat the former issue, we define

µ̂n =
1

n

n−1∑
0

T jµn,

where T ν = T♯ν as before. Equivalently∫
h dµ̂n =

1

n

n−1∑
0

∫
h(T j(x))µn(dx) =

1

nZn(r)

n−1∑
0

∑
x∈En

h(T j(x)) enΦn(f)(x),

for any continuous function h. Let us choose an increasing subsequence ni → ∞ such that

lim sup
n→∞

1

n
logZn(r) = lim

i→∞

1

ni

logZni
(r), and lim

i→∞
µ̂ni

=: µ̄ exists.

It is not hard to show that µ̄ ∈ IT because

Aµ̄− µ̄ = lim
n→∞

(Anµn − µn)/n = 0.

Pick a partition ξ such that diam(C) < r for every C ∈ ξ. We wish to use (3.25) to deduce
(3.24). To achieve this, pick k and m such that 0 ≤ k < m < n = ni and set a(k) =

[
n−k
m

]
so that we can write

{0, 1, . . . , n− 1} = {k + tm+ i : 0 ≤ t < a(k), 0 ≤ i < m} ∪R

with R = {0, 1, . . . , k − 1} ∪ {k + ma(k), k + ma(k) + 1, . . . , n − 1} =: R1 ∪ R2. Clearly
#R1 ≤ m, #R2 ≤ m. We then write

ξn =

a(k)−1∨
t=0

T−(tm+k)(ξ ∨ · · · ∨ T−m+1ξ) ∨
∨
i∈R

T−iξ.
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From Proposition 3.3(ii) and Exercise (iv) below we learn,

Hµn(ξn) ≤
a(k)−1∑
t=0

Hµn(T
−(tm+k)ξm) +

∑
i∈R

Hµn(T
−iξ)

=

a(k)−1∑
t=0

HT tm+kµn
(ξm) +

∑
i∈R

Hµn(T
−iξ)

≤
a(k)−1∑
t=0

HT tm+kµn
(ξm) + 2m log(#ξ).

This is true for every k. Hence

mHµn(ξn) ≤
m−1∑
k=0

a(k)−1∑
t=0

HT tm+kµn
(ξm) + 2m2 log(#ξ)

≤
n−1∑
j=0

HT jµn
(ξm) + 2m2 log(#ξ)

≤ nHµ̂n(ξm) + 2m2 log(#ξ),

where for the last inequality we used Exercise (viii) below. As a result,

1

n
Hµn(ξn) ≤

1

m
Hµ̂n(ξm) + 2

m

n
log(#ξ).

From this and ∫
Φn(f) dµn =

∫
f dµ̂n,

we learn
1

n
logZn(r) ≤

1

m
Hµ̂n(ξm) +

∫
f dµ̂n + 2

m

n
log(#ξ).

We now send n = ni to infinity to deduce

lim sup
n→∞

1

n
logZn(r) = lim

j→∞

1

nj

logZnj
(r) ≤ 1

m
Hµ̄(ξm) +

∫
f dµ̄,

provided that we have

(3.26) lim
i→∞

Hµ̂ni
(ξm) = Hµ̄(ξm),

for every m. We now send m to infinity to deduce (3.24). This completes the proof provided
that (3.26) holds.
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(Step 6) It remains to verify (3.26). For this we need to be more selective about the partition
ξ. We first would like to find a partition ξ = {C1 . . . Cℓ} such that diam(Cj) ≤ δ := r/2 for
j = 1, . . . , ℓ, and µ̄(∂Cj) = 0 where ∂Cj denotes the boundary of Cj. The construction of
such a partition ξ is straightforward. First, if Bd(x, a) is a ball of radius a, then we consider⋃{

∂Bd(x, a
′) : a− ϵ ≤ a′ ≤ a

}
,

to observe that there exists a′ ∈ (a − ϵ, a) such that µ̄(∂Bd(x, a
′)) = 0. From this, we

learn that we can cover X by finitely many balls Bj, j = 1, . . . , ℓ of radius at most δ
2

such that µ̄(∂Bj) = 0 for j = 1, . . . , ℓ. We finally define ξ = {C1 . . . Cℓ} by C1 = B̄1,

C2 = B̄2 \ B̄1, . . . , Cn = B̄n \
⋃n−1

j=1 B̄j. Since ∂Cj ⊆
⋃ℓ

k=1 ∂Bk, we are done. We now argue

that the partition ξn = ξ∨· · ·∨T−n+1ξ enjoys the same property; µ̄(∂C) = 0 if C ∈ ξn. This
is because ∂C ⊆

⋃
A∈ξ
⋃n−1

k=0 T
−j(∂A) and by invariance, µ̄(T−j(∂A)) = µ̄(∂A) = 0. For such

a partition we have (3.26) because by Exercise (ii) in Chapter 1, µn(A) → µ̄(A) for every
A ∈ ξm. □

Remark 3.2(i) Recall that µ 7→ hµ(T ) is concave (Exercise (vii)), and that f 7→ Ptop(f ;T )
is convex. Our Theorem 3.4 establishes a conjugacy between the entropy and the pressure.
If hµ(T ) is also upper semi-continuous, then we also have:

(3.27) hµ(T ) = inf
f∈C(X)

(
Ptop(f ;T )−

∫
f dµ

)
.

The upper semi-continuity also guarantees the existence of a maximizer in (3.15). According
to a result of Griffith and Ruelle, there exists a unique maximizer in (3.15) in the case of
Example 3.1(i) (provided that Ak has positive entries for some k ∈ N).

(ii) If we set

I(µ) = htop(T )− hµ(T ) = Ptop(0;T )− hµ(T ), P̂top(f ;T ) = Ptop(f ;T )− Ptop(0;T ),

then I is convex, and (3.15) and (??) can be rewritten as

(3.28) P̂top(f ;T ) = sup
µ∈IT

(∫
f dµ− I(µ)

)
, I(µ) = sup

f∈C(X)

(∫
f dµ− P̂top(f ;T )

)
.

In the case of the dynamical system
(
EZ, τ

)
, the functional I serves as the large deviation

rate function as was demonstrated by Donskar and Varadhan.
Assume X = EZ, with E = {0, 1, . . . ,m− 1}, as in Example 3.1(i). We also write ν for

the measure of maximum entropy, namely ν is a product measure such that ν|big{x : xi =
j
})

= m−1. Since any continuous function f can be approximated by local functions, and
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both sides of (3.15) are continuous functionals of f , we may assume that f is local without
loss of generality. That is, f(x) = g(x0, . . . , xk−1), for some function g : Ek → R. Clearly,

nΦn(f)(x) = g(x0, . . . , xk−1) + · · ·+ g(xn−1, . . . , xn+k−2).

Moreover, ∫
enΦn(f) dν = m−(n+k−1)

∑
(x0,...,xn+k−2)∈En+k−2

enΦn(f)(x).

Observe that if the metric d is as in Example 3.1(i), and A is a minimal set with the property

X = ∪x∈ABdn(x, r), with r = η−ℓ,

then any distinct pair x and x′ ∈ A must differ on {−ℓ, . . . , ℓ+n− 1}. We may assume that
all x ∈ A agree outside the set {−ℓ, . . . , ℓ + n − 1} to avoid a repetition in our covering by
dn-balls. Now if ℓ ≥ k, then for such a set A,∑

x∈A

enΦn(f)(x) = m2ℓ−k+1
∑

(x0,...,xn+k−2)∈En+k−2

enΦn(f)(x) = mn+2ℓ

∫
enΦn(f) dν.

From this we learn

Ptop(f ; τ) = logm+ lim
n→∞

∫
enΦn(f) dν.

Hence the first equation in (3.28) means

(3.29) lim
n→∞

1

n
log

∫
enΦn(f) dν = sup

µ∈Iτ

(∫
f dµ− I(µ)

)
.

This after some manipulation is an immediate consequence of Donskar-Varadhan large de-
viation principle (LDP). To explain this, we need some preparations.

Given x ∈ X, we build a n-periodic sequence xn from it by xni+rn = xi, for i ∈ {0, . . . , n−
1}, and r ∈ Z. Evidently, ∣∣Φn(f)(x)− Φn(f)(x

n)
∣∣ ≤ kmax |g|.

Moreover, if we set
µ̂x
n := µxn

n ,

then µ̂x
n ∈ Iτ , and

Φn(f)(x
n) =

∫
f dµ̂x

n.

Hence, for n ≥ ℓ,

log
∑
x∈E

enΦn(f)(x) = log
∑
x∈E

enΦn(f)(xn) +O(k)
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Because of this, (3.29) is equivalent to the statement

(3.30) lim
n→∞

1

n
log

∫
en

∫
f dµ̂x

n ν(dx) = sup
µ∈Iτ

(∫
f dµ− I(µ)

)
.

In fact what Donskar-Varadhan LDP entails to a stronger statement, namely for and con-
tinuous function F : IτR,

(3.31) lim
n→∞

1

n
log

∫
enF (µ̂x

n) ν(dx) = sup
µ∈Iτ

(F (µ)− I(µ)) ,

which is the same as (3.30) when F is linear. It turns out that if (3.31) is true for all
continuous functions F , then roughly speaking,

ν ({x : µ̂x
n is near µ}) ≈ e−nI(µ).

As we saw before, if we choose choose ξ =
{
A0, . . . , Am−1

}
, with Ai = {ω : ω0 = i}, then

hµ(τ) = hµ(τ, ξ). Since ν(A) = m−n, for every A ∈ ξn := ξ(0, n− 1), we deduce

I(µ) = logm− hµ(τ, ξ) = lim
n→∞

1

n

∑
A∈ξn

µ(A) log
µ(A)

µ̄(A)
.

Indeed if we write Fn for the σ-algebra generated by ξn, and write hn for the Radon-Nikodym
derivative dµ

dν
for the restriction of ν and µ to Fn, then

I(µ) = lim
n→∞

1

n
HFn

(
µ|µ̄
)
.

when

HFn

(
µ|ν
)
=

∫
hn log hn dν,

represents the relative entropy of µ with respect to µ̄ in Fn. We refer to [R] for more details.

(iii) If X is a manifold with a volume measure m, then there exists a unique µ̄ = µSRB ∈ IT

such that htop(T ) = hµ̄(T ), and if I(µ) = htop(T ) − hµ(T ) = hµ̄(T ) − hµ(T ), then, we still
have a LDP with rate I as in part (ii). □

Example 3.5 Consider T : T2 → T2, Tx = Ax (mod 1) with A an integer matrix with
detA = 1. We assume that A is symmetric and its eigenvalues λ1, λ2 = λ−1

1 satisfy |λ1| >
1 > |λ2|. We claim that if µ is the Lebesgue measure, then hµ(T ) ≥ log |λ1|. In case of

T =

[
2 1
1 1

]
, we can use our result htop(T ) ≤ log |λ1| from Example 3.6 to conclude that in

fact hµ(T ) = htop(T ) = log |λ1|.
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For hµ(T ) ≥ log |λ1|, observe that by the invariance of µ with respect to T , Hµ(T
−nξ ∨

· · · ∨T nξ) = Hµ(ξ ∨ · · · ∨T−2nξ). Hence it suffices to study limn→∞
1
2n
Hµ(T

−nξ ∨ · · · ∨T nξ).
For estimating this, we show that the area of each C ∈ ηn = T−nξ∨· · ·∨T nξ is exponentially
small. This is achieved by showing that diam(C) = O(|λ1|−n). For example, let us choose
ξ = {Z0, . . . , Z4} where Zi’s are the rectangles of Example 3.6. It is not hard to see that if
the side lengths of Zi’s are all bounded by a constant c, then ηn consists of rectangles with
side lengths bounded by cλ−n

1 . Hence µ(A) ≤ c2λ2n1 for every A ∈ ηn.
This evidently implies that 1

2n
Hµ(ηn) ≥ log |λ1| + o(1), and as n → ∞ we deduce that

hµ(T ) ≥ log |λ1|. □
We finish this Chapter with a variant of the entropy that was defined by Katok.

Definition 3.5 Given r, δ > 0, we define Sn
T,d(r, δ) to be the smallest k such that there exists

a set E with #E = k and µ
(⋃

x∈E B
n
T,d(x, r)

)
> 1− δ. We then define

ĥµ(T ) = lim
δ→0

lim
r→0

lim sup
n→∞

1

n
logSn

T,d(r, δ).

□
Evidently ĥµ(T ) ≤ htop(T ). Moreover,

Theorem 3.5 (Katok) For every ergodic µ ∈ IT , we have hµ(T ) ≤ ĥµ(T ).

Proof Given a partition ξ =
{
C1, . . . , Cℓ

}
, build a partition η+

{
K0, K1, . . . , Kℓ

}
as in Step

1 of the proof of Theorem 3.4, so that (3.13) holds. Recall that by Theorem 3.1,

lim
n→∞

1

n
log µ(Cn(x)) = −hµ(T, η)

in L1-sense, when Cn(x) = Cηn(x). Pick ε
′ > 0 and choose a subsequence {nj : j ∈ N} such

that if

XN =

{
x ∈ X :

1

nj

log µ(Cnj
(x)) ≤ −hµ(T, η) + ε′ for nj > N

}
,

then µ(XN) → 1 as N → ∞. Pick δ > 0, and find N such that µ(XN) > 1− δ. Let

r =
1

2
min

{
dist(Ki, Kj) : i ̸= j, i, j ∈ {1, . . . , ℓ}

}
.

As in Step 2 of the proof of Theorem 3.4, a ball Bdn(x, r) intersects at most 2n elements of
ηn. Now assume that µ

(⋃
x∈E Bdn(x, r)

)
> 1− δ. We would like to bound #E from below.

First observe

1− 2δ ≤ µ

(⋃
x∈E

Bdn(x, r) ∩XN

)
≤
∑
x∈E

µ
(
Bdn(x, r) ∩XN

)
=

∑
x∈E

∑
A∈ηn

µ
(
Bdn(x, r) ∩XN ∩ A

)
.
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But if Bdn(x, r) ∩XN ∩ A ̸= ∅ for n = nj > N , then

µ
(
Bdn(x, r) ∩XN ∩ A

)
≤ µ(A) ≤ e−n(hµ(T,η)−ε′).

As a result,
1− 2δ ≤ 2ne−n(hµ(T,η)−ε′)(#E).

Hence

hµ(T, η) ≤ lim sup
nj→∞

1

nj

logS
nj

T,d(r, δ) + ε′ + log 2.

From this we deduce that hµ(T, η) ≤ ĥµ(T ) + ε′ + log 2. From this and (3.13) we learn that

hµ(T, ξ) ≤ ĥµ(T ) + εℓ log ℓ + ε′ + log 2. By sending ε, ε′ → 0 and taking supremum over ξ
we deduce

(3.32) hµ(T ) ≤ ĥµ(T ) + log 2.

We wish to modify (3.32) by getting rid of log 2. To achieve this, we would like to replace
T with Tm in the equation (3.32). A repetition of the proof of Proposition 3.2(iii) yields
1
m
ĥµ(T

m) = ĥµ(T ). If µ ∈ Ier
Tm , then we will have

hµ(T ) =
1

m
hµ(T

m) ≤ 1

m
ĥµ(T

m) +
log 2

m
= ĥµ(T ) +

log 2

m
,

which is desirable because of the factor m−1 in front of log 2; this factor goes to 0 in large
m limit. However, it is possible that µ ∈ Ier

T \ Ier
Tm . If this is the case, then we may apply

Exercise (viii) of Chapter 1, to assert that if m a prime number, then all Tm invariant sets
come from a finite partition ζ with exactly m elements. This suggests replacing the partition
η with η̂ = η ∧ ζ so that we still have

lim
n→∞

n−1 log µ
(
Ĉn(x)

)
= −hη̂(µ),

where Cn(x) = Cη̂n(x), and η̂n = η ∧ T−mη̂ ∧ · · · ∧ Tm(1−n)η̂. Here we are using the fact that
the ergodic theorem is applicable because the limit is constant on members of the partition
ζ. Repeating the above proof for Tm, we can only assert that Bd(x, r) can intersect at most
2m elements of η̂, and that Bdn(x, r) can interest at most (2m)n elements of η̂n. This leads
to the bound

hµ
(
Tm, ξ) ≤ ĥµ(T

m) + εℓ log ℓ+ ε′ + log(2m),

which in turn yields
hµ(T ) ≤ ĥµ(T ) +m−1 log(2m),

for every prime number m. We arrive at hµ(T ) ≤ ĥµ(T ), by sending m to infinity. □
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Remark 3.3 Theorem 3.4 provides us with a rather local recipe for calculating the en-
tropy. It turns out that there is another local recipe for calculating the entropy that is
related to ĥµ(T ). A theorem of Brin and Katok[BK] asserts that if µ ∈ IT is ergodic, then
1
n
log µ(Bdn(x, r)) approximates hµ(T ). More precisely,

hµ(T ) = lim
r→0

lim sup
n→∞

[
− 1

n
log µ(Bdn(x, r))

]
for µ-almost all x. □

Exercises

(i) Let F : X → Y be a continuous function with F (X) = Y . Let T : X → X, T ′ : Y → Y
be continuous and F ◦ T = T ′ ◦ F . show that htop(T

′) ≤ htop(T ).

(ii) Let (X1, d1), (X2, d2) be two compact metric spaces and let Ti : Xi → Xi, i = 1, 2 be
two continuous functions. show that htop(T1 × T2) = htop(T1) + htop(T2).
Hint: For T = T1 × T2 and a suitable choice of a metric d for X1 ×X2, show that

Sn
T,d(r) ≤ Sn

T1,d1
(r)Sn

T2,d2
(r), Nn

T,d(r) ≥ Nn
t,d1

(r1)N
n
T,d2

(r2).

(iii) Let A be as in Example 3.1(v). show that r(A) = 3+
√
5

2
.

(iv) Show that if τm denotes the shift map of Example 3.1(ii) or (iv) on m many sym-
bols, then τ km may be regarded as a shift map on a set of mk many symbols. (Define a
homeomorphism F : X → X̂,

X = {0, . . . ,m− 1}Z, X̂ =
(
{0, . . . ,m− 1}k

)Z
,

such that F ◦ τ km = τ̂ ◦ F , where τ̂ denotes the shift operator on X̂.) Use this to show that
if h(m) = htop(τm), then h(m

k) = kh(m).

(v) According to the Perron-Frobenius Theorem, for any matrix A with non-negative entries
we can find an nonnegative eigenvalue with a corresponding nonnegative eigenvector. Use
this theorem to show that the matrix A in Example 3.1(iv) has a real eigenvalue λ ≥ 1. For
such a matrix A, what is necessary and sufficient condition for this eigenvalue to be 1?

(vi) If ξ has m elements, then 0 ≤ Hµ(ξ) ≤ logm.

(vii) If α ≤ β, then Hµ(α) ≤ Hµ(β) and hµ(T, α) ≤ hµ(T, β).

(viii) If µ1, µ2 ∈ IT and θ ∈ [0, 1], then

Hθµ1+(1−θ)µ2(ξ) ≥ θHµ1(ξ) + (1− θ)Hµ2(ξ),

hθµ1+(1−θ)µ2(T, ξ) ≥ θhµ1(T, ξ) + (1− θ)hµ2(T, ξ),

hθµ1+(1−θ)µ2(T ) ≥ θhµ1(T ) + (1− θ)hµ2(T ).
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(ix) (Rokhlin Metric) Define d(η, ξ) = Hµ(η | ξ) +Hµ(ξ | η). Show that d is a metric on the
space of µ-partitions.

(x) We say that the matrix A in Example 3.1(iv) is irreducible and aperiodic or primitive
if An0 has positive entries for some n0 ∈ N. In the case of a primitive A, Perron-Frobenius
Theorem asserts that the largest eigenvalue λ > 1 of A is of multiplicity 1 and the corre-
sponding right and left eigenvectors ur and uℓ can be chosen to have positive components.
We may assume that ur · uℓ = 1. Define measure µ on XA with the following recipe:

µ
(
XA ∩

{
ω : ω1 = α1, . . . , ωk = αk

})
= π(α1)

k−1∏
i=1

p(αi, αi+1),

where

π(i) = uℓiu
r
i , p(i, j) =

aiju
r
j

λuri
.

Show that the measure µ is well-defined and is invariant for τ . Show

hµ(T ) = −
m−1∑
i,j=0

π(i)p(i, j) log p(i, j) = log λ.

(xi) Work out the measure µ of part (x) in the case of Example 3.1(v).

(xii) Show that Ptop(f ;T ) is convex in f .

(xiii) Verify Proposition 3.6.

(xiv) Verify
sup
x∈M

(
x · a−H(x)

)
= P (a),

where M is the set of vectors x = (x1, . . . , xd) with xi ≥ 0, and x1 + · · ·+ xk = 1, and

H(x) =
k∑

i=1

xi log xi, P (a) = log
k∑

i=1

eai .

More generally show

sup
h

(∫
hf dν −H(h)

)
= P (f),

where the supremum is over probability densities h ≥ 0,
∫
h dν = 1, and

H(h) =

∫
h log h dν, P (f) = log

∫
ef dν.

□
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4 Lyapunov Exponents

For the expanding map of Examples 3.1(iii) and 3.3(i),and Arnold’s map of Example 3.4
we saw that the entropy was indeed the logarithm of the expansion rate. In this chapter, we
learn how to define the exponential rates of expansions and contractions of a transformation
with respect to its invariant measures. These rates are called the Lyapunov Exponents, and
can be used to bound the entropy. In fact for the so-called hyperbolic dynamical system, the
entropy can be expressed as the sum of positive Lyapunov exponents by Pesin’s formula.
In general an inequality of Ruelle implies that the entropy is bounded above by the sum of
positive Lyapunov exponents.

