Kinetic Description of Hamilton-Jacobi PDE III

Fraydoun Rezakhanlou

Department of Mathematics
UC Berkeley
PDE/Probability Student Seminar

Outline

Secondary Polytope

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Outline

Secondary Polytope

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Outline

Secondary Polytope

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Outline

Secondary Polytope
 Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

$$
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho))
$$

$u^{*}(\rho)=f^{* *}(\rho)=\sup _{x}(x \cdot \rho-u(x))=f^{O}(\rho)=$ convex hull of f.
We may find fo as follows:

1. Plot points $\{(x, f(x)): x \in P\}$.
2. Take the convex hull of the set $\{(x, f(x)): x \in P\}$.
3. The lower boundary of the convex hull is the graph of $f^{\circ}=u^{*}$.

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

We may find f^{0} as follows:

1. Plot points $\{(x, f(x)): x \in P\}$
2. Take the convex hull of the set $\{(x, f(x)): x \in P\}$. 3. The lower boundary of the convex hull is the graph of $f^{0}=u^{*}$.

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

$$
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho))
$$

$u^{*}(\rho)=f^{* *}(\rho)=\sup (x \cdot \rho-u(x))=f^{O}(\rho)=$ convex hull of f.
We may find fo as follows:

1. Plot points $\{(x, f(x)): x \in P\}$.
2. Take the convex hull of the set $\{(x, f(x)): x \in P\}$.
3. The lower boundary of the convex hull is the graph of $f^{\circ}=u^{*}$.

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

$$
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho))
$$

$u^{*}(\rho)=f^{* *}(\rho)=\sup _{x}(x \cdot \rho-u(x))=f^{O}(\rho)=$ convex hull of f.
We may find f° as follows:

1. Plot points $\{(x, f(x)): x \in P\}$.
2. Take the convex hull of the set $\{(x, f(x)): x \in P\}$.
3. The lower boundary of the convex hull is the graph of
$f^{0}=u^{*}$.

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

$$
\begin{gathered}
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho)) \\
u^{*}(\rho)=f^{* *}(\rho)=\sup _{x}(x \cdot \rho-u(x))=f^{o}(\rho)=\text { convex hull of } \mathrm{f} .
\end{gathered}
$$

We may find f^{0} as follows:

1. Plot points $\{(x, f(x)): x \in P\}$.
2. Take the convex hull of the set $\{(x, f(x)): x \in P\}$.
3. The lower boundary of the convex hull is the graph of $f^{0}=u^{*}$.

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

$$
\begin{gathered}
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho)) \\
u^{*}(\rho)=f^{* *}(\rho)=\sup _{x}(x \cdot \rho-u(x))=f^{o}(\rho)=\text { convex hull of } f .
\end{gathered}
$$

We may find f^{0} as follows:

1. Plot points $\{(x, f(x)): x \in P\}$.
2. Take the convex hull of the set $\{(x, f(x)): x \in P\}$.
3. The lower boundary of the convex hull is the graph of

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

$$
\begin{gathered}
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho)) \\
u^{*}(\rho)=f^{* *}(\rho)=\sup _{x}(x \cdot \rho-u(x))=f^{o}(\rho)=\text { convex hull of } \mathrm{f} .
\end{gathered}
$$

We may find f^{0} as follows:

1. Plot points $\{(x, f(x)): x \in P\}$.
2. Take the convex hull of the set $\{(x, f(x)): x \in P\}$.

Dual Tessellations/Legendre Transform

Given a finite P and a map $f: P \rightarrow \mathbb{R}$, we define two piecewise linear convex functions:

$$
\begin{gathered}
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho)) \\
u^{*}(\rho)=f^{* *}(\rho)=\sup _{x}(x \cdot \rho-u(x))=f^{o}(\rho)=\text { convex hull of } \mathrm{f} .
\end{gathered}
$$

We may find f^{0} as follows:

1. Plot points $\{(x, f(x)): x \in P\}$.
2. Take the convex hull of the set $\{(x, f(x)): x \in P\}$.
3. The lower boundary of the convex hull is the graph of $f^{0}=u^{*}$.

Legendre Transform

For generic f :

(Courtesy of N. Lei, W. Chen, Z. Luo, X. Gu 2019)

Laguerre Tessellation/Delaunay Triangulation

1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(p): p \in \mathbb{D}^{d}\right\}, \quad X(p)=\partial u^{*}(p)
$$

The function u^{*} is not differentiable at $\rho \in P$.
$\partial u^{*}(\rho)$ is the set of slopes of all supporting planes to the graph of u^{*} at ρ. For $\rho \in P$,

$$
x \in X(\rho) \quad \Longrightarrow u(x)=x \cdot \rho-f(\rho)
$$

2. The function u^{*} is piecewise linear.

Domains of the linearity of u^{*} yield a veighted Delaunay
tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x)
$$

Write X for the set of vertices in $\mathbf{X}(f)$.
The function u is not differentiable at a vertex $x \in X$.
$\partial u(x)$ is the set of slopes of all supporting planes to the graph
of u at x.

Laguerre Tessellation/Delaunay Triangulation

1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

The function u^{*} is not differentiable at $\rho \in P$.
$\partial u^{*}(\rho)$ is the set of slopes of all supporting planes to the graph of u^{*} at ρ. For $\rho \in P$,

$$
x \in X(\rho) \quad \Longrightarrow \quad u(x)=x \cdot \rho-f(\rho) .
$$

2. The function u^{*} is piecewise linear.

Domains of the linearity of u^{*} yield a weighted Delaunay
tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x) .
$$

Write X for the set of vertices in $\mathbf{X}(f)$.
The function u is not differentiable at a vertex $x \in X$.
$\partial u(x)$ is the set of slopes of all supporting planes to the graph
of u at x.

Laguerre Tessellation/Delaunay Triangulation

1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

The function u^{*} is not differentiable at $\rho \in P$.
$\partial u^{*}(\rho)$ is the set of slopes of all supporting planes to the graph of u^{*} at ρ. For $\rho \in P$,

2. The function u^{*} is piecewise linear.

Domains of the linearity of u^{*} yield a weighted Delaunay
tessellation:

Write X for the set of vertices in $\mathbf{X}(f)$.
The function u is not differentiable at a vertex $x \in X$.
$\partial u(x)$ is the set of slopes of all supporting planes to the graph

Laguerre Tessellation/Delaunay Triangulation

1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

The function u^{*} is not differentiable at $\rho \in P$.
$\partial u^{*}(\rho)$ is the set of slopes of all supporting planes to the graph of u^{*} at ρ. For $\rho \in P$,

2. The function u^{*} is piecewise linear.

Domains of the linearity of u^{*} yield a weighted Delaunay
tessellation:

Write X for the set of vertices in $\mathbf{X}(f)$.
The function u is not differentiable at a vertex $x \in X$.
$\partial u(x)$ is the set of slopes of all supporting planes to the graph

Laguerre Tessellation/Delaunay Triangulation

1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

The function u^{*} is not differentiable at $\rho \in P$. $\partial u^{*}(\rho)$ is the set of slopes of all supporting planes to the graph of u^{*} at ρ.
2. The function u^{*} is piecewise linear.

Domains of the linearity of u^{*} yield a weighted Delaunay
tessellation: $\mathrm{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x)$.
Write X for the set of vertices in $\mathbf{X}(f)$.
The function u is not differentiable at a vertex $x \in X$.
$\partial u(x)$ is the set of slopes of all supporting planes to the graph

Laguerre Tessellation/Delaunay Triangulation

1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

The function u^{*} is not differentiable at $\rho \in P$. $\partial u^{*}(\rho)$ is the set of slopes of all supporting planes to the graph of u^{*} at ρ. For $\rho \in P$,
2. The function u^{*} is piecewise linear.

