Kinetic Description of Hamilton-Jacobi PDE IV

Fraydoun Rezakhanlou

Department of Mathematics
UC Berkeley

PDE/Probability Student Seminar

Outline

Discrete Gauss Curvature and Alexandrov Maps

Optimal Transport Formulation and Monge-Kantorovich Duality

Hamilton-Jacobi Dynamics: Free Motion, Coagulation, and Collision

Hamilton-Jacobi Dynamics: Directed Secondary Polytope

Outline

Discrete Gauss Curvature and Alexandrov Maps

Optimal Transport Formulation and Monge-Kantorovich Duality

Hamilton-Jacobi Dynamics: Free Motion, Coagulation, and Collision

Hamilton-Jacobi Dynamics: Directed Secondary Polytope

Outline

Discrete Gauss Curvature and Alexandrov Maps

Optimal Transport Formulation and Monge-Kantorovich Duality

Hamilton-Jacobi Dynamics: Free Motion, Coagulation, and Collision

Hamilton-Jacobi Dynamics: Directed Secondary Polytope

Outline

> Discrete Gauss Curvature and Alexandrov Maps

> Optimal Transport Formulation and Monge-Kantorovich Duality

Hamilton-Jacobi Dynamics: Free Motion, Coagulation, and Collision

Hamilton-Jacobi Dynamics: Directed Secondary Polytope

Outline

Discrete Gauss Curvature and Alexandrov Maps

Optimal Transport Formulation and Monge-Kantorovich Duality

Hamilton-Jacobi Dynamics: Free Motion, Coagulation, and Collision

Hamilton-Jacobi Dynamics: Directed Secondary Polytope

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

$$
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho))
$$

$u^{*}(\rho)=f^{* *}(\rho)=\sup _{x}(x \cdot \rho-u(x))=f^{O}(\rho)=$ convex hull of f .
Domains of the linearity of u vield a I aguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

Domains of the linearity of u^{*} yield a weighted Delaunay tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x) .
$$

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

Domains of the linearity of u yield a Laguerre tessellation:

$$
x(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho)
$$

Domains of the linearity of u^{*} yield a weighted Delaunay tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x)
$$

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

$$
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho))
$$

$u^{*}(\rho)=f^{* *}(\rho)=\sup (x \cdot \rho-u(x))=f^{\circ}(\rho)=$ convex hull of f.
Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

Domains of the linearity of u^{*} yield a weighted Delaunay tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x)
$$

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

$$
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho))
$$

$u^{*}(\rho)=f^{* *}(\rho)=\sup _{x}(x \cdot \rho-u(x))=f^{O}(\rho)=$ convex hull of f.
Domains of the linearity of u yield a Laguerre tessellation:

Domains of the linearity of u^{*} yield a weighted Delaunay tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x)
$$

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

$$
\begin{gathered}
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho)) \\
u^{*}(\rho)=f^{* *}(\rho)=\sup _{x}(x \cdot \rho-u(x))=f^{o}(\rho)=\text { convex hull of } \mathrm{f} .
\end{gathered}
$$

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

Domains of the linearity of u^{*} yield a weighted Delaunay tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x)
$$

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

$$
\begin{gathered}
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho)) \\
u^{*}(\rho)=f^{* *}(\rho)=\sup _{x}(x \cdot \rho-u(x))=f^{o}(\rho)=\text { convex hull of } \mathrm{f} .
\end{gathered}
$$

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho)
$$

Domains of the linearity of u^{*} yield a weighted Delaunay tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x)
$$

Legendre Transform

For generic f :

(Courtesy of N. Lei, W. Chen, Z. Luo, X. Gu 2019)

Alexandrov Map I

Recall that P is fixed and we only vary f. Fix a domain Ω and define $\nu: P \rightarrow[0, \infty)$, by

$$
\nu(\rho)=|X(\rho) \cap \Omega|
$$

$X(\rho)$ is the set of slopes of subgradients (generized tangents) to the graph of u^{*} at ρ.
If ν is known, then we can recover f (and hence u) from it in Ω. Alexandrov Map I The inverse map $\nu \mapsto u$.

Alexandrov Map I

Recall that P is fixed and we only vary f. Fix a domain Ω and define $\nu: P \rightarrow[0, \infty)$, by

$$
\nu(\rho)=|X(\rho) \cap \Omega| .
$$

$X(\rho)$ is the set of slopes of subgradients (generized tangents)
to the graph of u^{*} at ρ.
If ν is known, then we can recover f (and hence u) from it in Ω. Alexandrov Map I The inverse map $v \mapsto u$.

Alexandrov Map I

Recall that P is fixed and we only vary f. Fix a domain Ω and define $\nu: P \rightarrow[0, \infty)$, by

$$
\nu(\rho)=|X(\rho) \cap \Omega| .
$$

$X(\rho)$ is the set of slopes of subgradients (generized tangents) to the graph of u^{*} at ρ.
If ν is known, then we can recover f (and hence u) from it in Ω.
Alexandrov Map I The inverse map $\nu \mapsto u$.

Alexandrov Map I

Recall that P is fixed and we only vary f. Fix a domain Ω and define $\nu: P \rightarrow[0, \infty)$, by

$$
\nu(\rho)=|X(\rho) \cap \Omega| .
$$

$X(\rho)$ is the set of slopes of subgradients (generized tangents) to the graph of u^{*} at ρ.
If ν is known, then we can recover f (and hence u) from it in Ω. Alexandrov Map I The inverse map $\nu \mapsto u$.

Discrete Gauss Curvature

Let $x \in X(\rho)$, then

$$
N^{\prime}(x)=\left(1+|x|^{2}\right)^{-1 / 2}(x,-1)
$$

is normal to a face of the graph.
Define

$$
\hat{X}(\rho)=\{N(x): x \in X(\rho) \cap \Omega\} \subset \mathbb{S}_{-}^{d} .
$$

Think of $\rho \mapsto \hat{X}(\rho)$ as a discrete Gauss map. Define

$$
\alpha(\rho)=\sigma(\hat{X}(\rho))
$$

where σ is the d-dimensional (surface) area on the sphere. When $\Omega=\mathbb{R}^{d}$, then $\alpha(\rho)$ is our candidate for the Gauss
curvature at ρ.

