Kinetic Description of Hamilton-Jacobi PDE

Fraydoun Rezakhanlou

Department of Mathematics UC Berkeley

PDE/Probability Student Seminar

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Optimal Transport Formulation and Monge-Kantorovich Duality

Hamilton-Jacobi Dynamics: Free Motion, Coagulation, and Collision

Hamilton-Jacobi Dynamics: Directed Secondary Polytope

Optimal Transport Formulation and Monge-Kantorovich Duality

Hamilton-Jacobi Dynamics: Free Motion, Coagulation, and Collision

Hamilton-Jacobi Dynamics: Directed Secondary Polytope

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Optimal Transport Formulation and Monge-Kantorovich Duality

Hamilton-Jacobi Dynamics: Free Motion, Coagulation, and Collision

Hamilton-Jacobi Dynamics: Directed Secondary Polytope

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Optimal Transport Formulation and Monge-Kantorovich Duality

Hamilton-Jacobi Dynamics: Free Motion, Coagulation, and Collision

Hamilton-Jacobi Dynamics: Directed Secondary Polytope

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Optimal Transport Formulation and Monge-Kantorovich Duality

Hamilton-Jacobi Dynamics: Free Motion, Coagulation, and Collision

Hamilton-Jacobi Dynamics: Directed Secondary Polytope

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_{x} (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ X(\rho) : \rho \in \mathbb{R}^d \}, \quad X(\rho) = \partial u^*(\rho).$$

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_{x} (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ X(\rho) : \rho \in \mathbb{R}^d \}, \quad X(\rho) = \partial u^*(\rho).$$

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_{x} (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ X(\rho) : \rho \in \mathbb{R}^d \}, \quad X(\rho) = \partial u^*(\rho).$$

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_x (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ X(\rho) : \rho \in \mathbb{R}^d \}, \quad X(\rho) = \partial u^*(\rho).$$

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_x (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \ \mathbf{X}(\rho) = \partial u^*(\rho).$$

Domains of the linearity of *u*^{*} yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_x (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \quad \mathbf{X}(\rho) = \partial u^*(\rho).$$

Domains of the linearity of u^* yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Legendre Transform

For generic *f*:

(Courtesy of N. Lei, W. Chen, Z. Luo, X. Gu 2019)

・ロト・日本・日本・日本・日本・今日や

Recall that *P* is fixed and we only vary *f*. Fix a domain Ω and define $\nu : P \to [0, \infty)$, by

 $\nu(\rho) = |X(\rho) \cap \Omega|.$

 $X(\rho)$ is the set of slopes of subgradients (generized tangents) to the graph of u^* at ρ .

If ν is known, then we can recover f (and hence u) from it in Ω . Alexandrov Map I The inverse map $\nu \mapsto u$.

Recall that *P* is fixed and we only vary *f*. Fix a domain Ω and define $\nu : P \rightarrow [0, \infty)$, by

 $\nu(\rho) = |X(\rho) \cap \Omega|.$

 $X(\rho)$ is the set of slopes of subgradients (generized tangents) to the graph of u^* at ρ .

If ν is known, then we can recover f (and hence u) from it in Ω . Alexandrov Map I The inverse map $\nu \mapsto u$.

Recall that *P* is fixed and we only vary *f*. Fix a domain Ω and define $\nu : P \to [0, \infty)$, by

$$\nu(\rho) = |X(\rho) \cap \Omega|.$$

 $X(\rho)$ is the set of slopes of subgradients (generized tangents) to the graph of u^* at ρ .

If ν is known, then we can recover f (and hence u) from it in Ω . Alexandrov Map 1 The inverse map $\nu \mapsto u$.

Recall that *P* is fixed and we only vary *f*. Fix a domain Ω and define $\nu : P \to [0, \infty)$, by

$$\nu(\rho) = |X(\rho) \cap \Omega|.$$

 $X(\rho)$ is the set of slopes of subgradients (generized tangents) to the graph of u^* at ρ .

If ν is known, then we can recover *f* (and hence *u*) from it in Ω . Alexandrov Map I The inverse map $\nu \mapsto u$.

Let $x \in X(\rho)$, then

$$N(x) = (1 + |x|^2)^{-1/2}(x, -1),$$

is normal to a face of the graph. Define

$$\hat{X}(\rho) = \{N(x): x \in X(\rho) \cap \Omega\} \subset \mathbb{S}^d_-.$$

Think of $\rho \mapsto \hat{X}(\rho)$ as a discrete Gauss map. Define

$$\alpha(\rho) = \sigma(\hat{X}(\rho)),$$

Let $x \in X(\rho)$, then

$$N(x) = (1 + |x|^2)^{-1/2}(x, -1),$$

is normal to a face of the graph.