Domains of the linearity of u^{*} yield a weighted Delaunay
tessellation: $\mathrm{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x)$.
Write X for the set of vertices in $\mathbf{X}(f)$.
The function u is not differentiable at a vertex $x \in X$.
$\partial u(x)$ is the set of slopes of all supporting planes to the graph

Laguerre Tessellation/Delaunay Triangulation

1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

The function u^{*} is not differentiable at $\rho \in P$. $\partial u^{*}(\rho)$ is the set of slopes of all supporting planes to the graph of u^{*} at ρ. For $\rho \in P$,

$$
x \in X(\rho) \quad \Longrightarrow \quad u(x)=x \cdot \rho-f(\rho)
$$

2. The function u^{*} is piecewise linear.

Domains of the linearity of u^{*} yield a weighted Delaunay
tessellation: $\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x)$.
Write X for the set of vertices in $\mathbf{X}(f)$.
The function u is not differentiable at a vertex $x \in X$.
$\partial u(x)$ is the set of slopes of all supporting planes to the graph

Laguerre Tessellation/Delaunay Triangulation

1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

The function u^{*} is not differentiable at $\rho \in P$. $\partial u^{*}(\rho)$ is the set of slopes of all supporting planes to the graph of u^{*} at ρ. For $\rho \in P$,

$$
x \in X(\rho) \quad \Longrightarrow \quad u(x)=x \cdot \rho-f(\rho)
$$

2. The function u^{*} is piecewise linear.
tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x)
$$

Write X for the set of vertices in $\mathbf{X}(f)$.
The function u is not differentiable at a vertex $x \in X$.
$\partial u(x)$ is the set of slopes of all supporting planes to the graph

Laguerre Tessellation/Delaunay Triangulation

1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

The function u^{*} is not differentiable at $\rho \in P$. $\partial u^{*}(\rho)$ is the set of slopes of all supporting planes to the graph of u^{*} at ρ. For $\rho \in P$,

$$
x \in X(\rho) \quad \Longrightarrow \quad u(x)=x \cdot \rho-f(\rho)
$$

2. The function u^{*} is piecewise linear.

Domains of the linearity of u^{*} yield a weighted Delaunay tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x)
$$

Write X for the set of vertices in $\mathbf{X}(f)$
The function u is not differentiable at a vertex $x \in X$.
$\partial u(x)$ is the set of slopes of all supporting planes to the graph

Laguerre Tessellation/Delaunay Triangulation

1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

The function u^{*} is not differentiable at $\rho \in P$. $\partial u^{*}(\rho)$ is the set of slopes of all supporting planes to the graph of u^{*} at ρ. For $\rho \in P$,

$$
x \in X(\rho) \quad \Longrightarrow \quad u(x)=x \cdot \rho-f(\rho)
$$

2. The function u^{*} is piecewise linear.

Domains of the linearity of u^{*} yield a weighted Delaunay tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x)
$$

Write X for the set of vertices in $\mathbf{X}(f)$.
$\partial u(x)$ is the set of slopes of all supporting planes to the graph

Laguerre Tessellation/Delaunay Triangulation

1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

The function u^{*} is not differentiable at $\rho \in P$. $\partial u^{*}(\rho)$ is the set of slopes of all supporting planes to the graph of u^{*} at ρ. For $\rho \in P$,

$$
x \in X(\rho) \quad \Longrightarrow \quad u(x)=x \cdot \rho-f(\rho)
$$

2. The function u^{*} is piecewise linear.

Domains of the linearity of u^{*} yield a weighted Delaunay tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x) .
$$

Write X for the set of vertices in $\mathbf{X}(f)$.
The function u is not differentiable at a vertex $x \in X$.

Laguerre Tessellation/Delaunay Triangulation

1. The function u is piecewise linear.

Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

The function u^{*} is not differentiable at $\rho \in P$. $\partial u^{*}(\rho)$ is the set of slopes of all supporting planes to the graph of u^{*} at ρ. For $\rho \in P$,

$$
x \in X(\rho) \quad \Longrightarrow \quad u(x)=x \cdot \rho-f(\rho)
$$

2. The function u^{*} is piecewise linear.

Domains of the linearity of u^{*} yield a weighted Delaunay tessellation:

$$
\mathbf{P}(f):=\left\{P(x): x \in \mathbb{R}^{d}\right\}, \quad P(x)=\partial u(x) .
$$

Write X for the set of vertices in $\mathbf{X}(f)$.
The function u is not differentiable at a vertex $x \in X$. $\partial u(x)$ is the set of slopes of all supporting planes to the graph of u at x.

Laguerre Tessellation/Delaunay Triangulation

For $x \in X$,

$$
\rho \in P(x) \quad \Longrightarrow \quad u^{*}(\rho)=x \cdot \rho-u(x) .
$$

For generic f, the graph associated with \mathbf{X} is of degree $d+1$.
For generic f, the tessellation \mathbf{P} is a triangulation.

Laguerre Tessellation/Delaunay Triangulation

For $x \in X$,

$$
\rho \in P(x) \quad \Longrightarrow \quad u^{*}(\rho)=x \cdot \rho-u(x)
$$

For generic f, the graph associated with \mathbf{X} is of degree $d+1$.
For generic f, the tessellation \mathbf{P} is a triangulation.

Laguerre Tessellation/Delaunay Triangulation

For $x \in X$,

$$
\rho \in P(x) \quad \Longrightarrow \quad u^{*}(\rho)=x \cdot \rho-u(x) .
$$

For generic f, the graph associated with \mathbf{X} is of degree $d+1$.
For generic f, the tessellation \mathbf{P} is a triangulation.

Laguerre Tessellation/Delaunay Triangulation

For $x \in X$,

$$
\rho \in P(x) \quad \Longrightarrow \quad u^{*}(\rho)=x \cdot \rho-u(x)
$$

For generic f, the graph associated with \mathbf{X} is of degree $d+1$.
For generic f, the tessellation \mathbf{P} is a triangulation.

Triangulations

We first focus on $u^{*}=f^{0}$. We wish to develop a better
understanding of the operation $f \mapsto f^{\circ}$. We fix a finite set P and very f. The set of $f: P \rightarrow \mathbb{R}$ is identified as \mathbb{R}^{n} if $\sharp P=n$. (Remember $P \subset \mathbb{R}^{d}$.) The function $f^{\circ}: \hat{P} \rightarrow \mathbb{R}$, where

$$
\hat{P}=\operatorname{Conv}(P) .
$$

Without loss of generality we may assume that $\operatorname{dim} \hat{P}=d . \hat{P}$ is a polytope in \mathbb{R}^{d} and serves as our primary polytope. Note that as we go from f to f° the main challenge comes from the tessellation $\mathbf{P}(f)$ which is a triangulation for generic f.

Triangulations

We first focus on $u^{*}=f^{0}$. We wish to develop a better understanding of the operation $f \mapsto f^{\circ}$.
very f. The set of $f: P \rightarrow \mathbb{R}$ is identified as \mathbb{R}^{n} if $\sharp P=n$.
(Remember $P \subset \mathbb{R}^{d}$.) The function $f^{\circ}: \hat{P} \rightarrow \mathbb{R}$, where

$$
\hat{P}=\operatorname{Conv}(P)
$$

Without loss of generality we may assume that $\operatorname{dim} \hat{P}=d . \hat{P}$ is a polytope in \mathbb{R}^{d} and serves as our primary polytope. Note that as we go from f to f^{0} the main challenge comes from the tessellation $\mathbf{P}(f)$ which is a triangulation for generic f.

Triangulations

We first focus on $u^{*}=f^{0}$. We wish to develop a better understanding of the operation $f \mapsto f^{0}$. We fix a finite set P and very f.
(Remember $P \subset \mathbb{R}^{d}$.) The function $f^{\circ}: \hat{P} \rightarrow \mathbb{R}$, where

$$
\hat{P}=\operatorname{Conv}(P) .
$$

Without loss of generality we may assume that $\operatorname{dim} \hat{P}=d . \hat{P}$ is a polytope in \mathbb{R}^{d} and serves as our primary polytope. Note that as we go from f to fo the main challenge comes from the tessellation $\mathbf{P}(f)$ which is a triangulation for generic f.

Triangulations

We first focus on $u^{*}=f^{0}$. We wish to develop a better understanding of the operation $f \mapsto f^{0}$. We fix a finite set P and very f. The set of $f: P \rightarrow \mathbb{R}$ is identified as \mathbb{R}^{n} if $\sharp P=n$. (Remember $P \subset \mathbb{R}^{d}$.)
where

Without loss of generality we may assume that $\operatorname{dim} \hat{P}=d . \hat{P}$ is a polytope in \mathbb{R}^{d} and serves as our primary polytope. Note that as we go from f to $f 0$ the main challenge comes from the tessellation $\mathbf{P}(f)$ which is a triangulation for generic f.

Triangulations

We first focus on $u^{*}=f^{0}$. We wish to develop a better understanding of the operation $f \mapsto f^{0}$. We fix a finite set P and very f. The set of $f: P \rightarrow \mathbb{R}$ is identified as \mathbb{R}^{n} if $\sharp P=n$. (Remember $P \subset \mathbb{R}^{d}$.) The function $f^{o}: \hat{P} \rightarrow \mathbb{R}$, where

$$
\hat{P}=\operatorname{Conv}(P)
$$

Without loss of generality we may assume that $\operatorname{dim} \hat{P}=d . \hat{P}$ is
a polytope in \mathbb{R}^{d} and serves as our primary polytope. Note that
as we go from f to f° the main challenge comes from the
tessellation $\mathbf{P}(f)$ which is a triangulation for generic f.

Triangulations

We first focus on $u^{*}=f^{0}$. We wish to develop a better understanding of the operation $f \mapsto f^{0}$. We fix a finite set P and very f. The set of $f: P \rightarrow \mathbb{R}$ is identified as \mathbb{R}^{n} if $\sharp P=n$. (Remember $P \subset \mathbb{R}^{d}$.) The function $f^{o}: \hat{P} \rightarrow \mathbb{R}$, where

$$
\hat{P}=\operatorname{Conv}(P)
$$

Without loss of generality we may assume that $\operatorname{dim} \hat{P}=d$.
as we go from f to f^{0} the main challenge comes from the tessellation $\mathbf{P}(f)$ which is a triangulation for generic f.