Consider a transformation T : X → X where X is a compact C1 manifold and T is a
C1 transformation. We also assume that M is a Riemannian manifold. This means that
for each x there exists an inner product ⟨·, ·⟩x and (an associated norm | |x) that varies
continuously with x. To study the rate of expansion and contraction of T , we may study(
dT n

)
x
: TxX → TTn(x)X. We certainly have

(4.1)
(
dT n

)
x
= (dT )Tn−1(x) ◦ · · · ◦ (dT )T (x) ◦ (dT )x.

If we write A(x) = (dT ) : TxX → TT (x)X, then (4.1) can be written as

(4.2) An(x) :=
(
dT n

)
x
= A(T n−1(x)) ◦ · · · ◦ A(T (x)) ◦ A(x).

Here we are interested in the long time behavior of the dynamical system associated with
dT : T X → T X that is defined by dT (x, v) = (T (x), (dT )x(v)) = (T (x), A(x)v).

The formula (4.1) suggests an exponential growth rate for
(
dT n

)
x
. Let us examine some

examples first.

Example 4.1(i) Consider the dynamical system T : Td → Td that is given by T (x) =
Ax (mod 1), where A is a d × d matrix. Identifying T Td with Td × Rd, we learn that
A(x) = A is constant and An(x) = An. We may use a Jordan normal form to express A as
a diagonal block matrix. More precisely, we can express

(4.3) Rd = G1 ⊕ · · · ⊕Gq,

where each Gj corresponds to an eigenvalue λj of A and rj = dimGj represents the multi-
plicity of λj. If λj is complex, we use the same Gj for both λj and its complex conjugate, and
rj is twice the multiplicity. For real λj, the space Gj is the generalized eigenspace associated
with λj:

Gj =
{
v ∈ Rd : (A− λj)

rv = 0 for some r ∈ N
}
.

In the case of a complex pair of eigenvalues αj ± iβj, the space Gj is spanned by real and
imaginary parts of the generalized eigenvectors. In the case of real λj, the restriction of the
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map x 7→ Ax to Gj has a diagonal block matrix representation, with each block of the form

A′ =


λj 0 . . . 0 0
1 λj . . . 0 0
...

...
...

0 0 . . . 1 λj


In the case the complex eigenvalue αj ± iβj, in A

′ we replace λj by the 2× 2 matrix

Rj =

[
αj −βj
βj αj

]
and the 1’s below the diagonal are replaced by the 2× 2 identity matrix. For our purposes,
we would like to replace the off-diagonal entries with some small number δ. (When A′ is
ℓ× ℓ, we make the change of coordinates (x1, . . . , xℓ) 7→

(
δ−1x1, . . . , δ

−ℓxℓ
)
.) From this, it is

not hard to show (
|λj| − δ

)n|v| ≤ |Anv| ≤
(
|λj|+ δ

)n|v|.
By sending δ to 0 we learn that for v ∈ Gj \ {0},

(4.4) lim
n→∞

1

n
log |Anv| = log |λj|.

(ii) Consider a dynamical system (X,T ), with X a smooth Riemmanian manifold of dimen-
sion d. Let us take a fixed point a of T so that A = A(a) = (dT )a and An(a) = An map
TaX to itself. We may identify TaX with Rd and represent A as a d× d matrix. Using the
decomposition of Part (i), and (4.4), we deduce that for v ∈ Gj \ {0},

lim
n→∞

1

n
log |An(a)v| = log |λj|.

(iii) Let us now assume that T : X → X is a diffeomorphism, and the orbit associated with
a is periodic of period N . This means that TN(a) = a and

(
dTN)a maps TaX to itself. If

we write n = mN + r with m ∈ N and r ∈ {0, . . . , N − 1}, Then we have An(a) = C ◦ Bm,
where

B =
(
dTN)a = A

(
TN−1(a)

)
◦ · · · ◦ A(a),

C =

{
A
(
T r−1(a)

)
◦ · · · ◦ A(a) for r > 0,

I for r = 0.

From this, we learn
c−1
0 |Bmv| ≤ |An(a)v| ≤ c0|Bmv|,
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for c0 =
(
max(1, ∥A∥)

)N−1
. We use the generalized eigenspaces ofB to decompose TaX ≡ Rd

as in(4.4). We now have that for v ∈ Gj \ {0},

lim
n→∞

1

n
log |An(a)v| = 1

N
log |λj|,

where λj is an eigenvalue of B. □

As a preparation for the definition of Lyapunov exponents, let us observe that if we set
Sn(x) = log ∥An(x)∥, then S0 = 0 and

(4.5) Sn+m(x) ≤ Sn(x) + Sm(T
n(x)),

by (4.2). The following theorem guarantees the existence of the largest Lyapunov exponent.
This theorem is an immediate consequence of the Kingman’s subadditive ergodic theorem.

Theorem 4.1 Let T be a diffeomorphism and assume that µ ∈ Iex
T . Then there exists ℓ ∈ R

such that

lim
n→∞

1

n
log
∥∥(dT n

)
x

∥∥ = ℓ,

for µ-almost all x.

Proof 4.1 On the account of Theorem 1.6, we only need to show ℓ ̸= −∞. Clearly,

id =
(
dT−n

)
Tn(x)

(
dT n

)
x
, 1 ≤

∥∥∥(dT−n
)
Tn(x)

∥∥∥∥∥(dT n
)
x

∥∥ .
On the other hand, if we write

α := sup
x

∥∥(dT−1
)
x

∥∥ ,
then ∥∥∥(dT−n

)
Tn(x)

∥∥∥ =
∥∥∥(dT−1

)
x
◦ . . .

(
dT−1

)
Tn−1(x)

◦
(
dT−1

)
Tn(x)

∥∥∥ ≤ αn.

Hence
∥∥(dT n)x

∥∥ ≥ α−n which implies that ℓ ≥ − logα. □

We now state the Oseledets Theorem that guarantees the existence of a collection of
Lyapunov exponents.

Theorem 4.2 Let T : X → X be a C1-diffeomorphism with dimX = d and let µ ∈ Iex
T .

Let A be a measurable function such that A(x) : TxX → TT (x)X is linear for each x and
log+ ∥A(x)∥ ∈ L1(µ). Define An(x) = A(T n−1(x)) ◦ · · · ◦ A(T (x)) ◦ A(x). Then there exists
a set X ′ ⊆ X with µ(X ′) = 1, numbers l1 < l2 < · · · < lk and n1, . . . , nk ∈ N with
n1 + · · ·+ nk = d, and a linear decomposition TxX = E1

x ⊕ · · · ⊕ Ek
x with x 7→ (E1

x, . . . , E
k
x)

measurable such that

lim
n→∞

1

n
log |An(x)v| = lj

for x ∈ X ′ and v ∈ F j
x \ F j−1

x , where F j
x := E1

x ⊕ · · · ⊕ Ej
x.
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Example 4.2(i) Let T : Td → Td be a translation. Then dT n = id and the only Lyapunov
exponent is zero.

(ii) Let T : Tm → Tm be given by T (x) = Ax (mod 1) with A a matrix of integer entries. Let
λ1, . . . , λq denote the eigenvalues of A. Let l1 < l2 < · · · < lk be numbers with {l1, . . . , lk} =
{log |λ1|, . . . , log |λq|}. We also write nj for the sum of the multiplicities of eigenvalues λi with
log |λi| = lj. The space spanned by the corresponding generalized eigenvectors is denoted by
Ej. We certainly have that if v ∈ Ej then limn→∞

1
n
log |Anv| = lj.

(iii) If a ∈ X is a periodic point of period N , then µ = N−1
∑N−1

j=0 δT j(a) is an er-
godic invariant measure. In this case the Oseledets Theorem follows from our discus-
sion in Example 4.1(iii). Indeed if λ1, . . . , λq denote the eigenvalues of B = (dTN)a,
then ℓ1 < · · · < ℓk are chosen so that {ℓ1, . . . , ℓk} = {N−1 log |λ1|, . . . , N−1 log |λq|} and
Ej

a = ⊕i{Vi : N−1 log |λi| = ℓj} where Gi = {v ∈ TaM ; (A(a)− λi)
rv = 0 for some r} is the

generalized eigenspace associated with λi.

(iv) When d = 1, Theorem 4.3 (or 4.1) is an immediate consequence of the Ergodic Theorem
and the only Lyapunov exponent is l1 =

∫
log |A(x)| µ(dx). □

Remark 4.1(i) The identity An(T (x))A(x)v = An+1(x)v implies

A(x)F j
x ⊆ F j

T (x),

for j = 1, . . . , k. By invertiblity, we can also show that

A(x)F j
x ⊇ F j

T (x).

(ii) By Ergodic Theorem,

1

n
log | detAn(x)| =

1

n

n−1∑
0

log | detA(T j(x))| →
∫

log | det(dT )x| dµ,

As we will see later, ∫
log | det(dT )x|dµ =

k∑
1

njlj.

(iii) Theorem 4.1 allows us to determine the largest Lyapunov exponent, whereas Part (ii)
offers a way of getting the sum (with multiplicity) of all Lyapunov exponents. A combination
of both ideas will be used to obtain all Lyapunov exponents by studying the norm of the
exterior powers of An, which involves the determinant of submatrices of An. □
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(iii) It turns out that the most challenging part of Theorem 4.3 is the existence of the limit.
Indeed if we define

l(x, v) = lim sup
n→∞

1

n
log |An(x)v|,

then we can show that as in Theorem 4.3 there exists a splitting TxX = E1
x ⊕ · · · ⊕Ek

x with
l(x, v) = lj for v ∈ Fj(x). □

Proof of Theorem 4.3 for d = 2 We only prove Theorem 4.3 when A = dT . The proof
of general case is similar. By Theorem 4.1, there exist numbers l1 and l2 such that if

X0 =

{
x : lim

n→∞

1

n
log
∥∥(dT n)x

∥∥ = l2, lim
n→∞

1

n
log
∥∥(dT−n)x

∥∥ = −l1
}

then µ(X0) = 1. Evidently |Anv|2 = ⟨A∗
nAnv, v⟩ = |Bnv|2 where Bn = (A∗

nAn)
1/2. Clearly

A∗
nAn ≥ 0 and Bn is well-defined. Since Bn ≥ 0, we can find numbers µn

2 (x) ≥ µn
1 (x) ≥ 0 and

vectors an1 (x), a
n
2 (x) such that |an1 | = |an2 | = 1, ⟨an1 , an2 ⟩x = 0 and Bna

n
j = µn

j a
n
j for j = 1, 2.

Note that since ∥An(x)∥ = ∥Bn(x)∥,

(4.6) l2 = lim
n→∞

1

n
log µn

2 .

To obtain a similar formula for l1, first observe that(
dT n

)
T−n(x)

(
dT−n

)
x
= id ⇒ A−n(x) :=

(
dT−n

)
x
=
(
An

(
T−n(x)

))−1
.

If we set S−n(x) = log ∥A−n(x)∥ and Rn(x) = log ∥An(x)
−1∥ then both {S−n(x) : n ∈ N}

and {Rn(x) : n ∈ N} are subadditive;

S−n−m ≤ S−n ◦ T−m + S−m, Rn+m ≤ Rn ◦ Tm +Rm.

Clearly,

−l1 = lim
n→∞

1

n
S−n = inf

n

1

n

∫
S−n dµ, l̂ = lim

n→∞

1

n
Rn = inf

n

1

n

∫
Rn dµ.

Since S−n = Rn ◦ T−n, we have
∫
Rn dµ =

∫
S−n dµ. This in turn implies that l̂ = −l1. As

a result,

−l1 = lim
n→∞

1

n
log ∥A−1

n ∥ = lim
n→∞

1

n
log ∥A∗−1

n ∥.

(Recall that ∥A∥ = ∥A∗∥.) We then have

−l1 = lim
n→∞

1

n
log ∥(A∗

nAn)
−1/2∥ = lim

n→∞

1

n
log ∥B−1

n ∥(4.7)

= − lim
n→∞

1

n
log(µn

1 ∧ µn
2 ) = − lim

n→∞

1

n
log µn

1 .
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Naturally we expect E2
x to be the limit of the lines {tan2 : t ∈ R} as n → ∞. For this

though we need to assume that l1 < l2. To see this, let us first estimate |an+1
2 (x) − an2 (x)|.

We may assume that ⟨an+1
2 , an2 ⟩x ≥ 0 for all n. Indeed if this is true for all n < m but

⟨am+1
2 , am2 ⟩x < 0, replace am+1 with −am+1.
We certainly have

|an+1
2 − an2 |2 = 2− 2⟨an+1

2 , an2 ⟩, 1 = |an+1
2 |2 = ⟨an+1

2 , an1 ⟩2 + ⟨an+1
2 , an2 ⟩2.

From this and the elementary inequality 1− z2 ≤
√
1− z2, we learn

|an+1
2 − an2 |2 = 2− 2(1− ⟨an+1

2 , an1 ⟩2)1/2 ≤ 2⟨an+1
2 , an1 ⟩2

= 2⟨Bn+1a
n+1
2 /µn+1

2 , an1 ⟩2 = 2(µn+1
2 )−2⟨an+1

2 , Bn+1a
n
1 ⟩2

≤ 2(µn+1
2 )−2|Bn+1a

n
1 |2 = 2(µn+1

2 )−2|An+1a
n
1 |2

= 2(µn+1
2 )−2|A(T n(x))An(x)a

n
1 (x)|2 ≤ 2(µn+1

2 )−2c0|An(x)a
n
1 (x)|2

= 2(µn+1
2 )−2c0|Bna

n
1 |2 = 2c0(µ

n+1
2 /µn

1 )
−2

for c0 = maxx ∥A(x)∥. From this, (4.6) and (4.7) we deduce

lim sup
n→∞

1

n
log |an+1

2 − an2 | ≤ −(l2 − l1).

Let us now assume that l2 − l1 > δ > 0. We then have that for constants c1, c2,

|an+1
2 − an2 | ≤ c1e

−δn, |an+r
2 − an2 | ≤ c2e

−δn

for all positive n and r. As a result, limn→∞ an2 = b2 exists for x ∈ X and

|an2 − b2| ≤ c2e
−δn

for all n. This being true for all δ ∈ (0, l2 − l1), means

(4.8) lim sup
n→∞

1

n
log |an2 − b2| ≤ −(l2 − l1).

We now define Ex
2 = {tb2(x) : t ∈ R}. To show that limn→∞

1
n
log |An(x)b2(x)| = l2, observe

|Anb2| ≤ |Ana
n
2 |+ |An(a

n
2 − b2)| ≤ |Bna

n
2 |+ ∥An∥|an2 − b2| = µn

2 + ∥An∥|an2 − b2|,
|Anb2| ≥ |Ana

n
2 | − |An(a

n
2 − b2)| ≥ |Bna

n
2 | − ∥An∥|an2 − b2| = µn

2 − ∥An∥|an2 − b2|
From this and (4.6)-(4.8) we deduce

lim sup
n→∞

1

n
log |Anb2| ≤ max

(
lim sup
n→∞

1

n
log µn

2 , lim sup
n→∞

1

n
log
(
∥An∥|an2 − b2|

))
≤ max(l2, l1) = l2,

l2 = lim
n→∞

1

n
log µn

2 ≤ max

(
lim inf
n→∞

1

n
log |Anb2|, lim sup

n→∞

1

n
log
(
∥An∥|an2 − b2|

))
≤ max

(
lim inf
n→∞

1

n
log |Anb2|, l1

)
.

84



From this we can readily deduce

lim
n→∞

1

n
log |An(x)b2| = l2,

for x ∈ X.
To find Ex

1 , replace T with T−1 in the above argument. This completes the proof when
l1 ̸= l2.

It remains to treat the case l1 = l2. We certainly have

|Anv|2 = |Bnv|2 = ⟨v, an1 ⟩2(µn
1 )

2 + ⟨v, an2 ⟩2(µn
2 )

2.

Hence
µn
1 |v| ≤ |Anv| ≤ µn

2 |v|.
We are done because lim 1

n
log µn

2 = lim 1
n
log µn

1 = l1 = l2. □

From (4.6) and (4.7) we learned that when d = 2, we may use the eigenvalues of the
matrix

(4.9) Λn(x) =
(
An(x)

∗ ◦ An(x)
) 1

2n = Bn(x)
1
n : TxX → TxX,

to find the Lyapunov exponents. In fact the same is true in any dimension. To explain this,
observe that

lim
n→∞

1

n
log detBn(x) = lim

n→∞

1

n
log
∣∣ detAn(x)

∣∣,
should yield a way of getting the sum of all Lyapunov exponents. In dimension 2, and
when there are two Lyapunov exponents, we can use the determinant to get our hand on l1,
because by Theorem 4.1 we already have a candidate for l2. To generalize this idea to higher
dimension, we use the notion of the exterior power of a linear transformation and a vector
space.

Definition 4.1(i) Given a vector space V , its r-fold exterior power ∧rV is a vector space
consisting of

∧rV =
{
v1 ∧ · · · ∧ vr : v1, . . . , vr ∈ V

}
.

By convention, v1∧· · ·∧vr = 0 if v1, . . . , vr are not linearly independent. The wedge product
is characterized by two properties: it is multilinear and alternative. By the former we mean
that for all scalers c and c′,

(cv1 + c′v′1) ∧ v2 ∧ · · · ∧ vr = c(v1 ∧ v2 ∧ · · · ∧ vr) + c′(v′1 ∧ v2 ∧ · · · ∧ vr).

By the latter we mean that interchanging two vectors in a = v1 ∧ · · · ∧ vr changes the sign
of a. If {e1, . . . , ed} is a basis for V , then

{ei1,i2,...,ir := ei1 ∧ · · · ∧ eir : ir < · · · < ir} ,
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is a basis for ∧rV . In particular dim∧rV =
(
d
r

)
.

(ii) If ⟨·, ·⟩ is an inner product on the vector space V , then we equip ∧rV with the inner
product

⟨v1 ∧ · · · ∧ vr, v′1 ∧ · · · ∧ v′r⟩ = det
[
⟨vi, v′j⟩

]r
i,j=1

.

The quantity

∥v1 ∧ · · · ∧ vr∥2 = ⟨v1 ∧ · · · ∧ vr, v1 ∧ · · · ∧ vr⟩ = det
[
⟨vi, vj⟩

]r
i,j=1

,

represents the r-dimensional volume of the parallelepiped generated by vectors v1, . . . , vr.

(iii) Let V and V ′ be two vector spaces and assume that A : V → V ′ is a linear transforma-
tion. We define

∧rA : ∧rV → ∧rV ′,

by
∧rA(v1 ∧ · · · ∧ vr) = (Av1) ∧ · · · ∧ (Avr).

(vi) (Grassmanian of a vector space) Given a vector space V of dimension d, we write
Gr(V, r) for the set of r-dimensional linear subspaces of V . If V is equipped with an inner
product and the corresponding norm is denoted by | · |, then we may define a metric dGr on
Gr(V, r) as follows: Given W,W ′ ∈ Gr(V, r), write

Ŵ =
{
w ∈ W : |w| = 1

}
, Ŵ ′ =

{
w′ ∈ W ′ : |w′| = 1

}
,

and set

dGr(W,W
′) = max

(
max
x∈Ŵ

min
y∈Ŵ ′

|x− y|, max
y∈Ŵ ′

min
x∈Ŵ

|x− y|
)
.

(v) Given a smooth d-dimensional Riemannian manifold X, the manifold ∧rX is a vector
bundle that assign to each point x ∈ X, the vector space ∧r

xX = ∧rTxX. The metric on X
induces a metric on ∧rX by using ⟨·, ·⟩x to produce an the inner on product ∧r

xX as Part
(ii).

□

What we have in mind is that the r-vector v1 ∧ · · · ∧ vr represents the r-dimensional
linear subspace that is spanned by vectors v1, . . . , vr. We list a number of straightforward
properties of the r-vectors in Proposition 4.1 below. The elementary proof of this proposition
is omitted.

Proposition 4.1 (i) Two sets of linearly independent vectors {v1, . . . , vr} and {v′1, . . . , v′r}
span the same vector space iff v1 ∧ · · · ∧ vr = λv′1 ∧ · · · ∧ v′r for some nonzero scalar λ.
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(ii) If ⟨·, ·⟩ is an inner product on the vector space V , and {a1, . . . , ad} is an orthonormal
basis for V , then the set

{
ai1 ∧ · · · ∧ air : 1 ≤ i1 < · · · < ir

}
is an orthonormal basis for

∧rV .

(iii) If V, V ′, V ′′ are three vector spaces and A : V → V ′, B : V ′ → V ′′ are linear, then

∧r
(
B ◦ A

)
=
(
∧r B ◦ ∧rA

)
. If A is invertible, then ∧rA−1 =

(
∧r A

)−1
. If V and V ′ are

inner product spaces and A∗ : V ′ → V is the transpose of A, then ∧rA∗ =
(
∧r A

)∗
.

(iv) If A : Rd → Rd is represented by a d × d matrix, then the transformation ∧rA is
represented by a

(
d
r

)
×
(
d
r

)
matrix we obtain by taking the determinants of all r×r submatrices

of A.

(iv) Suppose that V is an inner product space of dimension d, and A : V → V is a symmetric
linear transformation. If {a1, . . . , ad} is an orthonormal basis consisting of eigenvectors,
associated with eigenvalues λ1 ≤ · · · ≤ λd, then the set

{
ai1 ∧ · · · ∧ air : 1 ≤ i1 < · · · <

ir
}

is an orthonormal basis consisting of eigenvectors of ∧rA associated with eigenvalues{
λi1 . . . λir : 1 ≤ i1 < · · · < ir

}
.

(v) For an inner product space V , the space
(
Gr(V, r), dGr

)
is a compact metric space.

Proof of Theorem 4.3 for general d (Step 1) Recall that if Bn = (A∗
nAn)

1/2, then
|Anv| = |Bnv| with Bn ≥ 0. Let us write µn

1 ≤ · · · ≤ µn
d for the eigenvalues of Bn and

an1 , . . . , a
n
d for the corresponding eigenvectors with |ani | = 1, ⟨ani , anj ⟩x = 0 for i ̸= j. We now

claim that

(4.10) lim
n→∞

n−1 log µn
i (x) =: mi,

exists µ-almost surely. Indeed since

Am+n(x) = An

(
Tm(x)

)
◦ Am(x),

we may apply Proposition 4.1(ii) to assert

∧rAm+n(x) =
(
∧r An

)(
Tm(x)

)
◦ ∧rAm(x).

