Kinetic Description of Hamilton-Jacobi PDE III

Fraydoun Rezakhanlou

Department of Mathematics UC Berkeley

PDE/Probability Student Seminar

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Minkowski-Alexandrov Problem and Optimal Transport

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Hamilton-Jacobi Dynamics

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_{x} (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We may find *f*^o as follows:

- 1. Plot points $\{(x, f(x)) : x \in P\}$.
- 2. Take the convex hull of the set $\{(x, f(x)) : x \in P\}$.
- 3. The lower boundary of the convex hull is the graph of $f^o = u^*$.

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_{x} (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We may find *f*^o as follows:

1. Plot points
$$\{(x, f(x)) : x \in P\}$$
.

- 2. Take the convex hull of the set $\{(x, f(x)) : x \in P\}$.
- 3. The lower boundary of the convex hull is the graph of $f^o = u^*$.

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

 $u^*(\rho) = f^{**}(\rho) = \sup_{x} (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$

(日) (日) (日) (日) (日) (日) (日)

We may find *f*^o as follows:

1. Plot points $\{(x, f(x)) : x \in P\}$.

- 2. Take the convex hull of the set $\{(x, f(x)) : x \in P\}$.
- 3. The lower boundary of the convex hull is the graph of $f^o = u^*$.

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_x (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We may find f^o as follows:

1. Plot points $\{(x, f(x)) : x \in P\}$.

2. Take the convex hull of the set $\{(x, f(x)) : x \in P\}$.

3. The lower boundary of the convex hull is the graph of $f^o = u^*$.

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_x (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We may find *f*^o as follows:

Plot points {(x, f(x)) : x ∈ P}.
 Take the convex hull of the set {(x, f(x)) : x ∈ P}.
 The lower boundary of the convex hull is the graph of f^o = u*.

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_x (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We may find f^o as follows: 1. Plot points {(x, f(x)) : x ∈ P}. 2. Take the convex hull of the set {(x, f(x)) : x ∈ P}. 3. The lower boundary of the convex hull is the graph or f^o = u*.

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_x (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We may find *f*^o as follows:

- 1. Plot points $\{(x, f(x)) : x \in P\}$.
- 2. Take the convex hull of the set $\{(x, f(x)) : x \in P\}$.
- 3. The lower boundary of the convex hull is the graph of $f^o = u^*$.

Given a finite *P* and a map $f : P \to \mathbb{R}$, we define two piecewise linear convex functions:

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

$$u^*(\rho) = f^{**}(\rho) = \sup_x (x \cdot \rho - u(x)) = f^o(\rho) = \text{ convex hull of f.}$$

We may find *f*^o as follows:

- 1. Plot points $\{(x, f(x)) : x \in P\}$.
- 2. Take the convex hull of the set $\{(x, f(x)) : x \in P\}$.
- 3. The lower boundary of the convex hull is the graph of $f^o = u^*$.

Legendre Transform

For generic *f*:

(Courtesy of N. Lei, W. Chen, Z. Luo, X. Gu 2019)

・ロト・日本・日本・日本・日本・今日や

The function u is piecewise linear.
 Domains of the linearity of u yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ X(\rho) : \rho \in \mathbb{R}^d \}, \quad X(\rho) = \partial u^*(\rho).$$

The function u^* is not differentiable at $\rho \in P$. $\partial u^*(\rho)$ is the set of slopes of all supporting planes to the graph of u^* at ρ . For $\rho \in P$,

$$x \in X(\rho) \implies u(x) = x \cdot \rho - f(\rho).$$

2. The function u^* is piecewise linear.

Domains of the linearity of u^* yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

1. The function *u* is piecewise linear.

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ X(\rho) : \rho \in \mathbb{R}^d \}, \quad X(\rho) = \partial u^*(\rho).$$

The function u^* is not differentiable at $\rho \in P$. $\partial u^*(\rho)$ is the set of slopes of all supporting planes to the graph of u^* at ρ . For $\rho \in P$,

$$x \in X(\rho) \implies u(x) = x \cdot \rho - f(\rho).$$

2. The function u^* is piecewise linear.

Domains of the linearity of u^* yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

The function *u* is piecewise linear.
 Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \quad \mathbf{X}(\rho) = \partial u^*(\rho).$$

The function u^* is not differentiable at $\rho \in P$. $\partial u^*(\rho)$ is the set of slopes of all supporting planes to the graph of u^* at ρ . For $\rho \in P$,

$$x \in X(\rho) \implies u(x) = x \cdot \rho - f(\rho).$$

2. The function u^* is piecewise linear.

Domains of the linearity of *u*^{*} yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

The function *u* is piecewise linear.
 Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \ \mathbf{X}(\rho) = \partial u^*(\rho).$$

The function u^* is not differentiable at $\rho \in P$.

 $\partial u^*(\rho)$ is the set of slopes of all supporting planes to the graph of u^* at ρ . For $\rho \in P$,

$$x \in X(\rho) \implies u(x) = x \cdot \rho - f(\rho).$$

2. The function *u*^{*} is piecewise linear.

Domains of the linearity of u^* yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

The function u is piecewise linear.
 Domains of the linearity of u yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \quad \mathbf{X}(\rho) = \partial u^*(\rho).$$

The function u^* is not differentiable at $\rho \in P$. $\partial u^*(\rho)$ is the set of slopes of all supporting planes to the graph of u^* at ρ . For $\rho \in P$,

$$x \in X(\rho) \implies u(x) = x \cdot \rho - f(\rho).$$

2. The function *u*^{*} is piecewise linear.

Domains of the linearity of *u*^{*} yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

The function u is piecewise linear.
 Domains of the linearity of u yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \quad \mathbf{X}(\rho) = \partial u^*(\rho).$$

The function u^* is not differentiable at $\rho \in P$. $\partial u^*(\rho)$ is the set of slopes of all supporting planes to the graph of u^* at ρ . For $\rho \in P$,

$$x \in X(\rho) \implies u(x) = x \cdot \rho - f(\rho).$$

2. The function u^* is piecewise linear.

Domains of the linearity of *u*^{*} yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ \mathbf{P}(x) : x \in \mathbb{R}^d \}, \quad \mathbf{P}(x) = \partial u(x).$$

The function *u* is piecewise linear.
 Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \quad \mathbf{X}(\rho) = \partial u^*(\rho).$$

The function u^* is not differentiable at $\rho \in P$. $\partial u^*(\rho)$ is the set of slopes of all supporting planes to the graph of u^* at ρ . For $\rho \in P$,

$$x \in X(\rho) \implies u(x) = x \cdot \rho - f(\rho).$$

2. The function *u*^{*} is piecewise linear.

Domains of the linearity of *u*^{*} yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

The function u is piecewise linear.
 Domains of the linearity of u yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \quad \mathbf{X}(\rho) = \partial u^*(\rho).$$

The function u^* is not differentiable at $\rho \in P$. $\partial u^*(\rho)$ is the set of slopes of all supporting planes to the graph of u^* at ρ . For $\rho \in P$,

$$x \in X(\rho) \implies u(x) = x \cdot \rho - f(\rho).$$

2. The function u^* is piecewise linear.

Domains of the linearity of *u*^{*} yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ P(x) : x \in \mathbb{R}^d \}, \quad P(x) = \partial u(x).$$

The function *u* is piecewise linear.
 Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \quad \mathbf{X}(\rho) = \partial u^*(\rho).$$

The function u^* is not differentiable at $\rho \in P$. $\partial u^*(\rho)$ is the set of slopes of all supporting planes to the graph of u^* at ρ . For $\rho \in P$,

$$x \in X(\rho) \implies u(x) = x \cdot \rho - f(\rho).$$

2. The function u^* is piecewise linear.

Domains of the linearity of u^* yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ \mathbf{P}(x) : x \in \mathbb{R}^d \}, \quad \mathbf{P}(x) = \partial u(x).$$

The function *u* is piecewise linear.
 Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \quad \mathbf{X}(\rho) = \partial u^*(\rho).$$

The function u^* is not differentiable at $\rho \in P$. $\partial u^*(\rho)$ is the set of slopes of all supporting planes to the graph of u^* at ρ . For $\rho \in P$,

$$x \in X(\rho) \implies u(x) = x \cdot \rho - f(\rho).$$

2. The function u^* is piecewise linear.

Domains of the linearity of u^* yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ \mathbf{P}(x) : x \in \mathbb{R}^d \}, \quad \mathbf{P}(x) = \partial u(x).$$

Write X for the set of vertices in $\mathbf{X}(f)$.