Discrete Gauss Curvature

Let $x \in X(\rho)$, then

$$
N(x)=\left(1+|x|^{2}\right)^{-1 / 2}(x,-1)
$$

is normal to a face of the graph.
Define

$$
\hat{X}(\rho)=\{N(x): x \in X(\rho) \cap \Omega\} \subset \mathbb{S}_{-}^{d} .
$$

Think of $\rho \mapsto \hat{X}(\rho)$ as a discrete Gauss map. Define

$$
\alpha(p)=\sigma(\hat{X}(p)),
$$

where σ is the d-dimensional (surface) area on the sphere. When $\Omega=\mathbb{R}^{d}$, then $\alpha(\rho)$ is our candidate for the Gauss
curvature at ρ.

Discrete Gauss Curvature

Let $x \in X(\rho)$, then

$$
N(x)=\left(1+|x|^{2}\right)^{-1 / 2}(x,-1)
$$

is normal to a face of the graph.
Define

$$
\hat{X}(\rho)=\{N(x): x \in X(\rho) \cap \Omega\} \subset \mathbb{S}_{-}^{d} .
$$

Think of $\rho \mapsto \hat{X}(\rho)$ as a discrete Gauss map. Define

$$
\alpha(\rho)=\sigma(\hat{X}(\rho))
$$

where σ is the d-dimensional (surface) area on the sphere. When $\Omega=\mathbb{R}^{d}$, then $\alpha(\rho)$ is our candidate for the Gauss
curvature at ρ.

Discrete Gauss Curvature

Let $x \in X(\rho)$, then

$$
N(x)=\left(1+|x|^{2}\right)^{-1 / 2}(x,-1)
$$

is normal to a face of the graph.
Define

$$
\hat{X}(\rho)=\{N(x): x \in X(\rho) \cap \Omega\} \subset \mathbb{S}_{-}^{d} .
$$

Think of $\rho \mapsto \hat{X}(\rho)$ as a discrete Gauss map.
where σ is the d-dimensional (surface) area on the sphere. When $\Omega=\mathbb{R}^{d}$, then $\alpha(\rho)$ is our candidate for the Gauss

Discrete Gauss Curvature

Let $x \in X(\rho)$, then

$$
N(x)=\left(1+|x|^{2}\right)^{-1 / 2}(x,-1)
$$

is normal to a face of the graph.
Define

$$
\hat{X}(\rho)=\{N(x): x \in X(\rho) \cap \Omega\} \subset \mathbb{S}_{-}^{d}
$$

Think of $\rho \mapsto \hat{X}(\rho)$ as a discrete Gauss map. Define

$$
\alpha(\rho)=\sigma(\hat{X}(\rho))
$$

where σ is the d-dimensional (surface) area on the sphere.
When $\Omega=\mathbb{R}^{d}$, then $\alpha(\rho)$ is our candidate for the Gauss
curvature at ρ.

Discrete Gauss Curvature

Let $x \in X(\rho)$, then

$$
N(x)=\left(1+|x|^{2}\right)^{-1 / 2}(x,-1)
$$

is normal to a face of the graph.
Define

$$
\hat{X}(\rho)=\{N(x): x \in X(\rho) \cap \Omega\} \subset \mathbb{S}_{-}^{d}
$$

Think of $\rho \mapsto \hat{X}(\rho)$ as a discrete Gauss map. Define

$$
\alpha(\rho)=\sigma(\hat{X}(\rho))
$$

where σ is the d-dimensional (surface) area on the sphere. When $\Omega=\mathbb{R}^{d}$, then $\alpha(\rho)$ is our candidate for the Gauss curvature at ρ.

Alexandrov Map II

If α is known, then we can recover f (and hence u) from it in Ω. Alexandrov Map II The inverse map $\alpha \mapsto u$.

Write λ_{1} for the Lebesgue measure on Ω.
Write λ_{2} for the pull back of σ with respect to $x \mapsto N(x)$.
Important Observation

1. The locally constant $\rho=\nabla u$ pushes forward λ_{1} to

2. The locally constant $\rho=\nabla u$ pushes forward λ_{2} to

Alexandrov Map II

If α is known, then we can recover f (and hence u) from it in Ω. Alexandrov Map II The inverse map $\alpha \mapsto u$.

Write λ_{1} for the Lebesgue measure on Ω.
Write λ_{2} for the pull back of σ with respect to $x \mapsto N(x)$.
Important Observation

1. The locally constant $\rho=\nabla u$ pushes forward λ_{1} to

2. The locally constant $\rho=\nabla u$ pushes forward λ_{2} to

Alexandrov Map II

If α is known, then we can recover f (and hence u) from it in Ω. Alexandrov Map II The inverse map $\alpha \mapsto u$.

Write λ_{1} for the Lebesgue measure on Ω.
Write λ_{2} for the pull back of σ with respect to $x \mapsto N(x)$.
Important Observation

1. The locally constant $\rho=\nabla u$ pushes forward λ_{1} to

2. The locally constant $\rho=\nabla u$ pushes forward λ_{2} to

Alexandrov Map II

If α is known, then we can recover f (and hence u) from it in Ω. Alexandrov Map II The inverse map $\alpha \mapsto u$.

Write λ_{1} for the Lebesgue measure on Ω.
Write λ_{2} for the pull back of σ with respect to $x \mapsto N(x)$.

1. The locally constant $\rho=\nabla u$ pushes forward λ_{1} to

2. The locally constant $\rho=\nabla u$ pushes forward λ_{2} to

Alexandrov Map II

If α is known, then we can recover f (and hence u) from it in Ω. Alexandrov Map II The inverse map $\alpha \mapsto u$.

