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1 Introduction

Boltzmann’s groundbreaking work on the kinetic theory of gases revolutionized thermody-
namics, and led to the creation of statistical mechanics. In 1872 Boltzmann proposed an
integro-differential equation to describe the evolution of the particle density of a rarefied gas.
In his celebrated H-Theorem, Boltzmann verified the second law of thermodynamics for his
equation, and confirmed Maxwell’s statistical model of equilibrium states.

In 1900, Hilbert published 23 problems that helped set the mathematics research agenda
in the 20th century. Hilbert’s sixth problem was motivated by Boltzmann’s work on the
kinetic theory of gases. Microscopically a gas is modeled by a large collection of particles
that are interacting according to Newton’s law. Boltzmann’s mesoscopic description involves
a particle density that solves a nonlinear partial differential equation. Macroscopically a gas
or fluid is governed by Euler and Navier-Stokes equations.

In his sixth’s problem, Hilbert asked the question of giving a mathematically rigorous
derivation for the macroscopic equations of fluids, from the Newtonian laws governing mi-
croscopic particle dynamics. In other words, Hilbert proposed a unified theory for gas/fluid
dynamics that includes three levels of descriptions: microscopic, mesoscopic and macroscopic.
Hilbert’s sixth problem consists of two steps:
1. (Kinetic Limit) The derivation of Boltzmann’s kinetic equation from the microscopic
Newtonian dynamics of a rarefied gas.
2. (Hydrodynamic Limit) The derivation of the fluid equations from Boltzmann’s kinetic
equation as collision rates goes to infinity (equivalently, as the gas gets denser).

The hydrodynamic limit for the Boltzmann equation leading to incompressible fluid equa-
tions is rather well-understood, as a result of series of progresses that were made by many
authors during the last decade of the 20th century.

The precise mathematical formulation of the kinetic limit was given by Grad in 1949. In
reality the number of particles is given by the Avogadro number and the effective interpar-
ticle interaction is microscopically small. To derive Boltzmann equation from such a large
interacting particle system, we need to apply some kind of “law of large numbers” by sending
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the number of particles N to infinity, and sending the interaction distance ϵ to zero. For the
validity of the Boltzmann equation, we need to make sure that a typical particle interact
with finitely many particles in one unit of time. For this to be the case, Grad discovered
that N must be related to ϵ by N ∼ ϵd−1, where d is the spatial dimension.

Boltzmann’s derivation of his kinetic equation was based on his Stosszahlansatz (molec-
ular chaos hypothesis). More precisely, if initially particles of a gas are statistically indepen-
dent, the correlations built at later times are negligible, and can be ignored. The rigorous
verification of this hypothesis is the main challenge in the derivation of Boltzmann equation.

The first breakthrough in the kinetic limit part of Hilbert’s sixth problem was achieved by
Lanford in 1975. He showed that Boltzmann equation does indeed approximate the particle
density in large N limit provided that Grad’s relationship holds, and time is sufficiently
short.

Recently,Yu Deng, Zaher Hani, and Xiao Ma have settled the long-time derivation of
the Boltzmann equation from a hard sphere system provided that the Boltzmann equation
possesses a classical solution.

In Hilbert’s sixth problem, the microscopic description of a gas was governed by the New-
tonian mechanics. With the discovery of quantum mechanics, Boltzmann’s kinetic theory of
rarefied gases had to be revised. Kinetic equations are widely used to understand dynamical
aspects of quantum many particle systems. In a mean field regime, the Schrodinger equation
of large number of bosanic particles can be approximated with the non-linear Schrodinger
equation.

1.1 Hard Sphere Model (HSM)

Microscopically a gas is modeled by a Hamiltonian ODE in R2d. A gas of N particles is
described by a vector q = (x,v), where x = (x1, . . . , xN) ∈ RdN denotes the location of
particles in Rd, and v = (v1, . . . , vN) ∈ RdN denotes the velocity of particles. By Newton’s
equation

dxi
dt

= vi

dvi
dt

= −
∑
j ̸=i

∇V (xi − xj) i, j = 1, 2, . . . , N

where V represents the potential governing the two-body interaction between particles. As-
suming V (z) = W (|z|) is radially symmetric (i.e., the force in central) leads to the conser-
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vation of momentum, energy and angular momentum. That is

d

dt

∑
i

vi = 0,

d

dt

∑
i

xi × vi = 0,

d

dt

{
1

2

∑
i

|vi|2 +
∑
i ̸=j

V (xi − xj)

}
= 0.

