Kinetic Description of Hamilton-Jacobi PDE II

Fraydoun Rezakhanlou

Department of Mathematics
UC Berkeley
PDE/Probability Student Seminar

Outline

Motivation
Convex Duality
Tessellation and Triangulation
Second Polytope
Minkowski-Alexandrov Problem and Optimal Transport
Hamilton-Jacobi Dynamics
Poisson-Laguerre Point Process

Outline

Motivation

Convex Duality
Tessellation and Triangulation
Second Polytope
Minkowski-Alexandrov Problem and Optimal Transport
Hamilton-Jacobi Dynamics
Poisson-Laguerre Point Process

Outline

Motivation
 Convex Duality

Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Poisson-Laguerre Point Process

Outline

Motivation

Convex Duality

Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Poisson-Laguerre Point Process

Outline

Motivation
 Convex Duality
 Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Poisson-Laguerre Point Process

Outline

```
Motivation
Convex Duality
Tessellation and Triangulation
Second Polytope
```

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Poisson-Laguerre Point Process

Outline

```
Motivation
Convex Duality
Tessellation and Triangulation
Second Polytope
```

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Poisson-Laguerre Point Process

Outline

```
Motivation
Convex Duality
Tessellation and Triangulation
Second Polytope
Minkowski-Alexandrov Problem and Optimal Transport
Hamilton-Jacobi Dynamics
```

Poisson-Laguerre Point Process

Voronoi Tessellation

Voronoi tessellations are used to model/study various phenomena in nature:

Voronoi Tessellation
Given n distinct points $\rho_{1}, \ldots, \rho_{n}$ (in general position), consider the optimization problem

$$
w(x)=\min _{i}\left|x-\rho_{i}\right|
$$

For each i, set

$$
X\left(\rho_{i}\right)=\left\{x: w(x)=\left|x-\rho_{i}\right|\right\}
$$

Voronoi Tessellation

Given n distinct points $\rho_{1}, \ldots, \rho_{n}$ (in general position), consider the optimization problem

$$
w(x)=\min _{i}\left|x-\rho_{i}\right| .
$$

For each i, set

$$
X\left(\rho_{i}\right)=\left\{x: W(x)=\left|x-\rho_{i}\right|\right\}
$$

Voronoi Tessellation

Given n distinct points $\rho_{1}, \ldots, \rho_{n}$ (in general position), consider the optimization problem

$$
w(x)=\min _{i}\left|x-\rho_{i}\right| .
$$

For each i, set

$$
X\left(\rho_{i}\right)=\left\{x: w(x)=\left|x-\rho_{i}\right|\right\} .
$$

Voronoi Tessellation (alternative formulation)

For $f(\rho)=|\rho|^{2} / 2$, consider

$$
u(x)=\sup \left(x \cdot \rho_{i}-f\left(\rho_{i}\right)\right)
$$

$$
X\left(\rho_{i}\right)=\left\{x: u(x)=x \cdot \rho_{i}-f\left(\rho_{i}\right)\right\}
$$

Set $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}, h(\rho)=f(\rho)+\infty \Uparrow 1(\rho \notin P)$, then $u=h^{*}$.

Voronoi Tessellation (alternative formulation)

For $f(\rho)=|\rho|^{2} / 2$, consider

$$
u(x)=\sup \left(x \cdot \rho_{i}-f\left(\rho_{i}\right)\right)
$$

Set $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}, h(\rho)=f(\rho)+\infty \neq(\rho \notin P)$, then $u=h^{*}$

Voronoi Tessellation (alternative formulation)

For $f(\rho)=|\rho|^{2} / 2$, consider

$$
u(x)=\sup _{i}\left(x \cdot \rho_{i}-f\left(\rho_{i}\right)\right)=\frac{1}{2}|x|^{2}-\frac{1}{2} w(x)^{2} .
$$

Set $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}, h(\rho)=f(\rho)+\infty+1(\rho \notin P)$, then $u=h^{*}$

Voronoi Tessellation (alternative formulation)

For $f(\rho)=|\rho|^{2} / 2$, consider

$$
\begin{gathered}
u(x)=\sup _{i}\left(x \cdot \rho_{i}-f\left(\rho_{i}\right)\right)=\frac{1}{2}|x|^{2}-\frac{1}{2} w(x)^{2} . \\
X\left(\rho_{i}\right)=\left\{x: u(x)=x \cdot \rho_{i}-f\left(\rho_{i}\right)\right\} .
\end{gathered}
$$

Set $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}, h(\rho)=f(\rho)+\infty+1(\rho \notin P)$, then $u=h^{*}$.