The function *u* is not differentiable at a vertex $x \in X$. $\partial u(x)$ is the set of slopes of all supporting planes to the graph of *u* at *x*.

The function *u* is piecewise linear.
 Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \quad \mathbf{X}(\rho) = \partial u^*(\rho).$$

The function u^* is not differentiable at $\rho \in P$. $\partial u^*(\rho)$ is the set of slopes of all supporting planes to the graph of u^* at ρ . For $\rho \in P$,

$$x \in X(\rho) \implies u(x) = x \cdot \rho - f(\rho).$$

2. The function u^* is piecewise linear.

Domains of the linearity of u^* yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ \mathbf{P}(x) : x \in \mathbb{R}^d \}, \quad \mathbf{P}(x) = \partial u(x).$$

The function *u* is piecewise linear.
 Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \quad \mathbf{X}(\rho) = \partial u^*(\rho).$$

The function u^* is not differentiable at $\rho \in P$. $\partial u^*(\rho)$ is the set of slopes of all supporting planes to the graph of u^* at ρ . For $\rho \in P$,

$$x \in X(\rho) \implies u(x) = x \cdot \rho - f(\rho).$$

2. The function u^* is piecewise linear.

Domains of the linearity of u^* yield a weighted Delaunay tessellation:

$$\mathbf{P}(f) := \{ \mathbf{P}(x) : x \in \mathbb{R}^d \}, \quad \mathbf{P}(x) = \partial u(x).$$

$$\rho \in P(x) \implies u^*(\rho) = x \cdot \rho - u(x).$$

$$\rho \in P(x) \implies u^*(\rho) = x \cdot \rho - u(x).$$

$$\rho \in P(x) \implies u^*(\rho) = x \cdot \rho - u(x).$$

$$\rho \in P(x) \implies u^*(\rho) = x \cdot \rho - u(x).$$

We first focus on $u^* = f^o$. We wish to develop a better understanding of the operation $f \mapsto f^o$. We fix a finite set *P* and very *f*. The set of $f : P \to \mathbb{R}$ is identified as \mathbb{R}^n if $\sharp P = n$. (Remember $P \subset \mathbb{R}^d$.) The function $f^o : \hat{P} \to \mathbb{R}$, where

 $\hat{P} = Conv(P).$

We first focus on $u^* = f^o$. We wish to develop a better understanding of the operation $f \mapsto f^o$. We fix a finite set *P* and very *f*. The set of $f : P \to \mathbb{R}$ is identified as \mathbb{R}^n if $\sharp P = n$. (Remember $P \subset \mathbb{R}^d$.) The function $f^o : \hat{P} \to \mathbb{R}$, where

 $\hat{P} = Conv(P).$

We first focus on $u^* = f^o$. We wish to develop a better understanding of the operation $f \mapsto f^o$. We fix a finite set P and very f. The set of $f : P \to \mathbb{R}$ is identified as \mathbb{R}^n if $\sharp P = n$. (Remember $P \subset \mathbb{R}^d$.) The function $f^o : \hat{P} \to \mathbb{R}$, where

 $\hat{P} = Conv(P).$

We first focus on $u^* = f^o$. We wish to develop a better understanding of the operation $f \mapsto f^o$. We fix a finite set P and very f. The set of $f : P \to \mathbb{R}$ is identified as \mathbb{R}^n if $\sharp P = n$. (Remember $P \subset \mathbb{R}^d$.) The function $f^o : \hat{P} \to \mathbb{R}$, where

 $\hat{P} = Conv(P).$

We first focus on $u^* = f^o$. We wish to develop a better understanding of the operation $f \mapsto f^o$. We fix a finite set P and very f. The set of $f : P \to \mathbb{R}$ is identified as \mathbb{R}^n if $\sharp P = n$. (Remember $P \subset \mathbb{R}^d$.) The function $f^o : \hat{P} \to \mathbb{R}$, where

 $\hat{P} = Conv(P).$

We first focus on $u^* = f^o$. We wish to develop a better understanding of the operation $f \mapsto f^o$. We fix a finite set P and very f. The set of $f : P \to \mathbb{R}$ is identified as \mathbb{R}^n if $\sharp P = n$. (Remember $P \subset \mathbb{R}^d$.) The function $f^o : \hat{P} \to \mathbb{R}$, where

 $\hat{P} = Conv(P).$

We first focus on $u^* = f^o$. We wish to develop a better understanding of the operation $f \mapsto f^o$. We fix a finite set P and very f. The set of $f : P \to \mathbb{R}$ is identified as \mathbb{R}^n if $\sharp P = n$. (Remember $P \subset \mathbb{R}^d$.) The function $f^o : \hat{P} \to \mathbb{R}$, where

 $\hat{P} = Conv(P).$

Without loss of generality we may assume that dim $\hat{P} = d$. \hat{P} is a polytope in \mathbb{R}^d and serves as our primary polytope. Note that as we go from *f* to f^o the main challenge comes from the tessellation $\mathbf{P}(f)$ which is a triangulation for generic *f*.

We first focus on $u^* = f^o$. We wish to develop a better understanding of the operation $f \mapsto f^o$. We fix a finite set P and very f. The set of $f : P \to \mathbb{R}$ is identified as \mathbb{R}^n if $\sharp P = n$. (Remember $P \subset \mathbb{R}^d$.) The function $f^o : \hat{P} \to \mathbb{R}$, where

 $\hat{P} = Conv(P).$

Without loss of generality we may assume that dim $\hat{P} = d$. \hat{P} is a polytope in \mathbb{R}^d and serves as our primary polytope. Note that as we go from *f* to f^o the main challenge comes from the tessellation $\mathbf{P}(f)$ which is a triangulation for generic *f*.

We make two observations.

1. If *f* is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^o is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:

Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f = f^o$ at vertices of T. Hence f^o on T is built from f by linear interpolation. (Here we are using the fact that T has d + 1 vertices.)

2. Take any function *f* and any triangulation **T** of \hat{P} . We write $P' = P'(\mathbf{T})$ for the set of vertices of the triangles in **T**. We assume that P' includes all extreme points of \hat{P} . We allow some internal points in *P* to be unused in **T**. There is a unique function $\hat{f} = \hat{f}_{T}$ that is linear on the triangles of **T**, and matches *f* on *P'*.

We make two observations.

1. If *f* is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^o is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:

Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f = f^o$ at vertices of T. Hence f^o on T is built from f by linear interpolation. (Here we are using the fact that T has d + 1 vertices.) 2. Take any function f and any triangulation \mathbf{T} of \hat{P} . We write $P' = P'(\mathbf{T})$ for the set of vertices of the triangles in \mathbf{T} . We assume that P' includes all extreme points of \hat{P} . We allow some internal points in P to be unused in \mathbf{T} . There is a unique function $\hat{f} = \hat{f}_{\mathbf{T}}$ that is linear on the triangles of \mathbf{T} , and matches f on P'.

We make two observations.

1. If *f* is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^o is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:

Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f = f^o$ at vertices of T. Hence f^o on T is built from f by linear interpolation. (Here

we are using the fact that T has d + 1 vertices.)