Define

$$\hat{X}(\rho) = \{N(x) : x \in X(\rho) \cap \Omega\} \subset \mathbb{S}^d_-.$$

Think of $\rho \mapsto \hat{X}(\rho)$ as a discrete Gauss map. Define

$$\alpha(\rho) = \sigma(\hat{X}(\rho)),$$

Let $x \in X(\rho)$, then

$$N(x) = (1 + |x|^2)^{-1/2}(x, -1),$$

is normal to a face of the graph. Define

$$\hat{X}(
ho) = \{N(x): x \in X(
ho) \cap \Omega\} \subset \mathbb{S}^d_-.$$

Think of $\rho \mapsto \hat{X}(\rho)$ as a discrete Gauss map. Define

$$\alpha(\rho) = \sigma(\hat{X}(\rho)),$$

Let $x \in X(\rho)$, then

$$N(x) = (1 + |x|^2)^{-1/2}(x, -1),$$

is normal to a face of the graph. Define

$$\hat{X}(\rho) = \{N(x): x \in X(\rho) \cap \Omega\} \subset \mathbb{S}^d_-.$$

Think of $\rho \mapsto \hat{X}(\rho)$ as a discrete Gauss map. Define

 $\alpha(\rho) = \sigma(\hat{X}(\rho)),$

Let $x \in X(\rho)$, then

$$N(x) = (1 + |x|^2)^{-1/2}(x, -1),$$

is normal to a face of the graph. Define

$$\hat{X}(
ho) = \{N(x): x \in X(
ho) \cap \Omega\} \subset \mathbb{S}^d_-.$$

Think of $\rho \mapsto \hat{X}(\rho)$ as a discrete Gauss map. Define

$$\alpha(\rho) = \sigma(\hat{X}(\rho)),$$

Let $x \in X(\rho)$, then

$$N(x) = (1 + |x|^2)^{-1/2}(x, -1),$$

is normal to a face of the graph. Define

$$\hat{X}(
ho) = \{N(x): x \in X(
ho) \cap \Omega\} \subset \mathbb{S}^d_-.$$

Think of $\rho \mapsto \hat{X}(\rho)$ as a discrete Gauss map. Define

$$\alpha(\rho) = \sigma(\hat{X}(\rho)),$$

If α is known, then we can recover *f* (and hence *u*) from it in Ω . Alexandrov Map II The inverse map $\alpha \mapsto u$.

Write λ_1 for the Lebesgue measure on Ω . Write λ_2 for the pull back of σ with respect to $x \mapsto N(x)$. Important Observation

1. The locally constant $\rho = \nabla u$ pushes forward λ_1 to

$$\mu_1 = \sum_{\rho \in \mathbf{P}} \nu(\rho) \delta_{\rho}.$$

2. The locally constant $\rho = \nabla u$ pushes forward λ_2 to

$$\mu_2 = \sum \alpha(\rho) \delta_{\rho}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

If α is known, then we can recover *f* (and hence *u*) from it in Ω . Alexandrov Map II The inverse map $\alpha \mapsto u$.

Write λ_1 for the Lebesgue measure on Ω . Write λ_2 for the pull back of σ with respect to $x \mapsto N(x)$. Important Observation

1. The locally constant $\rho = \nabla u$ pushes forward λ_1 to

$$\mu_1 = \sum_{\rho \in \mathbf{P}} \nu(\rho) \delta_{\rho}.$$

2. The locally constant $\rho = \nabla u$ pushes forward λ_2 to

$$\mu_2 = \sum \alpha(\rho) \delta_{\rho}.$$

If α is known, then we can recover *f* (and hence *u*) from it in Ω . Alexandrov Map II The inverse map $\alpha \mapsto u$.

Write λ_1 for the Lebesgue measure on Ω .

Write λ_2 for the pull back of σ with respect to $x \mapsto N(x)$. Important Observation

1. The locally constant $\rho = \nabla u$ pushes forward λ_1 to

$$\mu_1 = \sum_{\rho \in \mathbf{P}} \nu(\rho) \delta_{\rho}.$$

2. The locally constant $\rho = \nabla u$ pushes forward λ_2 to

$$\mu_2 = \sum \alpha(\rho) \delta_{\rho}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

If α is known, then we can recover *f* (and hence *u*) from it in Ω . Alexandrov Map II The inverse map $\alpha \mapsto u$.

Write λ_1 for the Lebesgue measure on Ω . Write λ_2 for the pull back of σ with respect to $x \mapsto N(x)$. Important Observation

1. The locally constant $\rho = \nabla u$ pushes forward λ_1 to

$$\mu_1 = \sum_{\rho \in \mathbf{P}} \nu(\rho) \delta_{\rho}.$$

2. The locally constant $\rho = \nabla u$ pushes forward λ_2 to

$$\mu_2 = \sum \alpha(\rho) \delta_{\rho}.$$

・ロト・西ト・西ト・西ト・日・

If α is known, then we can recover *f* (and hence *u*) from it in Ω . Alexandrov Map II The inverse map $\alpha \mapsto u$.

Write λ_1 for the Lebesgue measure on Ω . Write λ_2 for the pull back of σ with respect to $x \mapsto N(x)$. Important Observation

1. The locally constant $\rho = \nabla u$ pushes forward λ_1 to

$$\mu_1 = \sum_{\rho \in \boldsymbol{P}} \nu(\rho) \delta_{\rho}.$$

2. The locally constant $\rho = \nabla u$ pushes forward λ_2 to

$$\mu_2 = \sum \alpha(\rho) \delta_{\rho}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If α is known, then we can recover *f* (and hence *u*) from it in Ω . Alexandrov Map II The inverse map $\alpha \mapsto u$.

Write λ_1 for the Lebesgue measure on Ω . Write λ_2 for the pull back of σ with respect to $x \mapsto N(x)$. Important Observation

1. The locally constant $\rho = \nabla u$ pushes forward λ_1 to

$$\mu_1 = \sum_{\rho \in \boldsymbol{P}} \nu(\rho) \delta_{\rho}.$$

2. The locally constant $\rho = \nabla u$ pushes forward λ_2 to

$$\mu_2 = \sum \alpha(\rho) \delta_{\rho}.$$

Monge-Kantorovich Problem and Duality

Brenier: Given two measures λ and μ , there exists a unique (modulo a constant) convex function $u : \Omega \to \mathbb{R}$ such that $\rho = \nabla u$ pushes forward λ to μ .

Moreover ρ is a minimizer in

$$I(\mu)\big(=I(\lambda,\mu)\big):=\inf\frac{1}{2}\int_{\Omega}|x-\rho(x)|^2\;\lambda(dx).$$

Infimum over maps ρ that pushes forward λ to μ . **Dual Formulation** There is a dual presentation that is achieved by introducing a Lagrange multiplier and applying the minimax principle:

(日) (日) (日) (日) (日) (日) (日)

Monge-Kantorovich Problem and Duality

Brenier: Given two measures λ and μ , there exists a unique (modulo a constant) convex function $u : \Omega \to \mathbb{R}$ such that $\rho = \nabla u$ pushes forward λ to μ . Moreover ρ is a minimizer in

$$I(\mu)(=I(\lambda,\mu)):=\inf \frac{1}{2}\int_{\Omega}|x-\rho(x)|^2 \lambda(dx).$$

Infimum over maps ρ that pushes forward λ to μ .