Voronoi Tessellation (alternative formulation)

For $f(\rho)=|\rho|^{2} / 2$, consider

$$
\begin{gathered}
u(x)=\sup _{i}\left(x \cdot \rho_{i}-f\left(\rho_{i}\right)\right)=\frac{1}{2}|x|^{2}-\frac{1}{2} w(x)^{2} . \\
X\left(\rho_{i}\right)=\left\{x: u(x)=x \cdot \rho_{i}-f\left(\rho_{i}\right)\right\} .
\end{gathered}
$$

Set $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$,

Voronoi Tessellation (alternative formulation)

For $f(\rho)=|\rho|^{2} / 2$, consider

$$
\begin{gathered}
u(x)=\sup _{i}\left(x \cdot \rho_{i}-f\left(\rho_{i}\right)\right)=\frac{1}{2}|x|^{2}-\frac{1}{2} w(x)^{2} . \\
X\left(\rho_{i}\right)=\left\{x: u(x)=x \cdot \rho_{i}-f\left(\rho_{i}\right)\right\} .
\end{gathered}
$$

Set $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}, h(\rho)=f(\rho)+\infty \mathbb{H}(\rho \notin P)$,

Voronoi Tessellation (alternative formulation)

For $f(\rho)=|\rho|^{2} / 2$, consider

$$
\begin{gathered}
u(x)=\sup _{i}\left(x \cdot \rho_{i}-f\left(\rho_{i}\right)\right)=\frac{1}{2}|x|^{2}-\frac{1}{2} w(x)^{2} . \\
X\left(\rho_{i}\right)=\left\{x: u(x)=x \cdot \rho_{i}-f\left(\rho_{i}\right)\right\} .
\end{gathered}
$$

Set $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}, h(\rho)=f(\rho)+\infty \mathbb{H}(\rho \notin P)$, then $u=h^{*}$.

Voronoi Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and no set of $d+2$ points in P lie on the boundary of a ball whose interior does not intersect P.
5. For generic P, we have a graph of degree $d+1$; Its dual is a triangulation (Delaunay triangulation).

Voronoi Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.
> 1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
> 2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
> 3. Each $X(\rho)$ is a polyhedron/polytope.
> 4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and no set of $d+2$ points in P lie on the boundary of a ball whose interior does not intersect P.
> 5. For generic P, we have a graph of degree $d+1$; Its dual is a triangulation (Delaunay triangulation).

Voronoi Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. Each $X(\rho)$ is a polyhedron/polytope.
3. We say P is generic (points in P are in general position) if no
k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$),
and no set of $d+2$ points in P lie on the boundary of a ball
whose interior does not intersect P.
4. For generic P, we have a graph of degree $d+1$;

Its dual is a triangulation (Delaunay triangulation).

Voronoi Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no
k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots$
and no set of $d+2$ points in P lie on the boundary of a ball
whose interior does not intersect P.
5. For generic P, we have a graph of degree $d+1$

Its dual is a triangulation (Delaunay triangulation)

Voronoi Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
and no set of $d+2$ points in P lie on the boundary of a ball
whose interior does not intersect P.
4. For generic P, we have a graph of degree $d+1$;

Its dual is a triangulation (Delaunay triangulation)

Voronoi Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$),
whose interior does not intersect P.
5. For generic P, we have a graph of degree $d+1$;

Its dual is a triangulation (Delaunay triangulation).

Voronoi Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and no set of $d+2$ points in P lie on the boundary of a ball whose interior does not intersect P.

Voronoi Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and no set of $d+2$ points in P lie on the boundary of a ball whose interior does not intersect P.
5. For generic P, we have a graph of degree $d+1$;

Voronoi Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and no set of $d+2$ points in P lie on the boundary of a ball whose interior does not intersect P.
5. For generic P, we have a graph of degree $d+1$; Its dual is a triangulation (Delaunay triangulation).

