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Dual Tessellations/Legendre Transform

Given a finite P and a map f : P → R, we define two piecewise
linear convex functions:

u(x) = f ∗(x) = sup
ρ∈P

(x · ρ− f (ρ))

u∗(ρ) = f ∗∗(ρ) = sup
x

(x · ρ− u(x)) = f o(ρ) = convex hull of f.

We may find f o as follows:
1. Plot points {(x , f (x)) : x ∈ P}.
2. Take the convex hull of the set {(x , f (x)) : x ∈ P}.
3. The lower boundary of the convex hull is the graph of

f o = u∗.
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Legendre Transform
For generic f :

(Courtesy of N. Lei, W. Chen, Z. Luo, X. Gu 2019)



Laguerre Tessellation/Delaunay Triangulation
1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

X(f ) := {X (ρ) : ρ ∈ Rd}, X (ρ) = ∂u∗(ρ).

The function u∗ is not differentiable at ρ ∈ P.
∂u∗(ρ) is the set of slopes of all supporting planes to the graph
of u∗ at ρ. For ρ ∈ P,

x ∈ X (ρ) =⇒ u(x) = x · ρ− f (ρ).

2. The function u∗ is piecewise linear.
Domains of the linearity of u∗ yield a weighted Delaunay

tessellation:

P(f ) := {P(x) : x ∈ Rd}, P(x) = ∂u(x).

Write X for the set of vertices in X(f ).
The function u is not differentiable at a vertex x ∈ X .
∂u(x) is the set of slopes of all supporting planes to the graph
of u at x .
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Laguerre Tessellation/Delaunay Triangulation
For x ∈ X ,

ρ ∈ P(x) =⇒ u∗(ρ) = x · ρ− u(x).

For generic f , the graph associated with X is of degree d + 1.
For generic f , the tessellation P is a triangulation.
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Triangulations
We first focus on u∗ = f o. We wish to develop a better
understanding of the operation f 7→ f o. We fix a finite set P and
very f . The set of f : P → R is identified as Rn if ]P = n.
(Remember P ⊂ Rd .) The function f o : P̂ → R, where

P̂ = Conv(P).

Without loss of generality we may assume that dim P̂ = d . P̂ is
a polytope in Rd and serves as our primary polytope. Note that
as we go from f to f o the main challenge comes from the
tessellation P(f ) which is a triangulation for generic f .
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Triangulations

We make two observations.
1. If f is generic and its induced triangulation T(f ) is known,
then f o is trivially constructed from the pair (f ,T(f )) in the
following way:
Pick a simplex/triangle T ∈ T(f ). We know f = f o at vertices of
T . Hence f o on T is built from f by linear interpolation. (Here
we are using the fact that T has d + 1 vertices.)
2. Take any function f and any triangulation T of P̂. We write
P ′ = P ′(T) for the set of vertices of the triangles in T. We
assume that P ′ includes all extreme points of P̂. We allow
some internal points in P to be unused in T. There is a unique
function f̂ = f̂T that is linear on the triangles of T, and matches f
on P ′.
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function f̂ = f̂T that is linear on the triangles of T, and matches f
on P ′.
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Fan C
1. Each C(T) is a convex cone.
2. Rn = ∪{C(T) : T ∈ T }
3. C(T) has non-empty interior iff T is induced from f o for some
generic f . If this is the case, then we call T regular/coherent.
4. Assume T and T′ are regular, and f ∈ C(T) ∩ C(T′) 6= ∅. Then
tessellation (domains of linearity) associated with f o is not a
triangulation; a vertex in X has degree d + 2. C(T) ∩ C(T′) is a
common face of both C(T) and C(T′).
1-4 means that the collection/tessellation C is a fan.
Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a
polytope. This polytope is called the secondary polytope.
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A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a
tessellation with convex cells.
The fan C is a tessellation with convex cones C(T) for cells.
Natural Question: Is there a convex (concave) U function that
would yield C?
1. We want U to be linear on each C(T) but of different slopes
on different cells.
2. The set of slopes would generate the secondary polytope
Σ(P).
3. Equivalently U∗ is 0 in Σ(P), and∞ outside Σ(P).
Recall that f o = u∗ is the convex hull of f :

f o = inf{f̂T : T ∈ T }.