(For the conservation of angular momentum in dimension d > 3 we replace the vector x× v
with the matrix (xivj − xjvi : 1 ≤ i, j ≤ d).) If the gas is dilute, then N ≪ ε−d where N
is the total number of particles and ε is the diameter of each particle. For our purposes we

assume that V (z) = V ε(z) = W
(

|z|
ε

)
with W a function of compact support, so that the

range of interaction is of order O(ε). To have a more manageable situation, we consider an
extreme case of the above scenario, namely when

(1.1) W (r) =

{
∞ if |r| ≤ 1,

0 if r > 1.

For this case, we have a simple description of our model. The potential (1.1) prevents a pair
of particles to have a distance less than ε. This means that so long as |xi − xj| > ε, the
potential energy is zero. In summary, we always have |xi − xj| ≥ ε for i ̸= j and dxi

dt
= vi,

dvi
dt

= 0 whenever |xi − xj| > ε, i.e., each particle travels according to its velocity except
when two particles collide. At a collision, the pre-collisional velocities (vi, vj) change to
post-collisional velocities (vji , v

i
j). To figure out what (vji , v

i
j) is, recall that our system enjoys

three conservation laws: the conservation of momentum, angular momentum and energy.
More precisely,

vji + vij = vi + vj, |vji |2 + |vij|2 = |vi|2 + |vj|2, vji × xi + vij × xj = vi × xi + vj × xj.

By the conservation of momentum and energy,

vji = vi + a, vij = vj − a,

for a = (vj − vi) · n n for a unit vector n. The conservation of angular momentum forces
n = nij =

xi−xj

|xi−xj | . In summary, the nij-component of vi and vj are interchanged:

(1.2) vji = vi − (vi − vj) · nijnij, nij =
xi − xj
|xi − xj|

.
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Boltzmann derived an important PDE for the evolution of the macroscopic densities in
the case of a dilute gas. To describe this derivation, we need to be more precise about the
assumption N ≪ ε−d. In 1949 Grad discovered that indeed one needs N = O(ε1−d) for
the Boltzmann derivation. In fact, Boltzmann derivation was based on several assumptions.
The first assumption says that the mean free path of a particle in a dilute gas is positive and
finite. The mean free path is the time a typical particle travels in average with no collision
encounter. Note that each particle is a sphere of diameter ε. Such a particle traces a set
of volume O(ε1−d) in one unit of time. If particles are scattered evenly in space, we find
O(Nε1−d) many particles in a set of volume O(ε1−d). Hence typically a particle encounters
finitely many particles in one unit of time. This can be rephrased as the positiveness of the
mean free path.

1.2 Kinetic Limit

As we mentioned previously, for a dilute gase, we assume that N = O(ε1−d), for a constant
λ > 0. This guarantees finiteness and positivity of the mean free path of the gas. Boltzmann’s
equation yields a mesoscopic equation for the evolution of the particle densities. By a density
we mean a function f(x, v, t) such that

(1.3) εd−1

N∑
i=1

ζ(xi(t), vi(t)) →
∫
Rd

∫
Rd

ζ(x, v)f(x, v, t)dxdv

for every bound continuous function ζ. Normally we assume (1.3) is valid initially for a
function f(x, v, 0) = f 0(x, v), and expect to have (1.3) at later times for a suitable function
f(x, v, t). Note carefully that if (1.3) is valid at t = 0, then

lim
ε→0

εd−1N = Z :=

∫∫
f 0(x, v)dxdv.

Boltzmann was the first who derived a PDE from the evolution of the density f in the case
of HSM. According to Boltzmann, f must satisfy

(1.4)
∂f

∂t
+ v · ∂f

∂x
= Q(f) := Q+(f)−Q−(f),

where Q−(f) = fLf , with

(1.5) Lf(v) =
∫
Rd

∫
Sd−1

B(v − v∗, n)f(x, v∗, t) dndv∗,

with B(v − v∗, n) = [(v − v∗) · n]+, and

(1.6) Q+(f, f) =

∫
Rd

∫
Sd−1

B(v − v∗, n)f(x, v
′, t)f(x, v′∗, t)dndv∗.
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Here, dn represents the standard surface measure on the unit sphere, and

v′ = v − (v − v∗) · n n,
v′∗ = v + (v − v∗) · n n.