Delaunay triangulation

Laguerre Tessellation

Given a set n distinct points $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$, and $c: P \rightarrow \mathbb{R}$, consider the optimization problem

$$
w^{\prime}(x)=\min _{\rho \in P}\left\{\mid x-\rho^{\prime 2} / 2-c(p)\right\} .
$$

(When $c=0$, we are back to Voronoi scenario) For each ρ, set

$$
x(\rho)=\left\{x: w(x)=|x-\rho|^{2} / 2-c(\rho)\right\} .
$$

Observe that $f(\rho)=|\rho|^{2} / 2-c(\rho)$,

$$
\begin{aligned}
u(x) & :=\sup _{\rho \in P}(x \cdot \rho-f(\rho))=\frac{1}{2}|x|^{2}- \\
& X(\rho)=\{x: u(x)=x \cdot \rho-f(\rho)\} .
\end{aligned}
$$

$h(\rho)=f(\rho)+\infty \mathbb{1}(\rho \notin P)$, then $u=h^{*}$.

Laguerre Tessellation

Given a set n distinct points $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$, and $c: P \rightarrow \mathbb{R}$, consider the optimization problem

$$
w(x)=\min _{\rho \in P}\left\{|x-\rho|^{2} / 2-c(\rho)\right\} .
$$

(When $c=0$, we are back to Voronoi scenario) For each ρ, set

$$
X(\rho)=\left\{x: w(x)=|x-\rho|^{2} / 2-c(\rho)\right\}
$$

Observe that $f(\rho)=|\rho|^{2} / 2-c(\rho)$,

$h(\rho)=f(\rho)+\infty \mathbb{1}(\rho \notin P)$, then $u=h^{*}$.

Laguerre Tessellation

Given a set n distinct points $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$, and $c: P \rightarrow \mathbb{R}$, consider the optimization problem

$$
w(x)=\min _{\rho \in P}\left\{|x-\rho|^{2} / 2-c(\rho)\right\} .
$$

(When $c=0$, we are back to Voronoi scenario)

$$
X(\rho)=\left\{x: w(x)=|x-\rho|^{2} / 2-c(\rho)\right\}
$$

Observe that $f(\rho)=|\rho|^{2} / 2-c(\rho)$,

$h(\rho)=f(\rho)+\infty \mathrm{H}(\rho \notin P)$, then $u=h^{*}$.

Laguerre Tessellation

Given a set n distinct points $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$, and $c: P \rightarrow \mathbb{R}$, consider the optimization problem

$$
w(x)=\min _{\rho \in P}\left\{|x-\rho|^{2} / 2-c(\rho)\right\} .
$$

(When $\boldsymbol{c}=0$, we are back to Voronoi scenario) For each ρ, set

$$
X(\rho)=\left\{x: w(x)=|x-\rho|^{2} / 2-c(\rho)\right\}
$$

Observe that $f(\rho)=|\rho|^{2} / 2-c(\rho)$,

$h(\rho)=f(\rho)+\infty \mathbb{1}(\rho \notin P)$, then $u=h^{*}$.

Laguerre Tessellation

Given a set n distinct points $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$, and $c: P \rightarrow \mathbb{R}$, consider the optimization problem

$$
w(x)=\min _{\rho \in P}\left\{|x-\rho|^{2} / 2-c(\rho)\right\} .
$$

(When $\boldsymbol{c}=0$, we are back to Voronoi scenario) For each ρ, set

$$
X(\rho)=\left\{x: w(x)=|x-\rho|^{2} / 2-c(\rho)\right\}
$$

Observe that $f(\rho)=|\rho|^{2} / 2-c(\rho)$,

Laguerre Tessellation

Given a set n distinct points $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$, and $c: P \rightarrow \mathbb{R}$, consider the optimization problem

$$
w(x)=\min _{\rho \in P}\left\{|x-\rho|^{2} / 2-c(\rho)\right\} .
$$

(When $\boldsymbol{c}=0$, we are back to Voronoi scenario) For each ρ, set

$$
X(\rho)=\left\{x: w(x)=|x-\rho|^{2} / 2-c(\rho)\right\}
$$

Observe that $f(\rho)=|\rho|^{2} / 2-c(\rho)$,

$$
u(x):=\sup _{\rho \in P}(x \cdot \rho-f(\rho))
$$

$h(\rho)=f(\rho)+\infty \mathbb{1}(\rho \notin P)$, then $u=h^{*}$.