2. Take any function f and any triangulation **T** of \hat{P} . We write $P' = P'(\mathbf{T})$ for the set of vertices of the triangles in **T**. We assume that P' includes all extreme points of \hat{P} . We allow some internal points in P to be unused in **T**. There is a unique function $\hat{f} = \hat{f}_{\mathbf{T}}$ that is linear on the triangles of **T**, and matches f on P'.

We make two observations.

1. If *f* is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^o is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:

Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f = f^o$ at vertices of T. Hence f^o on T is built from f by linear interpolation. (Here we are using the fact that T has d + 1 vertices.)

2. Take any function f and any triangulation **T** of \hat{P} . We write $P' = P'(\mathbf{T})$ for the set of vertices of the triangles in **T**. We assume that P' includes all extreme points of \hat{P} . We allow some internal points in P to be unused in **T**. There is a unique function $\hat{f} = \hat{f}_{\mathbf{T}}$ that is linear on the triangles of **T**, and matches f on P'.

We make two observations.

1. If *f* is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^o is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:

Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f = f^o$ at vertices of T. Hence f^o on T is built from f by linear interpolation. (Here we are using the fact that T has d + 1 vertices.)

2. Take any function *f* and any triangulation **T** of \hat{P} . We write $P' = P'(\mathbf{T})$ for the set of vertices of the triangles in **T**. We assume that P' includes all extreme points of \hat{P} . We allow some internal points in *P* to be unused in **T**. There is a unique function $\hat{f} = \hat{f}_{T}$ that is linear on the triangles of **T**, and matches *f* on *P'*.

We make two observations.

1. If *f* is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^o is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:

Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f = f^o$ at vertices of T. Hence f^o on T is built from f by linear interpolation. (Here we are using the fact that T has d + 1 vertices.)

2. Take any function *f* and any triangulation **T** of \hat{P} . We write $P' = P'(\mathbf{T})$ for the set of vertices of the triangles in **T**. We

assume that P' includes all extreme points of \hat{P} . We allow some internal points in P to be unused in **T**. There is a unique function $\hat{f} = \hat{f}_{T}$ that is linear on the triangles of **T**, and matches fon P'.

We make two observations.

1. If *f* is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^o is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:

Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f = f^o$ at vertices of T. Hence f^o on T is built from f by linear interpolation. (Here we are using the fact that T has d + 1 vertices.)

2. Take any function f and any triangulation **T** of \hat{P} . We write $P' = P'(\mathbf{T})$ for the set of vertices of the triangles in **T**. We assume that P' includes all extreme points of \hat{P} . We allow some internal points in P to be unused in **T**. There is a unique function $\hat{f} = \hat{f}_{T}$ that is linear on the triangles of **T**, and matches f on P'.

We make two observations.

1. If *f* is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^o is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:

Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f = f^o$ at vertices of T. Hence f^o on T is built from f by linear interpolation. (Here we are using the fact that T has d + 1 vertices.)

2. Take any function f and any triangulation **T** of \hat{P} . We write $P' = P'(\mathbf{T})$ for the set of vertices of the triangles in **T**. We assume that P' includes all extreme points of \hat{P} . We allow some internal points in P to be unused in **T**. There is a unique function $\hat{f} = \hat{f}_{\mathbf{T}}$ that is linear on the triangles of **T**, and matches f on P'.

We make two observations.

1. If *f* is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^o is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:

Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f = f^o$ at vertices of T. Hence f^o on T is built from f by linear interpolation. (Here we are using the fact that T has d + 1 vertices.)

2. Take any function f and any triangulation **T** of \hat{P} . We write $P' = P'(\mathbf{T})$ for the set of vertices of the triangles in **T**. We assume that P' includes all extreme points of \hat{P} . We allow some internal points in P to be unused in **T**. There is a unique function $\hat{f} = \hat{f}_{\mathbf{T}}$ that is linear on the triangles of **T**, and matches f on P'.

Recall *P* is fixed but we allow to $f : P \to \mathbb{R}$ to vary; $f \in \mathbb{R}^n$. Write \mathcal{T} for the set all triangulations of *P* (some inner points may not be used).

Recall that for $\mathbf{T} \in \mathcal{T}$, by $\hat{\mathbf{f}}_{\mathbf{T}}$ we mean

$$\hat{f}_{T} = f$$
 on vertices , \hat{f}_{T} linear on each $T \in \mathbf{T}$.

$$\mathcal{C}(\mathbf{T}) = \{f : \hat{f}_{\mathbf{T}} \text{ is convex}\}$$

 $\mathbf{C} = \{\mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T}\}$

Recall *P* is fixed but we allow to $f : P \to \mathbb{R}$ to vary; $f \in \mathbb{R}^n$.

Write \mathcal{T} for the set all triangulations of P (some inner points may not be used). Recall that for $\mathbf{T} \in \mathcal{T}$, by $\hat{f}_{\mathbf{T}}$ we mean

$$\hat{f}_{T} = f$$
 on vertices, \hat{f}_{T} linear on each $T \in T$.

Definition

$$\mathcal{C}(\mathbf{T}) = \{f : \hat{f}_{\mathbf{T}} \text{ is convex}\}$$

 $\mathbf{C} = \{\mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T}\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Recall *P* is fixed but we allow to $f : P \to \mathbb{R}$ to vary; $f \in \mathbb{R}^n$. Write \mathcal{T} for the set all triangulations of *P* (some inner points may not be used).

Recall that for $\mathbf{T} \in \mathcal{T}$, by $\hat{f}_{\mathbf{T}}$ we mean

$$\hat{f}_{\mathbf{T}} = f$$
 on vertices , $\hat{f}_{\mathbf{T}}$ linear on each $T \in \mathbf{T}$.

Definition

$$\mathcal{C}(\mathbf{T}) = \{f : \hat{f}_{\mathbf{T}} \text{ is convex}\}$$

 $\mathbf{C} = \{\mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T}\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall *P* is fixed but we allow to $f : P \to \mathbb{R}$ to vary; $f \in \mathbb{R}^n$. Write \mathcal{T} for the set all triangulations of *P* (some inner points may not be used). Recall that for $\mathbf{T} \in \mathcal{T}$, by $\hat{f}_{\mathbf{T}}$ we mean

$$\hat{f}_{T} = f$$
 on vertices , \hat{f}_{T} linear on each $T \in T$.

$$\mathcal{C}(\mathbf{T}) = \{ f : \hat{f}_{\mathbf{T}} \text{ is } convex \}$$

 $\mathbf{C} = \{ \mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T} \}$

Recall *P* is fixed but we allow to $f : P \to \mathbb{R}$ to vary; $f \in \mathbb{R}^n$. Write \mathcal{T} for the set all triangulations of *P* (some inner points may not be used). Recall that for $\mathbf{T} \in \mathcal{T}$, by $\hat{f}_{\mathbf{T}}$ we mean

$$\hat{f}_{T} = f$$
 on vertices , \hat{f}_{T} linear on each $T \in T$.

$$\mathcal{C}(\mathbf{T}) = \{f: \ \hat{f}_{\mathbf{T}} \ \text{is convex}\}$$
 $\mathbf{C} = \{\mathcal{C}(\mathbf{T}): \ \mathbf{T} \in \mathcal{T}\}$

Recall *P* is fixed but we allow to $f : P \to \mathbb{R}$ to vary; $f \in \mathbb{R}^n$. Write \mathcal{T} for the set all triangulations of *P* (some inner points may not be used). Recall that for $\mathbf{T} \in \mathcal{T}$, by $\hat{f}_{\mathbf{T}}$ we mean

$$\hat{f}_{T} = f$$
 on vertices , \hat{f}_{T} linear on each $T \in T$.

$$\mathcal{C}(\mathbf{T}) = \{f: \ \hat{f}_{\mathbf{T}} \ \text{is convex}\}$$

 $\mathbf{C} = \{\mathcal{C}(\mathbf{T}): \ \mathbf{T} \in \mathcal{T}\}$

1. Each $C(\mathbf{T})$ is a convex cone.

2. $\mathbb{R}^n = \cup \{ \mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T} \}$

3. $C(\mathbf{T})$ has non-empty interior iff **T** is induced from f^o for some generic *f*. If this is the case, then we call **T** regular/coherent. 4. Assume **T** and **T**' are regular, and $f \in C(\mathbf{T}) \cap C(\mathbf{T}') \neq \emptyset$. Then tessellation (domains of linearity) associated with f^o is not a triangulation; a vertex in *X* has degree d + 2. $C(\mathbf{T}) \cap C(\mathbf{T}')$ is a common face of both $C(\mathbf{T})$ and $C(\mathbf{T}')$.