This in turn implies

∥∧rAm+n(x)∥ ≤
∥∥( ∧r An

)(
Tm(x)

)∥∥ ∥∧rAm(x)∥ .

This allows us to apply Subadditive Ergodic Theorem (Theorem 1.6) to deduce

(4.11) lim
n→∞

1

n
log ∥∧rAn(x)∥ := lr,
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exists for µ-almost all x and every r ∈ {1, . . . , d}. On the other hand, Proposition 4.1 allows
us to write

∥∧rAn(x)∥ =
∥∥∥(∧rAn(x)

∗ ◦ ∧rAn(x))
1/2
∥∥∥ =

∥∥∥[ ∧r (An(x)
∗ ◦ An(x))

]1/2∥∥∥
=
∥∥∥∧r

[
(An(x)

∗ ◦ An(x))
1/2 ]∥∥∥ = ∥∧rBn(x)∥ = µd

n . . . µ
d−r+1
n .

From this and (4.10) we deduce,

lim
n→∞

[
d∑

i=d−r+1

n−1 log µn
i (x)

]
,

exists for µ-almost all x and every r ∈ {1, . . . , d}. This certainly implies (4.10)

(Step 2) Choose l1 < · · · < lk so that {m1, . . . ,md} = {l1, . . . , lk}. We also set

Lj =
{
i : mi ≤ lj

}
.

We define

F j,n
x =

∑
i∈Lj

cia
n
i (x) : ci ∈ R for i ∈ Lj

 ⊆ TxX.

We wish to show that the sequence
{
F j,n
x

}
is convergent with respect to dGr, so that we can

define

(4.12) F j
x = lim

n→∞
F j,n
x .

We only prove this for j = k − 1; the proof for other j can be carried out in an analogous
way.

To establish (4.12), we show first that if bn ∈ F k−1,n
x , with |bn| = 1, then there exists

un+1 ∈ F k−1,n+1
x such that

(4.13) lim sup
n→∞

1

n
log

∣∣∣∣bn − un+1

|un+1|

∣∣∣∣ ≤ −(lk − lk−1).

For this, it suffice to show

(4.14) lim sup
n→∞

1

n
log |bn − un+1| ≤ −(lk − lk−1),

because∣∣∣∣bn − un+1

|un+1|

∣∣∣∣ ≤ |bn − un+1|+
∣∣∣∣un+1 −

un+1

|un+1|

∣∣∣∣ = |bn − un+1|+ |1− |un+1|| ≤ 2 |bn − un+1| .

88



In fact we may simply choose un+1 to be the projection of bn onto F k−1,n+1
x . More

precisely, we write bn = un+1 + vn+1 with un+1 ∈ F k−1,n+1
x , vn+1 ⊥ F k−1,n+1

x , and show

(4.15) lim sup
n→∞

1

n
log |vn+1| ≤ −(lk − lk−1),

which implies (4.14). For (4.15), observe that we can find scalars cnj and cn+1
j such that

bn =
∑

i∈Lk−1

cni a
n
i , vn+1 =

∑
i/∈Lk−1

cn+1
i an+1

i .

As a result,

∣∣An+1vn+1

∣∣2 = ∣∣Bn+1vn+1

∣∣2 =
∣∣∣∣∣∣
∑

i/∈Lk−1

cn+1
i µn+1

i an+1
i

∣∣∣∣∣∣
2

=
∑

i/∈Lk−1

(
cn+1
i

)2(
µn+1
i

)2
≥
(

min
i/∈Lk−1

µn+1
i

)2 ∑
i/∈Lk−1

(
cn+1
i

)2
=

(
min

i/∈Lk−1

µn+1
i

)2

|vn+1|2.

In summary,

(4.16)

(
min

i/∈Lk−1

µn+1
i

)
|vn+1| ≤

∣∣An+1vn+1

∣∣.
On the other hand, observe

⟨An+1un, An+1vn⟩ = ⟨A∗
n+1 ◦ An+1un, vn⟩ = ⟨B2

n+1un, vn⟩ = 0,

because the space F k−1,n+1 is invariant under the action of Bn+1. This and An+1bn =
An+1un+1 + An+1vn+1 imply

(4.17)
∣∣An+1bn

∣∣2 = ∣∣An+1un
∣∣2 + ∣∣An+1vn

∣∣2 ≥ ∣∣An+1vn
∣∣2.

Furthermore,∣∣An+1bn
∣∣2 = ∣∣A(T n(x)

)
◦ An(x)bn

∣∣2 ≤ ∣∣A(T n(x)
)∣∣2 ∣∣An(x)bn

∣∣2
≤ C2

0

∣∣An(x)bn
∣∣2 = C2

0

∣∣Bn(x)bn
∣∣ = C2

0

∣∣∣∣∣∣
∑

i∈Lk−1

cni µ
n
i a

n
i

∣∣∣∣∣∣
2

= C2
0

∑
i∈Lk−1

(
cni
)2(

µn
i

)2 ≤ C2
0

(
max
i∈Lk−1

µn
i

)2 ∑
i∈Lk−1

(
cni
)2

= C2
0

(
max
i∈Lk−1

µn
i

)2

,
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where C0 is the maximum of the function ∥A∥ over X. From this, (4.16) and (4.17) we
deduce

|vn+1| ≤ C0

(
max
i∈Lk−1

µn
i

)(
min

i/∈Lk−1

µn+1
i

)−1

.

This implies (4.13).

(Step 3) Repeating the above argument and using the boundedness of ∥A−1∥ on X, we can
show that if bn+1 ∈ F k−1,n+1, and u′n is the projection of bn+1 onto F k−1,n, then

lim sup
n→∞

1

n
log

∣∣∣∣bn+1 −
u′n
|u′n|

∣∣∣∣ ≤ −(lk − lk−1).

From this and (4.12) we deduce

(4.18) lim sup
n→∞

1

n
log dGr

(
F k−1,n, F k−1,n+1

)
≤ −(lk − lk−1).

This in turn implies that the limit

F k−1 := lim
n→∞

F k−1,n,

exists.

(Step 4) We wish to show that if v ∈ F k \ F k−1, |v| = 1, then

(4.19) lim
n→∞

1

n
log
∣∣Anv

∣∣ = lk,

µ-a.e. We already know,

lim sup
n→∞

1

n
log
∣∣Anv

∣∣ = lim sup
n→∞

1

n
log
∣∣Bnv

∣∣ ≤ lim sup
n→∞

1

n
log
(∥∥Bn∥|v|

)
= lim sup

n→∞

1

n
log
∥∥Bn

∥∥ = lim sup
n→∞

1

n
log µn

d = lk.(4.20)

Hence, for (4.19), we only need to show

(4.21) lim inf
n→∞

1

n
log
∣∣Anv

∣∣ ≥ lk,

For this we decompose v as

v = un + vn, un ∈ F k−1,n
x , vn =

∑
i/∈Lk−1

cni a
n
i ⊥ F k−1,n

x .
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Since v /∈ F k−1, we must have

(4.22) lim sup
n→∞

1

n
log |vn| ≥ 0.

Simply because if (4.22) were not true, then

lim
n→∞

∣∣∣∣v − un
|un|

∣∣∣∣ = 0,

which contradicts v /∈ F k−1. On the other hand, since Anun ⊥ Anvn as in (4.14), we can
assert

∣∣Anv
∣∣2 ≥ ∣∣Anvn

∣∣2 = ∣∣Bnvn
∣∣2 =

∣∣∣∣∣∣
∑

i/∈Lk−1

cni µ
n
i a

n
i

∣∣∣∣∣∣
2

=
∑

i/∈Lk−1

(
cni
)2(

µn
i

)2
≥
(

min
i/∈Lk−1

µn
i

)2 ∑
i/∈Lk−1

(
cni
)2

=

(
max
i∈Lk−1

µn
i

)2

|vn|2.

This and (4.22) imply (4.21), completing the proof of (4.19).

(Final Step) Inductively, we can construct other F j. For example, for j = k − 2, the analog
of (4.20) is the statement that if v ∈ F k−1, then

(4.23) lim sup
n→∞

1

n
log |An(x)v| ≤ lk−1,

µ-a.e. To prove (4.23), we use the definition of F k−1 and (4.18), to find a sequence {un}
such that un ∈ F k−1,n and

lim sup
n→∞

1

n
log |v − un| ≤ −(lk − lk−1).

As a result,

lim sup
n→∞

1

n
log |Anv| ≤ max

{
lim sup
n→∞

1

n
log |Anun|, lim sup

n→∞

1

n
log
(
∥An∥ |v − un|

)}
≤ max {lk−1, λk + lk−1 − lk} = lk−1,

proving (4.23). □

We now state and prove an inequality of Ruelle.
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Theorem 4.3 Let T : X → X be C1 and µ ∈ Ier
T . Then

hµ(T ) ≤
k∑
1

njl
+
j .

Proof We only present the proof when dimX = d = 2. First we would like to divide X
into “small squares”. For this we take a triangulation of X; X = ∪i∆i where each ∆i is
a diffeomorphic copy of a triangle in R2 and ∆i ∩∆j is either empty, or a common vertex,
or a common side. We then divide each triangle into squares of side length ε and possibly
triangles of side length at most ε (we need these triangles near the boundary of ∆i’s). The
result is a covering of X that is denoted by ξε. Note that we may choose members of ξε

such that µ(∂A) = 0 for A ∈ ξε. (If this is not the case, move each element of ξε by small
amount and use the fact that for some translation of boundary side we get zero measure.)
As a result, ξε is a µ-partition. It is not hard to show

(4.24) hµ(T ) = lim
ε→0

hµ(T, ξ
ε).

Recall that hµ(T, ξ
ε) = limk→∞

∫
Iξε|ξε,kdµ where ξε,k = T−1(ξε) ∨ T−2(ξε) ∨ · · · ∨ T−k(ξε)

and

Iξε|ξε,k = −
∑
A∈ξε

∑
B∈ξε,k

µ(A ∩B)

µ(B)
log

µ(A ∩B)

µ(B)
11B.

Given x, let B = Bε,k(x) be the unique element of ξε,k such that x ∈ B. Such B is of the
form T−1(C1) ∩ · · · ∩ T−k(Ck) with C1 . . . Ck ∈ ξε, where Cj = Cξε(T

j(x)). Let us write
simply write C1(x) for Cξε(T (x)). We have

Iξε|ξε,k(x) ≤ log#{A ∈ ξε : A ∩Bε,k(x) ̸= ∅}(4.25)

≤ log#{A ∈ ξε : A ∩ T−1(C1(x)) ̸= ∅}.

Each C1(x) is a regular set; either a diffeomorphic image of a small square or a triangle.
Since the volume of C is of order O(ε2), we have

vol(T−1(C)) ≤ c1ε
2max

z∈C

∣∣ det(dT )−1
z

∣∣,
for a constant c1. If A ∩ T−1(C) ̸= ∅, then for a constant α0,

A ⊆ {y : |y − x0| ≤ α0ε for some x0 ∈ T−1(C)} =: D.

We now want to bound vol(D). The boundary of T−1(C) is a regular curve. Hence its length
is comparable to the diameter of T−1(C), and this is bounded above by a multiple of the
norm of dT−1. Using this we obtain

(4.26) vol(D) ≤ c2max
z∈C

(
1 +

∥∥(dT )−1
z ∥+

∣∣ det(dT )−1
z

∣∣) ε2.
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for a constant c2. (We could have bounded vol(A) by
(
∥(dT )−1∥ε

)2
but (4.26) is a better

bound.)
We now use (4.26) to obtain an upper bound for the right-hand side (4.25). Indeed

(4.27) #{A ∈ ξε : A ∩ T−1(C) ̸= ∅} ≤ c3max
z∈C

(
1 +

∥∥(dT )−1
z

∥∥+ ∣∣ det(dT )−1
z

∣∣)
for a constant c3. This is because the union of such A’s is a subset of D, for two distinct
A,B, we have µ(A ∩ B) = 0, and for each A ∈ ξε we have that vol(A) ≥ c4ε

2 for some
positive constant c4. From (4.26) and (4.27) we learn

Iξε|ξε,k(x) ≤ c5 + logmax
z∈C

(
1 +

∥∥(dT )−1
z

∥∥+ ∣∣ det(dT )−1
z

∣∣)
for C = C1(x). By sending k → ∞ we deduce

(4.28) hµ(T, ξ
ε) ≤ c5 +

∫
log max

z∈Cξe (T (x))

(
1 +

∥∥(dT )−1
z

∥∥+ ∣∣ det(dT )−1
z

∣∣) dµ.
By the invariance of µ,

hµ(T, ξ
ε) ≤ c5 +

∫
log max

z∈Cξε (x)

(
1 +

∥∥(dT )−1
z

∥∥+ ∣∣ det(dT )−1
z

∣∣) µ(dx).
Send ε→ 0 to yield

hµ(T ) ≤ c5 +

∫ (
1 +

∥∥(dT )−1
x

∥∥+ ∣∣ det(dT )−1
x

∣∣) µ(dx).
The constant c5 is independent of T . This allows us to replace T with T−n to have

nhµ(T ) ≤ c5 +

∫
log
(
1 +

∥∥d(T n)
∣∣+ ∣∣ det d(T n)

∣∣) dµ.
First assume that there are two Lyapunov exponents. Since

1

n
log
∥∥d(T n)

∣∣→ l2,
1

n
log
∣∣ det d(T n)

∣∣→ l1 + l2,

µ-a.e., we deduce

(4.29) hµ(T ) ≤ max(0, l2, l1 + l2) ≤ l+1 + l+2 .

In the same way we treat the case of one Lyapunov exponent. □

The bound (4.29) may appear surprising because hµ(T ) > 0 would rule out the case
l1, l2 < 0. In fact we cannot have l1, l2 < 0 because we are assuming T is invertible. An
invertible transformation cannot be a pure contraction. Moreover if hµ(T ) > 0 we must have
a hyperbolic transformation in the following sense:
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Corollary 4.1 If dimX ≥ 2 and hµ(T ) > 0, then there exists a pair of Lyapunov exponents
α, β such that α > 0, β < 0. In particular, if dimX = 2 and hµ(T ) > 0, then l1 < 0 < l2.

Proof Observe that if l1 < · · · < lk are Lyapunov exponents of T , then −lk < · · · < −l1 are
the Lyapunov exponents of T−1. Simply because if An(x) = DxT

n, then A−n ◦ T n = A−1
n .

Now by Theorem 4.7,

hµ(T ) = hµ(T
−1) ≤

∑
i

ni(−li)+ =
∑
i

nil
−
i ,

hµ(T ) ≤
∑
i

nil
+
i .

From these we deduce that −
∑

i l
−
i < 0 <

∑
i l

+
i whenever hµ(T ) > 0. □

Pesin’s theorem below gives a sufficient condition for having equality in Theorem 4.7.
We omit the proof of Pesin’s formula.

Theorem 4.4 Let X be a C1-manifold and assume T : X → X is a C1 diffeomorphism.
Assume DT is Hölder continuous. Let µ ∈ IT be an ergodic measure that is absolutely
continuous with respect to the volume measure of X. Then

hµ(T ) =
∑
i

nil
+
i .

In the context of Theorem 4.3, the Lyapunov exponents of T−1 are −lk < · · · < −l1. Let
us write

TxX =
⊕
i

Êi
x,

for the splitting associated with T−1. It is natural to define

Es
x =

⊕
li<0

Ei
x, Eu

x =
⊕
li>0

Êi
x,

If there is no zero Lyapunov exponent, we have TxX = Es
x⊕Eu

x , µ-almost everywhere. If we
write l± = mini l

±
i , then we have

lim
n→∞

1

n
log
∣∣(dT−n)xv

∣∣ ≤ −l+

for v ∈ Eu
x \ {0}, and

lim
n→∞

1

n
log
∣∣(dT n)xv

∣∣ ≤ −l−
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for v ∈ Es
x − {0}, µ-almost everywhere. If this happens in a uniform fashion, then we say

that µ is an Anosov measure. More precisely, we say a that the measure µ ∈ Iex
T is Anosov if

there exists a decomposition TxX = Eu
x ⊕ Es

x and constants K > 0 and α ∈ (0, 1) such that

(dT )xE
u
x = Eu

T (x), (dT )xE
s
x = Es

T (x),∣∣(dT )nx)v∣∣ ≤ Kαn|v| for v ∈ Es
x,∣∣(dT−n)v

∣∣ ≤ Kαn|v| for v ∈ Eu
x .

If we define

W s(x) =
{
y : lim

n→∞
d(T n(x), T n(y)) = 0

}
W u(x) =

{
y : lim

n→∞
d(T−n(x), T−n(y)) = 0

}
with d a metric on X, then we have a nice foliation of X. In fact

W s(x) ∩W s(y) ̸= ∅ ⇒ W s(x) = W s(y),

W u(x) ∩W u(y) ̸= ∅ ⇒ W u(x) = W u(y),

Eu
x = TxW

u(x), Es
x = TxW

s(x).

We also have a simple formula for the topological entropy:

htop(T ) =

∫
log
∣∣det(dT )Eu

x

∣∣ µ(dx) =∑
i

nil
+
i ,

where (dT )Eu
x
denotes the restriction of (dT )x to Eu

x . An obvious example of an Anosov
transformation is the Arnold cat transformation.

In the next section we study the Lyapunov exponents for Hamiltonian systems. As a
prelude, we show that the Lyapunov exponents for a Hamiltonian flow come in a pair of
numbers of opposite signs.

In the case of a Hamiltonian system, we have a symplectic transformation T : X → X.
This means that X is equipped with a symplectic form ω and if A(x) = (dT )x, then

(4.30) ωx(a, b) = ωT (x)(A(x)a,A(x)b).

By a symplectic form we mean a closed non-degenerate 2-form. As is well-known, dimX = 2d
is always even, and the volume form associated with ω (namely the d-wedge product of ω) is
preserved under T . An example of a symplectic manifold is X = R2d that is equipped with
the standard form ω̄: ωx(a, b) = ω̄(a, b) with ω̄(a, b) = Ja · b, and

J =

[
0 I
−I 0

]
,
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where I is the d × d identity matrix. In this case we may represent A as a matrix and the
symplactic property means

A(x)tJA(x) = J.

As is well-known, this in particular implies that detA(x) = 1. Of course we already know
this for Hamiltonian systems by Liouville’s theorem, namely the volume is invariant under
a Hamiltonian flow.

Theorem 4.5 Let (X,ω) be a closed symplectic manifold of dimension 2d. Then the Lya-
punov exponents l1 < l2 < · · · < lk satisfy lj + lk−j+1 = 0 and nj = nk−j+1 for j =

1, 2, . . . , [k/2]. Moreover the space F j
x :=

⊕j1
i=1E

j
x is ω–orthogonal complement of Êk−j+1

x .

Proof. Write l(x, v) = limn→∞
1
n
log |An(x)v| where An(x) = (dT n)x and v ∈ TxX. Note

that since X is compact, we can find a constant c0 such that

|ωx(a, b)| ≤ c0|a||b|

for all a, b ∈ TxM and all x ∈M . As a result,

|ωx(a, b)| = |ωTn(x)(An(x)a,An(x)b)| ≤ c0|An(x)a||An(x)b|,

and if ωx(a, b) ̸= 0, then

(4.31) l(x, a) + l(x, b) ≥ 0.

By Theorem 4.4, we can find numbers β1 ≤ β2 ≤ · · · ≤ β2d and spaces

{0} = V0 ⊆ V1(x) ⊆ · · · ⊆ V2d−1(x) ⊆ V2d(x) = TxX

such that dimVj(x) = j and if v ∈ Vj+1(x) \ Vj(x), then l(x, v) = βj. Of course l1 < · · · < lk
are related to β1 ≤ · · · ≤ β2d by {l1, . . . , lk} = {β1, . . . , β2d} and nj = #{s : βs = lj}. Note
that if W is a linear subspace of TxM and

W⨿ = {b ∈ TxX : ω(a, b) = 0 for all a ∈ W},

then one can readily show that dimW + dimW⨿ = 2d. As a result, we can use dimVj +
dimV2d−j+1 = 2d+1 to deduce that there exist a ∈ Vj and b ∈ V2d−j+1 such that ω(a, b) ̸= 0.
Indeed the set

Λ =
{
(a, b) ∈ (TxX)2 : a ∈ Vj, b ∈ V2d−j+1, ωx(a, b) ̸= 0

}
is a nonempty open subset of Vj × V2d−j+1. Hence

Λ̃ =
{
(a, b) ∈ (TxX)2 : a ∈ Vj \ Vj−1, b ∈ V2d−j+1 \ V2d−j, ωx(a, b) ̸= 0

}
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is also nonempty. As a result, we can use (4.31) to assert

(4.32) βj + β2d−j+1 ≥ 0,

for j ∈ {1, 2, . . . , d}. On the other hand

d∑
j=1

(βj + β2d−j+1) =
∑
i

nili = 0,

by Remark 4.1(ii) because the volume is preserved. From this and (4.32) we deduce that

βj + β2d−j+1 = 0.

From this we can readily deduce that lj + lk−j+1 = 0 and nj = nk−j+1.
For the last claim, observe that since lj+lk−j+1 = 0, we have lj+li < 0 whenever i+j ≤ k.

From this and (4.31) we learn that if i + j ≤ k and (a, b) ∈ Ei
x × Ej

x, then ωx(a, b) = 0.
Hence Êj−1

x ⊆ (Êk−j+1
x )⊥. Since

n1 + · · ·+ nk−j+1 + n1 + · · ·+ nj−1 = n1 + · · ·+ nk−j+1 + nk + · · ·+ nk−j+2 = 2d,

we deduce that
dim Êj−1

x = dim(Êk−j+1
x )⨿.