Laguerre Tessellation

Given a set n distinct points $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$, and $c: P \rightarrow \mathbb{R}$, consider the optimization problem

$$
w(x)=\min _{\rho \in P}\left\{|x-\rho|^{2} / 2-c(\rho)\right\} .
$$

(When $\boldsymbol{c}=0$, we are back to Voronoi scenario) For each ρ, set

$$
X(\rho)=\left\{x: w(x)=|x-\rho|^{2} / 2-c(\rho)\right\}
$$

Observe that $f(\rho)=|\rho|^{2} / 2-c(\rho)$,

$$
\begin{gathered}
u(x):=\sup _{\rho \in P}(x \cdot \rho-f(\rho))=\frac{1}{2}|x|^{2}-w(x) . \\
X(\rho)=\{x: u(x)=x \cdot \rho-f(\rho)\}
\end{gathered}
$$

$h(\rho)=f(\rho)+\infty+1(\rho \notin P)$, then $u=h^{*}$.

Laguerre Tessellation

Given a set n distinct points $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$, and $c: P \rightarrow \mathbb{R}$, consider the optimization problem

$$
w(x)=\min _{\rho \in P}\left\{|x-\rho|^{2} / 2-c(\rho)\right\} .
$$

(When $\boldsymbol{c}=0$, we are back to Voronoi scenario) For each ρ, set

$$
X(\rho)=\left\{x: w(x)=|x-\rho|^{2} / 2-c(\rho)\right\}
$$

Observe that $f(\rho)=|\rho|^{2} / 2-c(\rho)$,

$$
\begin{gathered}
u(x):=\sup _{\rho \in P}(x \cdot \rho-f(\rho))=\frac{1}{2}|x|^{2}-w(x) . \\
X(\rho)=\{x: u(x)=x \cdot \rho-f(\rho)\} .
\end{gathered}
$$

$h(\rho)=f(\rho)+\infty \mathbb{1}(\rho \notin P)$,

Laguerre Tessellation

Given a set n distinct points $P=\left\{\rho_{1}, \ldots, \rho_{n}\right\}$, and $c: P \rightarrow \mathbb{R}$, consider the optimization problem

$$
w(x)=\min _{\rho \in P}\left\{|x-\rho|^{2} / 2-c(\rho)\right\} .
$$

(When $\boldsymbol{c}=0$, we are back to Voronoi scenario) For each ρ, set

$$
X(\rho)=\left\{x: w(x)=|x-\rho|^{2} / 2-c(\rho)\right\}
$$

Observe that $f(\rho)=|\rho|^{2} / 2-c(\rho)$,

$$
\begin{gathered}
u(x):=\sup _{\rho \in P}(x \cdot \rho-f(\rho))=\frac{1}{2}|x|^{2}-w(x) . \\
X(\rho)=\{x: u(x)=x \cdot \rho-f(\rho)\} .
\end{gathered}
$$

$h(\rho)=f(\rho)+\infty \mathbb{1}(\rho \notin P)$, then $u=h^{*}$.

Laguerre Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and for any set of $d+2$ points $m_{1}, \ldots, m_{d+1} \in P$, we have

$$
\left\{x: x \cdot\left(m_{i}-m_{j}\right)=f\left(m_{i}\right)-f\left(m_{j}\right), \text { for all } i, j\right\}=\emptyset
$$

5. For generic P, we have a graph of degree $d+1$;

Its dual is a triangulation (weighted Delaunay triangulation).
6. $X(\rho)$ could be empty for some ρ if P is not minimal
(can be replaced with a proper subset of P in the definition).
This has to do that f may not be strictly convex.
7. Unless Voronoi, we may not have $\rho \in X(\rho)$.

Laguerre Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and for any set of $d+2$ points $m_{1}, \ldots, m_{d+1} \in P$, we have

$$
\left\{x: x \cdot\left(m_{i}-m_{j}\right)=f\left(m_{i}\right)-f\left(m_{j}\right), \text { for all } i, j\right\}=\emptyset .
$$

5. For generic P, we have a graph of degree $d+1$; Its dual is a triangulation (weighted Delaunay triangulation).
6. $X(\rho)$ could be empty for some ρ if P is not minimal (can be replaced with a proper subset of P in the definition).
This has to do that f may not be strictly convex.
7. Unless Voronoi, we may not have $\rho \in X(\rho)$.