1-4 means that the collection/tessellation **C** is a fan.

1. Each $C(\mathbf{T})$ is a convex cone.

2. $\mathbb{R}^n = \cup \{ \mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T} \}$

3. $C(\mathbf{T})$ has non-empty interior iff **T** is induced from f^o for some generic *f*. If this is the case, then we call **T** regular/coherent. 4. Assume **T** and **T**' are regular, and $f \in C(\mathbf{T}) \cap C(\mathbf{T}') \neq \emptyset$. Then tessellation (domains of linearity) associated with f^o is not a triangulation; a vertex in *X* has degree d + 2. $C(\mathbf{T}) \cap C(\mathbf{T}')$ is a common face of both $C(\mathbf{T})$ and $C(\mathbf{T}')$.

1-4 means that the collection/tessellation **C** is a fan.

Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a polytope. This polytope is called the secondary polytope.

・ロット (雪) (日) (日) (日)

1. Each $C(\mathbf{T})$ is a convex cone.

2. $\mathbb{R}^n = \cup \{ \mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T} \}$

3. $C(\mathbf{T})$ has non-empty interior iff **T** is induced from f^o for some generic *f*. If this is the case, then we call **T** regular/coherent. 4. Assume **T** and **T**' are regular, and $f \in C(\mathbf{T}) \cap C(\mathbf{T}') \neq \emptyset$. Then tessellation (domains of linearity) associated with f^o is not a triangulation; a vertex in *X* has degree d + 2. $C(\mathbf{T}) \cap C(\mathbf{T}')$ is a common face of both $C(\mathbf{T})$ and $C(\mathbf{T}')$.

1-4 means that the collection/tessellation **C** is a fan.

1. Each $C(\mathbf{T})$ is a convex cone.

2. $\mathbb{R}^n = \cup \{ \mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T} \}$

3. $C(\mathbf{T})$ has non-empty interior iff **T** is induced from f^o for some generic *f*. If this is the case, then we call **T** regular/coherent. **4**. Assume **T** and **T**' are regular, and $f \in C(\mathbf{T}) \cap C(\mathbf{T}') \neq \emptyset$. Then tessellation (domains of linearity) associated with f^o is not a triangulation; a vertex in *X* has degree d + 2. $C(\mathbf{T}) \cap C(\mathbf{T}')$ is a common face of both $C(\mathbf{T})$ and $C(\mathbf{T}')$.

1-4 means that the collection/tessellation **C** is a fan.

1. Each $C(\mathbf{T})$ is a convex cone.

2. $\mathbb{R}^n = \cup \{ \mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T} \}$

3. $C(\mathbf{T})$ has non-empty interior iff **T** is induced from f^o for some generic *f*. If this is the case, then we call **T** regular/coherent.

4. Assume **T** and **T**' are regular, and $f \in C(\mathbf{T}) \cap C(\mathbf{T}') \neq \emptyset$. Then tessellation (domains of linearity) associated with f^o is not a triangulation; a vertex in *X* has degree d + 2. $C(\mathbf{T}) \cap C(\mathbf{T}')$ is a common face of both $C(\mathbf{T})$ and $C(\mathbf{T}')$.

1-4 means that the collection/tessellation **C** is a fan.

1. Each $C(\mathbf{T})$ is a convex cone.

2. $\mathbb{R}^n = \cup \{ \mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T} \}$

3. $C(\mathbf{T})$ has non-empty interior iff **T** is induced from f^o for some generic *f*. If this is the case, then we call **T** regular/coherent.

4. Assume **T** and **T**' are regular, and $f \in C(\mathbf{T}) \cap C(\mathbf{T}') \neq \emptyset$. Then

tessellation (domains of linearity) associated with f^o is not a triangulation; a vertex in X has degree d + 2. $C(\mathbf{T}) \cap C(\mathbf{T}')$ is a common face of both $C(\mathbf{T})$ and $C(\mathbf{T}')$.

1-4 means that the collection/tessellation **C** is a fan.

1. Each $C(\mathbf{T})$ is a convex cone.

2. $\mathbb{R}^n = \cup \{ \mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T} \}$

3. $\mathcal{C}(\mathbf{T})$ has non-empty interior iff **T** is induced from f^o for some generic *f*. If this is the case, then we call **T** regular/coherent. **4**. Assume **T** and **T**' are regular, and $f \in \mathcal{C}(\mathbf{T}) \cap \mathcal{C}(\mathbf{T}') \neq \emptyset$. Then tessellation (domains of linearity) associated with f^o is not a triangulation; a vertex in *X* has degree d + 2. $\mathcal{C}(\mathbf{T}) \cap \mathcal{C}(\mathbf{T}')$ is a

common face of both $C(\mathbf{T})$ and $C(\mathbf{T}')$.

1-4 means that the collection/tessellation **C** is a fan.

1. Each $C(\mathbf{T})$ is a convex cone.

2. $\mathbb{R}^n = \cup \{ \mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T} \}$

3. $C(\mathbf{T})$ has non-empty interior iff **T** is induced from f^o for some generic *f*. If this is the case, then we call **T** regular/coherent. 4. Assume **T** and **T**' are regular, and $f \in C(\mathbf{T}) \cap C(\mathbf{T}') \neq \emptyset$. Then tessellation (domains of linearity) associated with f^o is not a triangulation; a vertex in *X* has degree d + 2. $C(\mathbf{T}) \cap C(\mathbf{T}')$ is a common face of both $C(\mathbf{T})$ and $C(\mathbf{T}')$.

1-4 means that the collection/tessellation **C** is a fan.

1. Each $C(\mathbf{T})$ is a convex cone.

2.
$$\mathbb{R}^n = \cup \{ \mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T} \}$$

3. $C(\mathbf{T})$ has non-empty interior iff **T** is induced from f^o for some generic *f*. If this is the case, then we call **T** regular/coherent. **4**. Assume **T** and **T**' are regular, and $f \in C(\mathbf{T}) \cap C(\mathbf{T}') \neq \emptyset$. Then tessellation (domains of linearity) associated with f^o is not a triangulation; a vertex in *X* has degree d + 2. $C(\mathbf{T}) \cap C(\mathbf{T}')$ is a common face of both $C(\mathbf{T})$ and $C(\mathbf{T}')$.

1-4 means that the collection/tessellation C is a fan.

Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a polytope. This polytope is called the secondary polytope.

1. Each $C(\mathbf{T})$ is a convex cone.

2.
$$\mathbb{R}^n = \cup \{ \mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T} \}$$

3. $C(\mathbf{T})$ has non-empty interior iff **T** is induced from f^o for some generic *f*. If this is the case, then we call **T** regular/coherent. **4**. Assume **T** and **T**' are regular, and $f \in C(\mathbf{T}) \cap C(\mathbf{T}') \neq \emptyset$. Then tessellation (domains of linearity) associated with f^o is not a triangulation; a vertex in *X* has degree d + 2. $C(\mathbf{T}) \cap C(\mathbf{T}')$ is a common face of both $C(\mathbf{T})$ and $C(\mathbf{T}')$.