Write λ_{1} for the Lebesgue measure on Ω.
Write λ_{2} for the pull back of σ with respect to $x \mapsto N(x)$.
Important Observation

1. The locally constant $\rho=\nabla u$ pushes forward λ_{1} to

$$
\mu_{1}=\sum_{\rho \in P} \nu(\rho) \delta_{\rho} .
$$

2. The locally constant $\rho=\nabla u$ pushes forward λ_{2} to

Alexandrov Map II

If α is known, then we can recover f (and hence u) from it in Ω. Alexandrov Map II The inverse map $\alpha \mapsto u$.

Write λ_{1} for the Lebesgue measure on Ω.
Write λ_{2} for the pull back of σ with respect to $x \mapsto N(x)$.
Important Observation

1. The locally constant $\rho=\nabla u$ pushes forward λ_{1} to

$$
\mu_{1}=\sum_{\rho \in P} \nu(\rho) \delta_{\rho} .
$$

2. The locally constant $\rho=\nabla u$ pushes forward λ_{2} to

$$
\mu_{2}=\sum \alpha(\rho) \delta_{\rho}
$$

Monge-Kantorovich Problem and Duality

Brenier: Given two measures λ and μ, there exists a unique (modulo a constant) convex function $u: \Omega \rightarrow \mathbb{R}$ such that $\rho=\nabla u$ pushes forward λ to μ.
Moreover ρ is a minimizer in

Infimum over maps ρ that pushes forward λ to μ.
Dual Formulation There is a dual presentation that is achieved by introducing a Lagrange multiplier and applying the minimax principle:

Monge-Kantorovich Problem and Duality

Brenier: Given two measures λ and μ, there exists a unique (modulo a constant) convex function $u: \Omega \rightarrow \mathbb{R}$ such that $\rho=\nabla u$ pushes forward λ to μ. Moreover ρ is a minimizer in

$$
I(\mu)(=I(\lambda, \mu)):=\inf \frac{1}{2} \int_{\Omega}|x-\rho(x)|^{2} \lambda(d x)
$$

Infimum over maps ρ that pushes forward λ to μ.
Dual Formulation There is a dual presentation that is achieved by introducing a Lagrange multiplier and applying the minimax principle:

Monge-Kantorovich Problem and Duality

Brenier: Given two measures λ and μ, there exists a unique (modulo a constant) convex function $u: \Omega \rightarrow \mathbb{R}$ such that $\rho=\nabla u$ pushes forward λ to μ. Moreover ρ is a minimizer in

$$
I(\mu)(=I(\lambda, \mu)):=\inf \frac{1}{2} \int_{\Omega}|x-\rho(x)|^{2} \lambda(d x)
$$

Infimum over maps ρ that pushes forward λ to μ.
Dual Formulation There is a dual presentation that is achieved by introducing a Lagrange multiplier and applying the minimax principle:

Dual Problem

$$
I(\mu)=\sup \left\{\int \phi(x) \lambda(d x)+\int \psi(\rho) \mu(d \rho)\right\},
$$

where the supremum is over pairs (ϕ, ψ) such that

$$
\varphi(x)+\psi(\rho) \leq \frac{1}{2}|x-\rho|^{2} \quad \text { for all }(x, \rho) .
$$

For each pair (φ, ψ), we define (u, v) as

We then define

with supremum over (u, v) with

Dual Problem

$$
I(\mu)=\sup \left\{\int \phi(x) \lambda(d x)+\int \psi(\rho) \mu(d \rho)\right\}
$$

where the supremum is over pairs (ϕ, ψ) such that

$$
\varphi(x)+\psi(\rho) \leq \frac{1}{2}|x-\rho|^{2} \text { for all }(x, \rho)
$$

For each pair (φ, ψ), we define (u, v) as

$$
u(x)=\frac{1}{2}|x|^{2}-\varphi(x), \quad v(\rho)=\frac{1}{2}|\rho|^{2}-\psi(\rho)
$$

We then define

$$
\hat{l}(\mu)=\sup \left\{-\int u(x) \lambda(d x)-\int v(\rho) \mu(d \rho)\right\}
$$

with supremum over (u, v) with

Dual Problem

$$
I(\mu)=\sup \left\{\int \phi(x) \lambda(d x)+\int \psi(\rho) \mu(d \rho)\right\}
$$

where the supremum is over pairs (ϕ, ψ) such that

$$
\varphi(x)+\psi(\rho) \leq \frac{1}{2}|x-\rho|^{2} \text { for all }(x, \rho)
$$

For each pair (φ, ψ), we define (u, v) as

$$
u(x)=\frac{1}{2}|x|^{2}-\varphi(x), \quad v(\rho)=\frac{1}{2}|\rho|^{2}-\psi(\rho)
$$

We then define

$$
\hat{I}(\mu)=\sup \left\{-\int u(x) \lambda(d x)-\int v(\rho) \mu(d \rho)\right\}
$$

with supremum over (u, v) with

Dual Problem

$$
I(\mu)=\sup \left\{\int \phi(x) \lambda(d x)+\int \psi(\rho) \mu(d \rho)\right\}
$$

where the supremum is over pairs (ϕ, ψ) such that

$$
\varphi(x)+\psi(\rho) \leq \frac{1}{2}|x-\rho|^{2} \text { for all }(x, \rho)
$$

For each pair (φ, ψ), we define (u, v) as

$$
u(x)=\frac{1}{2}|x|^{2}-\varphi(x), \quad v(\rho)=\frac{1}{2}|\rho|^{2}-\psi(\rho)
$$

We then define

$$
\hat{l}(\mu)=\sup \left\{-\int u(x) \lambda(d x)-\int v(\rho) \mu(d \rho)\right\}
$$

with supremum over (u, v) with

$$
x \cdot \rho \leq u(x)+v(\rho) \text { for all }(x, \rho)
$$

Dual Problem

These optimization problems are equivalent:

$$
I(\mu)=\hat{I}(\mu)+\int \frac{1}{2}|x|^{2} \lambda(d x)+\int \frac{1}{2}|\rho|^{2} \mu(d \rho) .
$$

The maximizing pair (u, v) satisfies $u=v^{*}$, and u is the desired convex function.
This suggests a functional

$$
E(v)=\int v^{*}(x) \lambda(d x)
$$

which is convex. In terms of this functional,

$$
\hat{I}(\mu)=\sup _{v}(-\mu \cdot v-E(v))=E^{*}(-\mu) .
$$

In summary the inverse of the map $f \mapsto \nu$ is given by
$\nu=-\nabla E(f)$.