Triangulations

We first focus on $u^{*}=f^{0}$. We wish to develop a better understanding of the operation $f \mapsto f^{0}$. We fix a finite set P and very f. The set of $f: P \rightarrow \mathbb{R}$ is identified as \mathbb{R}^{n} if $\sharp P=n$. (Remember $P \subset \mathbb{R}^{d}$.) The function $f^{o}: \hat{P} \rightarrow \mathbb{R}$, where

$$
\hat{P}=\operatorname{Conv}(P)
$$

Without loss of generality we may assume that $\operatorname{dim} \hat{P}=d . \hat{P}$ is a polytope in \mathbb{R}^{d} and serves as our primary polytope.
tessellation $\mathbf{P}(f)$ which is a triangulation for generic f.

Triangulations

We first focus on $u^{*}=f^{0}$. We wish to develop a better understanding of the operation $f \mapsto f^{0}$. We fix a finite set P and very f. The set of $f: P \rightarrow \mathbb{R}$ is identified as \mathbb{R}^{n} if $\sharp P=n$. (Remember $P \subset \mathbb{R}^{d}$.) The function $f^{o}: \hat{P} \rightarrow \mathbb{R}$, where

$$
\hat{P}=\operatorname{Conv}(P)
$$

Without loss of generality we may assume that $\operatorname{dim} \hat{P}=d . \hat{P}$ is a polytope in \mathbb{R}^{d} and serves as our primary polytope. Note that as we go from f to f^{0} the main challenge comes from the tessellation $\mathbf{P}(f)$ which is a triangulation for generic f.

Triangulations

We make two observations.

1. If f is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^{0} is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:
Pick a simplex/triangle $T \in T(f)$. We know $f=f^{\circ}$ at vertices of T. Hence f° on T is built from f by linear interpolation. (Here we are using the fact that T has $d+1$ vertices.)
2. Take any function f and any triangulation T of \hat{P}. We write $P^{\prime}=P^{\prime}(\mathbf{T})$ for the set of vertices of the triangles in T . We assume that P^{\prime} includes all extreme points of \hat{P}. We allow some internal points in P to be unused in \mathbf{T}. There is a unique function $\hat{f}=\hat{f}_{\mathrm{T}}$ that is linear on the triangles of T , and matches f on P^{\prime}.

Triangulations

We make two observations.

1. If f is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^{o} is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:

Triangulations

We make two observations.

1. If f is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^{o} is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:
Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f=f^{\circ}$ at vertices of T.
we are using the fact that T has $d+1$ vertices.)
2. Take any function f and any triangulation \mathbf{T} of \hat{P}. We write $P^{\prime}=P^{\prime}(\mathbf{T})$ for the set of vertices of the triangles in \mathbf{T}. We assume that P^{\prime} includes all extreme points of \hat{P}. We allow some internal points in P to be unused in T . There is a unique function $\hat{f}=\hat{f}_{\mathrm{T}}$ that is linear on the triangles of \mathbf{T}, and matches f on P^{\prime}.

Triangulations

We make two observations.

1. If f is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^{o} is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:
Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f=f^{0}$ at vertices of T. Hence f^{0} on T is built from f by linear interpolation. (Here we are using the fact that T has $d+1$ vertices.)

Triangulations

We make two observations.

1. If f is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^{o} is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:
Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f=f^{\circ}$ at vertices of T. Hence f^{0} on T is built from f by linear interpolation. (Here we are using the fact that T has $d+1$ vertices.)
2. Take any function f and any triangulation \mathbf{T} of \hat{P}.
D P'(T) for the set of vortices of the triangles in T.
assume that P^{\prime} includes all extreme points of \hat{P}. We allow
some internal points in P to be unused in \mathbf{T}. There is a unique
function $f=f_{\mathrm{T}}$ that is linear on the triangles of T , and matches

Triangulations

We make two observations.

1. If f is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^{o} is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:
Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f=f^{\circ}$ at vertices of T. Hence f^{0} on T is built from f by linear interpolation. (Here we are using the fact that T has $d+1$ vertices.)
2. Take any function f and any triangulation \mathbf{T} of \hat{P}. We write $P^{\prime}=P^{\prime}(\mathbf{T})$ for the set of vertices of the triangles in \mathbf{T}.

Triangulations

We make two observations.

1. If f is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^{o} is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:
Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f=f^{\circ}$ at vertices of T. Hence f° on T is built from f by linear interpolation. (Here we are using the fact that T has $d+1$ vertices.)
2. Take any function f and any triangulation \mathbf{T} of \hat{P}. We write $P^{\prime}=P^{\prime}(\mathbf{T})$ for the set of vertices of the triangles in \mathbf{T}. We assume that P^{\prime} includes all extreme points of \hat{P}. We allow some internal points in P to be unused in \mathbf{T}.

Triangulations

We make two observations.

1. If f is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^{o} is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:
Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f=f^{0}$ at vertices of T. Hence f° on T is built from f by linear interpolation. (Here we are using the fact that T has $d+1$ vertices.)
2. Take any function f and any triangulation \mathbf{T} of \hat{P}. We write $P^{\prime}=P^{\prime}(\mathbf{T})$ for the set of vertices of the triangles in \mathbf{T}. We assume that P^{\prime} includes all extreme points of \hat{P}. We allow some internal points in P to be unused in \mathbf{T}. There is a unique function $\hat{f}=\hat{f}_{\mathrm{T}}$ that is linear on the triangles of \mathbf{T}, and matches f on P^{\prime}.

Triangulations

We make two observations.

1. If f is generic and its induced triangulation $\mathbf{T}(f)$ is known, then f^{o} is trivially constructed from the pair $(f, \mathbf{T}(f))$ in the following way:
Pick a simplex/triangle $T \in \mathbf{T}(f)$. We know $f=f^{0}$ at vertices of T. Hence f° on T is built from f by linear interpolation. (Here we are using the fact that T has $d+1$ vertices.)
2. Take any function f and any triangulation \mathbf{T} of \hat{P}. We write $P^{\prime}=P^{\prime}(\mathbf{T})$ for the set of vertices of the triangles in \mathbf{T}. We assume that P^{\prime} includes all extreme points of \hat{P}. We allow some internal points in P to be unused in \mathbf{T}. There is a unique function $\hat{f}=\hat{f}_{\mathrm{T}}$ that is linear on the triangles of \mathbf{T}, and matches f on P^{\prime}.

Triangulation/Fan

Recall P is fixed but we allow to $f: P \rightarrow \mathbb{R}$ to vary; $f \in \mathbb{R}^{n}$.
Write \mathcal{T} for the set all triangulations of P (some inner points
may not be used).
Recall that for $\mathbf{T} \in \mathcal{T}$, by $\hat{f}_{\mathbf{T}}$ we mean

$$
\hat{f}_{T}=f \text { on vertices }, \quad \hat{\mathrm{f}}_{\mathrm{T}} \text { linear on each } T \in T \text {. }
$$

Definition

$$
\mathcal{C}(\mathbf{T})=\left\{f: \hat{f}_{\mathbf{T}} \text { is convex }\right\}
$$

$$
\mathbf{C}=\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}
$$

Triangulation/Fan

Recall P is fixed but we allow to $f: P \rightarrow \mathbb{R}$ to vary; $f \in \mathbb{R}^{n}$.
Write \mathcal{T} for the set all triangulations of P (some inner points
may not be used).
Recall that for $\mathbf{T} \in \mathcal{T}$, by \hat{f}_{T} we mean

$$
\hat{f}_{\mathrm{T}}=f \text { on vertices }, \quad \hat{f}_{\mathrm{T}} \text { linear on each } T \in \mathbf{T} \text {. }
$$

$$
\mathcal{C}(\mathbf{T})=\left\{f: \hat{f}_{\mathrm{T}} \text { is convex }\right\}
$$

$$
\mathbf{C}=\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}
$$

Triangulation/Fan

Recall P is fixed but we allow to $f: P \rightarrow \mathbb{R}$ to vary; $f \in \mathbb{R}^{n}$. Write \mathcal{T} for the set all triangulations of P (some inner points may not be used).
Recall that for $\mathbf{T} \in \mathcal{T}$, by \hat{f}_{T} we mean

$$
\hat{f}_{\mathrm{T}}=f \text { on vertices }, \quad \hat{f}_{\mathrm{T}} \text { linear on each } T \in \mathbf{T} \text {. }
$$