1-4 means that the collection/tessellation **C** is a fan.

1. Each $C(\mathbf{T})$ is a convex cone.

2.
$$\mathbb{R}^n = \cup \{ \mathcal{C}(\mathbf{T}) : \mathbf{T} \in \mathcal{T} \}$$

3. $C(\mathbf{T})$ has non-empty interior iff **T** is induced from f^o for some generic *f*. If this is the case, then we call **T** regular/coherent. **4**. Assume **T** and **T**' are regular, and $f \in C(\mathbf{T}) \cap C(\mathbf{T}') \neq \emptyset$. Then tessellation (domains of linearity) associated with f^o is not a triangulation; a vertex in *X* has degree d + 2. $C(\mathbf{T}) \cap C(\mathbf{T}')$ is a common face of both $C(\mathbf{T})$ and $C(\mathbf{T}')$.

1-4 means that the collection/tessellation **C** is a fan.

Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a polytope. This polytope is called the secondary polytope.

Recall that a piecewise linear convex function yields a tessellation with convex cells.

The fan **C** is a tessellation with convex cones C(T) for cells. Natural Question: Is there a convex (concave) *U* function that would yield **C**?

1. We want U to be linear on each $C(\mathbf{T})$ but of different slopes on different cells.

2. The set of slopes would generate the secondary polytope $\Sigma(P)$.

3. Equivalently U^* is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^o = u^*$ is the convex hull of *f*:

$$f^o = \inf\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\}.$$

(日) (日) (日) (日) (日) (日) (日)

Recall that a piecewise linear convex function yields a tessellation with convex cells.

The fan **C** is a tessellation with convex cones $C(\mathbf{T})$ for cells. Natural Question: Is there a convex (concave) U function that would yield **C**?

1. We want U to be linear on each $C(\mathbf{T})$ but of different slopes on different cells.

2. The set of slopes would generate the secondary polytope $\Sigma(P)$.

3. Equivalently U^* is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^o = u^*$ is the convex hull of *f*:

$$f^o = \inf\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Recall that a piecewise linear convex function yields a tessellation with convex cells.

The fan **C** is a tessellation with convex cones $C(\mathbf{T})$ for cells.

Natural Question: Is there a convex (concave) *U* function that would yield **C**?

1. We want U to be linear on each $C(\mathbf{T})$ but of different slopes on different cells.

2. The set of slopes would generate the secondary polytope $\Sigma(P)$.

3. Equivalently U^* is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^o = u^*$ is the convex hull of *f*:

$$f^o = \inf\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Recall that a piecewise linear convex function yields a tessellation with convex cells.

The fan **C** is a tessellation with convex cones $C(\mathbf{T})$ for cells. Natural Question: Is there a convex (concave) *U* function that would yield **C**?

1. We want U to be linear on each $C(\mathbf{T})$ but of different slopes on different cells.

2. The set of slopes would generate the secondary polytope $\Sigma(P)$.

3. Equivalently U^* is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^o = u^*$ is the convex hull of *f*:

$$f^o = \inf\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\}.$$

Recall that a piecewise linear convex function yields a tessellation with convex cells.

The fan **C** is a tessellation with convex cones $C(\mathbf{T})$ for cells. Natural Question: Is there a convex (concave) *U* function that would yield **C**?

1. We want U to be linear on each $C(\mathbf{T})$ but of different slopes on different cells.

2. The set of slopes would generate the secondary polytope $\Sigma(P)$.

3. Equivalently U^* is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^o = u^*$ is the convex hull of *f*:

$$f^o = \inf\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\}.$$

Recall that a piecewise linear convex function yields a tessellation with convex cells.

The fan **C** is a tessellation with convex cones $C(\mathbf{T})$ for cells. Natural Question: Is there a convex (concave) *U* function that would yield **C**?

1. We want U to be linear on each $C(\mathbf{T})$ but of different slopes on different cells.

2. The set of slopes would generate the secondary polytope $\Sigma(P)$.

3. Equivalently U^* is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$. Recall that $f^o = u^*$ is the convex hull of f:

$$f^o = \inf\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\}.$$

Recall that a piecewise linear convex function yields a tessellation with convex cells.

The fan **C** is a tessellation with convex cones $C(\mathbf{T})$ for cells. Natural Question: Is there a convex (concave) *U* function that would yield **C**?

1. We want U to be linear on each $C(\mathbf{T})$ but of different slopes on different cells.

2. The set of slopes would generate the secondary polytope $\Sigma(P)$.

3. Equivalently U^* is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^o = u^*$ is the convex hull of *f*:

$$f^o = \inf\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\}.$$

Recall that a piecewise linear convex function yields a tessellation with convex cells.

The fan **C** is a tessellation with convex cones $C(\mathbf{T})$ for cells. Natural Question: Is there a convex (concave) *U* function that would yield **C**?

1. We want U to be linear on each $C(\mathbf{T})$ but of different slopes on different cells.

2. The set of slopes would generate the secondary polytope $\Sigma(P)$.

3. Equivalently U^* is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^o = u^*$ is the convex hull of *f*:

$f^o = \inf\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\}.$

▲□▶▲□▶▲□▶▲□▶ □ のへで

A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a tessellation with convex cells.

The fan **C** is a tessellation with convex cones $C(\mathbf{T})$ for cells. Natural Question: Is there a convex (concave) *U* function that would yield **C**?

1. We want U to be linear on each $C(\mathbf{T})$ but of different slopes on different cells.

2. The set of slopes would generate the secondary polytope $\Sigma(P)$.

3. Equivalently U^* is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^o = u^*$ is the convex hull of *f*:

$$f^o = \inf\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\}.$$

Claim: $U(f) = \int_{\hat{P}} f^{o}(\rho) \ d\rho$ is concave and does the job!

A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a tessellation with convex cells.

The fan **C** is a tessellation with convex cones $C(\mathbf{T})$ for cells. Natural Question: Is there a convex (concave) *U* function that would yield **C**?

1. We want U to be linear on each $C(\mathbf{T})$ but of different slopes on different cells.

2. The set of slopes would generate the secondary polytope $\Sigma(P)$.

3. Equivalently U^* is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^o = u^*$ is the convex hull of *f*:

$$f^o = \inf\{\hat{f}_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\}.$$

Claim: $U(f) = \int_{\hat{P}} f^o(\rho) d\rho$ is concave and does the job!

 $U(f) = \inf\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\},\$

$$U_{\mathbf{T}}(f) = \int \hat{f}_{\mathbf{T}}(\rho) \ d\rho.$$

 U_{T} is linear. $U = U_{\mathsf{T}}$ on $\mathcal{C}(\mathsf{T})$. We evaluate U_{T} : $U_{\mathsf{T}}(f) = f \cdot \sigma_{\mathsf{T}}$, with $\sigma_{\mathsf{T}} : P \to [0, \infty)$ given by

$$\sigma_{\mathbf{T}}(\rho) = \frac{1}{d+1} \sum_{\rho \in T \in \mathbf{T}} |T|.$$

 $\rho \in T$ means ρ is a vertex of T.

$$\int_{T} \ell(\rho) \ d\rho = \frac{|T|}{d+1} \sum_{\rho \in T} \ell(\rho).$$

$U(f) = \inf\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\},\$

$$U_{\mathbf{T}}(f) = \int \hat{f}_{\mathbf{T}}(\rho) \, d\rho.$$

 U_{T} is linear. $U = U_{\mathsf{T}}$ on $\mathcal{C}(\mathsf{T})$. We evaluate U_{T} : $U_{\mathsf{T}}(f) = f \cdot \sigma_{\mathsf{T}}$, with $\sigma_{\mathsf{T}} : P \to [0, \infty)$ given by

$$\sigma_{\mathbf{T}}(\rho) = \frac{1}{d+1} \sum_{\rho \in T \in \mathbf{T}} |T|.$$