Dual Formulation There is a dual presentation that is achieved by introducing a Lagrange multiplier and applying the minimax principle:

(ロ) (同) (三) (三) (三) (○) (○)

Monge-Kantorovich Problem and Duality

Brenier: Given two measures λ and μ , there exists a unique (modulo a constant) convex function $u : \Omega \to \mathbb{R}$ such that $\rho = \nabla u$ pushes forward λ to μ . Moreover ρ is a minimizer in

$$I(\mu)\big(=I(\lambda,\mu)\big):=\inf\frac{1}{2}\int_{\Omega}|x-\rho(x)|^2\ \lambda(dx).$$

Infimum over maps ρ that pushes forward λ to μ .

Dual Formulation There is a dual presentation that is achieved by introducing a Lagrange multiplier and applying the minimax principle:

(日) (日) (日) (日) (日) (日) (日)

$$I(\mu) = \sup\left\{\int \phi(\mathbf{x})\lambda(d\mathbf{x}) + \int \psi(\rho) \ \mu(d\rho)
ight\},$$

where the supremum is over pairs (ϕ, ψ) such that

$$\varphi(x) + \psi(\rho) \leq \frac{1}{2}|x-\rho|^2 \text{ for all } (x,\rho).$$

For each pair (φ, ψ) , we define (u, v) as

$$u(x) = \frac{1}{2}|x|^2 - \varphi(x), \quad v(\rho) = \frac{1}{2}|\rho|^2 - \psi(\rho).$$

We then define

$$\hat{l}(\mu) = \sup\left\{-\int u(x)\lambda(dx) - \int v(\rho) \ \mu(d\rho)
ight\}$$

with supremum over (u, v) with

$$x \cdot \rho \leq u(x) + v(\rho)$$
 for all (x, ρ) .

$$I(\mu) = \sup\left\{\int \phi(x)\lambda(dx) + \int \psi(
ho) \ \mu(d
ho)
ight\},$$

where the supremum is over pairs (ϕ, ψ) such that

$$arphi(x) + \psi(
ho) \leq rac{1}{2} |x -
ho|^2 \; ext{ for all } (x,
ho).$$

For each pair (φ, ψ) , we define (u, v) as

$$u(x) = \frac{1}{2}|x|^2 - \varphi(x), \quad v(\rho) = \frac{1}{2}|\rho|^2 - \psi(\rho).$$

We then define

$$\hat{l}(\mu) = \sup\left\{-\int u(x)\lambda(dx) - \int v(\rho) \ \mu(d\rho)
ight\}$$

with supremum over (u, v) with

$$x \cdot \rho \le u(x) + v(\rho) \text{ for all } (x, \rho).$$

$$I(\mu) = \sup\left\{\int \phi(\mathbf{x})\lambda(d\mathbf{x}) + \int \psi(\rho) \ \mu(d\rho)
ight\},$$

where the supremum is over pairs (ϕ, ψ) such that

$$arphi(x) + \psi(
ho) \leq rac{1}{2} |x -
ho|^2 \; ext{ for all } (x,
ho).$$

For each pair (φ, ψ) , we define (u, v) as

$$u(x) = \frac{1}{2}|x|^2 - \varphi(x), \quad v(\rho) = \frac{1}{2}|\rho|^2 - \psi(\rho).$$

We then define

$$\hat{l}(\mu) = \sup\left\{-\int u(x)\lambda(dx) - \int v(
ho) \ \mu(d
ho)
ight\}$$

with supremum over (u, v) with

 $x \cdot \rho \le u(x) + v(\rho)$ for all (x, ρ) .

$$I(\mu) = \sup\left\{\int \phi(x)\lambda(dx) + \int \psi(
ho) \ \mu(d
ho)
ight\},$$

where the supremum is over pairs (ϕ, ψ) such that

$$arphi(x) + \psi(
ho) \leq rac{1}{2} |x -
ho|^2 \; ext{ for all } (x,
ho).$$

For each pair (φ, ψ) , we define (u, v) as

$$u(x) = \frac{1}{2}|x|^2 - \varphi(x), \quad v(\rho) = \frac{1}{2}|\rho|^2 - \psi(\rho).$$

We then define

$$\hat{l}(\mu) = \sup\left\{-\int u(x)\lambda(dx) - \int v(
ho) \ \mu(d
ho)
ight\}$$

with supremum over (u, v) with

$$x \cdot \rho \leq u(x) + v(\rho)$$
 for all (x, ρ) .

These optimization problems are equivalent:

$$I(\mu) = \hat{I}(\mu) + \int \frac{1}{2} |x|^2 \lambda(dx) + \int \frac{1}{2} |\rho|^2 \mu(d\rho).$$

The maximizing pair (u, v) satisfies $u = v^*$, and u is the desired convex function.

This suggests a functional

$$E(v) = \int v^*(x) \ \lambda(dx),$$

which is convex. In terms of this functional,

$$\hat{l}(\mu) = \sup_{v} \left(-\mu \cdot v - E(v) \right) = E^*(-\mu).$$

In summary the inverse of the map $f \mapsto v$ is given by $v = -\nabla E(f)$.

These optimization problems are equivalent:

$$I(\mu) = \hat{I}(\mu) + \int \frac{1}{2} |x|^2 \lambda(dx) + \int \frac{1}{2} |\rho|^2 \mu(d\rho).$$

The maximizing pair (u, v) satisfies $u = v^*$, and u is the desired convex function.