Dual Problem

These optimization problems are equivalent:

$$
I(\mu)=\hat{l}(\mu)+\int \frac{1}{2}|x|^{2} \lambda(d x)+\int \frac{1}{2}|\rho|^{2} \mu(d \rho)
$$

The maximizing pair (u, v) satisfies $u=v^{*}$, and u is the desired convex function.
This suggests a functional

which is convex. In terms of this functional,

$$
\hat{r}(\mu)=\sup _{v}\left(-\mu \cdot v-E^{\prime}(v)\right)=E^{*}(-\mu) .
$$

Dual Problem

These optimization problems are equivalent:

$$
I(\mu)=\hat{l}(\mu)+\int \frac{1}{2}|x|^{2} \lambda(d x)+\int \frac{1}{2}|\rho|^{2} \mu(d \rho)
$$

The maximizing pair (u, v) satisfies $u=v^{*}$, and u is the desired convex function.
This suggests a functional

$$
E(v)=\int v^{*}(x) \lambda(d x)
$$

which is convex. In terms of this functional,

$$
\hat{I}(\mu)=\sup _{v}(-\mu \cdot v-E(v))=E^{*}(-\mu) .
$$

Dual Problem

These optimization problems are equivalent:

$$
I(\mu)=\hat{l}(\mu)+\int \frac{1}{2}|x|^{2} \lambda(d x)+\int \frac{1}{2}|\rho|^{2} \mu(d \rho)
$$

The maximizing pair (u, v) satisfies $u=v^{*}$, and u is the desired convex function.
This suggests a functional

$$
E(v)=\int v^{*}(x) \lambda(d x)
$$

which is convex. In terms of this functional,

$$
\hat{I}(\mu)=\sup _{v}(-\mu \cdot v-E(v))=E^{*}(-\mu)
$$

In summary the inverse of the map $f \mapsto \nu$ is given by $\nu=-\nabla E(f)$.

Hamilton-Jacobi Dynamics

We are interested in the PDE $u_{t}=H\left(u_{x}\right)$ with $u(x, 0)$ convex and piecewise linear.
Write $\mathcal{C}(P)$ for the set of functions of the form $u=f^{*}$ where
Write Φ_{t} for the flow associated with the PDE:

$$
\Phi_{t} u(\cdot, 0)=u(\cdot, t)
$$

The set $\mathcal{C}(P)$ is invariant under the flow by Hopf's theorem:

$$
\phi_{t}(C(P)) \subset C(P)
$$

Indeed, if $f^{t}=f-t H$, then by Hope's formula,

Set

Hamilton-Jacobi Dynamics

We are interested in the PDE $u_{t}=H\left(u_{x}\right)$ with $u(x, 0)$ convex and piecewise linear.
Write $\mathcal{C}(P)$ for the set of functions of the form $u=f^{*}$ where $f: P \rightarrow \mathbb{R}$.
Write Φ_{t} for the flow associated with the PDE:

$$
\Phi_{t} u(\cdot, 0)=u(\cdot, t)
$$

The set $\mathcal{C}(P)$ is invariant under the flow by Hopf's theorem:

$$
\phi_{t}(C(P)) \subset C(P)
$$

Indeed, if $f^{t}=f-t H$, then by Hope's formula,

Hamilton-Jacobi Dynamics

We are interested in the PDE $u_{t}=H\left(u_{x}\right)$ with $u(x, 0)$ convex and piecewise linear.
Write $\mathcal{C}(P)$ for the set of functions of the form $u=f^{*}$ where $f: P \rightarrow \mathbb{R}$.
Write Φ_{t} for the flow associated with the PDE:

$$
\Phi_{t} u(\cdot, 0)=u(\cdot, t)
$$

The set $\mathcal{C}(P)$ is invariant under the flow by Hopf's theorem:

$$
\Phi_{t}(\mathcal{C}(P)) \subset \mathcal{C}(P)
$$

Indeed, if $f^{t}=f-t H$, then by Hope's formula,
\square

Hamilton-Jacobi Dynamics

We are interested in the PDE $u_{t}=H\left(u_{x}\right)$ with $u(x, 0)$ convex and piecewise linear.
Write $\mathcal{C}(P)$ for the set of functions of the form $u=f^{*}$ where
$f: P \rightarrow \mathbb{R}$.
Write Φ_{t} for the flow associated with the PDE:

$$
\Phi_{t} u(\cdot, 0)=u(\cdot, t)
$$

The set $\mathcal{C}(P)$ is invariant under the flow by Hopf's theorem:

$$
\Phi_{t}(\mathcal{C}(P)) \subset \mathcal{C}(P)
$$

Indeed, if $f^{t}=f-t H$, then by Hope's formula, $\Phi_{t}\left(f^{*}\right)=\left(f^{t}\right)^{*}$.

Set

$\mathbf{T}_{t}=\mathbf{T}\left(f^{t}\right)$.