The term B(v−v∗, n)f(x, v, t)f(x, v∗, t) represents the loss term. Its form has to do with
the celebrated molecular chaos assumption of Boltzmann. This assumption roughly asserts
that before a collision, particles are (approximately) stochastically independent. Hence the
probability of having a pair of particles near a point x at time t, with velocities v and v∗, is
approximately f(x, v, t)f(x, v∗, t). The gain term has a similar interpretation.

In the case of the HSM, the initial condition (1.3) holds if the particle configurations
q = (x1, v1, . . . , xN , vN) is selected randomly according to the measure

(1.7)
1

ZN

f 0(x1, v1)f
0(x2, v2) . . . f

0(xN , vN) dx1dv1 . . . dxNdvN

with

ZN =

∫
· · ·

∫
f 0(x1, v1) . . . f

0(xN , vN)11(q ∈ Ω) dx1dv1 . . . dxNdvN

where
Ω = {q : |xi − xj| > ε for all i ̸= j}.

We are now ready to state part of Hilbert’s sixth problem:

Conjecture 1.1 Take a function f 0 ≥ 0 with
∫
f 0dxdv < ∞. Assume that q is initially

distributed according to (1.7). Then (1.3) holds for all t, where f is the unique solution to
the Boltzmann equation (1.4), subject to the initial condition f(x, v, 0) = f 0(x, v).

Lanford in 1975 established Conjecture 2.1 for short times:

Theorem 1.1. There exists t0 = t0(f
0) > 0 such that the Conjecture 1.1 is valid for t <

t0(f
0).

Lanford’s method [La] is perturbative and is based on the BBGKY hierarchy equations.
The main challenge in studying Boltzmann’s equation stems from the quadratic form of

Q. We may regard (1.4) as an ODE in infinite dimension. Recall that the ODE dx
dt

= x2 does
not have a global solution in t. We expect PDE (1.4) to be well-posed because of the special
structure of Q, in particular the subtle cancellation in Q = Q+ − Q−. However, Lanford’s
method does not take advantage of this cancellation, and is not expected to work globally
in time.

Illner and Pulvirenti [IP], using a similar idea replaces the smallness in time with the
smallness in the initial data:
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Theorem 1.2. There exists a constant C(β) such that if

f 0(x, v) ≤ C(β) exp(−β(|x|2 + |v|2))),

then the Conjecture 1.1 holds for all times.

The issue of existence and uniqueness of solutions to Boltzmann’s equation is not well-
understood. DiPerna and Lions [DLi] established the existence of a so-called renormalized
solution in 1985. The uniqueness of the renormalized solution remains open. However, Lions
[Li] shows that if there exists a bounded solution to (1.4), then the renormalized solution
is unique. The existence of a bounded solution for any bounded f 0 is a long-standing open
problem. The main challenge is as how to control the collision terms Q±. It is an open
problem to show

∫ T

0

∫∫
Q±dxdvdt < ∞. Microscopically this corresponds to showing that

in average N−1 times the total number of collision encounters occurring in a time interval
[0, T ] is finite. This is just the first step in establishing Conjecture 1.1. Moreover, we need
to verify some variant of the Stosszahlensatz (molecular chaos hypothesis) of Boltzmann.
Lanford’s interpretation of this principle is this: If initially the probability density of the
configuration is given by a product like (1.7), then this property is almost true at later times
as N gets large. A different interpretation of Stosszahlensatz is given in [R1] and [R2].

1.3 Boltzmann H-Theorem and Renormalized Solutions

When d ≥ 2, the best existence result available for (1.4) is due to DiPerna and Lions [DLi1].
This existence result is formulated for the so-called renormalized solutions and the uniqueness
for such solutions is an open problem. Note however that if we already know a bounded
strong solution exists, then there exists a unique renormalized solution [Li]. Before we give
a precise definition of a renormalized solutions, we discuss some of existing estimates for
solutions.

We first describes the conservation laws. Assume that the collision kernel B satisfies

B(v, n) = B(−v,−n), B(v − 2v · nn, n) = B(v, n),

so that the following physically natural identities hold

(1.8) B(v − v∗, n) = B(v∗ − v,−n), B(v′ − v′∗, n) = B(v − v∗, n).

We also use the compact notation f∗ = f(v∗), f
′ = f(v′), and f ′

∗ = f(v′∗).
Observe that if ψ : Rd → R is a bounded continuous function, and

U(x, t;ψ) =

∫
ψ(v)f(x, v, t) dv, V (x, t;ψ) =

∫
vψ(v)f(x, v, t) dv,
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then by (1.8),

(1.9) Ut + v · Vx =
1

2

∫∫ ∫
Sd−1

B(v − v∗, n)ff∗
(
ψ(v′) + ψ(v′∗)− ψ(v)− ψ(v∗)

)
dvdv∗dn.