This suggests a functional

$$E(v) = \int v^*(x) \ \lambda(dx),$$

which is convex. In terms of this functional,

$$\hat{l}(\mu) = \sup_{v} \left(-\mu \cdot v - E(v) \right) = E^*(-\mu).$$

In summary the inverse of the map $f \mapsto v$ is given by $v = -\nabla E(f)$.

These optimization problems are equivalent:

$$I(\mu) = \hat{I}(\mu) + \int \frac{1}{2} |x|^2 \lambda(dx) + \int \frac{1}{2} |\rho|^2 \mu(d\rho).$$

The maximizing pair (u, v) satisfies $u = v^*$, and u is the desired convex function.

This suggests a functional

$$E(\mathbf{v}) = \int \mathbf{v}^*(\mathbf{x}) \ \lambda(d\mathbf{x}),$$

which is convex. In terms of this functional,

$$\hat{I}(\mu) = \sup_{v} \left(-\mu \cdot v - E(v) \right) = E^*(-\mu).$$

In summary the inverse of the map $f \mapsto \nu$ is given by $\nu = -\nabla E(f).$

These optimization problems are equivalent:

$$I(\mu) = \hat{I}(\mu) + \int \frac{1}{2} |x|^2 \lambda(dx) + \int \frac{1}{2} |\rho|^2 \mu(d\rho).$$

The maximizing pair (u, v) satisfies $u = v^*$, and u is the desired convex function.

This suggests a functional

$$E(v) = \int v^*(x) \ \lambda(dx),$$

which is convex. In terms of this functional,

$$\hat{I}(\mu) = \sup_{\mathbf{v}} \left(-\mu \cdot \mathbf{v} - \mathbf{E}(\mathbf{v}) \right) = \mathbf{E}^*(-\mu).$$

In summary the inverse of the map $f \mapsto \nu$ is given by $\nu = -\nabla E(f)$.

We are interested in the PDE $u_t = H(u_x)$ with u(x, 0) convex and piecewise linear.

Write C(P) for the set of functions of the form $u = f^*$ where $f : P \to \mathbb{R}$.

Write Φ_t for the flow associated with the PDE:

 $\Phi_t u(\cdot, 0) = u(\cdot, t).$

The set C(P) is invariant under the flow by Hopf's theorem:

 $\Phi_t(\mathcal{C}(\mathcal{P})) \subset \mathcal{C}(\mathcal{P}).$

Indeed, if $f^t = f - tH$, then by Hope's formula,

 $\Phi_t(f^*) = (f^t)^*.$

Set

$$\mathbf{X}_t = \mathbf{X}(f^t), \quad \mathbf{T}_t = \mathbf{T}(f^t).$$

We are interested in the PDE $u_t = H(u_x)$ with u(x, 0) convex and piecewise linear.

Write C(P) for the set of functions of the form $u = f^*$ where $f : P \to \mathbb{R}$.

Write Φ_t for the flow associated with the PDE:

 $\Phi_t u(\cdot, 0) = u(\cdot, t).$

The set C(P) is invariant under the flow by Hopf's theorem:

 $\Phi_t(\mathcal{C}(\mathbf{P})) \subset \mathcal{C}(\mathbf{P}).$

Indeed, if $f^t = f - tH$, then by Hope's formula,

 $\Phi_t(f^*) = (f^t)^*.$

Set

$$\mathbf{X}_t = \mathbf{X}(f^t), \quad \mathbf{T}_t = \mathbf{T}(f^t).$$

We are interested in the PDE $u_t = H(u_x)$ with u(x, 0) convex and piecewise linear.

Write C(P) for the set of functions of the form $u = f^*$ where $f : P \to \mathbb{R}$.

Write Φ_t for the flow associated with the PDE:

$$\Phi_t u(\cdot, 0) = u(\cdot, t).$$

The set C(P) is invariant under the flow by Hopf's theorem:

 $\Phi_t(\mathcal{C}(P)) \subset \mathcal{C}(P).$

Indeed, if $f^t = f - tH$, then by Hope's formula,

 $\Phi_t(f^*) = (f^t)^*.$

Set

$$\mathbf{X}_t = \mathbf{X}(f^t), \quad \mathbf{T}_t = \mathbf{T}(f^t).$$

We are interested in the PDE $u_t = H(u_x)$ with u(x, 0) convex and piecewise linear.

Write C(P) for the set of functions of the form $u = f^*$ where $f : P \to \mathbb{R}$.

Write Φ_t for the flow associated with the PDE:

$$\Phi_t u(\cdot, 0) = u(\cdot, t).$$

The set C(P) is invariant under the flow by Hopf's theorem:

 $\Phi_t(\mathcal{C}(P)) \subset \mathcal{C}(P).$

Indeed, if $f^t = f - tH$, then by Hope's formula,

 $\Phi_t(f^*) = (f^t)^*.$

Set

$$\mathbf{X}_t = \mathbf{X}(f^t), \quad \mathbf{T}_t = \mathbf{T}(f^t).$$

We are interested in the PDE $u_t = H(u_x)$ with u(x, 0) convex and piecewise linear.

Write C(P) for the set of functions of the form $u = f^*$ where $f : P \to \mathbb{R}$.

Write Φ_t for the flow associated with the PDE:

$$\Phi_t u(\cdot, 0) = u(\cdot, t).$$

The set $\mathcal{C}(P)$ is invariant under the flow by Hopf's theorem:

 $\Phi_t(\mathcal{C}(P)) \subset \mathcal{C}(P).$

Indeed, if $f^t = f - tH$, then by Hope's formula,

 $\Phi_t(f^*) = (f^t)^*.$

Set

$$\mathbf{X}_t = \mathbf{X}(f^t), \quad \mathbf{T}_t = \mathbf{T}(f^t)$$

- ロ ト - (同 ト - 三 ト - 三 - - - の へ ()

We are interested in the PDE $u_t = H(u_x)$ with u(x, 0) convex and piecewise linear.