Hamilton-Jacobi Dynamics

We are interested in the PDE $u_{t}=H\left(u_{x}\right)$ with $u(x, 0)$ convex and piecewise linear.
Write $\mathcal{C}(P)$ for the set of functions of the form $u=f^{*}$ where
$f: P \rightarrow \mathbb{R}$.
Write Φ_{t} for the flow associated with the PDE:

$$
\Phi_{t} u(\cdot, 0)=u(\cdot, t)
$$

The set $\mathcal{C}(P)$ is invariant under the flow by Hopf's theorem:

$$
\Phi_{t}(\mathcal{C}(P)) \subset \mathcal{C}(P)
$$

Indeed, if $f^{t}=f-t H$, then by Hope's formula,

$$
\Phi_{t}\left(f^{*}\right)=\left(f^{t}\right)^{*}
$$

Set

Hamilton-Jacobi Dynamics

We are interested in the PDE $u_{t}=H\left(u_{x}\right)$ with $u(x, 0)$ convex and piecewise linear.
Write $\mathcal{C}(P)$ for the set of functions of the form $u=f^{*}$ where
$f: P \rightarrow \mathbb{R}$.
Write Φ_{t} for the flow associated with the PDE:

$$
\Phi_{t} u(\cdot, 0)=u(\cdot, t)
$$

The set $\mathcal{C}(P)$ is invariant under the flow by Hopf's theorem:

$$
\Phi_{t}(\mathcal{C}(P)) \subset \mathcal{C}(P)
$$

Indeed, if $f^{t}=f-t H$, then by Hope's formula,

$$
\Phi_{t}\left(f^{*}\right)=\left(f^{t}\right)^{*}
$$

Set

$$
\mathbf{X}_{t}=\mathbf{X}\left(f^{t}\right), \quad \mathbf{T}_{t}=\mathbf{T}\left(f^{t}\right)
$$

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$.
Without loss of generality we may assume that P is finite. (Speed of propagation is finite.) Main Theorem: There are times

$$
t_{0}=0<t_{1}<\cdots<t_{k}<t_{k+1}=\infty,
$$

we either have a coagulation or collision.
3. For $t>t_{k}$, the triangulation associated with f^{t} is very special (stable). We call it anti-H triangulation.
The definitions will be given shortly.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$. Without loss of generality we may assume that P is finite. (Speed of propagation is finite.)

we either have a coagulation or collision.
3. For $t>t_{k}$, the triangulation associated with f^{t} is very special
(stable). We call it anti-H triangulation.
The definitions will be given shortly.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$. Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.) Main Theorem: There are times

$$
t_{0}=0<t_{1}<\cdots<t_{k}<t_{k+1}=\infty
$$

such that

1. In $\left(t_{i}, t_{k=1}\right)$, we have a free motion.
2. At transition
we either have a coagulation or collision.
3. For $t>t_{k}$, the triangulation associated with f^{t} is very special
(stable). We call it anti-H triangulation.
The definitions will be given shortly.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$. Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.) Main Theorem: There are times

$$
t_{0}=0<t_{1}<\cdots<t_{k}<t_{k+1}=\infty
$$

such that

1. In $\left(t_{i}, t_{k=1}\right)$, we have a free motion.
we either have a coagulation or collision.
2. For $t>t_{k}$, the triangulation associated with f^{t} is very special
(stable). We call it anti-H triangulation.
The definitions will be given shortly.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$. Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.) Main Theorem: There are times

$$
t_{0}=0<t_{1}<\cdots<t_{k}<t_{k+1}=\infty
$$

such that

1. In $\left(t_{i}, t_{k=1}\right)$, we have a free motion.
2. At transition

$$
t_{i}-\rightarrow t_{i}+
$$

we either have a coagulation or collision.
3. For $t>t_{k}$, the triangulation associated with f^{t} is very special
(stable). We call it anti-H triangulation.
The definitions will be given shortly.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$. Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.)
Main Theorem: There are times

$$
t_{0}=0<t_{1}<\cdots<t_{k}<t_{k+1}=\infty
$$

such that

1. In $\left(t_{i}, t_{k=1}\right)$, we have a free motion.
2. At transition

$$
t_{i}-\rightarrow t_{i}+
$$

we either have a coagulation or collision.
3. For $t>t_{k}$, the triangulation associated with f^{t} is very special (stable). We call it anti- H triangulation.

Hamilton-Jacobi Dynamics

We wish to understand the dynamics of $t \mapsto \mathbf{X}_{t}$ and $t \mapsto \mathbf{T}_{t}$. Without loss of generality we may assume that P is finite.
(Speed of propagation is finite.)
Main Theorem: There are times

$$
t_{0}=0<t_{1}<\cdots<t_{k}<t_{k+1}=\infty
$$

such that

1. In $\left(t_{i}, t_{k=1}\right)$, we have a free motion.
2. At transition

$$
t_{i}-\rightarrow t_{i}+
$$

we either have a coagulation or collision.
3. For $t>t_{k}$, the triangulation associated with f^{t} is very special (stable). We call it anti- H triangulation.
The definitions will be given shortly.

Hamilton-Jacobi Dynamics: Free Motion

 During a free motion interval:u^{*} : The triangulation (domains of linearity of $\left.u^{*}\right) \mathrm{T}_{t}$ stays put, but the slopes of the graph of u^{*} change linearly with a velocity that will be described shortly.
u : The slopes of the graph stay put. The vertices of \mathbf{X}_{t} travel according to their velocities. If t, t^{\prime} are two times in the interval, then the corresponding faces in \mathbf{X}_{t} and $\mathbf{X}_{t^{\prime}}$ are parallel. Angles do not change.

Hamilton-Jacobi Dynamics: Free Motion

During a free motion interval:
u^{*} : The triangulation (domains of linearity of u^{*}) \mathbf{T}_{t} stays put, but the slopes of the graph of u^{*} change linearly with a velocity that will be described shortly.
u: The slopes of the graph stay put. The vertices of \mathbf{X}_{t} travel
according to their velocities. If t, t^{\prime} are two times in the interval, then the corresponding faces in \mathbf{X}_{t} and $\mathbf{X}_{t^{\prime}}$ are parallel. Angles do not change.

Hamilton-Jacobi Dynamics: Free Motion

During a free motion interval:
u^{*} : The triangulation (domains of linearity of $\left.u^{*}\right) \mathbf{T}_{t}$ stays put, but the slopes of the graph of u^{*} change linearly with a velocity that will be described shortly.
u : The slopes of the graph stay put. The vertices of \mathbf{X}_{t} travel according to their velocities.
then the corresponding faces in \mathbf{X}_{t} and $\mathbf{X}_{t^{\prime}}$ are parallel. Angles
do not change.