 $\rho \in T$ means ρ is a vertex of T.

$$\int_{T} \ell(\rho) \ d\rho = \frac{|T|}{d+1} \sum_{\rho \in T} \ell(\rho).$$

$$U(f) = \inf\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\},\$$

$$U_{\mathbf{T}}(f) = \int \hat{f}_{\mathbf{T}}(\rho) \ d\rho.$$

 $U_{\mathbf{T}}$ is linear. $U = U_{\mathbf{T}}$ on $\mathcal{C}(\mathbf{T})$. We evaluate $U_{\mathbf{T}}$: $U_{\mathbf{T}}(f) = f \cdot \sigma_{\mathbf{T}}$, with $\sigma_{\mathbf{T}} : P \to [0, \infty)$ given by

$$\sigma_{\mathbf{T}}(\rho) = \frac{1}{d+1} \sum_{\rho \in T \in \mathbf{T}} |T|.$$

 $\rho \in T$ means ρ is a vertex of T.

$$\int_{T} \ell(\rho) \ d\rho = \frac{|T|}{d+1} \sum_{\rho \in T} \ell(\rho).$$

$$U(f) = \inf\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\},\$$

$$U_{\mathbf{T}}(f) = \int \hat{f}_{\mathbf{T}}(\rho) \ d\rho.$$

 $U_{\mathbf{T}}$ is linear. $U = U_{\mathbf{T}}$ on $\mathcal{C}(\mathbf{T})$. We evaluate $U_{\mathbf{T}}$: $U_{\mathbf{T}}(f) = f \cdot \sigma_{\mathbf{T}}$, with $\sigma_{\mathbf{T}} : P \to [0, \infty)$ given by

$$\sigma_{\mathbf{T}}(\rho) = \frac{1}{d+1} \sum_{\rho \in T \in \mathbf{T}} |T|.$$

 $\rho \in T$ means ρ is a vertex of T.

$$\int_{T} \ell(\rho) \ d\rho = \frac{|T|}{d+1} \sum_{\rho \in T} \ell(\rho).$$

$$U(f) = \inf\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\},\$$

$$U_{\mathbf{T}}(f) = \int \hat{f}_{\mathbf{T}}(\rho) \, d\rho.$$

 $U_{\mathbf{T}}$ is linear. $U = U_{\mathbf{T}}$ on $\mathcal{C}(\mathbf{T})$. We evaluate $U_{\mathbf{T}}$: $U_{\mathbf{T}}(f) = f \cdot \sigma_{\mathbf{T}}$, with $\sigma_{\mathbf{T}} : P \to [0, \infty)$ given by

$$\sigma_{\mathbf{T}}(\rho) = \frac{1}{d+1} \sum_{\rho \in T \in \mathbf{T}} |T|.$$

 $\rho \in T$ means ρ is a vertex of T.

$$\int_{T} \ell(\rho) \ d\rho = \frac{|T|}{d+1} \sum_{\rho \in T} \ell(\rho).$$

$$U(f) = \inf\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\},\$$

$$U_{\mathbf{T}}(f) = \int \hat{f}_{\mathbf{T}}(\rho) \, d\rho.$$

 $U_{\mathbf{T}}$ is linear. $U = U_{\mathbf{T}}$ on $\mathcal{C}(\mathbf{T})$. We evaluate $U_{\mathbf{T}}$: $U_{\mathbf{T}}(f) = f \cdot \sigma_{\mathbf{T}}$, with $\sigma_{\mathbf{T}} : P \to [0, \infty)$ given by

$$\sigma_{\mathbf{T}}(\rho) = \frac{1}{d+1} \sum_{\rho \in T \in \mathbf{T}} |T|.$$

 $\rho \in T$ means ρ is a vertex of T.

$$\int_{T} \ell(\rho) \ d\rho = \frac{|T|}{d+1} \sum_{\rho \in T} \ell(\rho).$$

$$U(f) = \inf\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\},\$$

$$U_{\mathbf{T}}(f) = \int \hat{f}_{\mathbf{T}}(\rho) \ d\rho.$$

 $U_{\mathbf{T}}$ is linear. $U = U_{\mathbf{T}}$ on $\mathcal{C}(\mathbf{T})$. We evaluate $U_{\mathbf{T}}$: $U_{\mathbf{T}}(f) = f \cdot \sigma_{\mathbf{T}}$, with $\sigma_{\mathbf{T}} : P \to [0, \infty)$ given by

$$\sigma_{\mathbf{T}}(\rho) = \frac{1}{d+1} \sum_{\rho \in T \in \mathbf{T}} |T|.$$

 $\rho \in T$ means ρ is a vertex of T.

$$\int_{T} \ell(\rho) \ d\rho = \frac{|T|}{d+1} \sum_{\rho \in T} \ell(\rho).$$

$$U(f) = \inf\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\},\$$

$$U_{\mathbf{T}}(f) = \int \hat{f}_{\mathbf{T}}(\rho) \ d\rho.$$

 $U_{\mathbf{T}}$ is linear. $U = U_{\mathbf{T}}$ on $\mathcal{C}(\mathbf{T})$. We evaluate $U_{\mathbf{T}}$: $U_{\mathbf{T}}(f) = f \cdot \sigma_{\mathbf{T}}$, with $\sigma_{\mathbf{T}} : P \to [0, \infty)$ given by

$$\sigma_{\mathbf{T}}(\rho) = \frac{1}{d+1} \sum_{\rho \in T \in \mathbf{T}} |T|.$$

 $\rho \in T$ means ρ is a vertex of T.

$$\int_{\mathcal{T}} \ell(\rho) \ d\rho = \frac{|\mathcal{T}|}{d+1} \sum_{\rho \in \mathcal{T}} \ell(\rho).$$

$U(f) = \inf\{f \cdot \sigma_{\mathsf{T}} : \mathsf{T} \in \mathcal{T}\} = \inf\{f \cdot h : h \in \Sigma(\mathcal{P})\},\$

 $\Sigma(P) =$ Convex hull of $\{\sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\}.$

1. If $\sharp P = d + 1$, dim $\hat{P} = d$ (points in *P* are affinely independent), then $\Sigma(P)$ is a single point.

2. If $\sharp P = n$, dim $\hat{P} = d$, then dim $\Sigma(P) = n - d - 1$.

3. If $\sharp P = d + 2$, dim $\hat{P} = d$, and any proper subset of *P* affinely independent. then $\Sigma(P)$ is a line segment. Such a *P* is called a circuit. Two cases to consider:

$U(f) = \inf\{f \cdot \sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\} = \inf\{f \cdot h : h \in \Sigma(\mathbf{P})\},\$

$\Sigma(P) = \text{ Convex hull of } \{\sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\}.$

1. If $\sharp P = d + 1$, dim $\hat{P} = d$ (points in *P* are affinely independent), then $\Sigma(P)$ is a single point.

2. If $\sharp P = n$, dim $\hat{P} = d$, then dim $\Sigma(P) = n - d - 1$.

3. If $\sharp P = d + 2$, dim $\tilde{P} = d$, and any proper subset of *P* affinely independent. then $\Sigma(P)$ is a line segment. Such a *P* is called a circuit. Two cases to consider:

 $U(f) = \inf\{f \cdot \sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\} = \inf\{f \cdot h : h \in \Sigma(\mathbf{P})\},\$

 $\Sigma(P) = \text{ Convex hull of } \{\sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\}.$

1. If $\sharp P = d + 1$, dim $\hat{P} = d$ (points in *P* are affinely independent), then $\Sigma(P)$ is a single point.