Write C(P) for the set of functions of the form $u = f^*$ where $f : P \to \mathbb{R}$.

Write Φ_t for the flow associated with the PDE:

$$\Phi_t u(\cdot, 0) = u(\cdot, t).$$

The set $\mathcal{C}(P)$ is invariant under the flow by Hopf's theorem:

 $\Phi_t(\mathcal{C}(P)) \subset \mathcal{C}(P).$

Indeed, if $f^t = f - tH$, then by Hope's formula,

 $\Phi_t(f^*) = (f^t)^*.$

Set

$$\mathbf{X}_t = \mathbf{X}(f^t), \quad \mathbf{T}_t = \mathbf{T}(f^t).$$

We wish to understand the dynamics of $t \mapsto X_t$ and $t \mapsto T_t$. Without loss of generality we may assume that *P* is finite. (Speed of propagation is finite.) Main Theorem: There are times

$$t_0 = 0 < t_1 < \cdots < t_k < t_{k+1} = \infty,$$

such that

1. In $(t_i, t_{k=1})$, we have a free motion.

2. At transition

 $t_i - \rightarrow t_i + ,$

we either have a coagulation or collision.

3. For $t > t_k$, the triangulation associated with f^t is very special (stable). We call it anti-*H* triangulation. The definitions will be given shortly.

We wish to understand the dynamics of $t \mapsto X_t$ and $t \mapsto T_t$. Without loss of generality we may assume that *P* is finite. (Speed of propagation is finite.)

Main Theorem: There are times

$$t_0 = 0 < t_1 < \cdots < t_k < t_{k+1} = \infty,$$

such that

1. In $(t_i, t_{k=1})$, we have a free motion.

2. At transition

 $t_i - \rightarrow t_i + ,$

we either have a coagulation or collision.

3. For $t > t_k$, the triangulation associated with f^t is very special (stable). We call it anti-*H* triangulation. The definitions will be given shortly.

We wish to understand the dynamics of $t \mapsto X_t$ and $t \mapsto T_t$. Without loss of generality we may assume that *P* is finite. (Speed of propagation is finite.) Main Theorem: There are times

$$t_0 = 0 < t_1 < \cdots < t_k < t_{k+1} = \infty,$$

such that

1. In $(t_i, t_{k=1})$, we have a free motion. 2. At transition

 $t_i - \rightarrow t_i +$,

we either have a coagulation or collision.

3. For $t > t_k$, the triangulation associated with f^t is very special (stable). We call it anti-*H* triangulation. The definitions will be given shortly.

We wish to understand the dynamics of $t \mapsto X_t$ and $t \mapsto T_t$. Without loss of generality we may assume that *P* is finite. (Speed of propagation is finite.) Main Theorem: There are times

$$t_0 = 0 < t_1 < \cdots < t_k < t_{k+1} = \infty,$$

such that 1. In $(t_i, t_{k=1})$, we have a free motion. 2. At transition

 $t_i - \rightarrow t_i +$,

we either have a coagulation or collision.

3. For $t > t_k$, the triangulation associated with f^t is very special (stable). We call it anti-*H* triangulation. The definitions will be given shortly.

We wish to understand the dynamics of $t \mapsto X_t$ and $t \mapsto T_t$. Without loss of generality we may assume that *P* is finite. (Speed of propagation is finite.) Main Theorem: There are times

$$t_0 = 0 < t_1 < \cdots < t_k < t_{k+1} = \infty,$$

such that

1. In $(t_i, t_{k=1})$, we have a free motion. 2. At transition

$$t_i - \rightarrow t_i + ,$$

we either have a coagulation or collision.

3. For $t > t_k$, the triangulation associated with f^t is very special (stable). We call it anti-*H* triangulation. The definitions will be given shortly.

We wish to understand the dynamics of $t \mapsto X_t$ and $t \mapsto T_t$. Without loss of generality we may assume that *P* is finite. (Speed of propagation is finite.) Main Theorem: There are times

$$t_0 = 0 < t_1 < \cdots < t_k < t_{k+1} = \infty,$$

such that

1. In $(t_i, t_{k=1})$, we have a free motion.

2. At transition

$$t_i - \rightarrow t_i + ,$$

we either have a coagulation or collision.

3. For $t > t_k$, the triangulation associated with f^t is very special (stable). We call it anti-*H* triangulation. The definitions will be given shortly.

We wish to understand the dynamics of $t \mapsto X_t$ and $t \mapsto T_t$. Without loss of generality we may assume that *P* is finite. (Speed of propagation is finite.) Main Theorem: There are times

$$t_0 = 0 < t_1 < \cdots < t_k < t_{k+1} = \infty,$$

such that

1. In $(t_i, t_{k=1})$, we have a free motion.

2. At transition

$$t_i - \rightarrow t_i + ,$$

we either have a coagulation or collision.

3. For $t > t_k$, the triangulation associated with f^t is very special (stable). We call it anti-*H* triangulation. The definitions will be given shortly.

During a free motion interval:

 u^* : The triangulation (domains of linearity of u^*) T_t stays put, but the slopes of the graph of u^* change linearly with a velocity that will be described shortly.

u: The slopes of the graph stay put. The vertices of \mathbf{X}_t travel according to their velocities. If *t*, *t'* are two times in the interval, then the corresponding faces in \mathbf{X}_t and $\mathbf{X}_{t'}$ are parallel. Angles do not change.

During a free motion interval:

 u^* : The triangulation (domains of linearity of u^*) \mathbf{T}_t stays put, but the slopes of the graph of u^* change linearly with a velocity that will be described shortly.

u: The slopes of the graph stay put. The vertices of \mathbf{X}_t travel according to their velocities. If *t*, *t'* are two times in the interval, then the corresponding faces in \mathbf{X}_t and $\mathbf{X}_{t'}$ are parallel. Angles do not change.