Triangulation/Fan

Recall P is fixed but we allow to $f: P \rightarrow \mathbb{R}$ to vary; $f \in \mathbb{R}^{n}$. Write \mathcal{T} for the set all triangulations of P (some inner points may not be used).
Recall that for $\mathbf{T} \in \mathcal{T}$, by \hat{f}_{\top} we mean

$$
\hat{f}_{\mathrm{T}}=f \text { on vertices, } \quad \hat{f}_{\mathrm{T}} \text { linear on each } T \in \mathbf{T} .
$$

Triangulation/Fan

Recall P is fixed but we allow to $f: P \rightarrow \mathbb{R}$ to vary; $f \in \mathbb{R}^{n}$. Write \mathcal{T} for the set all triangulations of P (some inner points may not be used).
Recall that for $\mathbf{T} \in \mathcal{T}$, by $\hat{f}_{\boldsymbol{T}}$ we mean

$$
\hat{f}_{\mathrm{T}}=f \text { on vertices }, \quad \hat{f}_{\mathrm{T}} \text { linear on each } T \in \mathbf{T} .
$$

Definition

$$
\mathcal{C}(\mathbf{T})=\left\{f: \hat{f}_{\mathbf{T}} \text { is convex }\right\}
$$

Triangulation/Fan

Recall P is fixed but we allow to $f: P \rightarrow \mathbb{R}$ to vary; $f \in \mathbb{R}^{n}$. Write \mathcal{T} for the set all triangulations of P (some inner points may not be used).
Recall that for $\mathbf{T} \in \mathcal{T}$, by $\hat{f}_{\boldsymbol{T}}$ we mean

$$
\hat{f}_{\mathrm{T}}=f \text { on vertices }, \quad \hat{f}_{\mathrm{T}} \text { linear on each } T \in \mathbf{T} .
$$

Definition

$$
\mathcal{C}(\mathbf{T})=\left\{f: \hat{f}_{\mathbf{T}} \text { is convex }\right\}
$$

$$
\mathbf{C}=\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}
$$

Fan C

1. Each $\mathcal{C}(T)$ is a convex cone.
2. $\mathbb{R}^{n}=\cup\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}$
3. $\mathcal{C}(\mathbf{T})$ has non-empty interior iff T is induced from fo for some generic f. If this is the case, then we call T regular/coherent. 4. Assume \mathbf{T} and T^{\prime} are regular, and $f \in \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right) \neq \emptyset$. Then tessellation (domains of linearity) associated with f^{0} is not a triangulation; a vertex in X has degree $d+2 . \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right)$ is a common face of both $C(T)$ and $C\left(T^{\prime}\right)$.
$1-4$ means that the collection/tessellation \mathbf{C} is a fan.
Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a polytope. This polytope is called the secondary polytope.

Fan C

1. Each $\mathcal{C}(\mathbf{T})$ is a convex cone.
2. $\mathbb{R}^{n}=\cup\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}$
3. $\mathcal{C}(\mathbf{T})$ has non-empty interior iff \mathbf{T} is induced from fo for some generic f. If this is the case, then we call \mathbf{T} regular/coherent. 4. Assume \mathbf{T} and \mathbf{T}^{\prime} are regular, and $f \in \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right) \neq \emptyset$. Ther tessellation (domains of linearity) associated with f^{0} is not a triangulation; a vertex in X has degree $d+2 . \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right)$ is a common face of both $\mathcal{C}(\mathbf{T})$ and $\mathcal{C}\left(\mathbf{T}^{\prime}\right)$.
1-4 means that the collection/tessellation C is a fan.
Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a polytope. This polytope is called the secondary polytope.

Fan C

1. Each $\mathcal{C}(\mathbf{T})$ is a convex cone.
2. $\mathbb{R}^{n}=\cup\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}$
3. $\mathcal{C}(\mathbf{T})$ has non-empty interior iff \mathbf{T} is induced from fo for some generic f. If this is the case, then we call \mathbf{T} regular/coherent. 4. Assume \mathbf{T} and \mathbf{T}^{\prime} are regular, and $f \in \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right) \neq \emptyset$. Ther tessellation (domains of linearity) associated with f^{0} is not a triangulation; a vertex in X has degree $d+2 . \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right)$ is a common face of both $\mathcal{C}(\mathbf{T})$ and $\mathcal{C}\left(\mathbf{T}^{\prime}\right)$.
1-4 means that the collection/tessellation \mathbf{C} is a fan.
Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a polytope. This polytope is called the secondary polytope.

Fan C

1. Each $\mathcal{C}(\mathbf{T})$ is a convex cone.
2. $\mathbb{R}^{n}=\cup\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}$
3. $\mathcal{C}(\mathbf{T})$ has non-empty interior iff \mathbf{T} is induced from f^{0} for some generic f.
4. Assume \mathbf{T} and T^{\prime} are regular, and $f \in \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathrm{T}^{\prime}\right) \neq \emptyset$. Then
tessellation (domains of linearity) associated with f^{0} is not a triangulation; a vertex in X has degree $d+2$. $\mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right)$ is a common face of both $\mathcal{C}(\mathbf{T})$ and $\mathcal{C}\left(\mathbf{T}^{\prime}\right)$.
$1-4$ means that the collection/tessellation \mathbf{C} is a fan.
Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a polytope. This polytope is called the secondary polytope.

Fan C

1. Each $\mathcal{C}(\mathbf{T})$ is a convex cone.
2. $\mathbb{R}^{n}=\cup\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}$
3. $\mathcal{C}(\mathbf{T})$ has non-empty interior iff \mathbf{T} is induced from f^{0} for some generic f. If this is the case, then we call \mathbf{T} regular/coherent.
```
    Assume T and T' are regular, and f}\in\mathcal{C}(T)\cap\mathcal{C}(\mp@subsup{T}{}{\prime})\not=\emptyset\mathrm{ . Then
tessellation (domains of linearity) associated with fo is not a
trianqulation; a vertex in X has dearee d +2.\mathcal{C}(T)\cap\mathcal{C}(\mp@subsup{\textrm{T}}{}{\prime})\mathrm{ is a}
common face of both C(T) and C(T').
1-4 means that the collection/tessellation C is a fan.
Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a
polytope. This polytope is called the secondary polytope.
```


Fan C

1. Each $\mathcal{C}(\mathbf{T})$ is a convex cone.
2. $\mathbb{R}^{n}=\cup\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}$
3. $\mathcal{C}(\mathbf{T})$ has non-empty interior iff \mathbf{T} is induced from f^{0} for some generic f. If this is the case, then we call \mathbf{T} regular/coherent.
4. Assume \mathbf{T} and \mathbf{T}^{\prime} are regular, and $f \in \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right) \neq \emptyset$.
tessellation (domains of linearity) associated with fo is not a triangulation; a vertex in X has degree $d+2 . \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right)$ is a common face of both $\mathcal{C}(\mathbf{T})$ and $\mathcal{C}\left(\mathbf{T}^{\prime}\right)$.
1-4 means that the collection/tessellation \mathbf{C} is a fan.
Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a polytope. This polytope is called the secondary polytope.

Fan C

1. Each $\mathcal{C}(\mathbf{T})$ is a convex cone.
2. $\mathbb{R}^{n}=\cup\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}$
3. $\mathcal{C}(\mathbf{T})$ has non-empty interior iff \mathbf{T} is induced from f^{0} for some generic f. If this is the case, then we call \mathbf{T} regular/coherent. 4. Assume \mathbf{T} and \mathbf{T}^{\prime} are regular, and $f \in \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right) \neq \emptyset$. Then tessellation (domains of linearity) associated with f^{0} is not a triangulation; a vertex in X has degree $d+2$.
$1-4$ means that the collection/tessellation \mathbf{C} is a fan.
Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a
polytope. This polytope is called the secondary polytope.

Fan C

1. Each $\mathcal{C}(\mathbf{T})$ is a convex cone.
2. $\mathbb{R}^{n}=\cup\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}$
3. $\mathcal{C}(\mathbf{T})$ has non-empty interior iff \mathbf{T} is induced from f^{0} for some generic f. If this is the case, then we call \mathbf{T} regular/coherent. 4. Assume \mathbf{T} and \mathbf{T}^{\prime} are regular, and $f \in \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right) \neq \emptyset$. Then tessellation (domains of linearity) associated with f^{0} is not a triangulation; a vertex in X has degree $d+2 . \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right)$ is a common face of both $\mathcal{C}(\mathbf{T})$ and $\mathcal{C}\left(\mathbf{T}^{\prime}\right)$.
polytope. This polytope is called the secondary polytope.

Fan C

1. Each $\mathcal{C}(\mathbf{T})$ is a convex cone.
2. $\mathbb{R}^{n}=\cup\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}$
3. $\mathcal{C}(\mathbf{T})$ has non-empty interior iff \mathbf{T} is induced from f^{0} for some generic f. If this is the case, then we call \mathbf{T} regular/coherent. 4. Assume \mathbf{T} and \mathbf{T}^{\prime} are regular, and $f \in \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right) \neq \emptyset$. Then tessellation (domains of linearity) associated with f^{0} is not a triangulation; a vertex in X has degree $d+2 . \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right)$ is a common face of both $\mathcal{C}(\mathbf{T})$ and $\mathcal{C}\left(\mathbf{T}^{\prime}\right)$. 1-4 means that the collection/tessellation \mathbf{C} is a fan.
polytope. This polytope is called the secondary polytope.

