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Dual Tessellations/Legendre Transform

Given a finite Pand amap f : P — R, we define two piecewise
linear convex functions:

u(x) = F*(x) = sup(x - p — (p))
peEP

u*(p) = £*(p) = sup(x - p — u(x)) = f°(p) = convex hull of f.

We may find f° as follows:

1. Plot points {(x, f(x)) : x € P}.

2. Take the convex hull of the set {(x, f(x)) : x € P}.

3. The lower boundary of the convex hull is the graph of
fo = u*.



Legendre Transform

For generic f:

Q*

T

(Courtesy of N. Lei, W. Chen, Z. Luo, X. Gu 2019)
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X(N) = {X(p): p R, X(p) = 0u"(p).

The function u* is not differentiable at p € P.
ou*(p) is the set of slopes of all supporting planes to the graph
of u* at p. For p € P,

xeX(p) = ux)=x-p—1£(p)

2. The function u* is piecewise linear.
Domains of the linearity of u* yield a weighted Delaunay
tessellation:

P(f):= {P(x): x € RY}, P(x)=du(x).

Write X for the set of vertices in X(f).

The function v is not differentiable at a vertex x € X.

ou(x) is the set of slopes of all supporting planes to the graph
of u at x.
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peP(x) = u(p)=x:p—ux).

For generic f, the graph associated with X is of degree d + 1.
For generic f, the tessellation P is a triangulation.
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We first focus on u* = f°. We wish to develop a better
understanding of the operation f — f°. We fix a finite set P and
very f. The set of f: P — R is identified as R" if P = n.
(Remember P c R9.) The function f° : P — R, where

P = Conv(P).

Without loss of generality we may assume that dim P = d. P is
a polytope in R9 and serves as our primary polytope. Note that
as we go from f to f° the main challenge comes from the
tessellation P(f) which is a triangulation for generic f.
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Triangulation/Fan

Recall P is fixed but we allow to f : P — R to vary; f € R".
Write 7 for the set all triangulations of P (some inner points
may not be used).

Recall that for T € T, by fr we mean

fr=f onvertices, fr linearoneach T eT.

Definition

C(T)={f: k is convex} Y

C={C(M): TeT}
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1. Each C(T) is a convex cone.

2. R"=U{C(M): TeT}

3. C(T) has non-empty interior iff T is induced from f° for some
generic f. If this is the case, then we call T regular/coherent.

4. Assume T and T’ are regular, and f € C(T) N C(T’) # 0. Then
tessellation (domains of linearity) associated with f° is not a
triangulation; a vertex in X has degree d + 2. C(T)NC(T') is a
common face of both C(T) and C(T').

1-4 means that the collection/tessellation C is a fan.
Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a
polytope. This polytope is called the secondary polytope.



A Recipe for Secondary Polytope



A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a
tessellation with convex cells.



A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a
tessellation with convex cells.
The fan C is a tessellation with convex cones C(T) for cells.



A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a
tessellation with convex cells.

The fan C is a tessellation with convex cones C(T) for cells.
Natural Question: Is there a convex (concave) U function that

would yield C?



A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a
tessellation with convex cells.

The fan C is a tessellation with convex cones C(T) for cells.
Natural Question: Is there a convex (concave) U function that
would yield C?

1. We want U to be linear on each C(T) but of different slopes
on different cells.



A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a
tessellation with convex cells.

The fan C is a tessellation with convex cones C(T) for cells.
Natural Question: Is there a convex (concave) U function that
would yield C?

1. We want U to be linear on each C(T) but of different slopes
on different cells.

2. The set of slopes would generate the secondary polytope
Y (P).



A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a
tessellation with convex cells.

The fan C is a tessellation with convex cones C(T) for cells.
Natural Question: Is there a convex (concave) U function that
would yield C?

1. We want U to be linear on each C(T) but of different slopes
on different cells.

2. The set of slopes would generate the secondary polytope
Y (P).

3. Equivalently U* is 0 in £(P), and oo outside X (P).



A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a
tessellation with convex cells.

The fan C is a tessellation with convex cones C(T) for cells.
Natural Question: Is there a convex (concave) U function that
would yield C?

1. We want U to be linear on each C(T) but of different slopes
on different cells.

2. The set of slopes would generate the secondary polytope
Y (P).

3. Equivalently U* is 0 in £(P), and oo outside X (P).

Recall that f° = u* is the convex hull of f:



A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a
tessellation with convex cells.

The fan C is a tessellation with convex cones C(T) for cells.
Natural Question: Is there a convex (concave) U function that
would yield C?

1. We want U to be linear on each C(T) but of different slopes
on different cells.

2. The set of slopes would generate the secondary polytope
Y (P).

3. Equivalently U* is 0 in £(P), and oo outside X (P).

Recall that f° = u* is the convex hull of f:

fo=inf{fk: TeT})



A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a
tessellation with convex cells.

The fan C is a tessellation with convex cones C(T) for cells.
Natural Question: Is there a convex (concave) U function that
would yield C?

1. We want U to be linear on each C(T) but of different slopes
on different cells.

2. The set of slopes would generate the secondary polytope
Y (P).

3. Equivalently U* is 0 in £(P), and oo outside X (P).

Recall that f° = u* is the convex hull of f:

—inf{l: TeT})

Claim: U(f) = [»f°(p) dp is concave and does the job!
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Secondary Polytope

U(f) = inf{Ur(f) : Te T,

k() = / k() dp.

Uris linear. U = Ut on C(T). We evaluate Ur: Ur(f) = f - o,
with o1 : P — [0, 00) given by

o) =gy XTI

peTET
p € T means pis a vertex of T.

Proof For every linear ¢ and simplex T, ‘
_ Tl
He) dp = 5 > )
peT
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U(f) =inf{f-or: TeT}=int{f-h: heT(P)},

Y(P) = Convex hull of {o1: Te T}.

1.1f 4P =d + 1, dim P = d (points in P are affinely
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3(i). Let P be as in 3, no point of P is in the interior of P.

3(ii). Let P be as in 3, a point of P is in the interior of P.
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d=2:

(i) Either diagonals are swapped,

(i) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the
occurrence of a collision between two vertices of the
corresponding Laguerre tessellation.

In the context of Hamilton-Jacobi equation (ii) means that the
corresponding Laguerre tessellation has a triangular cell, and
this cell collapses to a vertex. When this happens, we say that
a coagulation has occurred. (The vertices of the cell coagulate
to form a single vertex/particle.)
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Recall that P is fixed and we only vary f. Fix a domain Q and
define v : P — [0, 00), by

v(p) = |X(p) N €.

Alexandrov: The map f — v is a local diffeomorphism.

If v is known, then we can recover f (and hence u) from it.
Alexandrov Problem: How to build v +— u?

We wish to formulate an optimization problem for this problem.
Solution via Optimal Transport techniques: Observe that if
p(x) = Vu(x) (which coincides with du(x) almost everywhere),
then p : Q — R pushes forward Lebesgue measure to the

measure
p="_v(p)s,.
peP
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Alexandrov Problem (via 2 optimization problems)
Brenier: Given two measures \ and ., there exists a unique
(modulo a constant) convex function u : Q — R such that
p = Vu pushes forward A to p.

Moreover p minimizes

) /Q X — p(X)[2 A(k).

Alternative formulation As in the case of u*, examine the
functional

E(f) = /Q F*(x) M(dx).

The map f — E(f) is convex.
Claim: f — —VE(f)is f — v.
The maximizing f in variational problem

E'(=v) = sup(=v - F = E(f).

yields f in terms of v.
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