During a free motion interval:

 u^* : The triangulation (domains of linearity of u^*) \mathbf{T}_t stays put, but the slopes of the graph of u^* change linearly with a velocity that will be described shortly.

u: The slopes of the graph stay put. The vertices of X_t travel according to their velocities. If t, t' are two times in the interval, then the corresponding faces in X_t and $X_{t'}$ are parallel. Angles do not change.

During a free motion interval:

 u^* : The triangulation (domains of linearity of u^*) \mathbf{T}_t stays put, but the slopes of the graph of u^* change linearly with a velocity that will be described shortly.

u: The slopes of the graph stay put. The vertices of X_t travel according to their velocities. If *t*, *t'* are two times in the interval, then the corresponding faces in X_t and $X_{t'}$ are parallel. Angles do not change.

u^{*}: Before t_i , there is a subtraingulation with d + 1 triangles/simplexes as in the figure:

After t_i the d + 1 simplexes are replaced with one simplex (their union).

u: Before t_i one cell in the tessellation \mathbf{X}_t is a simplex/triangle. This cell shrinks before t_i . At t_i the cell collapses to a vertex.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

u^{*}: Before t_i , there is a subtraingulation with d + 1 triangles/simplexes as in the figure:

After t_i the d + 1 simplexes are replaced with one simplex (their union).

u: Before t_i one cell in the tessellation \mathbf{X}_t is a simplex/triangle. This cell shrinks before t_i . At t_i the cell collapses to a vertex.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

 u^* : Before t_i , there is a subtraingulation with d + 1 triangles/simplexes as in the figure:

After t_i the d + 1 simplexes are replaced with one simplex (their union).

u: Before t_i one cell in the tessellation \mathbf{X}_t is a simplex/triangle. This cell shrinks before t_i . At t_i the cell collapses to a vertex.

・ コット (雪) (小田) (コット 日)

u^{*}: Before t_i , there is a subtraingulation with d + 1 triangles/simplexes as in the figure:

After t_i the d + 1 simplexes are replaced with one simplex (their union).

u: Before t_i one cell in the tessellation X_t is a simplex/triangle. This cell shrinks before t_i . At t_i the cell collapses to a vertex.

・ コット (雪) (小田) (コット 日)

u^{*}: Before t_i , there is a subtraingulation with d + 1 triangles/simplexes as in the figure:

After t_i the d + 1 simplexes are replaced with one simplex (their union).

u: Before t_i one cell in the tessellation X_t is a simplex/triangle. This cell shrinks before t_i . At t_i the cell collapses to a vertex.

u^{*}: Before t_i , there is a subtraingulation with d + 1 triangles/simplexes as in the figure:

After t_i the d + 1 simplexes are replaced with one simplex (their union).

u: Before t_i one cell in the tessellation X_t is a simplex/triangle. This cell shrinks before t_i . At t_i the cell collapses to a vertex.

The red triangle shrinks: Triangles in \mathbf{X}_t can only shrink (not true for other type of cells).

u^{*}: Before t_i , there is a circuit *D* with d + 2 extreme points. There are exactly two possible triangulations for this circuit, say T^{\pm} . At t_i we switch from T^- to T^+ .

u: Before *t_i* there are two vertices that travel according to their velocities and move towards each other.

At t_i , these vertices collide and gain new velocities.

After t_i these vertices travel according to their new velocities.

- u^* : Before t_i , there is a circuit *D* with d + 2 extreme points.
- There are exactly two possible triangulations for this circuit, say T^{\pm} . At t_i we switch from T^- to T^+ .
- *u*: Before t_i there are two vertices that travel according to their velocities and move towards each other.
- At t_i , these vertices collide and gain new velocities.
- After t_i these vertices travel according to their new velocities.

- u^* : Before t_i , there is a circuit *D* with d + 2 extreme points.
- There are exactly two possible triangulations for this circuit, say T^{\pm} . At t_i we switch from T^- to T^+ .
- *u*: Before t_i there are two vertices that travel according to their velocities and move towards each other.
- At t_i , these vertices collide and gain new velocities.

After *t_i* these vertices travel according to their new velocities.

- *u*^{*}: Before t_i , there is a circuit *D* with d + 2 extreme points.
- There are exactly two possible triangulations for this circuit, say T^{\pm} . At t_i we switch from T^- to T^+ .
- *u*: Before t_i there are two vertices that travel according to their velocities and move towards each other.
- At t_i , these vertices collide and gain new velocities.
- After t_i these vertices travel according to their new velocities.

Two red vertices may get closer or move away from each other.

Hamilton-Jacobi Dynamics: Velocities Remarks

1. $X(\rho) \cap X(\rho')$ is a common face of $X(\rho)$ and $X(\rho')$.

The vector $\rho - \rho' \perp X(\rho) \cap X(\rho')$ (In dimension one this is known as Rankine-Hugoniot Formula). It points from $X(\rho')$ side to $X(\rho)$ side (this is entropy condition/viscosity criteria).

2. If *T* is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T) = x^t(T)$ that is uniquely determined from solving

$$x^t(T) \cdot (\rho - \rho') = f^t(\rho) - f^t(\rho'), \quad \rho, \rho' \in T.$$

3. The velocity of $x^t(T)$ is -v(T), where v(T) is the unique solution of the linear system

$$v(T) \cdot (\rho - \rho') = H(\rho) - H(\rho'), \quad \rho, \rho' \in T.$$

Moral: v is a vertex in the tessellation $X(H)_{1}$

Hamilton-Jacobi Dynamics: Velocities

1. $X(\rho) \cap X(\rho')$ is a common face of $X(\rho)$ and $X(\rho')$. The vector $\rho - \rho' \perp X(\rho) \cap X(\rho')$ (In dimension one this is known as Rankine-Hugoniot Formula).