Fan C

1. Each $\mathcal{C}(\mathbf{T})$ is a convex cone.
2. $\mathbb{R}^{n}=\cup\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}$
3. $\mathcal{C}(\mathbf{T})$ has non-empty interior iff \mathbf{T} is induced from f^{0} for some generic f. If this is the case, then we call \mathbf{T} regular/coherent. 4. Assume \mathbf{T} and \mathbf{T}^{\prime} are regular, and $f \in \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right) \neq \emptyset$. Then tessellation (domains of linearity) associated with f^{0} is not a triangulation; a vertex in X has degree $d+2 . \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right)$ is a common face of both $\mathcal{C}(\mathbf{T})$ and $\mathcal{C}\left(\mathbf{T}^{\prime}\right)$. 1-4 means that the collection/tessellation \mathbf{C} is a fan.
Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a polytope.

Fan C

1. Each $\mathcal{C}(\mathbf{T})$ is a convex cone.
2. $\mathbb{R}^{n}=\cup\{\mathcal{C}(\mathbf{T}): \mathbf{T} \in \mathcal{T}\}$
3. $\mathcal{C}(\mathbf{T})$ has non-empty interior iff \mathbf{T} is induced from f^{0} for some generic f. If this is the case, then we call \mathbf{T} regular/coherent. 4. Assume \mathbf{T} and \mathbf{T}^{\prime} are regular, and $f \in \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right) \neq \emptyset$. Then tessellation (domains of linearity) associated with f^{0} is not a triangulation; a vertex in X has degree $d+2 . \mathcal{C}(\mathbf{T}) \cap \mathcal{C}\left(\mathbf{T}^{\prime}\right)$ is a common face of both $\mathcal{C}(\mathbf{T})$ and $\mathcal{C}\left(\mathbf{T}^{\prime}\right)$. 1-4 means that the collection/tessellation \mathbf{C} is a fan.
Gelfand-Kapranov-Zelevinsky: This fan is the normal fan of a polytope. This polytope is called the secondary polytope.

A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a tessellation with convex cells.
The fan \mathbf{C} is a tessellation with convex cones $\mathcal{C}(T)$ for cells.
Natural Question: Is there a convex (concave) U function that would yield \mathbf{C} ?

1. We want U to be linear on each $C(T)$ but of different slopes
on different cells.
2. The set of slopes would generate the secondary polytope $\Sigma(P)$.
3. Equivalently U^{*} is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^{\circ}=u^{*}$ is the convex hull of f :

$$
f^{o}=\inf \left\{\hat{f}_{\mathrm{T}}: T \in \mathcal{T}\right\} .
$$

Claim: $U(f)=\int_{\hat{\rho}} f^{0}(\rho) d \rho$ is concave and does the job!

A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a tessellation with convex cells.

```
The fan C is a tessellation with convex cones \mathcal{C}(T) for cells.
Natural Question: Is there a convex (concave) U function that
would yield C?
1. We want U}\mathrm{ to be linear on each C(T) but of different slopes
on different cells.
2. The set of slopes would generate the secondary polytope
\Sigma(P).
3. Equivalently }\mp@subsup{U}{}{*}\mathrm{ is }0\mathrm{ in }\Sigma(P)\mathrm{ , and }\infty\mathrm{ outside }\Sigma(P)\mathrm{ .
Recall that fo = 隹 is the convex hull of f
```

$$
f^{o}=\inf \left\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\} .
$$

A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a tessellation with convex cells.
The fan \mathbf{C} is a tessellation with convex cones $\mathcal{C}(\mathbf{T})$ for cells.

```
Natural Question. Is there a convex (concave) U function that
would yield C?
1. We want }U\mathrm{ to be linear on each C(T) but of different slopes
on different cells.
2. The set of slopes would generate the secondary polytope
\Sigma(P).
3. Equivalently }\mp@subsup{U}{}{*}\mathrm{ is }0\mathrm{ in }\Sigma(P)\mathrm{ , and }\infty\mathrm{ outside }\Sigma(P)\mathrm{ .
Recall that fo}=\mp@subsup{|}{}{*}\mathrm{ is the convex hull of }f\mathrm{ :
```

$$
f^{\circ}=\inf \left\{\hat{f}_{\mathrm{T}}: T \in \mathcal{T}\right\} .
$$

A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a tessellation with convex cells.
The fan \mathbf{C} is a tessellation with convex cones $\mathcal{C}(\mathbf{T})$ for cells. Natural Question: Is there a convex (concave) U function that would yield C?

1. We want U to be linear on each $\mathcal{C}(\mathbf{T})$ but of different slopes
on different cells.
2. The set of slopes would generate the secondary polytope
$\Sigma(P)$.
3. Equivalently U^{*} is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$. Recall that $f^{\circ}=u^{*}$ is the convex hull of f :

$$
f^{o}=\inf \left\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\} .
$$

A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a tessellation with convex cells.
The fan \mathbf{C} is a tessellation with convex cones $\mathcal{C}(\mathbf{T})$ for cells. Natural Question: Is there a convex (concave) U function that would yield \mathbf{C} ?

1. We want U to be linear on each $\mathcal{C}(\mathbf{T})$ but of different slopes on different cells.

$$
f^{o}=\inf \left\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\} .
$$

A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a tessellation with convex cells.
The fan \mathbf{C} is a tessellation with convex cones $\mathcal{C}(\mathbf{T})$ for cells.
Natural Question: Is there a convex (concave) U function that would yield \mathbf{C} ?

1. We want U to be linear on each $\mathcal{C}(\mathbf{T})$ but of different slopes on different cells.
2. The set of slopes would generate the secondary polytope $\Sigma(P)$.
3. Equivalently U^{*} is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$. Recall that $f^{\circ}=u^{*}$ is the convex hull of f :

$$
f^{\prime}=\inf \left\{\hat{f}_{T}: T \in T\right\} .
$$

A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a tessellation with convex cells.
The fan \mathbf{C} is a tessellation with convex cones $\mathcal{C}(\mathbf{T})$ for cells.
Natural Question: Is there a convex (concave) U function that would yield \mathbf{C} ?

1. We want U to be linear on each $\mathcal{C}(\mathbf{T})$ but of different slopes on different cells.
2. The set of slopes would generate the secondary polytope $\Sigma(P)$.
3. Equivalently U^{*} is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

$$
f^{0}=\inf \left\{\hat{f}_{\boldsymbol{T}}: \mathbf{T} \in \mathcal{T}\right\} .
$$

\square

A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a tessellation with convex cells.
The fan \mathbf{C} is a tessellation with convex cones $\mathcal{C}(\mathbf{T})$ for cells.
Natural Question: Is there a convex (concave) U function that would yield \mathbf{C} ?

1. We want U to be linear on each $\mathcal{C}(\mathbf{T})$ but of different slopes on different cells.
2. The set of slopes would generate the secondary polytope $\Sigma(P)$.
3. Equivalently U^{*} is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^{0}=u^{*}$ is the convex hull of f :

Claim: $U(f)=\int_{\hat{P}} f^{\circ}(\rho) d \rho$ is concave and does the job!

A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a tessellation with convex cells.
The fan \mathbf{C} is a tessellation with convex cones $\mathcal{C}(\mathbf{T})$ for cells.
Natural Question: Is there a convex (concave) U function that would yield \mathbf{C} ?

1. We want U to be linear on each $\mathcal{C}(\mathbf{T})$ but of different slopes on different cells.
2. The set of slopes would generate the secondary polytope $\Sigma(P)$.
3. Equivalently U^{*} is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^{o}=u^{*}$ is the convex hull of f :

$$
f^{o}=\inf \left\{\hat{f}_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\} .
$$

Claim: $U(f)=\int_{\hat{p}} f^{0}(\rho) d \rho$ is concave and does the job!

A Recipe for Secondary Polytope

Recall that a piecewise linear convex function yields a tessellation with convex cells.
The fan \mathbf{C} is a tessellation with convex cones $\mathcal{C}(\mathbf{T})$ for cells.
Natural Question: Is there a convex (concave) U function that would yield \mathbf{C} ?

1. We want U to be linear on each $\mathcal{C}(\mathbf{T})$ but of different slopes on different cells.
2. The set of slopes would generate the secondary polytope $\Sigma(P)$.
3. Equivalently U^{*} is 0 in $\Sigma(P)$, and ∞ outside $\Sigma(P)$.

Recall that $f^{0}=u^{*}$ is the convex hull of f :

$$
f^{o}=\inf \left\{\hat{f}_{\boldsymbol{T}}: \mathbf{T} \in \mathcal{T}\right\} .
$$

Claim: $U(f)=\int_{\hat{P}} f^{0}(\rho) d \rho$ is concave and does the job!