This in turn implies that Êj−1
x = (Êk−j+1

x )⨿. □
We continue with a description of an approach that would allow us to approximate Eu

and Es. Recall that
(
dT n

)
x
Eu

x = Eu
Tn(x). For simplicity, let us assume that d = 2, so that if

we have two Lyapunov exponents l1 < 0 < l2, then both Eu
x and Es

x are straight lines. Now
imagine that we can find a sector Cx such that

Eu
x ⊂ Cx, Es

x ∩ Cx = {0}, (dT )xCx ⊊ CT (x).

(Recall that the Es
x component of each vector v ∈ Cx shrinks under the transformation

A(x) = (dT )x.) In other words, A(x)Cx is a slimmer sector than CT (x). As we repeat this,
we get a very slim sector

(
dT n

)
x
Cx at the point T n(x) that is approximating Eu

Tn(x). To
approximate Eu

x , we may try

Cn
x :=

(
dT n

)
T−n(x)

CT−n(x).

Observe

Cn+1
x =

(
dT n+1

)
T−n−1(x)

CT−n−1(x) =
(
dT n

)
T−n(x)

(dT )T−n−1(x)CT−n−1(x)

⊊
(
dT n

)
T−n(x)

CT−n(x) = Cn
x .
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From this we expect
Eu

x = ∩∞
n=0C

n
x .

Similarly, if we can find a sector C ′
x such that

Es
x ⊂ C ′

x, Eu
x ∩ C ′

x = {0},
(
dT−1

)
x
C ′

x ⊊ CT−1(x),

then we expect to have
Es

x == ∩∞
n=0C

−n
,

where
C−n

x :=
(
dT−n

)
Tn(x)

CTn(x).

The existence of such sectors also guarantee that we have nonzero Lyapunov exponents. To
see how this works in principle, let us examine an example.

Example 4.3 Consider a matrix-valued function A(x), x ∈ T2 such that for almost all x,
A has positive entries and detA(x) = 1. Let T : T2 → T2 be invariant with respect to the
Lebesgue measure µ and define l(x, v) = limn→∞

1
n
log |An(x)v|, where

An(x) = A(T n−1(x))A(T n−2(x)) · · ·A(T (x))A(x).

Define the sector C(x) ≡ C =

{[
v1
v2

]
: v1v2 > 0

}
. Note that if

[
v′1
v′2

]
= A(x)

[
v1
v2

]
, and

A(x) =

[
a(x) b(x)
c(x) d(x)

]
, then

Q(v′1, v
′
2) = v′1v

′
2 = (av1 + bv2)(cv1 + dv2) = (1 + 2bc)v1v2 + acv21 + bdv22

≥ (1 + 2bc)v1v2 + 2
√
acbd v1v2 =: λQ(v1, v2).

We can also show that A maps C onto a sector which lies strictly inside C. If

An(x)

[
v1
v2

]
=

[
v
(n)
1

v
(n)
2

]
,

then

|An(x)v|2 ≥ 2v
(n)
1 v

(n)
2 ≥ 2v1v2

n−1∏
i=0

[
λ(T i(x))

]
,

lim inf
n→∞

1

n
log |An(x)v| ≥

1

2

∫
log λ dµ =: l̄ > 0,
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whenever v1v2 > 0. This implies that l2 > 0. Since detAn ≡ 1, we know that l1 + l2 = 0. So
l1 < 0 < l2. As for E

u
x , let us write θn(x) for the slope of the lower boundary of Cn

x . Since

Cn+1
x = A

(
T−1(x)

)
Cn

T−1(x),

we learn

(4.33) θn+1(x) = F
(
T−1(x), θn

(
T−1(x)

))
,

where

(4.34) F (x, θ) =
c(x) + d(x)θ

a(x) + b(x)θ
=
c(x)

a(x)
+

1

a(x)

1

b(x) + a(x)θ−1
.

This follows from the fact that if θ = v2/v1 and θ′ = v′2/v
′
1, then θ

′ = F (x, θ). The slope of
Eu

x is given by
θs := lim

n→∞
θn(x),

with θ0(x) = 0 < θ1(x) = c(x)/a(x). The last expression of (4.34) may be used to give an
expression for θs as a continued fraction. Observe that the sequence θn is strictly increasing
with θn < (d/b) ◦ T−1 for all n. The latter follows fron the fact that F is increasing in θ: If
we already know that θn−1 < θn, then

θn+1(x) = F
(
T−1(x), θn

(
T−1(x)

))
< F

(
T−1(x), θn−1

(
T−1(x)

))
= θn(x).

The bound θn < (d/b) ◦ T−1 is an immediate consequnce of the monoticity F (x, θ) <
F (x,∞) = d/b. We may use the whole past history

{
T−n(x) : n ∈ N

}
to express θs

as a continued fraction

(4.35) θs = A1 +
1

B1 +
C1

A2 +
1

B2 +
C2

A3 +
1

. . .

,

where
Ai =

c

a
◦ T−i, Bi = (ab) ◦ T−i, Ci = a2 ◦ T−i.

□

In the continuous case the Lyapunov exponents are defined likewise. Consider a group of
C1-transformations {ϕt : t ∈ R}. Here each ϕt is from an m-dimensional manifold M onto
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itself. We then pick an ergodic measure µ ∈ Iϕ and find a splitting TxM = E1
x ⊕ · · · ⊕ Ek

x

such that for v ∈ E1
x ⊕ · · · ⊕ Ej

x \ E1
x ⊕ · · · ⊕ Ej−1

x ,

lim
t→∞

1

t
log |(dϕt)xv| = lj.

It turns out that we always have a zero Lyapunov exponent associated with the flow direction.
More precisely, if d

dt
ϕt(x)|t=0 = ξ(x), then

lim
t→∞

1

t
log |(dϕt)xξ| = 0.

Intuitively this is obvious because two phase points that lie close to each other on the same
trajectory do not separate exponentially.

With the aid of the subadditive ergodic theorem, we managed to define Lyapunov ex-
ponents for C1 diffeomorphism. Needless to say that the Lyapunov exponents and the cor-
responding decomposition of the tangent fibers provide us with valuable information about
the underlying dynamical system. We now take a closer look at the type of linear transfor-
mations An(x) that we encountered in Theorem 4.3. We write Gd = GLd(R) for the set of
invertible d× d invertible matrix.

Theorem 4.6 Let (X,T ) be a dynamical system, and take µ ∈ IT . Let A : X → Gd be a
Borel function with log ∥A±∥ ∈ L1(µ), and set

An =
(
A ◦ T n−1

)
. . .
(
A ◦ T

)
A.

Then

(4.36) Λ(x) := lim
n→∞

(
An(x)

tAn(x)
) 1

2n ,

exists µ-a.e. Moreover,

(4.37) lim
n→∞

1

n
log
∥∥An(x)Λ(x)

−1
∥∥ = lim

n→∞

1

n
log
∥∥∥(An(x)Λ(x)

−1
)−1
∥∥∥ = 0.

Observe that for any vector v ∈ Rd,

(4.38) lim
n→∞

1

n
log
∣∣Λ(x)nv∣∣ = lim

n→∞

1

n
log
∣∣An(x)v

∣∣,
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which exists by Theorem 4.3. However, (4.39) guarantees the existence of the limit

log Λ(x) = lim
n→∞

1

2n
log
(
An(x)

tAn(x)
)
.

We may interpret An(x) as a non-commutative ergodic average (or in a probabilist language,
a non-commutative random walk) and (4.36) as a non-commutative analog of our Ergodic
Theorem. To achieve (4.36), we first define a suitable metric on the space of positive definite
matrices.

Definition 4.2(i) We write Md for the space of d× d matrices, and Sd for the set of d× d
symmetric matrices. Note that Sd is a subspace of Md of dimension d(d + 1)/2. The set of
positive definite matrices is denotes by Pd. On Md, we define the inner product and norm

⟨A,B⟩ = tr(AtB), ∥A∥ = tr
(
AtA

)1/2
.

(ii) We regard Pd as a Riemannian manifold with tangent fiber TPPd =
{
P−1A : A ∈ Sd

}
,

and the metric
⟨A,B⟩P = ⟨P−1A,P−1B⟩, ∥A∥P = ⟨A,A⟩1/2P .

Note

∥A∥2P = tr
(
P−1AP−1A

)
= tr

(
P−1/2AP−1/2P−1/2AP−1/2

)
= ∥P−1/2AP−1/2∥2.

The Riemannian metric in turn induces a Riemannian distance on Pd:

D(P1, P2) = inf

{∫ 1

0

∥γ̇(t)∥γ(t) dt : γ(0) = P1, γ(1) = P2, γ is C1

}
.

(iii) For every A ∈ Gd, we define the action φA : Sd → Sd, by φA(B) := A ⊙ B := AtBA.
Evidently, φA

(
Pd

)
= Pd. □

Proposition 4.2 (i) For every P1, P2 ∈ Pd, and A ∈ Gd, we have D(P1, P2) = D
(
φA(P1), φA(P2)

)
.

(ii) For every P1, P2 ∈ Pd,

(4.39) D(P1, P2) =
∥∥ log (P−1

1 P2

)∥∥ =
∥∥ log (P 1/2

2 P−1
1 P

1/2
2

)∥∥ =

(
n∑

i=1

(log λi)
2

)1/2

,

where λ1, . . . , λd are the eigenvalues of the matrix P−1
1 P2 . (Note that λ1, . . . , λd > 0, because

the matrices P−1
1 P2 and P

1/2
2 P−1

1 P
1/2
2 are similar, and P

1/2
2 P−1

1 P
1/2
2 ∈ Pd.)
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Proof(i) This is an immediate consequence of∥∥φA(B)
∥∥2
φA(C)

=
∥∥A−1C−1BA

∥∥2 = tr
((
A−1C−1BA

)t(
A−1C−1BA

))
= tr

((
C−1B

)t(
C−1B

))
= ∥B∥2C .

(ii) (Step 1) Let us write D̂(P1, P2) for the right-hand side of (4.39). Evidently, D̂(P1, P2) =
D̂
(
φA(P1), φA(P2)

)
, because

φA(P1)
−1φA(P2) = A−1P−1

1 P2A,

and P−1
1 P2 are similar. Hence, we only need to verify (4.39) for P1 = I because

D(P1, P2) = D
(
φ
P

−1/2
1

(P1), φP
−1/2
1

(P2)
)
= D

(
I, φ

P
−1/2
1

(P1)
)
,

D̂(P1, P2) = D̂
(
φ
P

−1/2
1

(P1), φP
−1/2
1

(P2)
)
= D̂

(
I, φ

P
−1/2
1

(P1)
)
.

We may also assume that P2 = eA for some A ∈ Sd. In summary, we only need to show:
D(I, eA) = ∥A∥, for A ∈ Sd. Observe that if γ(t) = etA, then∫ 1

0

∥γ̇(t)∥γ(t) dt = ∥A∥.

Hence D(I, eA) ≤ ∥A∥. It remains to show

(4.40) D(I, eA) ≥ ∥A∥.

(Step 2) For (4.40), it suffices to show that if LB is the derivative of the exponential map:

LB(C) = lim
δ→0

δ−1
(
eB+δC − eB

)
,

then

(4.41)
∥∥e−BLB(C)

∥∥ ≥ ∥C∥.

Indeed, if (4.43) holds, then we can argue that for any C1 path γ(t) = eA(t) with A(0) =
0, A(1) = A,∫ 1

0

∥γ̇(t)∥γ(t) dt =
∫ 1

0

∥∥e−A(t)LA(t)(Ȧ(t))
∥∥ dt ≥ ∫ 1

0

∥Ȧ(t)∥ dt ≥
∥∥∥∥∫ 1

0

Ȧ(t) dt

∥∥∥∥ = ∥A∥.

It remains to verify (4.43). Note that if B = U tDU,C = U tEU , for a unitary matrix U ,
then ∥∥e−BLB(C)

∥∥ =
∥∥U te−DLD(E)U

∥∥ =
∥∥e−DLD(E)

∥∥.
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Hence, it suffices to verify

(4.42)
∥∥e−DLD(E)

∥∥ ≥ ∥E∥ = ∥C∥,

for any diagonal matrix D = diag(λ1, . . . , λd), and symmetric matrix E. Let us write Eij for
the matrix that has 1 for its (i, j)-th entry, and 0 for any other entries. We certainly have
e−DLD(Eii) = Eii, which implies (4.42) when E = Eii. On the other hand, when i ̸= j,

eD+δEij =
∞∑
k=0

(D + δEij)
k

k!
= eD + δEij + δ

∞∑
k=2

(k!)−1
(
λk−1
i + λk−2

i λj + · · ·+ λk−1
j

)
Eij

= eD + δEij + δ

∞∑
k=2

λki − λkj
k!(λi − λj)

Eij = eD + δ
eλi − eλj

λi − λj
Eij,

because
DEij = λiEij, EijD = λjEij, E2

ij = 0.

As a result,

e−DLDEij =
eλi − eλj

λi − λj
e−DEij = e−λi

eλi − eλj

λi − λj
e−DEij.

This in turn implies

e−DLD(Eij + Eji) =
eλi − eλj

λi − λj

(
e−λiEij + e−λjEji

)
.

Hence

∥∥e−DLD(Eij + Eji)
∥∥2 = (eλi − eλj

λi − λj

)2 ∥∥e−λiEij + e−λjEji

∥∥2
=

(
eλi − eλj

λi − λj

)2 (
e−2λi + e−2λj

)
.

To verify (4.42) for E = Eij + Eji, we need to check(
eλi − eλj

)(
e−2λi + e−2λj

)
≥ 2(λi − λj)

2.

Equivalently,
2 + e2z + e−2z − 2ez − 2e−z ≥ 2z2,

for z = λi − λj, which is straightforward to check. Finally, since LD is linear, the collection{
Eij + Eji : i, j = 1, . . . , n

}
,
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is a orthogonal basis for Sd, and (4.40) is true for members of this basis, we are done. □

We now formulate a general setting for a geometric treatment of a non-commutative
ergodic theorem of Karlsson and Margulis.

(i) As before, we have a dynamical system (X,T ), and another metric space (P, D) that is
proper (every bounded closed set is compact).

(ii) We have a topological group G that acts on P. More precisely, for each A ∈ G, there
exists an invertible map φA : X → X that is an isometry:

D
(
φA(P1), φA(P2)

)
= D(P1, P2).

To ease the notation, we also use the notation A⊙ P = φA(P ).

(iii) A measurable map A : X → G is given, and we define

An(x) = A(x)A(T (x)) . . .A(T n−1(x)).

For our non-commutative Ergodic Theorem, we fix I ∈ P, and examine

(4.43) Ā := lim
n→∞

1

n
D
(
I,An(x)⊙ I

)
=: lim

n→∞

1

n
Sn(x).

Note that since

Sm+n(x) ≤ D
(
I,Am(x)⊙ I

)
+D

(
Am(x)⊙ I,

(
Am(x)An(T

m(x))⊙ I
)

= Sm(x) + Sn

(
Tm(x)

)
,

we may apply the subadditive ergodic theorem to assert that the limit in (4.42) exists.

Definition 4.3(i) For each P ∈ P we set

hP (Q) = D(Q,P )−D(I, P ).

If we write L for the set of Lipschitz functions h of Lipschitz constant 1, such that h(I) = 0,
then Ψ : P → L, defined by Ψ(P ) = hP , is a continuous injective map, provided that we
equip L with the topology of local uniform convergence (which is metrizable). We regard
H := Ψ(P) as a compactification of P (note that L is a compact metric space).

(ii) The group G is also acting on H; Given A ∈ G, we define

(φ′
Ah)(Q) :=

(
A⊙′ h

)
(Q) := h

(
A−1 ⊙Q

)
− h
(
A−1 ⊙ I

)
.

for h ∈ H. Note

hA⊙P (Q) = D
(
Q,A⊙ P

)
−D

(
I, A⊙ P

)
= D

(
A−1 ⊙Q,P

)
−D

(
A−1 ⊙ I, P

)
=
(
A⊙′ hP

)
(Q),
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which explain the reason behind our definition of φ̂A.

(iii) We now define a dynamical system on X̂ := X ×H: A map T̂ : X̂ → X̂ is defined by

T̂ (x, h) =
(
T (x),A(x)−1 ⊙′ h

)
=
(
T (x), F (x, h)

)
,

where F (x, h)(P ) = h
(
A(x)⊙ P

)
− h
(
A(x)⊙ I

)
. Observe

T̂ n(x, h) =
(
T n(x),An(x)

−1 ⊙′ h
)
=:
(
T n(x), Fn(x, h)

)
,

with Fn(x, h)(P ) = h
(
An(x)⊙ P

)
− h
(
An(x)⊙ I

)
. □

The main idea of Karlsson and Margulis is that this limit can be rewritten as an ergodic
average. To see this, observe that if f(x, h) = h

(
A(x)⊙ I

)
, then

f(x, h) + f
(
T̂ (x, h)

)
= h

(
A(x)⊙ I

)
+ F (x, h)

(
A(T (x))⊙ I

)
= h

(
A(x)⊙ I

)
+ h
(
A(x)⊙

(
A(T (x))⊙ I

))
− h
(
A(x)⊙ I

)
= h

(
A2(x)⊙ I

)
.

More generally,

(4.44) h
(
An(x)⊙ I

)
=

n−1∑
i=0

f
(
T̂ i(x, h)

)
.

Let us observe

(4.45) D(Q) := D(I,Q) = − inf
h∈H

h(Q),

because
−hP (Q) = D(I, P )−D(Q,P ) ≤ D(I,Q), hQ(Q) = −D(I,Q).

From this, (4.42) and (4.44) we learn

(4.46) Ā = lim
n→∞

1

n
D
(
I,An(x)⊙ I

)
= − lim

n→∞
inf
h∈H

1

n

n−1∑
i=0

f
(
T̂ i(x, h)

)
.

Exercise (i) Verify the following properties of l(x, v) of Remark 4.1(iii) directly (without
using Theorem 4.3):

(i) l(x, αv1) = l(x, v1), l(x, v1 + v2) ≤ max(l(x, v1), l(x, v2)) for every x, v1, and v2 and
scalar α ̸= 0.
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(ii) l(T (x), A(x)v) = l(x, v)

(iii) We have l(x, v) ∈ [−∞,+∞).

(iv) The space {v : l(x, v) ≤ t} = Vx(t) is linear and that Vx(s) ⊆ Vx(t) for s ≤ t,
A(x)Vx(t) ⊆ VT (x)(t).

(v) There exists k(x) ∈ N, numbers l1(x) < l2(x) < · · · < lk(x)(x) and splitting TxM =

E1
x ⊕ · · · ⊕ E

k(x)
x such that if v ∈ E1

x ⊕ · · · ⊕ Ej
x \ E1

x ⊕ · · · ⊕ Ej−1
x then l(x, v) = lj.

Indeed E1
x ⊕ · · · ⊕ Ej

x = Vx(lj).

(ii) Prove Parts (i) and (v) of Proposition 4.1. □
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5 Lorentz Gases and Billiards

So far we have discussed various statistical notions such as ergodicity, entropy and Lyapunov
exponents for dynamical systems. We have examined these notions for a rather limited
number of examples, namely toral automorphisms, translations (or free motions) and one-
dimensional expansions. In this section we study examples coming from classical mechanics.
A Lorentz gas is an example of a gas in which heavy molecules are assumed to be immobile
and light particles are moving under the influence of forces coming from heavy particles.
The dynamics of a light particle with position q(t) is governed by the Newton’s law

d2q

dt2
= −∇V (q),

where V (q) =
∑

j W (|q − qj|) with qj denoting the center of immobile particles and W (|z|)
represents a central potential function. For simplicity we set the mass of the light particle
to be 1. We may rewrite (5.1) as

(5.1)
dq

dt
= p,

dp

dt
= −∇V (q).

Recall that the total energy H(q, p) = 1
2
|p|2 + V (q) is conserved. Because of this, we may

wish to study the ergodicity of our system restricted to an energy shell

{(q, p) : H(q, p) = E}.

When W is of compact support, we may simplify the model by taking

(5.2) W (|z|) =

{
0 if |z| > ε,

∞ if |z| ≤ ε.

To interpret (5.1) for W given by (5.2), let us first assume that the support of W (|q − qi|),
i ∈ Z are non overlapping. Assume a particle is about to enter the support of W (|q − qi|).
For such a scenario, we may forget about other heavy particles and assume that the potential
energy is simply given by W (|q − qi|). For such a potential we have two conservation laws:

conservation of energy:
d

dt

(
1

2
|p|2 + V (|q − qi|)

)
= 0

conservation of angular momentum:
d

dt

(
p× (q − qi)

)
= 0.

Let us assume that a particle enters the support at a position q with velocity p and exits
the support at a position q′ with velocity p′. For a support choose a ball of center qi and
diameter ε. If n = q−qi

|q−qi| and n′ = q′−qi
|q′−qi| , then we can use the above conservation laws to
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conclude that |p′| = |p| and the angle between (p, n) is the negation of the angle between
(p′, n′).

The same conservation laws hold for the case (5.2). We are now ready for interpretation
of dynamics when W is given by (5.2). Draw a ball of diameter ε and center qi for each i.
Then the phase space is

X =

(
Rd \

⋃
i

Bε/2(qi)

)
× Rd =

{
(q, p) : |q − qi| ≥ ε for all i, and p ∈ Rd

}
.

For q /∈ ∂X we simply have dq
dt

= p. When |q− qi| = ε then the dynamics experiences a jump
discontinuity in p-component. More precisely

(5.3) |q(t)− qi| = ε implies p(t+) = p(t−)− 2p(t−) · ni(t)ni(t),

where ni(t) =
q(t)−qi
|q(t)−qi| . As our state, we may consider

X = {q : |q − qi| ≥ ε for all i} × {p : |p| = 1}
=: Yε × Sd−1.