It points from $X(\rho')$ side to $X(\rho)$ side (this is entropy condition/viscosity criteria).

2. If *T* is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T) = x^t(T)$ that is uniquely determined from solving

$$x^t(T) \cdot (\rho - \rho') = f^t(\rho) - f^t(\rho'), \quad \rho, \rho' \in T.$$

3. The velocity of $x^t(T)$ is -v(T), where v(T) is the unique solution of the linear system

$$v(T) \cdot (\rho - \rho') = H(\rho) - H(\rho'), \quad \rho, \rho' \in T.$$

Moral: v is a vertex in the tessellation $X(H)_{1}$

Hamilton-Jacobi Dynamics: Velocities

1. $X(\rho) \cap X(\rho')$ is a common face of $X(\rho)$ and $X(\rho')$. The vector $\rho - \rho' \perp X(\rho) \cap X(\rho')$ (In dimension one this is known as Rankine-Hugoniot Formula). It points from $X(\rho')$ side to $X(\rho)$ side (this is entropy condition/viscosity criteria).

2. If *T* is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T) = x^t(T)$ that is uniquely determined from solving

$$x^t(T) \cdot (\rho - \rho') = f^t(\rho) - f^t(\rho'), \quad \rho, \rho' \in T.$$

3. The velocity of $x^t(T)$ is -v(T), where v(T) is the unique solution of the linear system

$$v(T) \cdot (\rho - \rho') = H(\rho) - H(\rho'), \quad \rho, \rho' \in T.$$

Moral: v is a vertex in the tessellation $X(H)_{1}$

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X(\rho')$ is a common face of $X(\rho)$ and $X(\rho')$. The vector $\rho - \rho' \perp X(\rho) \cap X(\rho')$ (In dimension one this is known as Rankine-Hugoniot Formula). It points from $X(\rho')$ side to $X(\rho)$ side (this is entropy

It points from $X(\rho')$ side to $X(\rho)$ side (this is entropy condition/viscosity criteria).

2. If *T* is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T) = x^t(T)$ that is uniquely determined from solving

$$x^t(T) \cdot (\rho - \rho') = f^t(\rho) - f^t(\rho'), \quad \rho, \rho' \in T.$$

3. The velocity of $x^t(T)$ is -v(T), where v(T) is the unique solution of the linear system

$$v(T) \cdot (\rho - \rho') = H(\rho) - H(\rho'), \quad \rho, \rho' \in T.$$

Moral: v is a vertex in the tessellation $X(H)_{1}$

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X(\rho')$ is a common face of $X(\rho)$ and $X(\rho')$. The vector $\rho - \rho' \perp X(\rho) \cap X(\rho')$ (In dimension one this is known as Rankine-Hugoniot Formula). It points from $X(\rho')$ side to $X(\rho)$ side (this is entropy)

It points from $X(\rho')$ side to $X(\rho)$ side (this is entropy condition/viscosity criteria).

2. If *T* is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T) = x^t(T)$ that is uniquely determined from solving

$$x^t(T) \cdot (\rho - \rho') = f^t(\rho) - f^t(\rho'), \quad \rho, \rho' \in T.$$

3. The velocity of $x^t(T)$ is -v(T), where v(T) is the unique solution of the linear system

$$v(T) \cdot (\rho - \rho') = H(\rho) - H(\rho'), \quad \rho, \rho' \in T.$$

Moral: v is a vertex in the tessellation $X(H)_{1}$

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X(\rho')$ is a common face of $X(\rho)$ and $X(\rho')$. The vector $\rho - \rho' \perp X(\rho) \cap X(\rho')$ (In dimension one this is known as Rankine-Hugoniot Formula). It points from $X(\rho')$ side to $X(\rho)$ side (this is optropy

It points from $X(\rho')$ side to $X(\rho)$ side (this is entropy condition/viscosity criteria).

2. If *T* is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T) = x^t(T)$ that is uniquely determined from solving

$$x^t(T) \cdot (\rho - \rho') = f^t(\rho) - f^t(\rho'), \quad \rho, \rho' \in T.$$

3. The velocity of $x^t(T)$ is -v(T), where v(T) is the unique solution of the linear system

$$v(T) \cdot (\rho - \rho') = H(\rho) - H(\rho'), \quad \rho, \rho' \in T.$$

Moral: v is a vertex in the tessellation X(H), $A = \{x, y, z\}$, $A = \{y, z\}$

Hamilton-Jacobi Dynamics: Circuits

If *R* is a circuit, then there exists a function $c : R \to (0, \infty)$ and a decomposition $R = R^- \cup R^+$ such that

$$\sum_{m\in R^{\pm}} c(m) = 1,$$
$$a := \sum_{m\in R^{-}} c(m)m = \sum_{m\in R^{+}} c(m)m.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hamilton-Jacobi Dynamics: Circuits

If *R* is a circuit, then there exists a function $c : R \to (0, \infty)$ and a decomposition $R = R^- \cup R^+$ such that

$$\sum_{m\in R^{\pm}} c(m) = 1,$$
$$a := \sum_{m\in R^{-}} c(m)m = \sum_{m\in R^{+}} c(m)m.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

There are two triangulations:

$$\mathbf{T}^{\pm}(R) = \big\{ R \setminus \{ m \} : m \in R^{\mp} \big\}.$$

Choose \pm so that

$$\hat{H}(R) = \sum_{m \in R^+} c(m)H(m) - \sum_{m \in R^-} c(m)H(m) \ge 0.$$

In this way the restriction of *H* to *R* is associated with the triangulation $T^{-}(R)$.

If two triangulations **T** and **T**' are vertices of an edge of the secondary polytope, then they differ only on a circuit *R*. We call the edge positive if $\mathbf{T} \to \mathbf{T}'$ means switching from $\mathbf{T}^-(R)$ to $\mathbf{T}^+(R)$.