Laguerre Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no
k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$),
and for any set of $d+2$ points $m_{1}, \ldots, m_{d+1} \in P$, we have

$$
\left\{x: x \cdot\left(m_{i}-m_{j}\right)=f\left(m_{i}\right)-f\left(m_{j}\right), \text { for all } i, j\right\}=\emptyset .
$$

5. For generic P, we have a graph of degree $d+1$;

Its dual is a triangulation (weighted Delaunay triangulation)
6. $X(\rho)$ could be empty for some ρ if P is not minimal
(can be replaced with a proper subset of P in the definition).
This has to do that f may not be strictly convex.
7. Unless Voronoi, we may not have $\rho \in X(\rho)$.

Laguerre Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.

Laguerre Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.

Laguerre Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$),

5. For generic P, we have a graph of degree $d+1$;
Its dual is a triangulation (weighted Delaunay triangulation).
6. $X(\rho)$ could be empty for some ρ if P is not minimal
(can be replaced with a proper subset of P in the definition).
This has to do that f may not be strictly convex.
7. Unless Voronoi, we may not have $\rho \in X(\rho)$.

Laguerre Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and for any set of $d+2$ points $m_{1}, \ldots, m_{d+1} \in P$, we have

$$
\left\{x: x \cdot\left(m_{i}-m_{j}\right)=f\left(m_{i}\right)-f\left(m_{j}\right), \text { for all } i, j\right\}=\emptyset .
$$

5. For generic P, we have a graph of degree $d+1$;
6. $X(\rho)$ could be empty for some ρ if P is not minimal
\square
\square

Laguerre Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and for any set of $d+2$ points $m_{1}, \ldots, m_{d+1} \in P$, we have

$$
\left\{x: x \cdot\left(m_{i}-m_{j}\right)=f\left(m_{i}\right)-f\left(m_{j}\right), \text { for all } i, j\right\}=\emptyset .
$$

5. For generic P, we have a graph of degree $d+1$;
6. $X(\rho)$ could be empty for some ρ if P is not minimal
(can be replaced with a proper subset of P in the definition).
\square

Laguerre Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and for any set of $d+2$ points $m_{1}, \ldots, m_{d+1} \in P$, we have

$$
\left\{x: x \cdot\left(m_{i}-m_{j}\right)=f\left(m_{i}\right)-f\left(m_{j}\right), \text { for all } i, j\right\}=\emptyset .
$$

5. For generic P, we have a graph of degree $d+1$; Its dual is a triangulation (weighted Delaunay triangulation).
6. $X(\rho)$ could be empty for some ρ if P is not minimal
\square
\square
7. Unless Voronoi, we may not have

Laguerre Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and for any set of $d+2$ points $m_{1}, \ldots, m_{d+1} \in P$, we have

$$
\left\{x: x \cdot\left(m_{i}-m_{j}\right)=f\left(m_{i}\right)-f\left(m_{j}\right), \text { for all } i, j\right\}=\emptyset .
$$

5. For generic P, we have a graph of degree $d+1$; Its dual is a triangulation (weighted Delaunay triangulation).
6. $X(\rho)$ could be empty for some ρ if P is not minimal (can be replaced with a proper subset of P in the definition).
7. Unless Voronoi, we may not have

Laguerre Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and for any set of $d+2$ points $m_{1}, \ldots, m_{d+1} \in P$, we have

$$
\left\{x: x \cdot\left(m_{i}-m_{j}\right)=f\left(m_{i}\right)-f\left(m_{j}\right), \text { for all } i, j\right\}=\emptyset .
$$

5. For generic P, we have a graph of degree $d+1$; Its dual is a triangulation (weighted Delaunay triangulation).
6. $X(\rho)$ could be empty for some ρ if P is not minimal (can be replaced with a proper subset of P in the definition).
This has to do that f may not be strictly convex.

Laguerre Tessellation (Some Remarks)

Write \hat{P} for the convex hull of P.