This yields d+ 2 many conservation laws by choosing ψ ∈ {1, v, |v|2. Indeed if

ρ(x, t) = U(x, t; 1), (ρu)(x, t) = U(x, t; v), 2(ρE)(x, t) = U(x, t; |v|2),
A(x, t) = U(x, t; v ⊗ v), 2B(x, t) = U(x, t; |v|2v)

then we have

ρt +∇ · (ρu) = 0,

(ρu)t +∇A = 0,(1.10)

(ρE)t +∇ ·B = 0.

In particular,

(1.11)
d

dt

∫
ρ(x, t) dx = 0,

d

dt

∫
(ρu)(x, t) dx = 0,

d

dt

∫
(ρE)(x, t) dx.

Similarly, we set

H(f)(x, t) =

∫
f(x, v, t) log f(x, v, t) dv, R(f)(x, t) =

∫
vf(x, v, t) log f(x, v, t) dv,

which is as if we choose ψ = log f in (1.9) (in spite of dependence on (x, t). As in (1.9), we
can readily show

(1.12) H(f)t +∇ · R(f) = −E(f),

where

E(f) = −
∫
Q(f)(log f + 1) dv = −

∫
Q(f) log f dv

= −1

2

∫∫ ∫
Sd−1

B(v − v∗, n)ff∗ log
f ′f ′

∗
ff∗

dvdv∗dn

=
1

4

∫∫ ∫
Sd−1

B(v − v∗, n)(f
′f ′

∗ − ff∗) log
f ′f ′

∗
ff∗

dvdv∗dn ≥ 0.

Let us set

H(f)(t) =

∫
H(f)(x, t) dx.
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From (1.11) we deduce the following important bounds: f solves (1.4) in the time interval
[0, T ], then

(1.13) sup
t∈[0,T ]

H(f)(t) ≤ H(f)(0),

∫ T

0

∫
E(f)(x, t) dxdt ≤ H(f)(0).

The entropy equation (1.12) can be used to determine spatially homogeneous equilibrium
states. More precisely, if f(x, v, t) = M(v) solves (1.4), then by (1.12), we must have
E(M) = 0. This is equivalent to saying that MM∗ = M ′M ′

∗ for every v, v∗ ∈ Rd and
n ∈ Sd−1. If logM = h, then h satisfies the conservation law

(1.14) h(v′) + h(v′∗) = h(v) + h(v∗).

Let us write C for the set of continuous functions h : Rd → R for which (1.14) holds for every
v, v∗ ∈ Rd and n ∈ Sd−1. It was shown by Boltzmann that dim C = d + 2, and that C is
spanned by 1, v, and |v|2. In this way Boltzmann has shown that his equation is consistent
with the Maxwell statistical equilibrium model of gases. More precisely, an equilibrium
solution M can be represented as

(1.15) M(v) =Mρ,u,θ(v) = ρ(2πRθ)−d/2 e−
|v−u|2
2θR ,

for a constant (ρ, u, θ) ∈ (0,∞)× Rd × (0,∞). Observe

(1.16) ρ =

∫
M(v) dv, ρu =

∫
vM(v) dv, ρE = ρ

(
1

2
|u|2 + e

)
=

∫
1

2
|v|2 dv,

for e = dRθ/2. The solution M given by (1.15) is known as a Maxwellian, modeling an ideal
gas at equilibrium. The constants ρ, u, e, and R represent the mass, the momentum, the
internal energy, and the gas constant. We are now ready to explain the hydrodynamic limit
part of the Hilbert’s sixth problem: If fκ solves

(1.17) fκ
t + v · fκ

x = κ−1Q(fκ),

with κ representing the Knudsen number, then as κ→ 0, the solution fκ is approximating a
local Maxwellian of the formMρ(x,t),u(x,t),θ(x,t) :=M(x, t). If we substituteM(x, t) for f = fκ

in (1.10), we are led to the Euler (hydrodynamic) equation:

ρt +∇ · (ρu) = 0,

(ρu)t +∇
(
ρ(u⊗ u)

)
+∇p = 0,(1.18)

(ρE)t +∇ ·
(
(ρE + p)u

)
= 0,

where the pressure p is given by p = Rρθ.
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As the first attempt, we may consider weak solutions to (1.4). To make sense of a weak
solution, we need to make sense of

∫
Q±(f)ζ dxdvdt, for a test function ζ of compact support.