Hamilton-Jacobi Dynamics: Free Motion

During a free motion interval:
u^{*} : The triangulation (domains of linearity of u^{*}) \mathbf{T}_{t} stays put, but the slopes of the graph of u^{*} change linearly with a velocity that will be described shortly.
u : The slopes of the graph stay put. The vertices of \mathbf{X}_{t} travel according to their velocities. If t, t^{\prime} are two times in the interval, then the corresponding faces in \mathbf{X}_{t} and $\mathbf{X}_{t^{\prime}}$ are parallel. Angles do not change.

Hamilton-Jacobi Dynamics: Coagulation

u^{*} : Before t_{i}, there is a subtraingulation with $d+1$ triangles/simplexes as in the figure:

After t_{i} the $d+1$ simplexes are replaced with one simplex (their union).
u : Before t_{i} one cell in the tessellation \mathbf{X}_{t} is a simplex/triangle. This cell shrinks before t_{i}. At t_{i} the cell collapses to a vertex.

Hamilton-Jacobi Dynamics: Coagulation

u^{*} : Before t_{i}, there is a subtraingulation with $d+1$ triangles/simplexes as in the figure:

After t_{i} the $d+1$ simplexes are replaced with one simplex (their union).
u : Before t_{i} one cell in the tessellation \mathbf{X}_{t} is a simplex/triangle. This cell shrinks before t_{i}. At t_{i} the cell collapses to a vertex.

Hamilton-Jacobi Dynamics: Coagulation

u^{*} : Before t_{i}, there is a subtraingulation with $d+1$ triangles/simplexes as in the figure:

After t_{i} the $d+1$ simplexes are replaced with one simplex (their union).
u : Before t_{i} one cell in the tessellation \mathbf{X}_{t} is a simplex/triangle. This cell shrinks before t_{i}. At t_{i} the cell collapses to a vertex.

Hamilton-Jacobi Dynamics: Coagulation

u^{*} : Before t_{i}, there is a subtraingulation with $d+1$ triangles/simplexes as in the figure:

After t_{i} the $d+1$ simplexes are replaced with one simplex (their union).
u : Before t_{i} one cell in the tessellation \mathbf{X}_{t} is a simplex/triangle.
This cell shrinks before t_{i}.

Hamilton-Jacobi Dynamics: Coagulation

u^{*} : Before t_{i}, there is a subtraingulation with $d+1$ triangles/simplexes as in the figure:

After t_{i} the $d+1$ simplexes are replaced with one simplex (their union).
u : Before t_{i} one cell in the tessellation \mathbf{X}_{t} is a simplex/triangle.
This cell shrinks before t_{i}. At t_{i} the cell collapses to a vertex.

Hamilton-Jacobi Dynamics: Coagulation

u^{*} : Before t_{i}, there is a subtraingulation with $d+1$ triangles/simplexes as in the figure:

After t_{i} the $d+1$ simplexes are replaced with one simplex (their union).
u : Before t_{i} one cell in the tessellation \mathbf{X}_{t} is a simplex/triangle.
This cell shrinks before t_{i}. At t_{i} the cell collapses to a vertex.

Hamilton-Jacobi Dynamics: Coagulation

The red triangle shrinks: Triangles in \mathbf{X}_{t} can only shrink (not true for other type of cells).

Hamilton-Jacobi Dynamics: Collision

u^{*} : Before t_{i}, there is a circuit D with $d+2$ extreme points.
There are exactly two possible triangulations for this circuit, say $\mathbf{T}^{ \pm}$. At t_{i} we switch from \mathbf{T}^{-}to \mathbf{T}^{+}.

Hamilton-Jacobi Dynamics: Collision

u^{*} : Before t_{i}, there is a circuit D with $d+2$ extreme points.
There are exactly two possible triangulations for this circuit, say $\mathbf{T}^{ \pm}$. At t_{i} we switch from \mathbf{T}^{-}to \mathbf{T}^{+}.
u : Before t_{i} there are two vertices that travel according to their velocities and move towards each other.
At t_{i}, these vertices collide and gain new velocities.
After t_{i} these vertices travel according to their new velocities.

Hamilton-Jacobi Dynamics: Collision

u^{*} : Before t_{i}, there is a circuit D with $d+2$ extreme points.
There are exactly two possible triangulations for this circuit, say $\mathbf{T}^{ \pm}$. At t_{i} we switch from \mathbf{T}^{-}to \mathbf{T}^{+}.
u : Before t_{i} there are two vertices that travel according to their velocities and move towards each other.
At t_{i}, these vertices collide and gain new velocities.
After t_{i} these vertices travel according to their new velocities.

Hamilton-Jacobi Dynamics: Collision

u^{*} : Before t_{i}, there is a circuit D with $d+2$ extreme points.
There are exactly two possible triangulations for this circuit, say $\mathbf{T}^{ \pm}$. At t_{i} we switch from \mathbf{T}^{-}to \mathbf{T}^{+}.
u : Before t_{i} there are two vertices that travel according to their velocities and move towards each other.
At t_{i}, these vertices collide and gain new velocities. After t_{i} these vertices travel according to their new velocities.

Hamilton-Jacobi Dynamics: Collision

Two red vertices may get closer or move away from each other.

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X\left(\rho^{\prime}\right)$ is a common face of $X(\rho)$ and $X\left(\rho^{\prime}\right)$.