2. If $\sharp P = n$, dim $\hat{P} = d$, then dim $\Sigma(P) = n - d - 1$. 3. If $\sharp P = d + 2$, dim $\hat{P} = d$, and any proper subset of *P* affinely independent. then $\Sigma(P)$ is a line segment. Such a *P* is called a circuit. Two cases to consider:

 $U(f) = \inf\{f \cdot \sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\} = \inf\{f \cdot h : h \in \Sigma(\mathbf{P})\},\$

 $\Sigma(P) = \text{ Convex hull of } \{\sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\}.$

1. If $\sharp P = d + 1$, dim $\hat{P} = d$ (points in *P* are affinely independent), then $\Sigma(P)$ is a single point.

2. If $\sharp P = n$, dim $\hat{P} = d$, then dim $\Sigma(P) = n - d - 1$.

3. If $\sharp P = d + 2$, dim $\tilde{P} = d$, and any proper subset of *P* affinely independent. then $\Sigma(P)$ is a line segment. Such a *P* is called a circuit. Two cases to consider:

 $U(f) = \inf\{f \cdot \sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\} = \inf\{f \cdot h : h \in \Sigma(\mathbf{P})\},\$

 $\Sigma(P) = \text{ Convex hull of } \{\sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\}.$

If #P = d + 1, dim P̂ = d (points in P are affinely independent), then Σ(P) is a single point.
 If #P = n, dim P̂ = d, then dim Σ(P) = n - d - 1.
 If #P = d + 2, dim P̂ = d, and any proper subset of P affinely independent. then Σ(P) is a line segment. Such a P is called a circuit. Two cases to consider:
 Let P be as in 3, no point of P is in the interior of P̂.
 Let P be as in 3, a point of P is in the interior of P̂.

 $U(f) = \inf\{f \cdot \sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\} = \inf\{f \cdot h : h \in \Sigma(\mathbf{P})\},\$

 $\Sigma(P) = \text{ Convex hull of } \{\sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\}.$

If #P = d + 1, dim P̂ = d (points in *P* are affinely independent), then Σ(*P*) is a single point.
 If #P = n, dim P̂ = d, then dim Σ(*P*) = n - d - 1.
 If #P = d + 2, dim P̂ = d, and any proper subset of *P* affinely independent. then Σ(*P*) is a line segment. Such a *P* is called a circuit. Two cases to consider:
 Let *P* be as in 3, no point of *P* is in the interior of P̂.
 Let *P* be as in 3, a point of *P* is in the interior of P̂.

 $U(f) = \inf\{f \cdot \sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\} = \inf\{f \cdot h : h \in \Sigma(\mathbf{P})\},\$

 $\Sigma(P) = \text{ Convex hull of } \{\sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\}.$

If #P = d + 1, dim P̂ = d (points in P are affinely independent), then Σ(P) is a single point.
 If #P = n, dim P̂ = d, then dim Σ(P) = n - d - 1.
 If #P = d + 2, dim P̂ = d, and any proper subset of P affinely independent, then Σ(P) is a line parameter. Such a P is called a

independent. then $\Sigma(P)$ is a line segment. Such a *P* is called a circuit. Two cases to consider:

 $U(f) = \inf\{f \cdot \sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\} = \inf\{f \cdot h : h \in \Sigma(\mathbf{P})\},\$

 $\Sigma(P) = \text{ Convex hull of } \{\sigma_{\mathbf{T}} : \mathbf{T} \in \mathcal{T}\}.$

1. If $\sharp P = d + 1$, dim $\hat{P} = d$ (points in *P* are affinely independent), then $\Sigma(P)$ is a single point.

2. If $\sharp P = n$, dim $\hat{P} = d$, then dim $\Sigma(P) = n - d - 1$.

3. If $\sharp P = d + 2$, dim $\hat{P} = d$, and any proper subset of *P* affinely independent. then $\Sigma(P)$ is a line segment. Such a *P* is called a circuit. Two cases to consider:

< 日 > < 圖 > < 图 > < 图 > <

æ

1. The vertices $\sigma_{\mathbf{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations **T**.

2. When there is an edge between σ_{T} and $\sigma_{T'}$? When σ_{T} and $\sigma_{T'}$ differ on a subtriagulation: The discrepancy σ_{S} and $\sigma_{S'}$ are the two possible triangulations of a circuit.

1. The vertices $\sigma_{\mathbf{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations **T**.

2. When there is an edge between σ_{T} and $\sigma_{T'}$?

When σ_T and $\sigma_{T'}$ differ on a subtriagulation: The discrepancy σ_S and $\sigma_{S'}$ are the two possible triangulations of a circuit.

1. The vertices $\sigma_{\mathbf{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations **T**.

2. When there is an edge between σ_{T} and $\sigma_{T'}$?

When σ_{T} and $\sigma_{T'}$ differ on a subtriagulation: The discrepancy

 σ_{s} and $\sigma_{s'}$ are the two possible triangulations of a circuit.

1. The vertices $\sigma_{\mathbf{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations **T**.

2. When there is an edge between σ_{T} and $\sigma_{T'}$? When σ_{T} and $\sigma_{T'}$ differ on a subtriagulation: The discrepancy σ_{S} and $\sigma_{S'}$ are the two possible triangulations of a circuit.

1. The vertices $\sigma_{\mathbf{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations **T**.

2. When there is an edge between σ_{T} and $\sigma_{T'}$? When σ_{T} and $\sigma_{T'}$ differ on a subtriagulation: The discrepancy σ_{S} and $\sigma_{S'}$ are the two possible triangulations of a circuit.

(i) Either diagonals are swapped,

(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.

In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred. (The vertices of the cell coagulate to form a single vertex/particle.)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

d = 2: (i) Either diagonals are swapped,

(ii) or three triangles are replaced with one triangle. In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.

In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred. (The vertices of the cell coagulate to form a single vertex/particle.)

(i) Either diagonals are swapped,

(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.

In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred. (The vertices of the cell coagulate to form a single vertex/particle.)

(i) Either diagonals are swapped,

(ii) or three triangles are replaced with one triangle. In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.

In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred. (The vertices of the cell coagulate to form a single vertex/particle.)

(i) Either diagonals are swapped,

(ii) or three triangles are replaced with one triangle. In the context of Hamilton-Jacobi equation (i) means the

occurrence of a collision between two vertices of the corresponding Laguerre tessellation.

In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred. (The vertices of the cell coagulate to form a single vertex/particle.)

(i) Either diagonals are swapped,

(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.

In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred. (The vertices of the cell coagulate to form a single vertex/particle.)

(i) Either diagonals are swapped,

(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.

In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred. (The vertices of the cell coagulate to form a single vertex/particle.)

Alexandrov Problem

We now focus on *u*. Fix finite *P*, and vary $f : P \to \mathbb{R}$. is finite and fixed. We wish to understand the operation $f \mapsto u = f^*$.

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

The function *u* is piecewise linear.

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ X(\rho) : \rho \in \mathbb{R}^d \}, \quad X(\rho) = \partial u^*(\rho).$$

Alexandrov Problem

We now focus on *u*. Fix finite *P*, and vary $f : P \to \mathbb{R}$. is finite and fixed. We wish to understand the operation $f \mapsto u = f^*$.

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

The function *u* is piecewise linear.

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ X(\rho) : \rho \in \mathbb{R}^d \}, \quad X(\rho) = \partial u^*(\rho).$$

Alexandrov Problem

We now focus on *u*. Fix finite *P*, and vary $f : P \to \mathbb{R}$. is finite and fixed. We wish to understand the operation $f \mapsto u = f^*$.

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

The function *u* is piecewise linear.

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ X(\rho) : \rho \in \mathbb{R}^d \}, \quad X(\rho) = \partial u^*(\rho).$$

We now focus on *u*. Fix finite *P*, and vary $f : P \to \mathbb{R}$. is finite and fixed. We wish to understand the operation $f \mapsto u = f^*$.