This is well-defined if Q±(f) ∈ L1
loc. Our conservation laws and (1.13) are not strong enough

to accommodate a local L1 bounds on Q±. The following definition proposes a notion of a
solution that avoids L1 bounds on collision terms.

Definition 1.1 We say that f is a renormalized solution of (1.4) if

f ∈ L1([0,∞)× Td × Rd), f ≥ 0 ,
Q±(f)

1 + f
∈ L1([0, T ]× Td × Rd) ,

for every positive T , and for every Lipschitz continuous β : [0,∞) → R that satisfies

sup
r
(1 + r)|β′(r)| <∞ ,

we have that
β(f)t + vβ̇(f)x = β′(f)Q(f, f)

in weak sense.

An important aspect of the Boltzmann equation is the smoothing effect of its flow term
∂t+v ·∂x. This is known as the velocity averaging lemma and was quantitatively formulated
and studied by Glose et al. in [GLiPS]. The velocity averaging lemma has the following
flavor: If both f and ∂f

∂t
+ v · ∂f

∂x
belong to a weakly compact subset of L1(Td × Rd × [0, T ])

and ψ is a bounded smooth function, then the velocity average
∫
f(x, v, t)ψ(v)dv =: ρ(x, t)

belongs to a strongly compact subset of L1(Td×Rd×[0, T ]). More concretely, if ft+v ·fx = g,
and ρ(x, t) = U(x, t;ψ), then

(1.19) sup
|h|<δ

∫ T

0

∫
|ρε(x+ h, t)− ρε(x, t)|dxdt ≤ c0(log | log δ|)−1/2 H(g).

On account of Definition 1.1, what we have in mind for g is Q(f)/(f + 1). As for ψ, recall

L(f)(x, v, t) =
∫
B̄(v − v∗)f(x, v, t) dv∗,

where B̄(v) =
∫
B(v, n) dn. This would allow us to obtain the weak regularity of f 7→

Q−(f)/(f + 1). As for the weak regularity of Q+(f)/(f + 1), we use the weak regularity of
f 7→ Q−(f)/(f + 1), and the entropy production bound of (1.13). After all, if a = f ′f ′

∗, and
b = ff∗, then we use the elementary bound

a ≤ kb+
a

b
11
(a
b
≥ k

)
≤ kb+ (log k)−1a log

a

b
11
(a
b
≥ k

)
≤ (log k − 1)−1 b

(a
b
− 1

)
log

a

b
,

to argue that for an error of order O
(
(log k)−1

)
, we can switch from Q+(f)/(f + 1) to

Q−(f)/(f + 1).
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2 Lorentz Gas

According to Conjecture 1.1, the Boltzmann-Grad limit of the HSM is expected to be gov-
erned by Boltzmann equation. In Section 1.3 we gave an overview of the existing results for
the Boltzmann equation. A natural question is whether or not some the estimates in Section
1.3 have microscopic counterpart. Indeed this is the case if we add some randomness to the
collision mechanism (see [R2] and [RV]). However for the fully deterministic model such as
HSM it is an open question to derive Boltzmann equation as in Definition 1.1.

A natural question is whether or not we can bound the total number of collisions. For
example, if N (T ) = N ε(T ) denotes the total number of collisions that occur in the interval
[0, T ], a bound of the form

(2.1) sup
ε∈(0,1]

εd−1EN ε(T ) <∞,

would have the same flavor as Q± ∈ L1. Perhaps a microscopic counterpart of Q± ∈ L1

would go as follows: Let us write τ 1ij < τ 2ij < . . . for the collisions times between i-th and
j-th particles. Then we would like to bound

(2.2) εd−1 E
∑
i,j

∞∑
k=1

11
(
τ kij ≤ T

)
|(vi − vj) · nij|,

uniformly in ε.
We can use the conservation laws to deduce a weaker bound. To see this observe that if

X(t) =
∑
i

|xi(t)− vi(t)t|2,

then X(t) does not change between collision times, however if τ is a collision time between
i-th and j-th particles, then

X(τ+)−X(τ−) = |xi − τv′i|2 + |xj − τv′j|2 − |xi − τvi|2 − |xj − τvj|2

= −2ετ(v′i − vi) · nij = 2ετ(vi − vj) · nij,

with all terms on the right-hand side evaluated at τ− (pre-collisional time). Recall nij =
(xi − xj)/|xi − xj|. Hence (vi − vj) · nij ≤ 0. From this we deduce

(2.3) εd−1
∑
i,j

∞∑
k=1

11
(
τ kij ≤ T

)
τ kij|(vi − vj) · nij| ≤ εd−2X(0).