Claim: U(f ) =
∫

P̂ f o(ρ) dρ is concave and does the job!
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Secondary Polytope

U(f ) = inf{UT(f ) : T ∈ T },

UT(f ) =

∫
f̂T(ρ) dρ.

UT is linear. U = UT on C(T). We evaluate UT: UT(f ) = f · σT,
with σT : P → [0,∞) given by

σT(ρ) =
1

d + 1

∑
ρ∈T∈T

|T |.

ρ ∈ T means ρ is a vertex of T .

Proof For every linear ` and simplex T ,∫
T
`(ρ) dρ =

|T |
d + 1

∑
ρ∈T

`(ρ).
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Secondary Polytope

U(f ) = inf{f · σT : T ∈ T } = inf{f · h : h ∈ Σ(P)},

Σ(P) = Convex hull of {σT : T ∈ T }.

1. If ]P = d + 1, dim P̂ = d (points in P are affinely
independent), then Σ(P) is a single point.
2. If ]P = n, dim P̂ = d , then dim Σ(P) = n − d − 1.
3. If ]P = d + 2, dim P̂ = d , and any proper subset of P affinely
independent. then Σ(P) is a line segment. Such a P is called a
circuit. Two cases to consider:
3(i). Let P be as in 3, no point of P is in the interior of P̂.
3(ii). Let P be as in 3, a point of P is in the interior of P̂.
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triangulations T.
2. When there is an edge between σT and σT′?
When σT and σT′ differ on a subtriagulation: The discrepancy
σS and σS′ are the two possible triangulations of a circuit.
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d = 2:
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.
In the context of Hamilton-Jacobi equation (i) means the
occurrence of a collision between two vertices of the
corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the
corresponding Laguerre tessellation has a triangular cell, and
this cell collapses to a vertex. When this happens, we say that
a coagulation has occurred. (The vertices of the cell coagulate
to form a single vertex/particle.)
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Alexandrov Problem
We now focus on u. Fix finite P, and vary f : P → R. is finite
and fixed. We wish to understand the operation f 7→ u = f ∗.

u(x) = f ∗(x) = sup
ρ∈P

(x · ρ− f (ρ))

The function u is piecewise linear.
Domains of the linearity of u yield a Laguerre tessellation:

X(f ) := {X (ρ) : ρ ∈ Rd}, X (ρ) = ∂u∗(ρ).
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Alexandrov Problem

Recall that P is fixed and we only vary f . Fix a domain Ω and
define ν : P → [0,∞), by

ν(ρ) = |X (ρ) ∩ Ω|.

Alexandrov: The map f 7→ ν is a local diffeomorphism.
If ν is known, then we can recover f (and hence u) from it.
Alexandrov Problem: How to build ν 7→ u?
We wish to formulate an optimization problem for this problem.
Solution via Optimal Transport techniques: Observe that if
ρ(x) = ∇u(x) (which coincides with ∂u(x) almost everywhere),
then ρ : Ω→ Rd pushes forward Lebesgue measure to the
measure

µ =
∑
ρ∈P

ν(ρ)δρ.
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Alexandrov Problem (via 2 optimization problems)
Brenier: Given two measures λ and µ, there exists a unique
(modulo a constant) convex function u : Ω→ R such that
ρ = ∇u pushes forward λ to µ.
Moreover ρ minimizes

1
2

∫
Ω
|x − ρ(x)|2 λ(dx).

Alternative formulation As in the case of u∗, examine the
functional

E(f ) =

∫
Ω

f ∗(x) λ(dx).

The map f 7→ E(f ) is convex.
Claim: f 7→ −∇E(f ) is f 7→ ν.
The maximizing f in variational problem

E∗(−ν) = sup
f

(−ν · f − E(f )),

yields f in terms of ν.
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