There are two triangulations:

$$\mathbf{T}^{\pm}(R) = \big\{ R \setminus \{ m \} : m \in R^{\mp} \big\}.$$

 $\text{Choose} \pm \text{so that}$

$$\hat{H}(R)=\sum_{m\in R^+}c(m)H(m)-\sum_{m\in R^-}c(m)H(m)\geq 0.$$

In this way the restriction of *H* to *R* is associated with the triangulation $T^{-}(R)$.

If two triangulations **T** and **T**' are vertices of an edge of the secondary polytope, then they differ only on a circuit *R*. We call the edge positive if $\mathbf{T} \to \mathbf{T}'$ means switching from $\mathbf{T}^-(R)$

to $T^+(R)$.

There are two triangulations:

$$\mathbf{T}^{\pm}(R) = \big\{ R \setminus \{ m \} : \ m \in R^{\mp} \big\}.$$

 $\textbf{Choose} \pm \textbf{so that}$

$$\hat{H}(R) = \sum_{m\in R^+} c(m)H(m) - \sum_{m\in R^-} c(m)H(m) \ge 0.$$

In this way the restriction of *H* to *R* is associated with the triangulation $\mathbf{T}^{-}(R)$.

If two triangulations **T** and **T**' are vertices of an edge of the secondary polytope, then they differ only on a circuit *R*. We call the edge positive if $\mathbf{T} \to \mathbf{T}'$ means switching from $\mathbf{T}^-(R)$ to $\mathbf{T}^+(R)$.

There are two triangulations:

$$\mathbf{T}^{\pm}(R) = \big\{ R \setminus \{ m \} : m \in R^{\mp} \big\}.$$

 $\textbf{Choose} \pm \textbf{so that}$

$$\hat{H}(R) = \sum_{m\in R^+} c(m)H(m) - \sum_{m\in R^-} c(m)H(m) \ge 0.$$

In this way the restriction of *H* to *R* is associated with the triangulation $\mathbf{T}^{-}(R)$.

If two triangulations T and T' are vertices of an edge of the secondary polytope, then they differ only on a circuit R.

We call the edge positive if $\mathbf{T} \to \mathbf{T}'$ means switching from $\mathbf{T}^-(R)$ to $\mathbf{T}^+(R)$.

There are two triangulations:

$$\mathbf{T}^{\pm}(R) = \big\{ R \setminus \{ m \} : \ m \in R^{\mp} \big\}.$$

 $\textbf{Choose} \pm \textbf{so that}$

$$\hat{H}(R) = \sum_{m\in R^+} c(m)H(m) - \sum_{m\in R^-} c(m)H(m) \ge 0.$$

In this way the restriction of *H* to *R* is associated with the triangulation $\mathbf{T}^{-}(R)$.

If two triangulations **T** and **T**' are vertices of an edge of the secondary polytope, then they differ only on a circuit *R*. We call the edge positive if $\mathbf{T} \to \mathbf{T}'$ means switching from $\mathbf{T}^-(R)$ to $\mathbf{T}^+(R)$.

There are two triangulations:

$$\mathbf{T}^{\pm}(R) = \big\{ R \setminus \{ m \} : m \in R^{\mp} \big\}.$$

 $\textbf{Choose} \pm \textbf{so that}$

$$\hat{H}(R) = \sum_{m\in R^+} c(m)H(m) - \sum_{m\in R^-} c(m)H(m) \ge 0.$$

In this way the restriction of *H* to *R* is associated with the triangulation $\mathbf{T}^{-}(R)$.

If two triangulations **T** and **T**' are vertices of an edge of the secondary polytope, then they differ only on a circuit *R*. We call the edge positive if $\mathbf{T} \to \mathbf{T}'$ means switching from $\mathbf{T}^-(R)$ to $\mathbf{T}^+(R)$.

Hamilton-Jacobi Dynamics: Coagulation/Collision

1. The time of a coagulation of a shrinking $f : R \to \mathbb{R}$:

$$\tau = \frac{\hat{f}(R)}{\hat{H}(R)}.$$

2. If $f : R \to \mathbb{R}$, and $\hat{f}(R) < 0$, then the triangulation induced by f is $\mathbf{T}^+(R)$ and there will be no collision. 3. If $f : R \to \mathbb{R}$ and $\hat{f}(R) > 0$, then the triangulation induced by

f is $\mathbf{T}^{-}(R)$, and collision occurs at

$$\tau = \frac{\hat{f}(R)}{\hat{H}(R)}.$$

(日) (日) (日) (日) (日) (日) (日)

Hamilton-Jacobi Dynamics: Coagulation/Collision

1. The time of a coagulation of a shrinking $f : R \to \mathbb{R}$:

$$\tau = \frac{\hat{f}(R)}{\hat{H}(R)}.$$

2. If $f : R \to \mathbb{R}$, and $\hat{f}(R) < 0$, then the triangulation induced by f is $\mathbf{T}^+(R)$ and there will be no collision.

3. If $f : R \to \mathbb{R}$, and $\hat{f}(R) > 0$, then the triangulation induced by f is $\mathbf{T}^-(R)$, and collision occurs at

$$\tau = \frac{\hat{f}(R)}{\hat{H}(R)}.$$

Hamilton-Jacobi Dynamics: Coagulation/Collision

1. The time of a coagulation of a shrinking $f : R \to \mathbb{R}$:

$$\tau = \frac{\hat{f}(R)}{\hat{H}(R)}.$$

2. If $f : R \to \mathbb{R}$, and $\hat{f}(R) < 0$, then the triangulation induced by f is $\mathbf{T}^+(R)$ and there will be no collision. 3. If $f : R \to \mathbb{R}$, and $\hat{f}(R) > 0$, then the triangulation induced by

f is $\mathbf{T}^{-}(R)$, and collision occurs at

$$\tau = \frac{\hat{f}(R)}{\hat{H}(R)}.$$