Secondary Polytope

$$
\begin{gathered}
U(f)=\inf \left\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\right\}, \\
U_{\mathbf{T}}(f)=\int \hat{f}_{\mathbf{T}}(\rho) d \rho .
\end{gathered}
$$

U_{T} is linear. $U=U_{T}$ on $\mathcal{C}(\mathbf{T})$. We evaluate $U_{T}: U_{T}(f)=f \cdot \sigma_{T}$, with $\sigma_{\boldsymbol{T}}: P \rightarrow[0, \infty)$ given by

$$
\sigma_{\mathbf{T}}(\rho)=\frac{1}{d+1} \sum_{\rho \in T \in \mathbf{T}}|T| .
$$

$\rho \in T$ means ρ is a vertex of T.

Proof For every linear ℓ and simplex T,

$$
\int_{T} e(\rho) d \rho=\frac{|T|}{d+1} \sum_{\rho \in T} l(\rho) .
$$

Secondary Polytope

$$
U(f)=\inf \left\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\right\},
$$

$$
U_{\mathbf{T}}(f)=\int \hat{\mathcal{F}}_{\mathbf{T}}(\rho) d \rho .
$$

U_{T} is linear. $U=U_{T}$ on $\mathcal{C}(\mathbf{T})$. We evaluate $U_{T}: U_{T}(f)=f \cdot \sigma_{T}$, with $\sigma_{\boldsymbol{T}}: P \rightarrow[0, \infty)$ given by

$$
\sigma_{\mathbf{T}}(\rho)=\frac{1}{d+1} \sum_{\rho \in T \in \mathbf{T}}|T| .
$$

$\rho \in T$ means ρ is a vertex of T.

Proof For every linear ℓ and simplex T,

$$
\int_{T} l(\rho) d \rho=\frac{|T|}{d+1} \sum_{\rho \in T} l(\rho) .
$$

Secondary Polytope

$$
U(f)=\inf \left\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\right\},
$$

$$
U_{\mathbf{T}}(f)=\int \hat{f}_{\mathbf{T}}(\rho) d \rho .
$$

U_{T} is linear. $U=U_{T}$ on $\mathcal{C}(T)$. We evaluate $U_{T}: U_{T}(f)=f \cdot \sigma_{T}$,
with $\sigma_{\top}: P \rightarrow[0, \infty)$ given by

$\rho \in T$ means ρ is a vertex of T.

Proof For every linear ℓ and simplex T,

Secondary Polytope

$$
\begin{gathered}
U(f)=\inf \left\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\right\}, \\
U_{\mathbf{T}}(f)=\int \hat{f}_{\mathbf{T}}(\rho) d \rho .
\end{gathered}
$$

U_{T} is linear. $U=U_{T}$ on $C(T)$. We evaluate $U_{T}: U_{T}(f)=f \cdot \sigma_{T}$,
with $\sigma_{\top}: P \rightarrow[0, \infty)$ given by

$\rho \in T$ means ρ is a vertex of T.

Proof For every linear ℓ and simplex T,

Secondary Polytope

$$
\begin{gathered}
U(f)=\inf \left\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\right\}, \\
U_{\mathbf{T}}(f)=\int \hat{f}_{\mathbf{T}}(\rho) d \rho .
\end{gathered}
$$

U_{T} is linear. $U=U_{T}$ on $\mathcal{C}(\mathbf{T})$. We evaluate $U_{T}: U_{T}(f)=f \cdot \sigma_{T}$,

with $\sigma_{T}: P \rightarrow[0, \infty)$ given by

$\rho \in T$ means ρ is a vertex of T.

Proof For every linear ℓ and simplex T,

Secondary Polytope

$$
\begin{gathered}
U(f)=\inf \left\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\right\}, \\
U_{\mathbf{T}}(f)=\int \hat{\boldsymbol{T}}_{\mathbf{T}}(\rho) d \rho
\end{gathered}
$$

$U_{\mathbf{T}}$ is linear. $U=U_{\mathbf{T}}$ on $\mathcal{C}(\mathbf{T})$. We evaluate $U_{\mathbf{T}}: U_{\mathbf{T}}(f)=f \cdot \sigma_{\mathbf{T}}$, with $\sigma_{\mathbf{T}}: P \rightarrow[0, \infty)$ given by

$\rho \in T$ means ρ is a vertex of T.

Proof For every linear ℓ and simplex T,

Secondary Polytope

$$
\begin{gathered}
U(f)=\inf \left\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\right\}, \\
U_{\mathbf{T}}(f)=\int \hat{f}_{\mathbf{T}}(\rho) d \rho
\end{gathered}
$$

$U_{\mathbf{T}}$ is linear. $U=U_{\mathbf{T}}$ on $\mathcal{C}(\mathbf{T})$. We evaluate $U_{\mathbf{T}}: U_{\mathbf{T}}(f)=f \cdot \sigma_{\mathbf{T}}$, with $\sigma_{\mathbf{T}}: P \rightarrow[0, \infty)$ given by

$$
\sigma_{\mathbf{T}}(\rho)=\frac{1}{d+1} \sum_{\rho \in T \in \mathbf{T}}|T|
$$

$\rho \in T$ means ρ is a vertex of T.

Secondary Polytope

$$
\begin{gathered}
U(f)=\inf \left\{U_{\mathbf{T}}(f): \mathbf{T} \in \mathcal{T}\right\} \\
U_{\mathbf{T}}(f)=\int \hat{f}_{\mathbf{T}}(\rho) d \rho
\end{gathered}
$$

$U_{\mathbf{T}}$ is linear. $U=U_{\mathbf{T}}$ on $\mathcal{C}(\mathbf{T})$. We evaluate $U_{\mathbf{T}}: U_{\mathbf{T}}(f)=f \cdot \sigma_{\mathbf{T}}$, with $\sigma_{\mathbf{T}}: P \rightarrow[0, \infty)$ given by

$$
\sigma_{\mathbf{T}}(\rho)=\frac{1}{d+1} \sum_{\rho \in T \in \mathbf{T}}|T|
$$

$\rho \in T$ means ρ is a vertex of T.

Proof For every linear ℓ and simplex T,

$$
\int_{T} \ell(\rho) d \rho=\frac{|T|}{d+1} \sum_{\rho \in T} \ell(\rho)
$$

Secondary Polytope

$$
U(f)=\inf \left\{f \cdot \sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\}=\inf \{f \cdot h: h \in \Sigma(P)\},
$$

$$
\Sigma(P)=\text { Convex hull of }\left\{\sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\} \text {. }
$$

1. If $\sharp P=d+1, \operatorname{dim} \hat{P}=d$ (points in P are affinely
independent), then $\Sigma(P)$ is a single point.
2. If $\# P=n$, $\operatorname{dim} \hat{P}=d$, then $\operatorname{dim} \Sigma(P)=n-d-1$.
3. If $\sharp P=d+2, \operatorname{dim} \hat{P}=d$, and any proper subset of P affinely independent. then $\Sigma(P)$ is a line segment. Such a P is called a circuit. Two cases to consider:
3(i). Let P be as in 3, no point of P is in the interior of \hat{P}.
3(ii). Let P be as in 3 , a point of P is in the interior of \hat{P}.

Secondary Polytope

$$
U(f)=\inf \left\{f \cdot \sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\}=\inf \{f \cdot h: h \in \Sigma(P)\},
$$

$$
\Sigma(P)=\text { Convex hull of }\left\{\sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\} \text {. }
$$

1. If $\sharp P=d+1, \operatorname{dim} \hat{P}=d$ (points in P are affinely
independent), then $\Sigma(P)$ is a single point.
2. If $\sharp P=n, \operatorname{dim} \hat{P}=d$, then $\operatorname{dim} \Sigma(P)=n-d-1$.
3. If $\sharp P=d+2, \operatorname{dim} \hat{P}=d$, and any proper subset of P affinely independent. then $\Sigma(P)$ is a line segment. Such a P is called a circuit. Two cases to consider:
3(i). Let P be as in 3, no point of P is in the interior of \hat{P}.
3(ii). Let P be as in 3, a point of P is in the interior of \hat{P}.