1. If ρ is an extreme point of \hat{P}, then $X(\rho)$ is unbounded.
2. If ρ is not an extreme point of \hat{P}, then $X(\rho)$ is bounded.
3. Each $X(\rho)$ is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no k points of P lie on a $k-1$ affine set (for $k \in\{2, \ldots, d+1\}$), and for any set of $d+2$ points $m_{1}, \ldots, m_{d+1} \in P$, we have

$$
\left\{x: x \cdot\left(m_{i}-m_{j}\right)=f\left(m_{i}\right)-f\left(m_{j}\right), \text { for all } i, j\right\}=\emptyset .
$$

5. For generic P, we have a graph of degree $d+1$; Its dual is a triangulation (weighted Delaunay triangulation).
6. $X(\rho)$ could be empty for some ρ if P is not minimal
(can be replaced with a proper subset of P in the definition).
This has to do that f may not be strictly convex.
7. Unless Voronoi, we may not have $\rho \in X(\rho)$.

Dual Tessellation=Legendre Transform

Given a set P and a map $f: P \rightarrow \mathbb{R}$, we define a (marked) tessellation

$$
\{(\rho, X(\rho)): \rho \in P\}
$$

This is nothing other than

$$
\left\{\left(\rho, \partial u^{*}(\rho)\right): \rho \in P\right\} .
$$

In fact $u^{*}=f^{0}$ is the convex hull of f. On $X(\rho)$, we have $u(x)=x \cdot \rho-f(\rho)=x \cdot \rho-u^{*}(\rho)$. It is more convenient to consider

$$
\left\{(\rho, X(\rho)): \rho \in \mathbb{R}^{d}\right\}
$$

where $X(\rho):=\partial u^{*}(\rho)$. Assume for simplicity that P is discrete $\rho \notin P$ (important examples of non-discrete P will be discussed later). Then

$$
\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}=\{C: C \text { is a face of } X(m) \text { for some } m \in P\}
$$

Dual Tessellation=Legendre Transform

Given a set P and a map $f: P \rightarrow \mathbb{R}$, we define a (marked) tessellation

$$
\{(\rho, X(\rho)): \rho \in P\} .
$$

This is nothing other than

In fact $u^{*}=f^{0}$ is the convex hull of f. On $X(\rho)$, we have
$u(x)=x \cdot \rho-f(\rho)=x \cdot \rho-u^{*}(\rho)$. It is more convenient to consider

$$
\left\{(\rho, X(\rho)): \rho \in \mathbb{R}^{d}\right\} .
$$

where $X(\rho):=\partial u^{*}(\rho)$. Assume for simplicity that P is discrete $\rho \notin P$ (important examples of non-discrete P will be discussed later). Then

$$
\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}=\{C: C \text { is a face of } X(m) \text { for some } m \in P\}
$$

Dual Tessellation=Legendre Transform

Given a set P and a map $f: P \rightarrow \mathbb{R}$, we define a (marked) tessellation

$$
\{(\rho, X(\rho)): \rho \in P\}
$$

This is nothing other than

$$
\left\{\left(\rho, \partial u^{*}(\rho)\right): \rho \in P\right\}
$$

In fact $u^{*}=f^{\circ}$ is the convex hull of f. On $X(\rho)$, we have $u(x)=x \cdot \rho-f(\rho)=x \cdot \rho-u^{*}(\rho)$. It is more convenient to consider

$$
\left\{(\rho, X(\rho)): \rho \in \mathbb{R}^{d}\right\} .
$$

where $X(\rho):=\partial u^{*}(\rho)$. Assume for simplicity that P is discrete $\rho \notin P$ (important examples of non-discrete P will be discussed later). Then

$$
\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}=\{C: C \text { is a face of } X(m) \text { for some } m \in P\}
$$

Dual Tessellation=Legendre Transform

Given a set P and a map $f: P \rightarrow \mathbb{R}$, we define a (marked) tessellation

$$
\{(\rho, X(\rho)): \rho \in P\} .
$$

This is nothing other than

$$
\left\{\left(\rho, \partial u^{*}(\rho)\right): \rho \in P\right\} .
$$

In fact $u^{*}=f^{\circ}$ is the convex hull of f. On $X(\rho)$, we have
consider

$$
\left\{(\rho, X(\rho)): \rho \in \mathbb{R}^{d}\right\} .
$$

where $X(\rho):=\partial u^{*}(\rho)$. Assume for simplicity that P is discrete $\rho \notin P$ (important examples of non-discrete P will be discussed later). Then

$$
\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}=\{C: C \text { is a face of } X(m) \text { for some } m \in P\}
$$

Dual Tessellation=Legendre Transform

Given a set P and a map $f: P \rightarrow \mathbb{R}$, we define a (marked) tessellation

$$
\{(\rho, X(\rho)): \rho \in P\}
$$

This is nothing other than

$$
\left\{\left(\rho, \partial u^{*}(\rho)\right): \rho \in P\right\}
$$

In fact $u^{*}=f^{0}$ is the convex hull of f. On $X(\rho)$, we have $u(x)=x \cdot \rho-f(\rho)=x \cdot \rho-u^{*}(\rho)$.