Note ∫∫
|x|2f 0(x, v) dxdv <∞ =⇒ sup

ε>0
Eεd−1X(0) <∞,
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which yields a bound of order O(ε−1) for the right-hand side of (2.3). Perhaps we should
mention that mesoscopically, we always have

d

dt

∫∫
|x− vt|2f(x, v, t) dxdv = 0.

Microscopically, X(t) is not conserved, though can only increase for an amount of order
O(ε), and this is responsible for our bound (2.3). Needless to say, (2.3) is not good enough
for our purposes. A bound on the total number of collisions remains formidable challenge.

We now describe another challenge we encounter as we try to establish Stosszahlensatz.
For the validity of Boltzmann equation in Boltzmann-Grad limit, we need to show that
recollisions do not occur frequently. We explain this for a variant of HSM that is known as
Lorentz gas.

In a Lorenz gas, we have a light particle (x(t), v(t)), and immobile particles at locations
xi, i ∈ I. The collection ω = ωε = {xi : i ∈ I} is random and selected according to a
Poisson point process of intensity λ = ε1−d. More precisely, if U is a bounded open subset
of Rd, and N(U) = ♯(ω ∩ U), then ω ∩ U = {x1, . . . , xN(U) is selected according to the
probability measure

eε
1−d|U |

[
11(N(U) = 0) +

∞∑
N=1

(N !)−111(N(U) = N)
N∏
i=1

dxi

]
,

where |U | denotes the d-dimensional volume of U . Given a realization of ω, we define of
(x, v) for x ∈ Λ(ω), where

Λ(ω) =
{
x ∈ Rd : |x− xi| ≥ ε for i ∈ I

}
.

Alternatively, we may replace Rd with the torus Td, and assume that ω = (x1, . . . , xN)
with x1, . . . , xN are selectly intedendent and uniformly from Td. Again, the relation between
ε and N is given by N = ε1−d.

The dynamic of (x(t), v(t)) = (x(t, ωω), v(t, ωε)) is given by ẋ(t) = v(t), v̇(t) = 0, so long
as x(t) is in the interior of Λ(ω). Moreover, when |x(t) − xi| = ε, for some i ∈ I, then v(t)
changes to

v(t+) := v(t−)− 2v(t−) · ni ni,

where ni = ni(x) = ε−1(x− xi).

Theorem 2.1. (Gallavotti) The process (x(t, ωω), v(t, ωε)) converges to q̄(t) = (x̄(t), v̄(t)),
as ε→ 0, where q̄ is a Markov process with the infinitesimal generator

Ah(x, v) = v · hx(x, t) +
∫
Sd−1

(v · n)−
(
h(x, v − 2(v · n)n)− h(x, v)

)
dn.
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We now provide some heuristics for Theorem 2.1. To simplify the presentation, we
consider the periodic version of our model so that the number of particle is Nand nonrandom.

Let us write ϕt(x, v) = ϕt(x, v;ω) for the flow of q(t). Note that if initially (x(0), v(0))
is selected according to f 0(x, v) dxdv, with f 0 a continuous function, then at later times
(x(t), v(t)) is distributed according to f(x, v, t) dxdv, where f(x, v, t) = f(x, v, t;ω) is given
by

f(x, v, t) = f 0
(
ϕ−1
t (x, v)

)
.

It is not hard to show

(2.4)

{
ft(x, v, t) + v · fx(x, v, t) = 0, x ∈ Λ(ω)o,

f(x, v, t) = f
(
x, v − 2(v · ni(x))ni(x), t

)
, |x− xi| = ε.

Let us write χ(x) = χ(x;ω) = 11
(
x ∈ Λ(ω)

)
, and

f̂(x, v, t) =

∫
f(x, v, t;ω)χ(x;ω) dω.