Secondary Polytope

$$
U(f)=\inf \left\{f \cdot \sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\}=\inf \{f \cdot h: h \in \Sigma(P)\},
$$

$$
\Sigma(P)=\text { Convex hull of }\left\{\sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\} \text {. }
$$

1. If $\sharp P=d+1, \operatorname{dim} \hat{P}=d$ (points in P are affinely independent), then $\Sigma(P)$ is a single point.
2. If $\sharp P=d+2, \operatorname{dim} \hat{P}=d$, and any proper subset of P affinely independent. then $\Sigma(P)$ is a line segment. Such a P is called a circuit. Two cases to consider:

Secondary Polytope

$$
U(f)=\inf \left\{f \cdot \sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\}=\inf \{f \cdot h: h \in \Sigma(P)\},
$$

$$
\Sigma(P)=\text { Convex hull of }\left\{\sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\} .
$$

1. If $\sharp P=d+1, \operatorname{dim} \hat{P}=d$ (points in P are affinely independent), then $\Sigma(P)$ is a single point.
2. If $\sharp P=n, \operatorname{dim} \hat{P}=d$, then $\operatorname{dim} \Sigma(P)=n-d-1$.
independent. then $\Sigma(P)$ is a line segment. Such a P is called a circuit. Two cases to consider:

Secondary Polytope

$$
U(f)=\inf \left\{f \cdot \sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\}=\inf \{f \cdot h: h \in \Sigma(P)\}
$$

$$
\Sigma(P)=\text { Convex hull of }\left\{\sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\}
$$

1. If $\sharp P=d+1, \operatorname{dim} \hat{P}=d$ (points in P are affinely independent), then $\Sigma(P)$ is a single point.
2. If $\sharp P=n, \operatorname{dim} \hat{P}=d$, then $\operatorname{dim} \Sigma(P)=n-d-1$.
3. If $\sharp P=d+2$, $\operatorname{dim} \hat{P}=d$, and any proper subset of P affinely independent. then $\Sigma(P)$ is a line segment.

Secondary Polytope

$$
U(f)=\inf \left\{f \cdot \sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\}=\inf \{f \cdot h: h \in \Sigma(P)\}
$$

$$
\Sigma(P)=\text { Convex hull of }\left\{\sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\}
$$

1. If $\sharp P=d+1, \operatorname{dim} \hat{P}=d$ (points in P are affinely independent), then $\Sigma(P)$ is a single point.
2. If $\sharp P=n, \operatorname{dim} \hat{P}=d$, then $\operatorname{dim} \Sigma(P)=n-d-1$.
3. If $\sharp P=d+2$, $\operatorname{dim} \hat{P}=d$, and any proper subset of P affinely independent. then $\Sigma(P)$ is a line segment. Such a P is called a circuit.

Secondary Polytope

$$
U(f)=\inf \left\{f \cdot \sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\}=\inf \{f \cdot h: h \in \Sigma(P)\}
$$

$$
\Sigma(P)=\text { Convex hull of }\left\{\sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\}
$$

1. If $\sharp P=d+1, \operatorname{dim} \hat{P}=d$ (points in P are affinely independent), then $\Sigma(P)$ is a single point.
2. If $\sharp P=n, \operatorname{dim} \hat{P}=d$, then $\operatorname{dim} \Sigma(P)=n-d-1$.
3. If $\sharp P=d+2, \operatorname{dim} \hat{P}=d$, and any proper subset of P affinely independent. then $\Sigma(P)$ is a line segment. Such a P is called a circuit. Two cases to consider:
3(i). Let P be as in 3, no point of P is in the interior of \hat{P}.

Secondary Polytope

$$
U(f)=\inf \left\{f \cdot \sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\}=\inf \{f \cdot h: h \in \Sigma(P)\}
$$

$$
\Sigma(P)=\text { Convex hull of }\left\{\sigma_{\mathbf{T}}: \mathbf{T} \in \mathcal{T}\right\}
$$

1. If $\sharp P=d+1, \operatorname{dim} \hat{P}=d$ (points in P are affinely independent), then $\Sigma(P)$ is a single point.
2. If $\sharp P=n, \operatorname{dim} \hat{P}=d$, then $\operatorname{dim} \Sigma(P)=n-d-1$.
3. If $\sharp P=d+2, \operatorname{dim} \hat{P}=d$, and any proper subset of P affinely independent. then $\Sigma(P)$ is a line segment. Such a P is called a circuit. Two cases to consider:
3(i). Let P be as in 3, no point of P is in the interior of \hat{P}.
3(ii). Let P be as in 3, a point of P is in the interior of \hat{P}.

Dim 1:

Dim 2:

Dim 3:

Secondary Polytope

1. The vertices $\sigma_{\boldsymbol{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations \mathbf{T}.
2. When there is an edge between $\sigma_{\boldsymbol{T}}$ and $\sigma_{T^{\prime}}$?

When $\sigma_{\mathbf{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$ differ on a subtriagulation: The discrepancy
$\sigma_{\mathbf{S}}$ and $\sigma_{\mathbf{S}^{\prime}}$ are the two possible triangulations of a circuit.

Secondary Polytope

1. The vertices $\sigma_{\boldsymbol{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations \mathbf{T}.
2. When there is an edge between $\sigma_{\mathbf{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$?
$\sigma_{\mathbf{S}}$ and $\sigma_{\mathbf{S}^{\prime}}$ are the two possible triangulations of a circuit.

Secondary Polytope

1. The vertices $\sigma_{\boldsymbol{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations \mathbf{T}.
2. When there is an edge between $\sigma_{\boldsymbol{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$?

When $\sigma_{\mathbf{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$ differ on a subtriagulation:

Secondary Polytope

1. The vertices $\sigma_{\boldsymbol{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations \mathbf{T}.
2. When there is an edge between $\sigma_{\boldsymbol{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$?

When $\sigma_{\mathbf{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$ differ on a subtriagulation: The discrepancy $\sigma_{\mathbf{S}}$ and $\sigma_{\mathbf{S}^{\prime}}$ are the two possible triangulations of a circuit.

Secondary Polytope

1. The vertices $\sigma_{\boldsymbol{T}}$ of $\Sigma(P)$ correspond to regular/coherent triangulations \mathbf{T}.
2. When there is an edge between $\sigma_{\boldsymbol{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$?

When $\sigma_{\mathbf{T}}$ and $\sigma_{\mathbf{T}^{\prime}}$ differ on a subtriagulation: The discrepancy $\sigma_{\mathbf{S}}$ and $\sigma_{\mathbf{S}^{\prime}}$ are the two possible triangulations of a circuit.

Dim 1:

Dim 2:

Dim 3:

$d=2:$

(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred. (The vertices of the cell coagulate to form a single vertex/particle.)
$d=2:$
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the
occurrence of a collision between two vertices of the
corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred. (The vertices of the cell coagulate to form a single vertex/particle.)
$d=2:$
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the
corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred. (The vertices of the cell coagulate to form a single vertex/particle.)
$d=2:$
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.

> In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred. (The vertices of the cell coagulate
> to form a single vertex/particle.)
$d=2:$
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex.
to form a single vertex/particle.)
$d=2:$
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred.
to form a single vertex/particle.)
$d=2$:
(i) Either diagonals are swapped,
(ii) or three triangles are replaced with one triangle.

In the context of Hamilton-Jacobi equation (i) means the occurrence of a collision between two vertices of the corresponding Laguerre tessellation.
In the context of Hamilton-Jacobi equation (ii) means that the corresponding Laguerre tessellation has a triangular cell, and this cell collapses to a vertex. When this happens, we say that a coagulation has occurred. (The vertices of the cell coagulate to form a single vertex/particle.)

Alexandrov Problem

We now focus on u. Fix finite P, and vary $f: P \rightarrow \mathbb{R}$. is finite and fixed. We wish to understand the operation $f \mapsto u=f^{*}$.

$$
u(x)=f^{*}(x)=\sup _{p \in P}(x \cdot p-f(p))
$$

The function u is piecewise linear.
Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

Alexandrov Problem

We now focus on u. Fix finite P, and vary $f: P \rightarrow \mathbb{R}$. is finite and fixed. We wish to understand the operation $f \mapsto u=f^{*}$.

$$
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho))
$$

The function u is piecewise linear.
Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

Alexandrov Problem

We now focus on u. Fix finite P, and vary $f: P \rightarrow \mathbb{R}$. is finite and fixed. We wish to understand the operation $f \mapsto u=f^{*}$.

$$
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho))
$$

The function u is piecewise linear.
Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):-\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)-\partial u^{*}(\rho) .
$$

Alexandrov Problem

We now focus on u. Fix finite P, and vary $f: P \rightarrow \mathbb{R}$. is finite and fixed. We wish to understand the operation $f \mapsto u=f^{*}$.

$$
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho))
$$

The function u is piecewise linear.
Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

Alexandrov Problem

We now focus on u. Fix finite P, and vary $f: P \rightarrow \mathbb{R}$. is finite and fixed. We wish to understand the operation $f \mapsto u=f^{*}$.

$$
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho))
$$

The function u is piecewise linear.
Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

Alexandrov Problem

We now focus on u. Fix finite P, and vary $f: P \rightarrow \mathbb{R}$. is finite and fixed. We wish to understand the operation $f \mapsto u=f^{*}$.

$$
u(x)=f^{*}(x)=\sup _{\rho \in P}(x \cdot \rho-f(\rho))
$$

The function u is piecewise linear.
Domains of the linearity of u yield a Laguerre tessellation:

$$
\mathbf{X}(f):=\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}, \quad X(\rho)=\partial u^{*}(\rho) .
$$