Dual Tessellation=Legendre Transform

Given a set P and a map $f: P \rightarrow \mathbb{R}$, we define a (marked) tessellation

$$
\{(\rho, X(\rho)): \rho \in P\}
$$

This is nothing other than

$$
\left\{\left(\rho, \partial u^{*}(\rho)\right): \rho \in P\right\}
$$

In fact $u^{*}=f^{0}$ is the convex hull of f. On $X(\rho)$, we have $u(x)=x \cdot \rho-f(\rho)=x \cdot \rho-u^{*}(\rho)$. It is more convenient to consider

$$
\left\{(\rho, X(\rho)): \rho \in \mathbb{R}^{d}\right\}
$$

where $X(\rho):=\partial u^{*}(\rho)$.
Assume for simplicity that P is discrete
$\rho \notin P$ (important examples of non-discrete P will be discussed
$\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}=\{C: C$ is a face of $X(m)$ for some $m \in P\}$

Dual Tessellation=Legendre Transform

Given a set P and a map $f: P \rightarrow \mathbb{R}$, we define a (marked) tessellation

$$
\{(\rho, X(\rho)): \rho \in P\}
$$

This is nothing other than

$$
\left\{\left(\rho, \partial u^{*}(\rho)\right): \rho \in P\right\}
$$

In fact $u^{*}=f^{0}$ is the convex hull of f. On $X(\rho)$, we have $u(x)=x \cdot \rho-f(\rho)=x \cdot \rho-u^{*}(\rho)$. It is more convenient to consider

$$
\left\{(\rho, X(\rho)): \rho \in \mathbb{R}^{d}\right\}
$$

where $X(\rho):=\partial u^{*}(\rho)$. Assume for simplicity that P is discrete $\rho \notin P$ (important examples of non-discrete P will be discussed later).
$\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}=\{C: C$ is a face of $X(m)$ for some $m \in P\}$

Dual Tessellation=Legendre Transform

Given a set P and a map $f: P \rightarrow \mathbb{R}$, we define a (marked) tessellation

$$
\{(\rho, X(\rho)): \rho \in P\}
$$

This is nothing other than

$$
\left\{\left(\rho, \partial u^{*}(\rho)\right): \rho \in P\right\}
$$

In fact $u^{*}=f^{0}$ is the convex hull of f. On $X(\rho)$, we have $u(x)=x \cdot \rho-f(\rho)=x \cdot \rho-u^{*}(\rho)$. It is more convenient to consider

$$
\left\{(\rho, X(\rho)): \rho \in \mathbb{R}^{d}\right\}
$$

where $X(\rho):=\partial u^{*}(\rho)$. Assume for simplicity that P is discrete $\rho \notin P$ (important examples of non-discrete P will be discussed later). Then
$\left\{X(\rho): \rho \in \mathbb{R}^{d}\right\}=\{C: C$ is a face of $X(m)$ for some $m \in P\}$

Dual Tessellation=Legendre Transform

How about

$$
\left\{(x, P(x)): x \in \mathbb{R}^{d}\right\},
$$

for $P(x)=\partial u(x)$? What we have is simply the Laguerre tessellation associated with $u^{*}=f^{0}$. This is the dual tessellation. If f is generic, then cells of this dual tessellation are simplices (triangles when $d=2$). They are also dual in graph theoretical sense. Write X for the set of vertices in the original tessellation:

$$
X=\left\{X(\rho): \rho \in \mathbb{R}^{d}, \sharp X(\rho)=1\right\} .
$$

Then

$$
u^{*}(\rho)=\sup _{x}(x \cdot \rho-u(x))=\sup _{x \in X}(x \cdot \rho-u(x)) .
$$

Summary:

1. Start from a discrete P, and $f: P \rightarrow \mathbb{R}$. Use $u=f^{*}$ to define a tessellation $\{X(\rho): \rho \in P\}$.
2. The map $u: X \rightarrow \mathbb{R}$ and u^{*} in the same way yields the dual tessellation.