The vector $\rho-\rho^{\prime} \perp X(\rho) \cap X\left(\rho^{\prime}\right)$ (In dimension one this is
known as Rankine-Hugoniot Formula).
It points from $X\left(\rho^{\prime}\right)$ side to $X(\rho)$ side (this is entropy
condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T)=x^{t}(T)$ that is uniquely determined from solving

$$
x^{t}(T) \cdot\left(\rho-\rho^{\prime}\right)=f^{t}(\rho)-f^{t}\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T .
$$

3. The velocity of $x^{t}(T)$ is $-v(T)$, where $v(T)$ is the unique solution of the linear system

$$
v(T) \cdot\left(\rho-\rho^{\prime}\right)=H(\rho)-H\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T .
$$

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X\left(\rho^{\prime}\right)$ is a common face of $X(\rho)$ and $X\left(\rho^{\prime}\right)$. The vector $\rho-\rho^{\prime} \perp X(\rho) \cap X\left(\rho^{\prime}\right)$ (In dimension one this is known as Rankine-Hugoniot Formula).
It points from $X\left(\rho^{\prime}\right)$ side to $X(\rho)$ side (this is entropy
condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T)=x^{t}(T)$ that is uniquely determined from soiving

$$
x^{t}(T) \cdot\left(\rho-\rho^{\prime}\right)=f^{t}(\rho)-f^{t}\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T .
$$

3. The velocity of $x^{t}(T)$ is $-v(T)$, where $v(T)$ is the unique solution of the linear system

$$
v(T) \cdot\left(\rho-\rho^{\prime}\right)=H(\rho)-H\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T .
$$

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X\left(\rho^{\prime}\right)$ is a common face of $X(\rho)$ and $X\left(\rho^{\prime}\right)$. The vector $\rho-\rho^{\prime} \perp X(\rho) \cap X\left(\rho^{\prime}\right)$ (In dimension one this is known as Rankine-Hugoniot Formula).
It points from $X\left(\rho^{\prime}\right)$ side to $X(\rho)$ side (this is entropy condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T)=x^{t}(T)$ that is uniquely determined from solving
3. The velocity of $x^{t}(T)$ is $-v(T)$, where $v(T)$ is the unique solution of the linear system

$$
v(T) \cdot\left(\rho-\rho^{\prime}\right)=H(\rho)-H\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T .
$$

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X\left(\rho^{\prime}\right)$ is a common face of $X(\rho)$ and $X\left(\rho^{\prime}\right)$.

The vector $\rho-\rho^{\prime} \perp X(\rho) \cap X\left(\rho^{\prime}\right)$ (In dimension one this is known as Rankine-Hugoniot Formula).
It points from $X\left(\rho^{\prime}\right)$ side to $X(\rho)$ side (this is entropy condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T)=x^{t}(T)$ that is uniquely determined from solving

$$
x^{t}(T) \cdot\left(\rho-\rho^{\prime}\right)=f^{t}(\rho)-f^{t}\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T
$$

3. The velocity of $x^{t}(T)$ is $-v(T)$, where $v(T)$ is the unique solution of the linear system

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X\left(\rho^{\prime}\right)$ is a common face of $X(\rho)$ and $X\left(\rho^{\prime}\right)$.

The vector $\rho-\rho^{\prime} \perp X(\rho) \cap X\left(\rho^{\prime}\right)$ (In dimension one this is known as Rankine-Hugoniot Formula).
It points from $X\left(\rho^{\prime}\right)$ side to $X(\rho)$ side (this is entropy condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T)=x^{t}(T)$ that is uniquely determined from solving

$$
x^{t}(T) \cdot\left(\rho-\rho^{\prime}\right)=f^{t}(\rho)-f^{t}\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T
$$

3. The velocity of $x^{t}(T)$ is $-v(T)$, where $v(T)$ is the unique solution of the linear system

$$
v(T) \cdot\left(\rho-\rho^{\prime}\right)=H(\rho)-H\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T
$$

Hamilton-Jacobi Dynamics: Velocities

Remarks

1. $X(\rho) \cap X\left(\rho^{\prime}\right)$ is a common face of $X(\rho)$ and $X\left(\rho^{\prime}\right)$.

The vector $\rho-\rho^{\prime} \perp X(\rho) \cap X\left(\rho^{\prime}\right)$ (In dimension one this is known as Rankine-Hugoniot Formula).
It points from $X\left(\rho^{\prime}\right)$ side to $X(\rho)$ side (this is entropy
condition/viscosity criteria).
2. If T is a triangle/simplex in the triangulation, then it is associated with a vertex $x(T)=x^{t}(T)$ that is uniquely determined from solving

$$
x^{t}(T) \cdot\left(\rho-\rho^{\prime}\right)=f^{t}(\rho)-f^{t}\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T
$$

3. The velocity of $x^{t}(T)$ is $-v(T)$, where $v(T)$ is the unique solution of the linear system

$$
v(T) \cdot\left(\rho-\rho^{\prime}\right)=H(\rho)-H\left(\rho^{\prime}\right), \quad \rho, \rho^{\prime} \in T
$$

Moral: v is a vertex in the tessellation $\mathbf{X}(H)$.

Hamilton-Jacobi Dynamics: Circuits

If R is a circuit, then there exists a function $c: R \rightarrow(0, \infty)$ and a decomposition $R=R^{-} \cup R^{+}$such that

$$
\begin{aligned}
& \sum_{m \in R^{ \pm}} c(m)=1 \\
& a:=\sum_{m \in R^{-}} c(m) m=\sum_{m \in R^{+}} c(m) m
\end{aligned}
$$

Dim 1:

Dim 2:

Dim 3:

Hamilton-Jacobi Dynamics: Circuits

If R is a circuit, then there exists a function $c: R \rightarrow(0, \infty)$ and a decomposition $R=R^{-} \cup R^{+}$such that

$$
\begin{aligned}
& \sum_{m \in R^{ \pm}} c(m)=1 \\
& a:=\sum_{m \in R^{-}} c(m) m=\sum_{m \in R^{+}} c(m) m
\end{aligned}
$$

Dim 1:

Dim 2:

Dim 3:

Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

$$
\mathbf{T}^{ \pm}(R)=\left\{R \backslash\{m\}: m \in R^{\mp}\right\} .
$$

Choose \pm so that

In this way the restriction of H to R is associated with the
triangulation $\mathbf{T}^{-}(R)$.
If two triangulations \mathbf{T} and T^{\prime} are vertices of an edge of the
secondary polytope, then they differ only on a circuit R.
We call the edge positive if $\mathbf{T} \rightarrow \mathbf{T}^{\prime}$ means switching from $\mathbf{T}^{-}(R)$
to $\mathrm{T}^{+}(R)$.
In the HJ dynamics we can only jump across a positive edge at

Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

$$
\mathbf{T}^{ \pm}(R)=\left\{R \backslash\{m\}: m \in R^{\mp}\right\} .
$$

Choose \pm so that

$$
\hat{H}(R)=\sum_{m \in R^{+}} c(m) H(m)-\sum_{m \in R^{-}} c(m) H(m) \geq 0 .
$$

In this way the restriction of H to R is associated with the
triangulation $\mathbf{T}^{-}(R)$.
If two triangulations \mathbf{T} and T^{\prime} are vertices of an edge of the secondary polytope, then they differ only on a circuit R. We call the edge positive if $\mathrm{T} \rightarrow \mathrm{T}^{\prime}$ means switching from $\mathrm{T}^{-}(R)$ to $\mathbf{T}^{+}(R)$.
In the HJ dynamics we can only jump across a positive edge at

Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

$$
\mathbf{T}^{ \pm}(R)=\left\{R \backslash\{m\}: m \in R^{\mp}\right\}
$$

Choose \pm so that

$$
\hat{H}(R)=\sum_{m \in R^{+}} c(m) H(m)-\sum_{m \in R^{-}} c(m) H(m) \geq 0
$$

In this way the restriction of H to R is associated with the triangulation $\mathbf{T}^{-}(R)$.
If two triangulations T and T^{\prime} are vertices of an edge of the
secondary polytope, then they differ only on a circuit R.
We call the edge positive if $\mathbf{T} \rightarrow \mathbf{T}^{\prime}$ means switching from $\mathbf{T}^{-}(R)$
to $\mathrm{T}^{+}(R)$.
In the HJ dynamics we can only jump across a positive edge at

Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

$$
\mathbf{T}^{ \pm}(R)=\left\{R \backslash\{m\}: m \in R^{\mp}\right\}
$$

Choose \pm so that

$$
\hat{H}(R)=\sum_{m \in R^{+}} c(m) H(m)-\sum_{m \in R^{-}} c(m) H(m) \geq 0
$$

In this way the restriction of H to R is associated with the triangulation $\mathbf{T}^{-}(R)$.
If two triangulations \mathbf{T} and \mathbf{T}^{\prime} are vertices of an edge of the secondary polytope, then they differ only on a circuit R.

Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

$$
\mathbf{T}^{ \pm}(R)=\left\{R \backslash\{m\}: m \in R^{\mp}\right\} .
$$

Choose \pm so that

$$
\hat{H}(R)=\sum_{m \in R^{+}} c(m) H(m)-\sum_{m \in R^{-}} c(m) H(m) \geq 0
$$

In this way the restriction of H to R is associated with the triangulation $\mathbf{T}^{-}(R)$.
If two triangulations \mathbf{T} and \mathbf{T}^{\prime} are vertices of an edge of the secondary polytope, then they differ only on a circuit R. We call the edge positive if $\mathbf{T} \rightarrow \mathbf{T}^{\prime}$ means switching from $\mathbf{T}^{-}(R)$ to $\mathbf{T}^{+}(R)$.

Hamilton-Jacobi Dynamics: Positive Edges

There are two triangulations:

$$
\mathbf{T}^{ \pm}(R)=\left\{R \backslash\{m\}: m \in R^{\mp}\right\}
$$

Choose \pm so that

$$
\hat{H}(R)=\sum_{m \in R^{+}} c(m) H(m)-\sum_{m \in R^{-}} c(m) H(m) \geq 0
$$

In this way the restriction of H to R is associated with the triangulation $\mathbf{T}^{-}(R)$.
If two triangulations \mathbf{T} and \mathbf{T}^{\prime} are vertices of an edge of the secondary polytope, then they differ only on a circuit R. We call the edge positive if $\mathbf{T} \rightarrow \mathbf{T}^{\prime}$ means switching from $\mathbf{T}^{-}(R)$ to $\mathbf{T}^{+}(R)$.
In the HJ dynamics we can only jump across a positive edge at t_{i}.

Hamilton-Jacobi Dynamics: Coagulation/Collision

1. The time of a coagulation of a shrinking $f: R \rightarrow \mathbb{R}$:

$$
\tau=\frac{\hat{f}(R)}{\hat{H}(R)}
$$

2. If $f: R \rightarrow \mathbb{R}$, and $\hat{f}(R)<0$, then the triangulation induced by
f is $\mathbf{T}^{+}(R)$ and there will be no collision.
3. If $f: R \rightarrow \mathbb{R}$, and $\hat{f}(R)>0$, then the triangulation induced by
f is $\mathbf{T}^{-}(R)$, and collision occurs at

Hamilton-Jacobi Dynamics: Coagulation/Collision

1. The time of a coagulation of a shrinking $f: R \rightarrow \mathbb{R}$:

$$
\tau=\frac{\hat{f}(R)}{\hat{H}(R)}
$$

2. If $f: R \rightarrow \mathbb{R}$, and $\hat{f}(R)<0$, then the triangulation induced by f is $\mathbf{T}^{+}(R)$ and there will be no collision.

Hamilton-Jacobi Dynamics: Coagulation/Collision

1. The time of a coagulation of a shrinking $f: R \rightarrow \mathbb{R}$:

$$
\tau=\frac{\hat{f}(R)}{\hat{H}(R)}
$$

2. If $f: R \rightarrow \mathbb{R}$, and $\hat{f}(R)<0$, then the triangulation induced by f is $\mathbf{T}^{+}(R)$ and there will be no collision.
3. If $f: R \rightarrow \mathbb{R}$, and $\hat{f}(R)>0$, then the triangulation induced by
f is $\mathbf{T}^{-}(R)$, and collision occurs at

$$
\tau=\frac{\hat{f}(R)}{\hat{H}(R)}
$$