Alexandrov Problem

Recall that P is fixed and we only vary f. Fix a domain Ω and define $\nu: P \rightarrow[0, \infty)$, by

$$
\nu(\rho)=|X(\rho) \cap \Omega| .
$$

Alexandrov: The map $f \mapsto \nu$ is a local diffeomorphism.
If ν is known, then we can recover f (and hence u) from it.
Alexandrov Problem: How to build $\nu \mapsto u$?
We wish to formulate an optimization problem for this problem.
Solution via Optimal Transport techniques: Observe that if $\rho(x)=\nabla u(x)$ (which coincides with $\partial u(x)$ almost everywhere), then $\rho: \Omega \rightarrow \mathbb{R}^{d}$ pushes forward Lebesgue measure to the measure

$$
\mu=\sum_{\rho \in P} \nu(\rho) \delta_{\rho} .
$$

Alexandrov Problem

Recall that P is fixed and we only vary f. Fix a domain Ω and define $\nu: P \rightarrow[0, \infty)$, by

$$
\nu(\rho)=|X(\rho) \cap \Omega| .
$$

> Alexandrov: The map $f \mapsto \nu$ is a local diffeomorphism.
> If ν is known, then we can recover f (and hence u) from it.
> Alexandrov Problem: How to build $\nu \mapsto u$?
> We wish to formulate an optimization problem for this problem.
> Solution via Optimal Transport techniques: Observe that if $\rho(x)=\nabla u(x)$ (which coincides with $\partial u(x)$ almost everywhere),
> then $\rho: \Omega \rightarrow \mathbb{R}^{d}$ pushes forward Lebesgue measure to the
> measure

Alexandrov Problem

Recall that P is fixed and we only vary f. Fix a domain Ω and define $\nu: P \rightarrow[0, \infty)$, by

$$
\nu(\rho)=|X(\rho) \cap \Omega| .
$$

Alexandrov: The map $f \mapsto \nu$ is a local diffeomorphism.

```
If }\nu\mathrm{ is known, then we can recover f (and hence u) from it.
Alexandrov Problem: How to build }\nu\mapsto~\mathrm{ ? 
We wish to formulate an optimization problem for this problem.
Solution via Optimal Transport techniques: Observe that if
\rho(x)=\nablau(x) (which coincides with \partialu(x) almost everywhere),
then \rho:\Omega->\mp@subsup{\mathbb{R}}{}{d}}\mathrm{ pushes forward Lebesgue measure to the
```

measure

Alexandrov Problem

Recall that P is fixed and we only vary f. Fix a domain Ω and define $\nu: P \rightarrow[0, \infty)$, by

$$
\nu(\rho)=|X(\rho) \cap \Omega| .
$$

Alexandrov: The map $f \mapsto \nu$ is a local diffeomorphism. If ν is known, then we can recover f (and hence u) from it.
Alexandrov Problem: How to build $\nu \mapsto u$?
We wish to formulate an optimization problem for this problem.
Solution via Optimal Transport techniques: Observe that if
$\rho(x)=\nabla u(x)$ (which coincides with $\partial u(x)$ almost everywhere),
then $\rho: \Omega \rightarrow \mathbb{R}^{d}$ pushes forward Lebesgue measure to the
measure

Alexandrov Problem

Recall that P is fixed and we only vary f. Fix a domain Ω and define $\nu: P \rightarrow[0, \infty)$, by

$$
\nu(\rho)=|X(\rho) \cap \Omega| .
$$

Alexandrov: The map $f \mapsto \nu$ is a local diffeomorphism. If ν is known, then we can recover f (and hence u) from it. Alexandrov Problem: How to build $\nu \mapsto u$?
We wish to formulate an optimization problem for this problem. Solution via Optimal Transport techniques: Observe that if $\rho(x)=\nabla u(x)$ (which coincides with $\partial u(x)$ almost everywhere), then $\rho: \Omega \rightarrow \mathbb{R}^{d}$ pushes forward Lebesgue measure to the measure

Alexandrov Problem

Recall that P is fixed and we only vary f. Fix a domain Ω and define $\nu: P \rightarrow[0, \infty)$, by

$$
\nu(\rho)=|X(\rho) \cap \Omega| .
$$

Alexandrov: The map $f \mapsto \nu$ is a local diffeomorphism.
If ν is known, then we can recover f (and hence u) from it. Alexandrov Problem: How to build $\nu \mapsto u$?
We wish to formulate an optimization problem for this problem.
Solution via Optimal Transport techniques: Observe that if $\rho(x)=\nabla u(x)$ (which coincides with $\partial u(x)$ almost everywhere), then $\rho: \Omega \rightarrow \mathbb{R}^{d}$ pushes forward Lebesgue measure to the measure

$$
\mu=\sum_{\rho \in P} \nu(\rho) \delta_{\rho} .
$$

Alexandrov Problem (via 2 optimization problems)

Brenier: Given two measures λ and μ, there exists a unique (modulo a constant) convex function $u: \Omega \rightarrow \mathbb{R}$ such that $\rho=\nabla u$ pushes forward λ to μ.
Moreover ρ minimizes

Alternative formulation As in the case of u^{*}, examine the functional

The map $f \mapsto E(f)$ is convex.
Claim: $f \mapsto-\nabla E(f)$ is $f \mapsto \nu$.
The maximizing f in variational problem

Alexandrov Problem (via 2 optimization problems)

Brenier: Given two measures λ and μ, there exists a unique (modulo a constant) convex function $u: \Omega \rightarrow \mathbb{R}$ such that $\rho=\nabla u$ pushes forward λ to μ.
Moreover ρ minimizes

$$
\frac{1}{2} \int_{\Omega}|x-\rho(x)|^{2} \lambda(d x)
$$

Alternative formulation As in the case of u^{*}, examine the
functional

The map $f \mapsto E(f)$ is convex.
Claim: $f \mapsto-\nabla E(f)$ is $f \mapsto \nu$.
The maximizing f in variational problem

Alexandrov Problem (via 2 optimization problems)
Brenier: Given two measures λ and μ, there exists a unique (modulo a constant) convex function $u: \Omega \rightarrow \mathbb{R}$ such that $\rho=\nabla u$ pushes forward λ to μ.
Moreover ρ minimizes

$$
\frac{1}{2} \int_{\Omega}|x-\rho(x)|^{2} \lambda(d x)
$$

Alternative formulation As in the case of u^{*}, examine the functional

$$
E(f)=\int_{\Omega} f^{*}(x) \lambda(d x)
$$

The map $f \mapsto E(f)$ is convex.
Claim: $f \mapsto-\nabla E(f)$ is $f \mapsto \nu$.
The maximizing f in variational problem

Alexandrov Problem (via 2 optimization problems)
Brenier: Given two measures λ and μ, there exists a unique (modulo a constant) convex function $u: \Omega \rightarrow \mathbb{R}$ such that $\rho=\nabla u$ pushes forward λ to μ.
Moreover ρ minimizes

$$
\frac{1}{2} \int_{\Omega}|x-\rho(x)|^{2} \lambda(d x)
$$

Alternative formulation As in the case of u^{*}, examine the functional

$$
E(f)=\int_{\Omega} f^{*}(x) \lambda(d x)
$$

The map $f \mapsto E(f)$ is convex.
The maximizing f in variational problem

Alexandrov Problem (via 2 optimization problems)
Brenier: Given two measures λ and μ, there exists a unique (modulo a constant) convex function $u: \Omega \rightarrow \mathbb{R}$ such that $\rho=\nabla u$ pushes forward λ to μ.
Moreover ρ minimizes

$$
\frac{1}{2} \int_{\Omega}|x-\rho(x)|^{2} \lambda(d x)
$$

Alternative formulation As in the case of u^{*}, examine the functional

$$
E(f)=\int_{\Omega} f^{*}(x) \lambda(d x)
$$

The map $f \mapsto E(f)$ is convex.
Claim: $f \mapsto-\nabla E(f)$ is $f \mapsto \nu$.
The maximizing f in variational problem

Alexandrov Problem (via 2 optimization problems)

Brenier: Given two measures λ and μ, there exists a unique (modulo a constant) convex function $u: \Omega \rightarrow \mathbb{R}$ such that $\rho=\nabla u$ pushes forward λ to μ.
Moreover ρ minimizes

$$
\frac{1}{2} \int_{\Omega}|x-\rho(x)|^{2} \lambda(d x)
$$

Alternative formulation As in the case of u^{*}, examine the functional

$$
E(f)=\int_{\Omega} f^{*}(x) \lambda(d x)
$$

The map $f \mapsto E(f)$ is convex.
Claim: $f \mapsto-\nabla E(f)$ is $f \mapsto \nu$.
The maximizing f in variational problem

$$
E^{*}(-\nu)=\sup _{f}(-\nu \cdot f-E(f))
$$

yields f in terms of ν.