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

The function *u* is piecewise linear.

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ X(\rho) : \rho \in \mathbb{R}^d \}, \quad X(\rho) = \partial u^*(\rho).$$

We now focus on *u*. Fix finite *P*, and vary $f : P \to \mathbb{R}$. is finite and fixed. We wish to understand the operation $f \mapsto u = f^*$.

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

The function *u* is piecewise linear.

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \quad \mathbf{X}(\rho) = \partial \mathbf{u}^*(\rho).$$

We now focus on *u*. Fix finite *P*, and vary $f : P \to \mathbb{R}$. is finite and fixed. We wish to understand the operation $f \mapsto u = f^*$.

$$u(x) = f^*(x) = \sup_{\rho \in P} (x \cdot \rho - f(\rho))$$

The function *u* is piecewise linear.

Domains of the linearity of *u* yield a Laguerre tessellation:

$$\mathbf{X}(f) := \{ \mathbf{X}(\rho) : \ \rho \in \mathbb{R}^d \}, \quad \mathbf{X}(\rho) = \partial \mathbf{u}^*(\rho).$$

Recall that *P* is fixed and we only vary *f*. Fix a domain Ω and define $\nu : P \to [0, \infty)$, by

 $\nu(\rho) = |X(\rho) \cap \Omega|.$

$$\mu = \sum_{\rho \in \mathbf{P}} \nu(\rho) \delta_{\rho}.$$

Recall that *P* is fixed and we only vary *f*. Fix a domain Ω and define $\nu : P \to [0, \infty)$, by

 $\nu(\rho) = |X(\rho) \cap \Omega|.$

$$\mu = \sum_{\rho \in \mathbf{P}} \nu(\rho) \delta_{\rho}.$$

Recall that *P* is fixed and we only vary *f*. Fix a domain Ω and define $\nu : P \rightarrow [0, \infty)$, by

 $\nu(\rho) = |X(\rho) \cap \Omega|.$

Alexandrov: The map $f \mapsto \nu$ is a local diffeomorphism.

$$\mu = \sum_{\rho \in \mathbf{P}} \nu(\rho) \delta_{\rho}.$$

Recall that *P* is fixed and we only vary *f*. Fix a domain Ω and define $\nu : P \rightarrow [0, \infty)$, by

 $\nu(\rho) = |X(\rho) \cap \Omega|.$

$$\mu = \sum_{\rho \in \mathbf{P}} \nu(\rho) \delta_{\rho}.$$

Recall that *P* is fixed and we only vary *f*. Fix a domain Ω and define $\nu : P \to [0, \infty)$, by

 $\nu(\rho) = |X(\rho) \cap \Omega|.$

Recall that *P* is fixed and we only vary *f*. Fix a domain Ω and define $\nu : P \rightarrow [0, \infty)$, by

 $\nu(\rho) = |X(\rho) \cap \Omega|.$

$$\mu = \sum_{\rho \in \boldsymbol{P}} \nu(\rho) \delta_{\rho}.$$

Brenier: Given two measures λ and μ , there exists a unique (modulo a constant) convex function $u : \Omega \to \mathbb{R}$ such that $\rho = \nabla u$ pushes forward λ to μ .

Moreover ρ minimizes

$$\frac{1}{2}\int_{\Omega}|x-\rho(x)|^2\ \lambda(dx).$$

Alternative formulation As in the case of u^* , examine the functional

$$\Xi(f) = \int_{\Omega} f^*(x) \ \lambda(dx).$$

The map $f \mapsto E(f)$ is convex. Claim: $f \mapsto -\nabla E(f)$ is $f \mapsto \nu$. The maximizing f in variational problem

$$E^*(-\nu) = \sup_f (-\nu \cdot f - E(f)),$$

yields f in terms of ν .

・ロト・四ト・モー・ 中下・ 日・ うらぐ

Brenier: Given two measures λ and μ , there exists a unique (modulo a constant) convex function $u : \Omega \to \mathbb{R}$ such that $\rho = \nabla u$ pushes forward λ to μ . Moreover ρ minimizes

$$\frac{1}{2}\int_{\Omega}|x-\rho(x)|^2\ \lambda(dx).$$

Alternative formulation As in the case of u^* , examine the functional

$$\Xi(f) = \int_{\Omega} f^*(x) \ \lambda(dx).$$

The map $f \mapsto E(f)$ is convex. Claim: $f \mapsto -\nabla E(f)$ is $f \mapsto \nu$. The maximizing f in variational problem

$$E^*(-\nu) = \sup_f (-\nu \cdot f - E(f)),$$

yields *f* in terms of ν .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Brenier: Given two measures λ and μ , there exists a unique (modulo a constant) convex function $u : \Omega \to \mathbb{R}$ such that $\rho = \nabla u$ pushes forward λ to μ . Moreover ρ minimizes

$$\frac{1}{2}\int_{\Omega}|x-\rho(x)|^2\ \lambda(dx).$$

Alternative formulation As in the case of u^* , examine the functional

$$\mathsf{E}(f) = \int_{\Omega} f^*(x) \ \lambda(dx).$$

The map $f \mapsto E(f)$ is convex. Claim: $f \mapsto -\nabla E(f)$ is $f \mapsto \nu$. The maximizing f in variational problem

$$E^*(-\nu) = \sup_f (-\nu \cdot f - E(f)),$$

yields *f* in terms of ν .

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

Brenier: Given two measures λ and μ , there exists a unique (modulo a constant) convex function $u : \Omega \to \mathbb{R}$ such that $\rho = \nabla u$ pushes forward λ to μ . Moreover ρ minimizes

$$\frac{1}{2}\int_{\Omega}|x-\rho(x)|^2\ \lambda(dx).$$

Alternative formulation As in the case of u^* , examine the functional

$$E(f) = \int_{\Omega} f^*(x) \ \lambda(dx).$$

The map $f \mapsto E(f)$ is convex.

Claim: $f \mapsto -\nabla E(f)$ is $f \mapsto \nu$. The maximizing f in variational problem

$$E^*(-\nu) = \sup_f (-\nu \cdot f - E(f)),$$

yields f in terms of ν .

Brenier: Given two measures λ and μ , there exists a unique (modulo a constant) convex function $u : \Omega \to \mathbb{R}$ such that $\rho = \nabla u$ pushes forward λ to μ . Moreover ρ minimizes

$$\frac{1}{2}\int_{\Omega}|x-\rho(x)|^2\ \lambda(dx).$$

Alternative formulation As in the case of u^* , examine the functional

$$\mathsf{E}(f) = \int_{\Omega} f^*(x) \ \lambda(dx).$$

The map $f \mapsto E(f)$ is convex. Claim: $f \mapsto -\nabla E(f)$ is $f \mapsto \nu$. The maximizing f in variational pro-

$$E^*(-\nu) = \sup_f (-\nu \cdot f - E(f)),$$

(日) (日) (日) (日) (日) (日) (日)

yields *f* in terms of ν .

Brenier: Given two measures λ and μ , there exists a unique (modulo a constant) convex function $u : \Omega \to \mathbb{R}$ such that $\rho = \nabla u$ pushes forward λ to μ . Moreover ρ minimizes

$$\frac{1}{2}\int_{\Omega}|x-\rho(x)|^2\ \lambda(dx).$$

Alternative formulation As in the case of u^* , examine the functional

$$\mathsf{E}(f) = \int_{\Omega} f^*(x) \ \lambda(dx).$$

The map $f \mapsto E(f)$ is convex. Claim: $f \mapsto -\nabla E(f)$ is $f \mapsto \nu$. The maximizing f in variational problem

$$E^*(-\nu) = \sup_f (-\nu \cdot f - E(f)),$$

yields f in terms of ν .