Classically two possibilities for the configurations of qi’s are considered. As the first possi-
bility, imagine that the qi’s are distributed periodically with period 1. Two cases may occur:
Either ε < 1 which corresponds to an infinite horizon because a light particle can go off to
infinity; or ε ≥ 1 which corresponds to a finite horizon.

As our second possibility we distribute qi’s randomly according to a Poissonian probability
distribution.

In this section we will study Lorentz gases on tori. In the periodic case of an infinite
horizon, we simply have a dynamical system with phase space

M =
(
Td \Bε

)
× Sd−1 =: Yε × Sd−1,

where Td \ Bε represents a torus from which a ball of radius ε/2 is removed. In the case of
finite horizon our M = Yε × Sd−1 but now Yε is a region confined by 4 concave arcs. In the
random case we may still restrict the dynamics to a torus. For example, we select N points
q1, . . . , qj randomly and uniformly from the set

Xε = {(q1, . . . , qN) : |qi − qj| > ε for i ̸= j},

and then we set
Yε = {q : |q − qi| ≥ ε for i = 1, . . . , N}.

A Lorentz gas can be regarded as an example of a billiard. For the sake of definiteness
let us focus on the case of finite horizon that can be recast as a billiard in a bounded domain
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with piecewise smooth boundary. More generally, let us take a bounded region Y o in Rd

with piecewise smooth boundary and set X = Y × Sd−1, where Y is the topological closure
of Y o. We set set

∂±X =
{
(q, p) : q ∈ ∂Y, ±(p · ν(q)) ≥ 0

}
,

where ν(q) represents the unit inward normal to ∂Y at q. Points in ∂−X and ∂+X represent
the pre and post collisional states respectively in our billiard. We now define two closely
related dynamical systems.

(i) A continuous dynamical system ϕt(q, p) = (q(t), p(t)), that is defined in the following
way: so long as q(t) ∈ Y ◦ = Y \ ∂Y , we have

dq

dt
(t) = p(t),

dp

dt
(t) = 0.

However, when q(t) reaches a boundary point, p(t) experiences a jump discontinuity. More
precisely, whenever q(t) ∈ ∂Y with p(t) · ν

(
q(t)

)
≤ 0, then

p′(t) := p(t+) = Rq(t)p(t−) := p(t−)− 2
(
p(t−) · ν

(
q(t)

))
ν
(
q(t)

)
.

(ii) A discrete dynamical system on ∂+X associated with a map T : ∂+X → ∂+X. The
map T (q, p) = (Q,P ) is defined by the following recipe:

Q = q + τ(q, p)p, P = p− 2
(
p · ν

(
Q
))
ν
(
Q
)
,

where τ(q, p) is the smallest τ > 0 such that ϕτ (q, p) reaches the boundary.

Next we find an invariant measure for the dynamical system (q(t), p(t)) and the map
T . Regarding the flow ϕt as a Hamiltonian flow, we expect that the normalized Lebesgue
measure m(dx) = Z−1dq dp where Z is a normalizing constant, dq is the Lebesgue measure
on Y , and dp is the standard volume measure on Sd−1 (compare with Example 1.7(ii)).
To prove the invariance of m, let us take a smooth test function ζ : X → R such that
ζ
(
q, Rqp

)
= ζ(q, p) whenever (q, p) ∈ ∂−X. Such a test function produces

(Ttζ)(x) = u(x, t) = ζ(ϕt(x)),

that is continuous in (x, t). In fact u satisfies a Liouville-type equation with boundary
conditions:

(5.4)

{
ut = p · uq, x ∈ X \ ∂X;

u
(
q, Rqp, t

)
= u(q, p, t), t ≥ 0, (q, p) ∈ ∂−X.

We expect (5.4) to be true weakly; if K is a smooth function, then the expression

− d

dt

∫
X

u(x, t)K(x) dqdp,
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equals

(5.5)

∫
X

u(x, t)p ·Kq(x) dqdp+

∫
∂X

u(x, t)K(x)
(
p · ν(q)

)
σ(dq)dp,

where σ(dq) represents the surface integration on ∂Y . To verify this, let us write

τ0(x) = 0 < τ1(x) < τ2(x) < . . .

for a sequence of functions, such that ϕt(x) ∈ X \ ∂X for t ∈ (τj(x), τj+1(x)), ϕτj(x)(x) ∈ ∂X
if j > 0, and each finite interval [0, T ] can have only finitely many τi’s. Let us explain this
further.

Note that u(x, t) = J(ϕt(x)) is as smooth as J in (x, t) provided that ϕt(x) /∈ ∂X. This
means that u is as smooth as J with ut = p · uq, provided (x, t) ∈ X × (0,∞) \

⋃
j Sj, where

Sj = {(x, t) : τj(x) = t}.

Note that when t is restricted to a finite interval [0, T ], then finitely many Sj’s are relevant,
each Sj is of codimension 1 in X×(0, T ), and different Sj’s are well-separated. It is a general
fact that if u is continuous and ut = p · uq off

⋃
j Sj, then ut = p · uq weakly in X. To see

this, take a test function R(x, t) with support in an open set U such that exactly one of
the Sj’s bisect U into U+ and U−. We then have

∫
u(Rt − p · Rq)dx dt =

∫
U+ +

∫
U− and

that if we integrate by parts on each U± we get two contributions. One contribution comes
from carrying out the differentiation on u, i.e.,

∫
U±(−ut + p · uq)R dx dt, which is 0 because

ut = p · uq in U±. The other contribution comes from the boundary of U±, and they cancel
each other out by the continuity of u.

As a consequence of (5.4) we have that the Lebesgue measure m is invariant. In fact if
initially x is selected according to a probability measure dµ = f 0(x)dx, then at later times
x(t) is distributed according to dµt = f(x, t)dx where f(x, t) = f 0(ϕ−t(x)). To see this
observe that if we choose K ≡ 1 in (5.5), we have

(5.6)
d

dt

∫
ζ(ϕt(x))dx = −

∫
∂X

u(q, p)
(
p · ν(q)

)
σ(dq)dp.

If we integrate over p first and make a change of variable p 7→ p′ = p− 2p ·n n, for n = ν(q),
then u does not change and p · n becomes p′ · n = −p · n. Also the Jacobian of such a
transformation is 1. As a result, the right-hand side of (5.7) is equal to its negation. This
implies

(5.7)

∫
J(ϕt(x))dx =

∫
J(x)dx,

for every t and every J continuous with J(q, p′) = J(q, p) on ∂X. If K and f 0 have the same
property and we choose

J(x) = f 0(ϕ−t(x))K(x),
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then we deduce ∫
K(x)f 0(ϕ−t(x))dx =

∫
K(ϕt(x))f

0(x)dx.

From this we conclude

(5.8) f(x, t) = f 0(ϕ−t(x)),

as was claimed before.

Remark 5.1 If ϕt is the flow of the ODE (5.1), and f(x, t) == f 0(ϕ−t(x)), then the function
f satisfies the Liouville’s equation

ft + p · fq −∇V (q) · fp = 0.

The partial derivatives α = fq and β = fp satisfy{
αt + αqp− αp∇V (q) = D2V (q)β,

βt + βqp− βp∇V (q) = −α.

Note that if Q(x, t) = fq(x, t) · fp(x, t) = α(x, t) · β(x, t), then

Qt + p ·Qq −∇V (q) ·Qp = D2V (q)β · β − |α|2

or equivalently
Q̄t = D2V (q(t))β̄ · β̄ − |ᾱ|2

for Q̄(x, t) = Q(ϕt(x), t). In the case of a billiard, the function f satisfies{
ft + p · fq = 0 inside Y × Rd,

f(q, p, t−) = f(q, p′, t+) on ∂Y × Rd,

where q ∈ ∂Y and t is a collision time. Setting a(q, p, t) = fq(q, p, t), b(q, p, t) = fp(q, p, t),
we then have {

at + pDqa = 0,

bt + pDpa = −a.

Later in this chapter we will learn how to relate α(q, p, t−) to β(q, p′, t+) on the boundary
∂X as we study the evolution of dϕt. □

Identity (5.7) suggests that the invariant measure m of ϕt induces an invariant measure

dµ =
(
p · ν(q)

)
σ(dq)dp,
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on ∂+X. To explain this, let us is let us define

X̂ =
{
(x, t) = (q, p, t) : (q, p) ∈ ∂+X, 0 ≤ t < τ(q, p)

}
,

and F : X̂ → X by F (x, t) = ϕt(x). It is not hard to see that F is invertible. In fact F
is an automorphism between the measure spaces (X, dm) and

(
X̂, µ(dx)dt

)
. This simply

follows from the fact that the Jacobian of the transformation (q, t) 7→ q+ pt, equals p · ν(q).
The transformation F provides us with a useful representation of points in X. Using this
representation we can also represent our dynamical system in a special form that is known
as special flow representation. Let us study F−1 ◦ ϕθ ◦ F :

(5.9) ϕ̂θ := F−1 ◦ ϕθ ◦ F (x, t) =


(x, θ + t) θ + t < τ(x)

(T (x), θ + t− τ1(y)) θ + t− τ(x) < τ(T (x))
...

The measure µ(dx)dt is an invariant measure for the flow ϕ̂θ. We choose A sufficiently small
in diameter so that we can find θ1, θ2 and θ3 with the following property:

t ∈ [θ1, θ2] ⇒ τ(x) < θ3 + t < τ(T (x))

for every x ∈ A. This means

ϕ̂θ(A× [θ1, θ2]) =
{
(T (x), θ3 + t− τ1(x) : y ∈ A, t ∈ [θ1, θ2]

}
.

Since ϕ̂θ has dµdt for an invariant measure,

(θ2 − θ1)µ(A) = (θ2 − θ1)µ(T (A)).

Since T is invariant, we deduce that µ is invariant.
We say a billiard table Y is dispersive if there exists δ > 0 such that

(5.10) (dν)q ≥ δI,

for every q ∈ ∂Y at which ν is differentiable. The function ν is the celebrated Gauss map,
and the operator dν is known as the shape operator of ∂Y .

As we will see below all dispersive billiards have some positive Lyapunov exponents. This
was shown by Sinai when d = 2, and by Chernov and Sinai when d ≥ 3.

Theorem 5.1 Let Y be a dispersive billiard table satisfying (5.10).

(i) There exists a T -invariant function g ≥ 0 with
∫
g dµ > 0, such that for µ-almost every

(q, p) ∈ ∂+X and any (q̂, p̂) ∈ T(q,p)∂
+X, with q̂ · p̂ > 0, we have

(5.11) lim inf
n→∞

n−1 log
∣∣(dT n)(q,p)(q̂, p̂)

∣∣ ≥ g(q, p).
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(ii) There exists a ϕ-invariant function h ≥ 0 with
∫
h dm > 0, such that for m-almost

every (q, p) ∈ X and any (q̂, p̂) ∈ R2d, with p · p̂ = p · q̂ = 0, and q̂ · p̂ > 0, we have

(5.12) lim inf
t→∞

t−1 log
∣∣(dϕt)(q,p)(q̂, p̂)

∣∣ ≥ h(q, p).

Note that since ϕt is discontinuous, it is not clear that dϕt and dT are well-defined. As we
will see in Proposition 5.1 both dϕt and dT can be defined almost everywhere with respect
to the invariant measure m and µ respectively. In fact we have a very precise meaning for
the flow dϕt that will be described shortly.

Recall that if ϕt is the flow associated with an ODE of the form dx
dt

= b(x), then the
matrix-valued function (dϕt)x solves

dA

dt
= (db)ϕt(x) ◦ A.

Hence, x̂(t) = A(x, t)x̂ solves the equation

dx̂

dt
(t) = B(x, t)x̂(t),

where B(x, t) = (db)ϕt(x). In the case of a Hamiltonian flow of the form (5.2), we have
b(q, p) = (p,−∇V (q)) and x̂(t) = (q̂(t), p̂(t)) solves

dq̂

dt
(t) = p̂(t),

dp̂

dt
(t) = −D2V (q(t)) q̂(t).

For our billiard model, some care is needed because ϕt(x) is not even continuous. We
wish to derive an evolution equation for

x̂(t) = (dϕt)x
(
x̂(0)

)
.

We think of (x, x̂) ∈ T X as the initial data for the path

(ϕt(x), (dϕt)x(x̂)) .

For our purposes, we take a path
(
x∗(θ) : θ ∈ (−δ0, δ0)

)
with x∗(0) = x, ẋ∗(0) = x̂, and keep

track of

(5.13) x̂(t) = ϕ̂t(x̂) := x∗θ(t, 0).

where x∗(t, θ) = ϕt

(
x∗(θ)

)
. We use (5.13) to define x̂(t). In the same fashion, we define dT :

Take a path x∗(θ) =
(
q∗(θ), p∗(θ)

)
, that lies on ∂+X, such that q∗(0) = q, p∗(0) = p, and
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q̇(0) = q̂ ∈ ∂Y, ṗ(0) = p̂ ∈ p⊥, and if we write T (q, p) = (Q,P ), then Q = q + τ(q, p)p, and
P = RQp. We then set

(
Q(θ), P (θ)

)
= T

(
x∗(θ)

)
, and define

(5.14) (dT )(q,p)(q̂, p̂) :=
(
Q̇(0), Ṗ (0)

)
.

In analogy with the Riemannian geometry, we may regard x̂(t) as the Jacobi field asso-
ciated with x(t), and we wish to derive the corresponding Jacobi’s equation. This will be
achieved in the following Proposition.

Proposition 5.1 (i) Let x̂(t) =
(
q̂(t), p̂(t)

)
be as in (5.13). Then in between collisions, we

simply have

(5.15)
dq̂

dt
= p̂,

dp̂

dt
= 0.

Moreover, at a collision, the precollisional coordinates (q, p, q̂, p̂), with x = (q, p) ∈ ∂−X,
become (q, p′, q̂′, p̂′) right after collision, with q̂′ = Rq q̂, and

(5.16) p̂′ = Rqp̂+ 2
(
p · ν(q)

)−(
RqV

t
x (dν)qVx

)
q̂,

where

Rq = I − 2ν(q)⊗ ν(q), Vq,p = I − p⊗ ν(q)

p · n
.

(ii) For every (q, p, q̂, p̂) ∈ T ∂+X, we have T (q, p) = (Q,P ), and (dT )(q,p)(q̂, p̂) = (Q̂, P̂ ),
with

(5.17) Q̂ = VQ,p

(
q̂+ τ(q, p)p̂

)
, P̂ = RQp̂+2

(
p · ν(Q)

)−(
RQV

t
Q,p(dν)QVQ,p

)(
q̂+ τ(q, p)p̂

)
.

Proof (i) If we take a path
(
x∗(θ) : θ ∈ (−δ0, δ0)

)
with x∗(0) = x, ẋ∗(0) = x̂, and write(

q∗(t, θ), p∗(t, θ)
)
, for ϕt

(
x∗(θ)

)
, then in between collisions, p∗(t, θ) = p∗(θ) does not change,

and q∗(t, θ) = q∗(θ) + tp∗(θ). This implies (5.15).
For the dynamics at a collision, let us write τ(θ), for the first time q∗(t, θ) reaches the

boundary of Y . Without loss of generality, we may assume that τ(0) = 0 and that τ(θ) > 0
for θ > 0. We also write

Q(θ) := q∗
(
τ(θ), θ

)
= q∗(θ) + τ(θ)p∗(θ), n(θ) := ν

(
Q(θ)

)
,

for the hitting location and the normal vector at time τ . Differentiating these equations and
evaluating the derivatives at θ = 0 yield

(5.18) Q̂ = q̂ + τ̂ p, n̂ = (dν)qQ̂,
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where (τ̂ , Q̂, n̂) = (τ̇(0), Q̇(0), ṅ(0)). Since the path
(
Q(θ) : θ ∈ (−δ0, δ0)

)
lies on ∂Y , we

have n · Q̂ = 0, where n = n(0). From this and (5.18) we learn

(5.19) τ̂ = − q̂ · n
p · n

, Q̂ = Vq,pq̂ = V q̂ =

(
I − p⊗ n

p · n

)
q̂, n̂ = (dν)qV q̂.

We note that the operator V is the p-projection onto n⊥. That is (I − V )q̂ is parallel to p
and V q̂ · n = 0. We are now ready to determine p̂′ and q̂′.

Observe that for θ > 0 and t > τ(θ),

q∗(t, θ) = Q(θ) +
(
t− τ(θ)

)
p∗′(θ) = Q(θ)− τ(θ)p∗′(θ) + tp∗′(θ) := b(θ) + tp∗′(θ).

As we differentiate with respect to θ, and set θ = 0, we deduce,

q̂(t) = ḃ(0) + tp̂′.

We learn from this

q̂′ = ḃ(0) = Q̂− τ̂ p′ = q̂ + τ̂ p− τ̂
(
p− 2(p · n)n

)
= q̂ − 2(q̂ · n)n.

Hence q̂′ = Rq q̂.
We now turn our attention to p̂′. From differentiating

p∗′(θ) = Rp∗(θ) :=
(
I − 2n(θ)⊗ n(θ)

)
p∗(θ),

and evaluating the derivative at θ = 0, we arrive at

p̂′ = Rp̂− 2
(
n̂⊗ n+ n⊗ n̂

)
p.

On the other hand,(
n̂⊗ n+ n⊗ n̂

)
p = (p · n)n̂+ (n⊗ p)n̂ = (p · n)

(
I +

n⊗ p

p · n

)
n̂ := (p · n)V̂ n̂.

As a result,

(5.20) p̂′ = Rp̂− 2(p · n)V̂ (dν)qV q̂ =: Rp̂− 2Aq̂.

Note that |ν| = 1 implies that (dν)q map n⊥ onto n⊥. Also the range of V is n⊥ and

V : p⊥ → n⊥ is an isomorphism. Moreover, V̂ restricted to n⊥ equals I − n⊗p′

p′·n , and that

V̂ : n⊥ → p′⊥ is an isomorphism, which simply n-projects onto p′⊥. Indeed since Rn = −n
and R = I on n⊥,

RV̂ = R +R
n⊗ p

n · p
= R− n⊗ p

n · p
, RV̂ ↾n⊥= I − n⊗ p

n · p
,

115



and RV̂ = V t is the transpose of V because

w · (RV̂ )w′ = w ·
(
I − n⊗ p

n · p

)
w′ = w · w′ − (p · w′)(n · w)

n · p
= (V w) · w′,

for every w,w′ ∈ n⊥. As a result,

A = (p · n)RV t(dν)qV q̂.

This and (5.20) imply (5.16).

(ii) If we take a path x†(θ) =
(
q†(θ), p†(θ)

)
, that lies on ∂+X, such that q†(0) = q, p†(0) = p,

and q̇†(0) = q̂ ∈ Tq(∂Y ), ṗ†(0) = p̂ ∈ p⊥, and if we write T (q, p) = (Q,P ), then Q = q + τ 0p,
and P = RQp, where τ

0 = τ(q, p). Let us write τ(θ) for τ
(
x†(θ)

)
. Without loss of generality,

we may assume that τ(θ) > 0 for θ > 0 and small. Note that if we set

x∗(θ) = ϕτ0
(
x†(θ)

)
,

then we x∗ is as part (i) except that q̂ is replaced with q̂ + τ 0p̂. In other words, ẋ∗(0) =(
q̂ + τ 0p̂, p̂

)
. From this, the middle equation in (5.19), and (5.20), we deduce (5.18). □

Proof of Theorem 5.1(i) Fix x = (q, p) ∈ ∂+X, set (Q̂, P̂ ) = T (q, p), and τ = τ(q, p).
To explore the dispersive behavior of a dispersive billiard, we study the evolution of the
quadratic form

Q(q̂, p̂) = Qx(q̂, p̂) = q̂ · p̂,
along a T orbit. Here Qx is defined for q̂ ∈ TqY , and p̂ ∈ p⊥. By (5.17),

Q
(
(dT )(q,p)(q̂, p̂)

)
= [VQ,p(q̂ + τ p̂)] ·

[
RQp̂+ 2

(
p · ν(Q)

)−(
RQV

t
Q,p(dν)QVQ,p

)(
q̂ + τ p̂

)]
= (q̂ + τ p̂) · p̂+ 2

(
p · ν(Q)

)−
[VQ,p(q̂ + τ p̂)] ·

[(
V t
Q,p(dν)QVQ,p

)(
q̂ + τ p̂

)]
= Q(q̂, p̂) + τ |p̂|2 + 2

(
p · ν(Q)

)−
[VQ,p(q̂ + τ p̂)] ·

[
(dν)QVQ,p

(
q̂ + τ p̂

)]
≥ Q(q̂, p̂) + τ |p̂|2 + 2δ

(
p · ν(Q)

)− |VQ,p(q̂ + τ p̂)|2 .

Here for the second equality we used RQVQ,p = VQ,p (which is true because the restriction of
RQ to TQY is identity), and that VQ,pz · p̂ = z · p̂ (which is true because VQ,pz − z is parallel
to p, and p · p̂ = 0), and for the third equality we used V 2

Q,p = VQ,p. Observe that if q̂ = a+ b
with a ∈ p⊥, and b parallel to p, then VQ,p(q̂ + τ p̂) = VQ,p(a+ τ p̂), and

|VQ,p(q̂ + τ p̂)|2 = |VQ,p(a+ τ p̂)|2 ≥ |a+ τ p̂|2 ≥ 4τa · p̂ = 4τQ(q̂, p̂).

Hence,

(5.21) Q
(
(dT )(q,p)(q̂, p̂)

)
≥ f(q, p)Q(q̂, p̂),
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where
f(q, p) = 1 + 8δ

(
p · ν(Q)

)−
τ(q, p),

for Q = q + τ(q, p)p. Inductively (5.21) yields

(5.22) Q
(
(dT n)(q,p)(q̂, p̂)

)
≥

n−1∏
i=0

f
(
T i(q, p)

)
Q(q̂, p̂).