We also write ωi for ω \ {xi}, and ζi(x, n;ω) = 11
(
x = xi + εn

)
. By divergence theorem,

f̂t + x · f̂x =

∫
f(v · ∇χ) dω = εd−1

∑
i

∫ ∫
Sd−1

f(x, v, t;ω)ζi(x, n;ω)(v · n) dn dωi

= Nεd−1

∫ ∫
Sd−1

f(x, v, t;ω)ζ1(x, n;ω)(v · n) dn dω1 = Q+ −Q−,

where

Q+ =

∫ ∫
Sd−1

f(x, v, t;ω)ζ1(x, n;ω)(v · n)+ dn dω1,

Q− =

∫ ∫
Sd−1

f(x, v, t;ω)ζ1(x, n;ω)(v · n)− dn dω1.

Fix T > 0, and write Ω0 for the event of a recollison in [0, T ], i.e., the set of ω such that (x, t)
collides one of immobile particle twice in [0, T ]. We also write η = 11

(
ω /∈ Ω0

)
. Observe that

when ω ∈ Ω0, and v · n1(x) < 0, we simply have f(x, v, t;ω) = f(x, v, t;ω1). This is because
ϕ−1
t (x, v) does not encounter x1 when η = 1. As ε → 0, we have f(x, v, t;ω1) → f̄(x, v, t),

and

lim
ε→0

(ηQ−) = f̄

∫
Sd−1

(v · n)− dn.

On the other hand, by the boundary condition in (2.4),

Q+ =

∫ ∫
Sd−1

f(x, v − 2(v · n)n, t;ω)ζ1(x, n;ω)(v · n)+ dn dω1.
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We can now can argue as for Q− to show

lim
ε→0

(ηQ+) =

∫
Sd−1

(v · n)+f̄(x, v − 2(v · n)n, t) dn,

because
(
v − 2(v · n)n

)
· n = −v · n ≤ 0. In summary, f̂ → f̄ in small ε limit, provided that

the probability of a recollision is negligible as ε→ 0.
In the case of a Lorentz gas, we can readily show that the times between collisions are

distributed as independent exponential random variables, and that the angles between v
and ni’s are independent uniformly distributed random variables. A recollison occurs when
sum of such angles are almost 2π, and this occurs with negligible probability. It is far more
challenging to prove analogous claim in the case of HSM.

3 BBGKY Equations for HSM

Recall that in HSM, we have N particles z = zN = (z1, . . . , zN), with zi = (xi, vi) ∈ R2d.
Let us write

ẑk = (zk+1, . . . , zN),

so that z = zN = (zk, ẑk). We write

Ek =
{
zk = (z1, . . . , zk) ∈ R2kd : |xi − xj| ≥ ε for i ̸= j, i, j ∈ {1, . . . , k}

}
,

Êk =
{
ẑk = (zk+1, . . . , zk) ∈ R2(N−k)d : |xi − xj| ≥ ε for i ̸= j, i, j ∈ {k + 1, . . . , N}

}
.

We assume that initially, z is distributed according to F 0(z) dz. At later time, the law of
z(t) is given by F (z, t) dz. We assume that F 0 is symmetric: If we swap xi with xj, F

0 does
not change. The same holds for F . We may write

∂EN = ∪i ̸=j∂ijEN := ∪i ̸=j

(
∂+ijEN ∪ ∂−ijEN

)
,

where

∂±ijEN :=
{
zk = (z1, . . . , zk) ∈ EN : |xi − xj| = ε, ±(vi − vj) · nij ≥ 0

}
.

As we discussed in Section 2, the function F satisfies a transport equation with boundary
conditions:

(3.1)

{
Ft(z, t) + v · Fx(z, t) = 0, z ∈ Eo

N ,

F (x, T ijv, t) = F (x,v, t), (x,v) ∈ ∂ijEN ,

where T ijv is obtained from v by replacing (vi, vj) with (v′i, v
′
j) as in (1.2). We define

F k(zk, t) =

∫
EN (zk)

F (zk, ẑk, t) dẑk,
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where
EN(z

k) =
{
ẑk : (zk, ẑk) ∈ EN

}
,

for zk ∈ Ek. We wish to use (3.1) to derive an equation for F k. As a preparation, we define

ξ(xk, x̂k) =
k∏

i=1

N∏
j=k+1

ξij(xi, xj), ξ̂(x̂k) =
N∏

i,j=k+1

ξij(xi, xj),

where
ξij(xi, xj) = 11

(
|xi − xj| ≥ ε

)
.