We now assume that Q(q̂, p̂) > 0. From (5.22) and the Ergodic Theorem we deduce

(5.23) lim inf
n→∞

n−1 logQ
(
(dT n)(q,p)(q̂, p̂)

)
≥ lim

n→∞
n−1

n−1∑
i=0

log f
(
T i(q, p)

)
=: g0(q, p),

where g0 = Pµ log f , with ∫
g0 dµ =

∫
log f dµ > 0.

Finally, given any (q̂, p̂) with Q(q̂, p̂) > 0, use (5.23) and∣∣(dT n)(q,p)(q̂, p̂)
∣∣ ≥ √

2Q
(
(dT n)(q,p)(q̂, p̂)

) 1
2 ,

to deduce (5.11) for g = 2−1g0.

(ii) By Proposition 5.1, the quantity λ(t) := p(t) · q̂(t) is independent of time because in
between collisions λ̇(t) = p(t) · p̂(t) = 0, and at a collision time t,

λ(t+) = Rq(t)p(t−) ·Rq(t)q̂(t−) = p(t−) · q̂(t−) = λ(t−).

As a result, if initially p · q̂ = 0, then p(t) · q̂(t) = 0, for all t ≥ 0. If we write Q(t) =
Q(q̂(t), p̂(t)), then in between collisions, dQ

dt
= |p̂|2 and at a collision,

Q(t+) = q̂′ · p̂′ = Rq q̂ ·
[
Rqp̂+ 2

(
p · ν(q)

)−(
RqV

t
q,p(dν)qVq,p

)
q̂
]

= Q(t−) + 2
(
p · ν(q)

)−(
Vq,pq̂

)
·
(
(dν)qVq,pq̂

)
≥ Q(t−) + 2δ

(
p · ν(q)

)−∣∣Vq,pq̂∣∣2,
where (q, p) = (q(t), p(t)). We note that since Vq,pq̂ − q̂ is parallel to p, and p ⊥ q̂, we learn∣∣Vq,pq̂∣∣2 ≥ |q̂|2.

As a result,

(5.24) Q(t+) ≥ Q(t−) + 2δ
(
p(t−) · ν(q(t))

)− ∣∣q̂(t−)
∣∣2
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Let us write τi, for the time at which q(t) has reached the boundary for the i-th times, and
set τ̄i = τi − τi−1. By (5.24),

Q
(
τi+1 +

)
≥ Q

(
τi +

)
+

∫ τi+1

τi

∣∣p̂(t)∣∣2 dt+ 2δ
(
pi · ni+1

)− ∣∣q̂(τi+1−)
∣∣2

≥ Q
(
τi +

)
+ 2δ

(
pi · ni+1

)− ∣∣q̂i + τ̄ip̂i
∣∣2

≥ Q
(
τi +

)
+ 8δτ̄i

(
pi · ni+1

)− (
q̂i · p̂i

)
=
(
1 + 8δτ̄i

(
pi · ni+1

)−)Q(τi + ),
where qi+1 = q(τi+1), pi = p(τi+), q̂i = q̂(τi+), p̂i = p̂(τi+) and ni+1 = ν(qi+1). From this, we
can readily deduce that for a function h0 with

∫
h0 dm > 0,

(5.25) lim inf
n→∞

n−1 logQ
(
τn +

)
≥ g0(τ1).

It is not hard to show
lim
n→∞

n−1τn = k,

exists and is positive m-almost everywhere. This and (5.25) imply

lim inf
t→∞

t−1 logQ(t) ≥ h1,

for a nonnegative and nonzero function h1. This in turn implies (5.12) as in Part (i). □

Remark 5.2(i) Write V for Vq,p with q ∈ ∂Y . The operator W = V tV on p⊥ has a simple
geometric interpretation. For q̂ ∈ p⊥,

Wq̂ =

(
I − n⊗ p

p · n

)(
I − p⊗ n

p · n

)
q̂ =

(
I − n⊗ p

p · n

)(
q̂ − n · q̂

n · p
n

)
= q̂ − n · q̂

n · p

(
p− |p|2

n · p
n

)
= q̂ − n · q̂

n · p
V tp

=

(
I − (V tp)⊗ n

p · n

)
q̂,

where V tp is the n-projection of p onto p⊥. Moreover,

|V q̂|2 = Wq̂ · q̂ = |q̂|2 +
(
n · q̂
n · p

)2

|p|2.

(ii) For the flow ϕt, we have a zero Lyapunov exponent in the direction of the flow. To avoid
this direction, we assume that q̂ · p = 0 in Theorem 5.1. This suggests that we restrict (q̂, p̂)
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to W (x) = {(q̂, p̂) : q̂ · p = p̂ · p = 0} = p⊥ for x = (q, p). Note that if (q̂, p̂) ∈ W (x) initially,
then (q̂(t), p̂(t)) ∈ W (ϕt(x)) at later times. Let us define a sector

Cx = {(q̂, p̂) ∈ W (x) : q̂ · p̂ > 0}.

What we have learned so far is that

(5.26) (dϕt)x(Cx) ⫋ Cϕt(x).

Note that q̂ is gaining in size in between collisions. However the gain in the size of p̂ is
occurring only at collisions.

(iii) As we mention in Remark 5.1, the function f(q, p, t) = f 0(ϕ−t(q, p)), satisfies the
equation ft + p · fq = 0 strictly inside X. To derive an equation for the evolution of α = fq
and β = fp, observe that if Λ0(c) =

{
x : f 0(x) = c

}
, then

Λt(c) =
{
(q, p) : f(q, p, t) = c

}
= ϕt

(
Λ0(c)

)
.

This means that if x ∈ Λt(c), then x = ϕt(y), for some y ∈ Λ0(c), and the normal z(0) :=
∇f 0(y) is transported to z(t) =

(
α(x, t), β(x, t)

)
= ∇f(x, t) after t units of time. This

suggests studying the evolution of a normal vector to a surface of codimention one that
evolves with ϕt. More generally, take a surface Λ of codimension one in X. The manifold
T Λ ⊆ T X evolves to T ϕt(Λ) and we study its evolution by keeping track of its corresponding
unit normal. If z(t) = (a(t), b(t)) ∈ T X is normal to T (ϕt(Λ)) at all times, then we would
like to derive an evolution equation for it. The vector (a, b) is chosen so that for every t,

a(t) · q̂(t) + b(t) · p̂(t) = 0,

where (q̂(t), p̂(t)) ∈ Tx(t)Λt with Λt = ϕt(Λ). In between collisions, x̂(t) = (q̂ + tp̂, p̂) and
a(t)·(q̂+tp̂)+b(t)·p̂ = 0, or a(t)·q̂+(ta(t)+b(t))·p̂ = 0. Hence if initially (a(0), b(0)) = (a, b),
then a(t) = a and b(t) = b − ta. So in between collisions we simply have da

dt
= 0, db

dt
= −a.

At a collision (a, b) experiences a jump discontinuity. If after a collision the normal vector
is given by (a′, b′), then

a′ · (Rq̂) + b′ · (Rp̂− 2Aq̂) = 0,

(Ra′) · q̂ + (Rb′) · p̂− 2(Atb′) · q̂ = 0.

This suggests

(5.27) b′ = Rb, a′ = Ra+ 2RAtRb =: Ra+ 2Bb.

Note that if Q(t) = a(t) · b(t), then in between collisions,

dQ

dt
= −|a|2,
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and at a collision

Q(t+) = a′ · b′ = (Ra+ 2RAtRb) ·Rb
= Q(t−) + 2AtRb · b
= Q(t−) + 2b ·RAb
= Q(t−) + 2(p · n)(dν)Q(V b) · (V b),

and in the case of a dispersive billiard,

Q(t+)−Q(t−) ≤ 2δ(p · n)|V b|2 < 0.

Hence Q(t) is decreasing. □
As we mentioned in Chapter 4, we may use sectors to find the stable and unstable

directions for a dynamical systems. We wish to use Proposition 5.1 to determine how certain
sectors get slimmer along the flow. As a first step, let us observe that since the flow ϕt or
the map are symplectic, then both the stable and unstable subspaces are Lagrangian. Recall
that if x̂ = (q̂, p̂) and x̂′ = (q̂′, p̂′), then

ω
(
x̂, x̂′

)
= p̂ · q̂′ − q̂ · p̂′.

Also recall for x = (q, p),

Wx =
{
(q̂, p̂) : q̂ · p = p̂ · p = 0

}
= p⊥ × p⊥.

We think of W =
(
Wx : x ∈ X

)
as a vector bundle of dimension 2d − 2. A sub-bundle

L =
(
Lx : x ∈ X

)
is called Lagrangian if ω(a, b) = 0 for every a, b ∈ Lx. Here we think of ω

as a symplectic form on W .

Proposition 5.2 (i)The billiard flow is symplectic.

(ii) Both stable and unstable bundles Es(u) are Lagrangian.

(iii) If there exist symmetric linear maps Ss
x, S

u
x : p⊥ → p⊥ such that

Eu(s)
x =

{
(q̂, p̂) : p̂ = Ss(u)

x q̂, q̂ ∈ p⊥
}
,

then in between collisions,

(5.28)
d

dt
S
s(u)
ϕt(x)

+
(
S
s(u)
ϕt(x)

)2
= 0,

or equivalently,

(5.29) S
s(u)
ϕt(x)

= Ss(u)
x

(
I + tSs(u)

x

)−1
=
(
tI +

(
Ss(u)
x

)−1
)−1

,
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where the last equality holds whenever S
s(u)
x is invertible. At a collision, Ss(u) changes to

Ss(u)′, where

(5.30) Ss(u)
x

′ = RqS
s(u)
x Rq +RqV

t
q,p(dν)qVq,pRq =: RqS

s(u)
x Rq + Γq,p.

(iv) Assume that there exist positive symmetric linear maps Ss
x, S

u
x : Tq∂

+Y → p⊥ such that

(5.31) Eu(s)
x =

{
(q̂, p̂) : p̂ = Su(s)

x q̂, q̂ ∈ Tq∂
+Y
}
.

Then

(5.32) S
s(u)
T (x) = ΓQ,p +RQ

(
τ(x)I +

(
Ss(u)
x

)−1
)−1

RQ,

where T (q, p) = (Q,P ) and x = (q, p).

Proof(i) For symplectic property observe that if x̂ = (q̂, p̂), x̂∗ = (q̂∗, p̂∗) ∈ Wx change to
x̂′ = (q̂′, p̂′), x̂′∗ = (q̂′∗, p̂

′
∗) ∈ Wx at a collision, then

ω
(
x̂′, x̂′∗

)
= p̂′ · q̂′∗ − q̂′ · p̂′∗
=
(
Rqp̂+ 2(p · n)−RqV

t
q,p(dν)qVq,pq̂

)
·
(
Rq q̂∗

)
−
(
Rqp̂∗ + 2(p · n)−RqV

t
q,p(dν)qVq,pq̂∗

)
·
(
Rq q̂

)
=
(
p̂+ 2(p · n)−V t

q,p(dν)qVq,pq̂
)
· q̂∗ −

(
p̂∗ + 2(p · n)−V t

q,p(dν)qVq,pq̂∗
)
· q̂

= ω
(
x̂, x̂∗

)
,

where for the last equality, we used the symmetry of V t
q,p(dν)qVq,p.

(ii) a, b ∈ Es
x, then by symplectic property

ωx(a, b) = lim
t→∞

ωϕt(x)

(
(dϕt)xa, (dϕt)xb

)
= 0,

because both
∣∣(dϕt)xa

∣∣ and ∣∣(dϕt)xb
∣∣ decay exponentially fast.

(iii) Note that since p̂(t) stays constant in between collisions, we

0 =
d

dt
S(t)q̂(t) = Ṡ(t)q̂(t) + S(t)

dq̂

dt
(t) = Ṡ(t)q̂(t) + S(t)p̂(t) = Ṡ(t)q̂(t) + S(t)2q̂(t),

where S(t) denotes S
s(u)
ϕt(x)

. This implies the first equation (5.29) because q̂(t) can take any

vector. The second equation of (5.29) also implies the first by differentiation.

Since
(
dϕt

)
x
E

s(u)
x = E

s(u)
ϕt(x)

, and in between collisions
(
dϕt

)
x
(q̂, p̂) = (q̂ + tp̂, p̂), we must

have
S
s(u)
ϕt(x)

(
q̂ + tSs(u)

x q̂
)
= Ss(u)

x q̂.
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This is exactly the second equation in (5.29). As for (5.30), we use (5.16) to write

Ss(u)
x

′(Rq q̂
)
= RqS

s(u)
x q̂ +RqV

t
q,p(dν)qVq,pq̂,

which yields (5.30).

(iv) The formula (5.32) is an immediate consequence of (5.30) and (5.29). □

Remark 5.3(i) A particularly nice example of Λ as in Remark 5.2(ii) is a normal bundle of
a q-surface. More precisely, suppose Θ is a surface of codimension one in Y and set

Λ = {(q, p) : q ∈ Θ, p is the normal vector at q}.

Here we are assuming that Λ is orientable and a normal vector p at each q ∈ Θ is specified.
In this case (q, p, q̂, p̂) ∈ T Λ means that q̂ ∈ TqΘ and that p̂ = Cq q̂ for a suitable matrix C(q)
which is known as the curvature matrix. (If p = ν(q) is the normal vector, then Cq = (dν)q.)
The evolution of C along an orbit is goverened by (5.29) and (5.30).

(ii) If the billiard map is hyperbolic, the we would have dimEu = dimEs = d− 1. This is
the highest dimension a Lagrangian bundle can have because dimW = 2d − 2. In fact the
assumptions (5.28) and (5.31) are based on the fact that if we assume that a Lagrangian
subspace L is non-degenerate, then it must be a graph of a symmetric matrix. To guess
what the stable fiber at a point x = (q, p) is, observe that if we replace x with T−1(x) in
(??), we obtain

Ss
x = Γq,p1 +Rq

(
τ1(x)I +

(
Ss
T−1(x)

)−1
)−1

Rq = Γq,Rqp +Rq
I

τ1I +
I

Ss
x1

Rq,

where x1 = T−1(x) = T (q,−p) = (q1, p1) and τ1 = τ
(
T−1(x)

)
. From this we guess

(5.33) Ss
x = Γ̂1 + R̂0

I

τ1I +
I

Γ̂2+R̂1

I

τ2I +
I

...

R̂1

R̂0.

Here we write xi = (qi, pi) for T
−i(x), and τi = τ(xi), R̂i = Rqi , and Γ̂i = Γpi,qi−1

. To verify
(5.33), we need to make sure that the continued fraction is convergent. This is more or less
equivalent to the convergence

(5.34) Ss,n
x =

(
dT n

)
T−n(x)

Ss
T−n(x).

(iii) It is instructive to compare the billiard flow with our Example 4.3. In Example 4.3,
we had the sector Cx =

{
(q̂, p̂) : q̂p̂ ≥ 0

}
, that got slimmer under dT n. Its lower boundary
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L = {(q̂, 0) : q̂ ∈ R} yielded a sequence of lines Ln
x = (dT n)T−n(x)L with increasing slopes

θn(x) → θs. The limit θs gave the slope of the stable line. We have a similar scenario for
our billiard: the sector

Cx = Cq,p =
{
(q̂, p̂) : q̂, p̂ ∈ p⊥

}
,

yields a family
Ct

x := (dϕt)ϕ−t(x)Cϕ−t(x),

of nested sectors as t→ ∞. Its lower boundary

Lt
x := (dϕt)ϕ−t(x)Lx, with Lx =

{
(q̂, 0) : q̂ ∈ p⊥

}
,

is a d-dimensional Lagrangian subspace that is expected to converge to the stable fiber Es
x.

Similarly, the sector
Cx = Cq,p =

{
(q̂, p̂) : q̂ ∈ Tq∂Y, p̂ ∈ p⊥

}
,

yields a family
Cn

x := (dT n)T−n(x)CT−n(x),

of nested sectors as n→ ∞. Its boundaries are given by

L−,n
x = (dT n)T−n(x)L

−
x , with L−

x =
{
(q̂, 0) : q̂ ∈ Tq∂Y

}
,

L+,n
x = (dT n)T−n(x)L

+
x , with L+

x =
{
(0, p̂) : p̂ ∈ p⊥

}
.

These are d-dimensional Lagrangian subspaces that are expected to converge to the stable
fiber Es

x for the billiard map T . □

To establish the convergence of Cn
x as n → ∞, we may use the strict nested property of

these sequences. For this, we need to define a nice metric for the set of Lagrangian subspaces
so that the strict nested property guarantees the convergence. Indeed if we write

(dT n)T−n(x) =

[
An(x) Bn(x)
Cn(x) Dn(x),

]
then the monotonicity

(dT )xCx ⊊ CT (x), Cn+1
x ⊊ Cn

x ,

means C∗
nBn > 0, and if λn denotes its smallest eigenvalue, then λn → ∞ as n → ∞. We

then define a metric D on the set of Lagrangian subspaces such that

D
(
L−,n
x , L+,n

x

)
≤ c0

(
λn
)−1

,

for a constant c1

Theorem 5.2 For µ-almost all x, we have that ∩nC
n
x =: Es

x is a Lagrangian subspace.
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Proof Since
Cn+1

x = (dT )T−1(x)C
n
T−1(x),

we learn
L±,n+1
x = (dT )T−1(x)L

±,n
T−1(x).

If
L±,n
x =

{(
q̂, S±,n

x q̂
)
: q̂ ∈ Tq∂Y

}
,

then from (5.31) we learn

(5.35) S±,n+1
Q,P = ΓQ,p +RQ

(
τ(q, p)I +

(
S±,n
(q,p)

)−1
)−1

RQ =: G
(
(q, p), S±,n

(q,p)

)
,

where T−1(Q,P ) = (q, p) so that Q = q + τ(q, p)p, and P = RQp. (Compare this to
(4.33).) Note that the function G(x,A) is monotonically increasing in A. Since S−,0 = 0,
and S−,1 > 0, we deduce that the sequence

{
S−,n

}
n
is increasing.

Note that since

L+,1
(Q,P ) =

{(
τ(q, p)VQ,pp̂, RQp̂+ 2

(
p · ν(Q)

)−
τ(q, p)

(
V −1
Q,p(dν)QVQ,p

)
p̂
)
: p̂ ∈ p⊥

}
=
{(
q̂, τ(q, p)−1V −1

Q,pq̂ + 2
(
p · ν(Q)

)−(
V −1
Q,p(dν)Q

)
q̂
)
: q̂ ∈ Tq∂Y

}
,

we have
S+,1
(Q,P ) = τ(q, p)−1V −1

Q,p + 2
(
p · ν(Q)

)−
V −1
Q,p(dν)Q.

In some sense S+,0 = ∞ > S+,1, which in turn implies that the sequence
{
S+,n

}
n
is decreas-

ing.
We now define a metric on the set of Lagrangian subspaces with respect to the sequence{

S±,n
}
n
converges. Since we are dealing with Lagrangian subspaces associated with positive

definite matrices, we define a metric on the set of positive matrices. This metric yields a
metric on the set of corresponding Lagrangian. We write

L(A) =
{
(a,Aa) : a ∈ Rd

}
,

for the Lagrangian space associated with A. We define

D
(
L(A),L(B)

)
= D′(A,B) = sup

a̸=0

∣∣∣∣log Aa · aBa · a

∣∣∣∣ .
We next study the effect of an invertible symplectic matrix on such Lagrangian subspaces.

If

G =

[
A B
C D

]
,

is symplectic, then the the Lagrangian subspace associated with S is mapped to a subspace
associated with

S ′ = (C +DS)(A+BS)−1.
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Lemma 5.1 There exist invertible matrices F1 and F2 and a diagonal matrix K such that[
A B
C D

]
=

[
F−1
1 0
0 F ∗

1

] [
I I
K I +K

] [
F−1
2 0
0 F ∗

2

]
=: GF1Λ(K)GF2 .

Moreover the matrix K has the same eigenvalues as C∗B.

Note that GFL
±
x = L±

x . From this, Lemma 5.1, and the elementary facts,

GFL(A) = L
(
F ∗AF

)
, D′(F ∗AF, F ∗BF ) = D′(A,B),

we can assert

D
(
GL−

x , GL
+
x

)
= D

(
GF1Λ(K)L−

x , GF1Λ(K)L+
x

)
= D

(
Λ(K)L−

x ,Λ(K)L+x
)
= D(K, I +K)

= D
(
I +K−1, I

)
= log

(
1 + λ1(G)

−1
)
,

where λ1(G) is the smallest eigenvalue of C∗B. On the other hand, since Q
(
GF x̂

)
= Q(x̂),

inf
x̂∈Cx

Q
(
Gx̂
)

Q
(
x̂
) = inf

x̂∈Cx

Q
(
Λ(K)x̂

)
Q
(
x̂
) = inf

x̂∈Cx

K(q̂ + p̂) · (q̂ + p̂) + p̂ · (q̂ + p̂)

Q
(
x̂
)

≤ inf
a,b>0

λ1(a+ b)(a+ b) + b(a+ b)

ab
= inf

b>0

[
λ1
(
b+ b−1

)2
+ b
(
b+ b−1

)]
= inf

b>0

[
(1 + λ1)b

2 + λ1b
−2 + 2λ1 + 1

]
= 2
√
λ1(λ1 + 1) + 2λ1 + 1

Now if
G = Gn = (dT n)T−n(x),

we are done if we can show
lim
n→∞

λ1(Gn) = ∞.

For this it suffices to show

(5.36) lim
n→∞

σ(Gn) := lim
n→∞

inf
x̂∈Cx

Q
(
Gnx̂

)
Q
(
x̂
) = ∞.

Since the set {
x̂ ∈ Cx : Q(x̂) = 1

}
,

is compact, (5.36) follows if we can show that for each x̂ ∈ Cx,

lim
n→∞

Q
(
Gnx̂

)
Q
(
x̂
) = ∞.
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This is a consequence of Theorem 5.1. □

Exercises

(i) Consider a billiard inside a planar disc D. Write down a explicit formula for the billiard
map T : ∂+X → ∂+X, where X = D × S. Write (q, θ) for a point on ∂+X, with q ∈ ∂D,
and θ ∈ (−π, π) for the angle p makes with the tangent vector at q. Show that the set of{
(q, θ) : q ∈ ∂D

}
is invariant for T .

(ii) Consider a billiard inside a planar domain D, and assume that the set D is strictly
convex. Write (q, θ) for a point on ∂+X, with q ∈ ∂D, and θ ∈ (−π, π) for the angle p
makes with the tangent vector at q. Given q,Q ∈ ∂D, write S(q,Q) = |q−Q|. Show that if
T (q, θ) = (Q,Θ), then Sq = − cos θ and SQ = cosΘ. □
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6 Ergodicity of Hyperbolic Systems

Lyapunov exponents can be used to measure the hyperbolicity of dynamical systems. Anosov
measures (systems) are examples of uniformly or strongly hyperbolic systems which exhibit
chaotic and stochastic behavior. In reality, dynamical systems are rarely strongly hyperbolic
and those coming from Hamiltonian systems are only weakly (or even partially) hyperbolic.

An argument of Hopf shows that hyperbolicity implies ergodicity. We examine this
argument for two models in this sections; Examples 6.1 and 6.2. To explain Hopf’s argument,
let us choose the simplest hyperbolic model with expansion and contraction, namely Arnold
cat transformation, and use this argument to prove its ergodicity. In fact in Example 1.6 we
showed the mixing of Arnold’s cat transformation which in particular implies the ergodicity.
But our goal is presenting a second proof of ergodicity which is the key idea in proving
ergodicity for examples coming from Hamiltonian systems.

Example 6.1 Let A =

[
1 α
α 1 + α2

]
with α ∈ Z. Let π : R2 → T2 be the projection

π(a) = a(mod 1) and define T : T2 → T2 by T ◦ π = π ◦ T̂ where T̂ (a) = Aa. Since α ∈ Z
and detA = 1, we know that T is continuous and that the normalized Lebesgue measure µ
on T2 is invariant for T . The eigenvalues of A are

λ1 = λ(α) =
1

2
[2 + α2 − α

√
4 + α2] < 1 < λ2 = (λ(α))−1,

provided that α > 0. The corresponding eigenvectors are denoted by v1 and v2. Define

Ŵ s(a) = {a+ tv1 : t ∈ R}, Ŵ u(a) = {a+ tv2 : t ∈ R}.

We then have that W s(x) and W u(x) defined by

W s(π(a)) = π(Ŵ s(a)), W u(π(a)) = π(Ŵ a(a))

are the stable and unstable manifolds. Take a continuous periodic f̂ : R2 → R. This induces
a continuous f : T2 → R such that f ◦ π = f̂ . We have that f ◦ T n ◦ π = f̂ ◦ T̂ n. Define X̂±

to be the set of points a such that

lim
n→∞

1

n

n−1∑
0

f̂(T̂±j(a)) =: f̂±(a)

exists. Then π(X̂±) = X± with X± consisting of points x such that

lim
n→∞

1

n

n−1∑
0

f(T±j(x)) =: f±(x)
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exists with f± = f̂± ◦ π. Evidently f± ◦ T = f± on X± and f̂± ◦ T̂ = f̂± on X̂±. From
definition, we see that if b ∈ Ŵ s(a) (resp. b ∈ Ŵ u(a)), then

|T̂ n(b)− T̂ n(a)| = λn|a− b|,

(resp. |T̂−n(b)− T̂−n(a)| = λn|a− b|).

for n ∈ N. Hence a ∈ X̂+ (resp. X̂−) implies that Ŵ s(a) ⊆ X̂+ (resp. Ŵ u(a) ⊆ X̂−). Let
d(·, ·) be the standard distance on the torus. More precisely,

d(x, y) = min{|a− b| : π(a) = x, π(b) = y}.

Again if y ∈ W s(x) (resp. y ∈ W u(x)), then

d(T n(x), T n(y)) = λnd(x, y),

(resp. d(T−n(x), T−n(y)) = λnd(x, y))

for n ∈ N. Similarly x ∈ X+ (resp. X−) implies thatW s(x) ⊆ X+ (resp.W u(x) ⊆ X−). Let
Y (respectively Ŷ denote the set of points x ∈ X− ∩ X+ (respectively x ∈ X̂− ∩ X̂+ such
that f+(x) = f−(x) (respectively f̂+(x) = f̂−(x)). By Remark 1.3(iii), µ(Y ) = 1 and the
Lebesgue measure of the complement of Ŷ is zero. Choose a point x0 such that Ŵ s(x0) \ Ŷ
is a set of 0 length. The function f̂+ is constant on Ŵ s(x0). The function f̂

− is constant on
Ŵ u(y) for every y ∈ Ŵ s(x0) ∩ Ŷ and this constant coincides with the value f̂+ at y. Hence
f̂+ = f̂− is a constant on the set ⋃

y∈Ŵ s(x0)∩Ŷ

Ŵ u(y).

But this set is of full measure. So f̂+ = f̂− is constant a.e. and this implies that f+ = f− is
constant a.e. □

Let us call a discrete dynamical system hyperbolic if its Lyapunov exponents are nonzero.
According to a result of Pesin, a hyperbolic diffeomorphism with a smooth invariant measure
has at most countably many ergodic components. Pesin’s theory also proves the existence
of stable and unstable manifolds for hyperbolic systems.

Sinai studied the issue of ergodicity and hyperbolicity for a system of colliding balls in
the late 60’s. These systems can be regarded as hyperbolic systems with discontinuities.
To get a feel for Sinai’s method, we follow a work of Liverani and Wojtkowski [LiW] by
studying a toral transformation as in Example 6.1 but now we assume that α /∈ Z so that
the induced transformation is no longer continuous. As we will see below, the discontinuity
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of the transformation destroys the uniform hyperbolicity of Example 6.1 and, in some sense
our system is only weakly hyperbolic.

Example 6.2 As in Example 6.1, let us write π : R2 → T2 for the (mod 1) projection onto
the torus and set T̂ (a) = Aa, for

A =

[
1 α
α 1 + α2

]
.

This induces T : T2 → T2, with T ◦ π = π ◦ T̂ . If 0 < α < 1, then T is discontinuous.
However the Lebesgue measure µ is still invariant for T . To understand T , let us express
T̂ = T̂1 ◦ T̂2, T = T1 ◦ T2, T̂i(a) = Aia for i = 1, 2, where

A1 =

[
1 0
α 1

]
, A2 =

[
1 α
0 1

]
.

If we regard T as [0, 1] with 0 = 1, then

T1

([
x1
x2

])
=

[
x1

αx1 + x2 (mod 1)

]
, T2

([
x1
x2

])
=

[
x1 + αx2 (mod 1)

x2

]
with x1, x2 ∈ [0, 1]. Note that Ti is discontinuous on the circle xi ∈ {0, 1}. As a result, T is
discontinuous on the circle x2 ∈ {0, 1} and on the curve x1 + αx2 ∈ Z. One way to portray
this is by introducing the sets

Γ+ = {(x1, x2) : 0 ≤ x1 + αx2 ≤ 1, 0 ≤ x2 ≤ 1}
Γ− = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ −αx1 + x2 ≤ 1}

and observing that T̂ maps Γ+ onto Γ− but T is discontinuous along S+ = ∂Γ+. Moreover
T̂−1 = T̂−1

2 ◦ T̂−1
1 with T̂−1

i (a) = A−1
i a for i = 1, 2, where

A−1
1 =

[
1 0
−α 1

]
, A−1

2 =

[
1 −α
0 1

]
.

Since T−1
1 is discontinuous on the circle x2 ∈ {0, 1} and T−1

2 is discontinuous on the circle
x1 ∈ {0, 1}, we deduce that T−1 is discontinuous on S− = ∂Γ−. Note that the line x2 = 0 is
mapped onto the line x2 = ax1 and the line x2 = 1 is mapped onto the line x2 = ax1 + 1.
Also note that distinct points on S+ which correspond to a single point on T2 are mapped
to distinct points on T2.

We now examine the stable and unstable manifolds. For the unstable manifold, we need
to have that if y ∈ W u(x), then d(T−n(x), T−n(y)) → 0 as n→ +∞. We may try

W n
0 (x) = {π(a+ v2t) : t ∈ R}
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where a is chosen so that π(a) = x and v2 is the expanding direction. This would not do
the job because of the discontinuity. Indeed the discontinuity set S− cut the set W u

0 (x)
into pieces. Let us write W u

1 (x) for the connected component of W u
0 (x) inside Γ−. Since

crossing S− causes a jump discontinuity for T−1, we have that d(T−n(x), T−n(y)) ̸→ 0 if
y ∈ W u

0 (x) \W u
1 (x). However note that if y ∈ W u

1 (x), then d(T
−1(x), T−1(y)) = λd(x, y).

As a result, d(T−1(x), T−1(y)) gets smaller than d(x, y) by a factor of size λ. To have
d(T−n(x), T−n(y)) = λnd(x, y), we need to make sure that the segment joining T−n(x) to
T−n(y) is not cut into pieces by S−. That is, the segment xy does not intersect T n(S−).
Motivated by this, let us pick x ∈ T2 \ ∪∞

i=0T
i(S−) and define W u

j (x) to be the component

of W u
0 (x) which avoids ∪j

i=0T
i(S−). We now claim that for µ-almost all points, W u(x) =

∩∞
j=0W

u
j (x) is still a nontrivial segment. (This would be our unstable manifold.) More

precisely, we show that for µ-almost all x, there exists a finite N(x) such that

W u(x) =
∞⋂
j=0

W u
j (x) =

N(x)⋂
j=0

W u
j (x).

To see this, let us observe that for example

W u
2 (x) = T (T−1W u

1 (x) ∩W u
1 (T

−1(x))).

In other words, we take W u
1 (x) which is a line segment with endpoints in S−. We apply T−1

on it to get a line segment T−1W u
1 (x) with T

−1(x) on it. This line segment is shorter than
W u

1 (x); its length is λ times the length of W u
1 (x). If this line segment is not cut by S−, we

set W u
2 (x) = W u

1 (x); otherwise we take the connected component of T−1W u
1 (x) which lies

inside S− and has T−1(x) on it. This connected component lies on W u
1 (T

−1(x)). We then
map this back by T . Note that W u

2 (x) ̸= W u
1 (x) only if d(T−1(x), S−) = distance of T−1(x)

from S− is less than
length(T−1W u

1 (x)) = λ length(W u
1 (x)).

More generally,
W u

i+1(x) = T i(T−iW u
i (x) ∩W u

1 (T
−i(x)),

and W u
i+1(x) ̸= W u

i (x) only if

d(T−i(x), S−) < λi length (W u
i (x)).

Since length (W u
i (x)) ≤ length (W u

1 (x)) =: c0, we learn that if W u(x) = {x}, then

d(T−i(x), S−) < c0λ
i,
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for infinitely many i. Set S−
δ =

{
x ∈ Γ− : d(x, S−) < δ

}
. We can write

{
x : W u(x) = {x}

}
⊆

∞⋂
n=1

∞⋃
i=n

T i(S−
c0λi),

µ
({
x : W u(x) = {x}

})
≤ lim

n→∞

∞∑
i=n

µ(T i(S−
c0λi))

= lim
n→∞

∞∑
i=n

µ(S−
c0λi)

≤ lim
n→∞

∞∑
i=n

c1c0λ
i = 0

for some constant c1. From this we deduce that for µ-almost all points x, the set W u(x) is
an interval of positive length with endpoints in

⋃∞
i=0 T

i(S−). Moreover, if y ∈ W u(x), then

d(T−n(y), T−n(x)) = λnd(x, y) → 0

as n→ ∞. In the same fashion, we construct W s(x).
We now apply the Hopf’s argument. To this end, let us take a dense subset T of C(T2)

and for f ∈ C(T2) define f± as in Example 6.1. Set Y = ∩
{
Yf : f ∈ A

}
, where

Yf =
{
x ∈ T2 : f±(x),W s(x),W u(x) are well-defined and f+(x) = f−(x)

}
So far we know that µ(Y ) = 1. Regarding T2 as [0, 1]2 with 0 = 1 and slicing T2 into line
segments parallel to vi for i = 0, 1, we learn that each stable or unstable leaf intersects Y
on a set of full length, except for a family of leaves of total µ-measure 0. Let us pick a leaf
W s(x0) which is not one of the exceptional leaf and define

Z(x0) =
⋃{

W u(y) : y ∈ W s(x0) and y ∈ Y
}
.

Since W u(y) is of positive length, for each y ∈ W s(x), we deduce that µ
(
Z(x0)

)
> 0. On the

other hand f+ is constant on W s(x0) and f
− is constant on each W u(y), y ∈ W s(x0) ∩ Y .

Since f+ = f− on W s(x0), we deduce that f+ = f− is constant on Z(x0) for every f ∈ T .
With the aid of Hopf’s argument, we managed to show that f± is constant on a set of

positive µ-measure. But for ergodicity of µ, we really need to show this on a set of µ-full
measure. This is where Hopf’s argument breaks down, however it does show that µ has at
most countably many ergodic components. Indeed if we define

Z ′(x0) =
{
x : f±(x) exist and f±(x) = f±(x0)

}
,
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then µ
(
Z ′(x0)

)
> 0 because Z ′(x0) ⊇ Z(x0). Since this is true for µ-almost all x0, we deduce

that µ can only have countably many ergodic components.
We now explain how Sinai’s method can be used to prove the ergodicity of µ. To this

end, let us take a box B with boundary lines parallel to v1 and v2 and define

W u(B) =
{
y ∈ B ∩ Y ′ : W u(y) ∩ Y is of full length and W u(y)

reaches the boundary of B on both ends
}

where
Y ′ = Y ′(f) =

{
y : f+(y) and f−(y) are defined and f+(y) = f−(y)

}
.

In the same fashion we define W s(B). We now claim that f+ is constant on W s(B), f− is
constant on W u(B), and these constants coincide. To see this, we fix W u(y) ⊆ W u(B) and
take all z ∈ W u(y)∩ Y ′. We have that f− is constant on W u(y) and that f−(z) = f+(z) for
such z ∈ W u(y)∩Y ′. Since f+ is constant on each W s(z), we deduce that f+ is constant on⋃

z∈Wu(y)∩Y ′(W s(z) ∩ Y ′) and this constant coincides with f−(y). By varying y ∈ W u(B),

we obtain the desired result. (Here we are using the fact that if W u(y) ⊆ W u(B) and
W s(z) ⊆ W s(B), then W u(y) and W s(z) intersect.)

Let us regard the vertical and horizontal axis as the stable and unstable directions. We
now take two boxes which overlap. For example, imagine that B1 = I1 × J1, B2 = I2 × J2
in the (v2, v1) coordinates, where either J1 = J2 and I1 ∩ I2 ̸= ∅, or I1 = I2 and J1 ∩ J2 ̸= ∅.
We wish to show that the constant f± of W u(s)(B1) equal the constant f

± of W u(s)(B2). We
know that f+ is constant onW s(B1)∪W s(B2) and that f− is constant onW u(B1)∪W u(B2).
We also know that f+ = f− in Y ′. Clearly if J1 = J2, I1 ∩ I2 ̸= ∅ and W s(B1)∩W s(B2) ̸= ∅
(respect. I1 = I2, J1 ∩ J2 ̸= ∅ and W u(B1) ∩W u(B2) ̸= ∅), then the constant f+ (respect.
f−) for W s(B1) (respect. W

u(B1)) coincides with the constant f+ (respect. f−) for W s(B2)
(respect. W u(B2)). Let us identify a scenario for which µ

(
W s(B1) ∩W s(B2)

)
> 0. Given

β ∈ (0, 1), let us call a box B β-uconnected if the set

Bu =
{
x ∈ B : W u(x) is defined and reaches the boundary of B on both ends

}
satisfies µ(Bu) > βµ(B). The set Bs is defined in a similar way and we say that B is β-
sconnected if µ(Bs) > βµ(B). Note that if µ(Bu(s)) > βµ(B), then µ(W u(s)(B)) > βµ(B)
because Y ′ is of full-measure. (Here we are using Fubini’s theorem to write the measures of
Y ′ as an integral of the lengths of v1 or v2 slices of Y ′.) Now assume that B1 and B2 satisfy
the following conditions:

� B1 = I1 × J1, B2 = I2 × J2, with J1 = J2,

� β-sconnected (respect. uconnected),

� , B2 is to the right of B1 (respect. B2 is on the top of B1),
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� µ(B1 ∩B2) ≥ (1− β)max(µ(B1), µ(B2)),

� µ
(
W u(B1)

)
, µ(
(
W u(B2)

)
> 0 (respect. µ

(
W s(B1)

)
, µ(
(
W s(B2)

)
> 0),

then for sure µ
(
W s(B1)∩W s(B2)

)
> 0 (respect. µ

(
W u(B1)∩W u(B2)

)
> 0). Simply because

W s(B1) ∩B2 ⊆ W s(B2), and µ
(
W s(B1) ∩B2

)
> 0.

Based on this observation, let us take a box B̄ and cover it by overlapping small boxes.
Pick β ∈ (0, 1/2) and take a grid {

β

n
i ∈ B̄ : i ∈ Z2

}
and use the points of this grid as the center of squares of side length 1

n
. Each such square

has area 1
n2 , and two adjacent squares overlap on a set of area (1−β) 1

n2 . Let us write Bβ
n(B̄)

for the collection of such overlapping squares. We now state a key result of Sinai regarding
the α-u(s)connected boxes.

Theorem 6.3 There exists α0 < 1 such that for every β ∈ (0, α0),

lim
n→∞

nµ
(
∪{B ∈ Bβ

n(B̄) : B is not either β-uconnected or β-sconnected }
)
= 0.

We now demonstrate how Theorem 6.3 can be used to show that f+ and f− are constant
almost everywhere in B̄. We choose β < α < α0 and would like to show that if y, z ∈ Y ′

f ∩ B̄,
then f−(y) = f+(z).

To prove this, we first claim that there exists a full column of boxes in Bβ
n(B̄) such that

each box B in this column is α-uconnected and W u(y) reaches two boundary sides of a box
in the column provided that n is sufficiently large. Here y is fixed and since W u(y) is a
nontrivial interval, it crosses c1n many columns of total area. If each such column has a box
which is not α-uconnected, then

µ(∪{B ∈ Bβ
n(B̄) : B is not α-uconnected}) ≥ c3n · 1

n2

for some c3 > 0 (note that a point x belongs to at most
(

1
2β

+ 1
)2

many boxes). This

contradicts Theorem 2.2 for large n. Hence such a column exists. Similarly, we show that
there exists a full row of boxes in Bβ

n(B̄) such that each box is α-sconnected and at least one
box in this row is fully crossed by W s(z). Since β < α, we now that f− is constant (with
the same constant) on ∪W s(B) with the union over the boxes B on that row, and that f+

is constant on ∪W u(B) with union over the boxes B on that column. Since the row and
the column intersect on a box, we deduce that f+(y) = f−(z). This completes the proof of
f+ = f− = constant a.e. in B̄. We now turn to the proof of Theorem 6.3.
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Proof of Theorem 6.3. First we define a sector

C = {(a, b) ∈ R2 : |a| ≤ γ|b|}

which is symmetric about the unstable line v2 and contains the two directions of sides of Γ−.
We use the explicit value of the slope of v2 to see that in fact γ can be chosen in (0, 1). We
now argue that all the line segments in

⋃∞
0 T i(S−) have directions in the sector C. This is

because C already has the directions of S−. On the other hand, since the sides of S− are not
parallel to v1, T

i pushes these lines toward v2.
Now let us measure the set of points not in W u(B) for a box in Bβ

n(B). Note that if a
point x ∈ B is not in W u(B), it means that W u(x) is cut by one of T i(S−), i ∈ N∗ inside
B. Let us first consider the case when B is intersected by precisely one line segment of⋃

i T
i(S−). Since this line segment is in sector C, we learn that µ(B −W u(B)) ≤ γ

n2 . This
means

µ(W u(B)) ≥ (1− γ)µ(B).

Let us choose α0 = 1
2
(1 − γ) so that if β < α0 and B is not β-uconnected, then B must

intersect at least two segments in
⋃

i T
i(S−). (This would be true even when β < 1 − γ

but we need a smaller β later in the proof.) We now look at RL =
⋃L−1

i=0 T
i(S−) and study

those boxes which intersect at least two line segments in RL. Note that each box B is of
length 1/n and the line segments in RL are distinct. So, a box B ∈ Bβ

n intersects at least
two lines in RL only if it is sufficiently close to an intersection point of two lines in RL. More
precisely, we can find a constant c1(L) such that such a box is in a c1(L)

n
neighborhood of an

intersection point. (In fact c1(L) can be chosen to be a constant multiple of L2ec0L because
there are at most 4L(4L−1) intersection points and the smallest possible angle between two
line segment in RL is bounded below by e−c0L for some constant c0.) Hence the total area of
such boxes is c1(L)n

−2. Now we turn to those boxes which intersect at most one line in RL

and at least one line in R′
L =

⋃∞
i=L T

i(S−). Let us write DL for the set of such boxes. Let
us write B −W u(B) = B′

L ∪B′′
L, where

B′
L = {x ∈ B : W u(x) ∩B ∩RL ̸= ∅}

B′′
L = {x ∈ B : W u(x) ∩B ∩R′

L ̸= ∅} .

If B ∈ DL, then B can intersect at most one line segment in RL. Hence µ(B′
L) ≤ γµ(B) ≤

(1− 2β)µ(B). If B ∈ DL is not β-uconneted, then

(1− β)µ(B) ≤ µ(B −W u(B)) ≤ (1− 2β)µ(B) + µ(B′′
L).