With these notations, we may write

F k(zk, t) =

∫
F (zk, ẑk, t)ξ(xk, x̂k)ξ̂(x̂k) dẑk,

for zk ∈ Ek. As a result,

F k
t (z

k, t) + vk · F k
xk(z

k, t) =

∫ (
Ft(z

k, ẑk, t) + vk · F k
xk(z

k, ẑk, t)
)
ξ(xk, x̂k)ξ̂(x̂k) dẑk

+

∫
F (zk, ẑk, t)

(
vk · ξxk(xk, x̂k)

)
ξ̂(x̂k) dẑk

=−
∫ (

v̂k · Fx̂k(zk, ẑk, t)
)
ξ(xk, x̂k)ξ̂(x̂k) dẑk

+

∫
F (zk, ẑk, t)

(
vk · ξxk(xk, x̂k)

)
ξ̂(x̂k) dẑk

=

∫
F (zk, ẑk, t)

(
v̂k · ξx̂k(xk, x̂k)

)
ξ̂(x̂k)

)
dẑk

+

∫
F (zk, ẑk, t)ξ(xk, x̂k)

(
v̂k · ξ̂x̂k(x̂k)

)
dẑk

+

∫
F (zk, ẑk, t)

(
vk · ξxk(xk, x̂k)

)
ξ̂(x̂k) dẑk

=

∫
F (zk, ẑk, t)

(
vk · ξxk(xk, x̂k) + v̂k · ξx̂k(xk, x̂k)

)
ξ̂(x̂k) dẑk

+

∫
F (zk, ẑk, t)ξ(xk, x̂k)

(
v̂k · ξ̂x̂k(x̂k)

)
dẑk

=:X1 +X2,

where we used (3.1) for the second equality, and integrated by parts for the third equality.
We claim that X2 = 0. To see this, for distinct i, j ∈ {k + 1, . . . , N} =: Îk, we define

X ij
2 :=

∫
F (zk, ẑk, t)ξ(xk, x̂k)

(
vi · ξijxi

(xi, xj) + vj · ξijxj
(xi, xj)

)
dzidzj.
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For X2 = 0, we simply show that X ij
2 = 0 for every distinct pair of i, j ∈ Îk. Indeed,

(3.2) X ij
2 =

∫
F (zk, ẑk, t)ξ(xk, x̂k)

((
vi − vj

)
· nij

)
σij(dxi, dxj) dvidvj,

where σij is the surface measure on the set
{
(xi, xj) : |xi − xj| = ε

}
. We now perform a

change of variables (vi, vj) → (v′i, v
′
j) in the integral on the right-hand side of (3.2). This

change of variable is of Jacobian 1, and does not change the F (zk, ẑk, t) term because of the
boundary conditions in (3.1). However, it changes

(
vi−vj

)
·nij to

(
v′i−v′j

)
·nij = −

(
vi−vj

)
·nij,

which results in the equality X ij
2 = −X ij

2 . This confirms our claim X ij
2 = 0.

We now turn our attention to X1. For any (i, j) ∈ {1, . . . , k} × {k + 1, . . . , N}, we have

X ij
1 :=

∫
F (zk, ẑk, t)ξ(xk, x̂k)

(
vi · ξijxi

(xi, xj) + vj · ξijxj
(xi, xj)

)
dzj

=

∫
F (zk, ẑk, t)ξ(xk, x̂k)

((
vi − vj

)
· nij

)
σi
j(xi, dxj) dvj,

where σi
j(xi, dxj) is the surface measure on the set

{
xj : |xi−xj| = ε

}
. From this we deduce

X1 =
k∑

i=1

N∑
j=k+1

∫
F (zk, ẑk, t)

((
vi − vj

)
· nij

)
ξ(xk, x̂k)ξ̂(x̂k) σi

j(xi, dxj) dvj
∏

r∈Îk\{j}

dzr.

We then use the symmetry of F to assert that X1 equals to

(N − k)
k∑

i=1

∫
F (zk, ẑk, t)

((
vi − vk+1

)
· ni,k+1

)
ξ(xk, x̂k)ξ̂(x̂k) σi

k+1(xi, dxk+1) dvk+1 dẑ
k+1

We may rewrite this as

(N − k)εd−1

k∑
i=1

∫ ∫
Sd−1

F k+1(zk, xi − εn, v∗, t)
((
vi − v∗

)
· n

)
dndv∗ =:

(
Ck,k+1F

k+1
)
(zk, t).

In summary, we have derived the BBGKY equation

(3.3)

{
F k
t (z

k, t) + vk · F k
xk(z

k, t) =
(
Ck,k+1F

k+1
)
(zk, t), zk ∈ Eo

k,

F k(xk, T ijvk) = F k(xk,vk, t), zk ∈ ∂ijEk.
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