From this we deduce

µ
(
∪
{
B ∈ DL : B is not β-uconnected

})
≤
∑{

µ(B) ∈ DL : B is not β-uconnected
}

≤ β−1
∑{

µ(B′′
L) ∈ DL : B is not β-uconnected

}
≤ β−1cc(β)µ

(
∪
{
B′′

L ∈ DL : B is not β-uconnected
})
,
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where for the last inequity we have used the fact that each point belongs to at most c(β) =
(1/(2β) + 1)2 many boxes in Bβ

n. Let x ∈ B′′
L for some B ∈ DL. This means that W u(x)∩B

intersects T i(S−) for some i ≥ L. Hence T−i(W u(x)∩B)∩S− ̸= ∅. Note that T−i(W u(x)∩B)
is a line segment of length at most λ−in−1. As a result, T−i(x) must be within λin−1-distance
of S−. That is, x ∈ T i(S−

λin−1). So,

µ
(
∪
{
B′′

L : B ∈ DL

})
≤ µ

(
∞⋃
i=L

T i
(
S−

λin−1

))
≤

∞∑
i=L

µ
(
T i
(
S−

λin−1

))
=

∞∑
i=L

µ
(
S−

λin−1

)
≤ c2

∞∑
i=L

n−1λi ≤ c3n
−1λL.

This yields

µ
(
∪
{
B ∈ Bβ

n(B̄) : B is not α-usconnected
})

≤ c1(L)n
−2 + c4(β)n

−1λL

for every n and L. By choosing L = η log n for η = (c0 − log λ)−1, we get

c5n
−1+η log λ(log n)2,

for the right-hand side. This completes the proof of Theorem 6.3. □

7 Classification of Dynamical Systems

Newtonian ODEs of the celestial mechanics are examples of Hamiltonian system that exhibit
both deterministic and stochastic behaviors. A prime example of a deterministic dynamical
system is a rotation (Example 1.1(i) or its infinite dimensional on TN). The simplest example
of a stochastic dynamical system is a shift (Example 1.1(iii)). A dynamical system of
positive entropy has always a stochastic subsystem as the following result confirms.

Theorem 7.1 (Sinai) Let (X,T, µ) be an ergodic dynamical system, and let (EZ, τ, µp) be
a Bernoulli shift as in Example 3.2(i). If hµ(T ) ≥ hµp(τ), then there exists a measurable
factor map F : X → EZ.

With the aid of the entropy we can completely classify Bernoulli shifts:

Theorem 7.2 (Ornstein) Two Bernoulli shifts of equal entropy are isomorphic.

Kolmogorov formulated a class of K-automorphisms that includes Bernoulli shifts. A K-
automorphism yields a dynamical system is purely stochastic and has no deterministic factor.
Pinsker had conjectured that any dynamical system can be split into a K-automorphism and
a system of zero entropy. In 1973 Ornstein showed that Pinsker’s conjecture is not true.
However the following weaker version of Pinsker’s conjecture was established in 2017:
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Theorem 7.3 (Austin) Given ε > 0, an ergodic system (X,T, µ), we can find an isomor-
phism between (Y × Z, S × τ, ν × µ̂) such that hS(ν) ≤ ε, and (Z, τ, µ̂) is a Bernoulli shift.

Definition 7.1(i) Consider a measure space (X,F , µ) and a measurable automorphism
T : X → X such that T−1F = TF = F , T ♯µ = µ. The Pinsker class P(T ) is defined to be
the set of A ∈ F such that hµ(T, ξ(A)) = 0, where ξ(A) = {A,X \ A}.

(ii) We say T has completely positive entropy if the σ-algebra P(T ) is trivial. Equivalently,
h(T, ξ) > 0 for every non-trivial partition ξ.

(iii) Given a partition ξ, we write F±
ξ for the σ-algebra generated by all {T±nξ : n ≥ 1}.

We also write Fn
ξ for the σ-algebra generated by all {T kξ : k ≤ n}, and

F−∞
ξ = ∩nFn

ξ , F∞
ξ = ∪nFn

ξ .

(iv) Given a partition ξ, we write ξ̂(m,n) for Tmξ ∨ · · · ∨ T nξ.

(v) We say (X,T,B, µ) is a (Kolmogorov) K-automorphism if there exists a (countable)
partition such that F−∞

ξ = {∅, X}, F∞
ξ = B. Equivalently, if we set K = F−

ξ , then

T−1K ⊆ K, ∩∞
n=1T

−nK = {∅, X}, ∪∞
n=1T

nK = B.

□

Theorem 7.4 (i) (Kolmogorov) Let K be a sub-σ algebra such that

T−1K ⊆ K, ∪∞
n=1T

nK = B.

Then

(7.1) P(T ) ⊆ ∩∞
n=1T

−nA.

In particular any K-automorphism is completely positive entropy.

(ii) (Rokhlin-Sinai) There exists a sub-σ algebra A with the following properties:

(7.2) T−1A ⊆ A, ∪∞
n=1T

nA = B, ∩∞
n=1T

−nA = P(T ).

In particular, any transformation of completely positive entropy is a K-automorphism.
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Proof(i) Let ξ be a finite partition with ξ ⊂ P(T ). Then ξ ⊂ ξ̂(−∞,−1), which means
that ξ̂(−∞,−1) = ξ̂(−∞, 0). Inductively, ξ̂(−∞,−n) = ξ̂(−∞, 0) for every n ∈ N. Choose
m ∈ N such that ξ ⊂ TmK. Hence T−k−ℓξ ⊂ T−ℓK for every k ≥ m. Hence

ξ ⊂ ξ̂(−∞,−m− ℓ) ⊂ T−ℓK.

Since ℓ is arbitrary, we are done. □

Intuitively, P(T ) represents the deterministic part of the dynamics. After all if hµ(T, ξ) =
0, then the information contained in the past F−

ξ determines the present ξ, µ-almost surely.
We will see later that there exists ξ that generates the full σ-algebra B, and the set of its the
remote past events F−∞

ξ coincides with P(T ). The following will prepare us for the proof of
Theorems 7.4 and 7.5.

Proposition 7.1 (i) The class P(T ) is a T -invariant σ-algebra.

(ii) For every n ∈ Z, P(T ) = P(T n).

(iii) hµ(T, ξ) = n−1Hµ

(
ξ ∨ · · · ∨ T n−1ξ

∣∣F−
ξ

)
.

(iii) hµ(T, ξ ∨ η) = hµ(T, ξ) +Hµ

(
η
∣∣F∞

ξ ∨ F−
η

)
.

(iv) We have

(7.3) P(T ) =
∨{

F−∞
ξ : Hµ(ξ) <∞

}
.

(v) Let A be sub-σ algebra such that

T−1A ⊆ A, ∪∞
n=1T

nA = B

Then,

(7.4) P(T ) ∩∞
n=1 T

−nA =: A−∞.

Proof(i) Evidently if A ∈ P(T ), then X \A ∈ P(T ). Next if A,B ∈ P(T ), then ξ(A∪B) ≤
ξ(A) ∨ ξ(B), and

hµ(T, ξ(A ∪B)) ≤ hµ(T, ξ(A) ∨ ξ(B)) ≤ hµ(T, ξ(A)) + hµ(T, ξ(B)) = 0.

Hence A∪B ∈ P(T ). Finally, if (An : n ∈ N) is an increasing sequence of sets in P(T ) with
A = ∪nAn, then

hµ(T, ξ(A)) ≤ hµ(T, ξ(An)) +Hµ(A|An) = Hµ(A|An),
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which goes to 0 in large n limit.
Finally, if hµ(T, ξ) = 0, then using

Hµ

(
(T−1ξ)(0, n)

)
= Hµ

(
T−1

(
ξ(0, n)

))
= Hµ

(
ξ(0, n)

)
,

we deduce that hµ(T, T
−1ξ) = 0.

(ii) Assume that ξ ⊂ P(T ), and define η = ξ ∨ T−1ξ ∨ · · · ∨ T−n+1ξ ⊂ P(T ). Hence as in
the proof of Proposition 3.5(i),

hµ(T
n, η) = nhµ(T, ξ) = 0.

This implies P(T ) ⊆ P(T n). Conversely,

(iii) Given m ≥ n, we write ξ̂(m,n) for Tmξ ∨ . . . T nξ. We have

H
(
ξ(0, n− 1)

∣∣F−
ξ

)
= lim

m→∞
Hµ

(
ξ(0, n− 1)

∣∣ξ(−m,−1)
)

= lim
m→∞

[
Hµ

(
ξ
∣∣ξ(−m,−1)

)
+Hµ

(
ξ(1, n− 1)

∣∣ξ(−m, 0))]
= lim

m→∞

[
Hµ

(
ξ
∣∣ξ(−m,−1)

)
+Hµ

(
ξ(0, n− 2)

∣∣ξ(−m− 1,−1)
)]

=hµ(T, ξ) + hµ(T, ξ(0, n− 2)) = · · · = nhµ(T, ξ).

(iii) We have

hµ(T, ξ ∨ η) = (n+ 1)−1Hµ

(
ξ(0, n) ∨ η(0, n)

∣∣F−
ξ ∨ F−

η

)
= (n+ 1)−1

[
Hµ

(
ξ(0, n)

∣∣F−
ξ ∨ F−

η

)
+Hµ

(
η(0, n)

∣∣F−
ξ ∨ F−

η ∨ ξ(0, n)
)]

= (n+ 1)−1
[
Hµ

(
ξ(0, n)

∣∣F−
ξ ∨ F−

η

)
+Hµ

(
η(0, n)

∣∣F−
η ∨ ξ(−∞, n)

)]
.

On the other hand,

Hµ

(
η(0, n)

∣∣F−
η ∨ ξ(−∞, n)

)
= Hµ

(
η
∣∣F−

η ∨ ξ(−∞, n)
)
+Hµ

(
η(1, n)

∣∣F−
η ∨ η ∨ ξ(−∞, n)

)
= Hµ

(
η
∣∣F−

η ∨ ξ(−∞, n)
)
+Hµ

(
η(0, n− 1)

∣∣F−
η ∨ ξ(−∞, n− 1)

)
= · · · =

n∑
k=0

Hµ

(
η
∣∣F−

η ∨ ξ(−∞, k)
)
.

We are done if we can show

hµ(T, ξ) = lim
n→∞

(n+ 1)−1Hµ

(
ξ(0, n)

∣∣F−
ξ ∨ F−

η

)
,(7.5)

Hµ

(
η
∣∣F−

η ∨ F∞
ξ

)
= lim

k→∞
Hµ

(
η
∣∣F−

η ∨ ξ(−∞, k)
)
.(7.6)
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The claim (??) is an immediate consequence of Lemma 3.2. As for (7.6), let us write ĥ for
the right-hand side. By part (ii), we certainly have hµ(T, ξ) ≥ ĥ. For the converse, let us
write γ = ξ ∨ η, and claim

(7.7) lim
n→∞

(n+ 1)−1Hµ

(
γ(0, n)

∣∣F−
γ

)
= lim

n→∞
(n+ 1)−1Hµ

(
γ(0, n)

∣∣F−
ξ

)
.

To see this, observe

Hµ

(
γ(0, n)

∣∣F−
ξ

)
= Hµ

(
γ
∣∣F−

ξ

)
+Hµ

(
Tγ
∣∣F−

ξ ∨ γ
)
+ · · ·+Hµ

(
T nγ

∣∣F−
ξ ∨ γ(0, n− 1)

)
=

n∑
j=0

Hµ

(
γ
∣∣T−j

(
F−

ξ ∨ γ(0, j − 1)
))

=
n∑

j=0

Hµ

(
γ
∣∣ξ(−∞,−j − 1) ∨ γ(−j,−1)

)

This implies (7.7) because

γ(−n,−1) ≤ ξ(−∞,−n− 1) ∨ γ(−n,−1) ≤ γ(−∞,−1),

lim
n→∞

[
ξ(−∞,−n− 1) ∨ γ(−n,−1)

]
= γ(−∞,−1).

On the other hand,

Hµ

(
γ(0, n)

∣∣F−
γ

)
= Hµ

(
γ(0, n) ∨ ξ(0, n)

∣∣F−
γ

)
= Hµ

(
ξ(0, n)

∣∣F−
γ

)
+Hµ

(
γ(0, n)

∣∣F−
γ ∨ ξ(0, n)

)
Hµ

(
γ(0, n)

∣∣F−
ξ

)
= Hµ

(
γ(0, n) ∨ ξ(0, n)

∣∣F−
ξ

)
= Hµ

(
ξ(0, n)

∣∣F−
ξ

)
+Hµ

(
γ(0, n)

∣∣F−
ξ ∨ ξ(0, n)

)
.

From this, (7.7), and part (ii) we deduce

ĥ = lim
n→∞

(n+ 1)−1Hµ

(
ξ(0, n)

∣∣F−
γ

)
= lim

n→∞
(n+ 1)−1

[
Hµ

(
γ(0, n)

∣∣F−
γ

)
−Hµ

(
γ(0, n)

∣∣F−
γ ∨ ξ(0, n)

)]
= lim

n→∞
(n+ 1)−1

[
Hµ

(
γ(0, n)

∣∣F−
ξ

)
−Hµ

(
γ(0, n)

∣∣F−
γ ∨ ξ(0, n)

)]
≥ lim

n→∞
(n+ 1)−1

[
Hµ

(
γ(0, n)

∣∣F−
ξ

)
−Hµ

(
γ(0, n)

∣∣F−
ξ ∨ ξ(0, n)

)]
= lim

n→∞
(n+ 1)−1Hµ

(
ξ(0, n)

∣∣F−
ξ

)
= hµ(T, ξ),

as desired.

(iv) Given a partition ξ with Hµ(ξ) <∞, observe that for any partition η,

η ⊂ F−∞
ξ = ∩nT

−nF−
ξ =⇒ η ≤ ξ, F∞

η ⊆ F−
ξ .

As a result

hµ(T, ξ) = hµ(T, ξ ∨ η) = hµ(T, η) +Hµ

(
ξ
∣∣F−

ξ ∨ F∞
η ) = hµ(T, η) +Hµ

(
ξ
∣∣F−

ξ ),
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which means that hµ(T, η) = 0, or η ⊂ P(T ). As a result∨{
F−∞

ξ : Hµ(ξ) <∞
}
⊆ P(T ).

For the converse, let us take any A ∈ P(T ). Then for η = ξ(A), we have η < η(−∞,−1).
Equivalently, η(−∞, 0) = η(−∞,−1). Inductively, η(−∞, 0) = η(−∞,−n), for every n ∈ N.
As a result F−

η = F−∞
η . This implies

A ∈ η ⊂ F−
η = F−∞

η ⊆
∨{

F−∞
ξ : Hµ(ξ) <∞

}
.

This completes the proof.

(v) For (7.5), we need to show that for every partition ξ,

ξ ⊂ P(T ) ∨ A−∞ =⇒ ξ ⊂ A−∞.

Equivalently,

(7.8) Hµ

(
ξ
∣∣P(T ) ∨ A−∞

)
= Hµ

(
ξ
∣∣A−∞

)
.

□

Definition 7.2(i) Given two spaces (Xi,Bi), i = 1, 2, by a kernel we mean a measurable
map θ : X1 → M(X2). Given a kernel θ and a measure π ∈ M(X1), by a hookup of θ and
π, we mean a measure on X1 ×X2 of the form∫

f d(π ⋉ θ) =

∫ ∫
f(x1, x2) θ(x1, dx2) π(dx1).

(ii) Let (Xi,Bi, Ti, µi), i = 1, . . . , k, a collection of dynamical systems. We say (X,B, T, µ)
is a joining of this collection, if

X =
d∏

i=1

Xi, B = ⊗d
i=1Bi, T =

d∏
i=1

Ti,

and µ is an invariant measure for T with marginals µ1, . . . , µn.

(iii) When k = 2, a kernel θ is called a stationary channel iff µ1 ⋉ θ is a joining of µ1 and
µ2. □

Example 7.1(i) In the setting of Definition 7.2(i), µ =
∏d

i=1 µi is a joining.
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(ii) Assume that k = 2 in the setting of Definition 7.2(i), and given a measurable map
h : X1 → X2, consider the measure µ on X1 ×X2 by∫

f dµ =

∫
f(x1, h(x1)) µ1(dx1).

The marginals of this map are (µ1, h♯µ1) =: (µ1, µ2). Observe that for T = (T1, T2),∫
f dµ =

∫
f(x1, h(x1)) µ1(dx1) =

∫
f
(
T1(x1), (h ◦ T1)(x1)

)
µ1(dx1),∫

f ◦ T dµ =

∫
f
(
T1(x1), (T2 ◦ h)(x1)

)
µ1(dx1).

Hence µ is a joining iff h is a factor, i.e., h ◦ T1 = T2 ◦ h, µ1-almost surely. □

Proposition 7.2 (Kakutani-Rokhlin) Let (X,B, T, µ) be an ergodic dynamic system. As-
sume that µ is atomless. Then for every n ∈ N, and ε > 0, there exists a measurable set A
such that A, T (A), . . . , T n−1(A) are disjoint, and

(7.9) µ
(
A ∪ T (A) ∪ · · · ∪ T n−1(A)

)
≥ 1− ε.

Proof (Step 1) Note that the desired set A necessarily satisfies µ(A) ≤ n−1.
To start, we pick m ∈ N, and a set B ∈ B such that 0 < µ(B) =: c0 < m−1. Since by the

ergodic theorem

lim
ℓ→∞

ℓ−1

ℓ−1∑
i=0

11B
(
T i(x)

)
= µ(B),

µ-a.e., we deduce that the set ∪i≥0T
−i(B) is of full measure. Put

C = B \
(
T (B) ∪ · · · ∪ Tm(B)

)
.

Observe that since T j(C) ⊆ T j(B), and

T j(C) = T j(B) \
(
T j+1(B) ∪ · · · ∪ T j+m(B)

)
,

we learn that T i(C) ∩ T j(C) = ∅ whenever 1 ≤ i < j ≤ m. Hence the collection of sets
T j(C), j = 1, . . .m are disjoint. We claim that µ(C) > 0. To see this, suppose to the
contrary

B ⊆ T (B) ∪ · · · ∪ Tm(B),

T−1(B) ⊆ B ∪ T (B) ∪ · · · ∪ Tm−1(B) ⊆ T (B) ∪ · · · ∪ Tm(B),
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modulo a µ-null set. Inductively,

T−j(B) ⊆ T (B) ∪ · · · ∪ Tm(B).

for all j ∈ N. Since the set ∪i≥0T
−i(B) is of full measure, the set T (B)∪ · · · ∪ Tm(B) is also

of full measure. But this is absurd because

µ
(
T (B) ∪ · · · ∪ Tm(B)

)
≤ mc0 < 1.

In summary µ(C) > 0, and the sets C, T (C), . . . , Tm(C) are disjoint.

(Step 2) Choose m ≥ max{n, ε−1}, and consider the set C that was constructed in Step 1.
We then define

θ(x) = min{k ≥ 0 : T k(x) ∈ C}.

Since µ(C) > 0, the function θ <∞, µ-a.e. We next define

A =
{
x : θ(x) = kn for some k ∈ N

}
.

Note that since θ(x) ≥ n for x ∈ A, we have θ(T j(x)) = θ(x) − j for j = 0, 1, . . . , n − 1.
(Here we are using the fact that the sets C, T (C), . . . , Tm(C) are disjoint.) In other words
y ∈ T j(A) iff θ(y) = j (modn), θ(y) ≥ 1 for every j = 0, 1, . . . , n− 1. This means that the
sets A, T (A), . . . , T n−1(A) are disjoint, and

D := A ∪ T (A) ∪ · · · ∪ T n−1(A) = {x : θ(x) ≥ 1} = X \ C.

On the other hand,

µ(D) = 1− µ(C) ≥ 1− µ(B) ≥ 1−m−1 ≥ 1− ε,

as desired. □

Definition 7.3(i) Given a Polish metric space (X, d), define a distance d̄ on M(X) by

d̄(µ, ν) = inf

{∫
X×X

d(x, y)α(dx, dy) : α ∈ M(X ×X), µ and ν are the marginals of α

}
.

(ii) Given a Polish metric space (E, d), we define the metric dn on En by

dn(ω, ω
′) = dn

(
(ω1, . . . , ωn), (ω

′
1, . . . , ω

′
n)
)
:= n−1

n∑
i=1

d(ωi, ω
′
i).

The corresponding measure on M(An) is denoted by d̄n.
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(iii) For (E, d) as above, consider the dynamical system Ω = (EZ, τ). The Ornstein metric
dO is defined on Iτ by

d̄O(µ, ν) = inf

{∫
d(ω0, ω

′
0) λ(dω, dω

′) : λ is a joining of µ and ν

}
.

□

Note that the product (EZ, τ)× (EZ, τ) is isomorphic to ((E × E)Z, τ). Hence a joining
of two τ -invariant measures is simply a τ -invariant measure of (E×E)Z. From this, it is not
hard to see that when d is a bounded metric, then

(7.10) d̄O(µ, ν) = lim
n→∞

d̄n(µ
n, νn),

where µn and νn are the law of ωn = (ω0, . . . , ωn−1) with respect to µ and ν respectively.

Lemma 7.1 (i) (Fano) Let E be a finite set, and α ∈ M(E2) with marginals µ, ν ∈ M(E).
Then

(7.11) H(µ|ν) ≤ −p log p− (1− p) log(1− p) + p log(|E| − 1),

where

p =

∫
11(x ̸= y)α(dx, dy).

Proof It is more convenient to think of α as the law of E2-valued random variable (X, Y ).
If we write Z = 11(X ̸= Y ), then

H(µ|ν) = H(X|Y ) = H
(
(X,Z)

∣∣Y ) = H(Z|Y ) +H
(
X
∣∣(Y, Z)) ≤ H(Z) +H

(
X
∣∣(Y, Z)).

Evidently H(Z) = −p log p− (1− p) log(1− p). On the other hand,

H
(
X
∣∣(Y, Z)) = (1−p)H

(
X
∣∣Y, 11(Z = 1)

)
+pH

(
X
∣∣Y, 11(Z = 0)

)
= pH

(
X
∣∣Y, 11(Z = 0)

)
≤ p log(|E|−1)
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