Dual Tessellation=Legendre Transform

How about

$$
\left\{(x, P(x)): x \in \mathbb{R}^{d}\right\},
$$

for $P(x)=\partial u(x)$? What we have is simply the Laguerre
tessellation associated with $u^{*}=f^{0}$. This is the dual
tessellation. If f is generic, then cells of this dual tessellation are simplices (triangles when $d=2$). They are also dual in graph theoretical sense. Write X for the set of vertices in the original tessellation:

$$
X=\left\{X(\rho): \rho \in \mathbb{R}^{d}, \sharp X(\rho)=1\right\} .
$$

Then

$$
u^{*}(\rho)=\sup _{x}(x \cdot \rho-u(x))=\sup _{x \in X}(x \cdot \rho-u(x)) .
$$

Summary:

1. Start from a discrete P, and $f: P \rightarrow \mathbb{R}$. Use $u=f^{*}$ to define a tessellation $\{X(\rho): \rho \in P\}$.
2. The map $u: X \rightarrow \mathbb{R}$ and u^{*} in the same way yields the dual tessellation.

Dual Tessellation=Legendre Transform

How about

$$
\left\{(x, P(x)): x \in \mathbb{R}^{d}\right\}
$$

for $P(x)=\partial u(x)$? What we have is simply the Laguerre tessellation associated with $u^{*}=f^{0}$.
tessellation. If f is generic, then cells of this dual tessellation are simplices (triangles when $d=2$). They are also dual in graph theoretical sense. Write X for the set of vertices in the original tessellation:

Then

Summary:

1. Start from a discrete P, and $f: P \rightarrow \mathbb{R}$. Use $u=f^{*}$ to define a tessellation $\{X(\rho): \rho \in P\}$.
2. The map $u: X \rightarrow \mathbb{R}$ and u^{*} in the same way yields the dual tessellation.

Dual Tessellation=Legendre Transform

How about

$$
\left\{(x, P(x)): x \in \mathbb{R}^{d}\right\}
$$

for $P(x)=\partial u(x)$? What we have is simply the Laguerre tessellation associated with $u^{*}=f^{0}$. This is the dual tessellation. If f is generic, then cells of this dual tessellation are simplices (triangles when $d=2$). They are also dual in graph theoretical sense. Write X for the set of vertices in the original tessellation:

Then

Summary:

1. Start from a discrete P, and $f: P \rightarrow \mathbb{R}$. Use $u=f^{*}$ to define a tessellation $\{X(\rho): \rho \in P\}$. 2. The map $u: X \rightarrow \mathbb{R}$ and u^{*} in the same way yields the dual tessellation.

Dual Tessellation=Legendre Transform

How about

$$
\left\{(x, P(x)): x \in \mathbb{R}^{d}\right\}
$$

for $P(x)=\partial u(x)$? What we have is simply the Laguerre tessellation associated with $u^{*}=f^{0}$. This is the dual tessellation. If f is generic, then cells of this dual tessellation are simplices (triangles when $d=2$).

tessellation.

Dual Tessellation=Legendre Transform

How about

$$
\left\{(x, P(x)): x \in \mathbb{R}^{d}\right\}
$$

for $P(x)=\partial u(x)$? What we have is simply the Laguerre tessellation associated with $u^{*}=f^{0}$. This is the dual tessellation. If f is generic, then cells of this dual tessellation are simplices (triangles when $d=2$). They are also dual in graph theoretical sense.
original tessellation:

Then

Summary:

1. Start from a discrete P, and $f: P \rightarrow \mathbb{R}$.
\square
2. The map $u: X \rightarrow \mathbb{R}$ and u^{*} in the same way yields the dual

Dual Tessellation=Legendre Transform

How about

$$
\left\{(x, P(x)): x \in \mathbb{R}^{d}\right\},
$$

for $P(x)=\partial u(x)$? What we have is simply the Laguerre tessellation associated with $u^{*}=f^{0}$. This is the dual tessellation. If f is generic, then cells of this dual tessellation are simplices (triangles when $d=2$). They are also dual in graph theoretical sense. Write X for the set of vertices in the original tessellation:

Then

Summary:

1. Start from a discrete P, and $f: P \rightarrow \mathbb{R}$.

Dual Tessellation=Legendre Transform

How about

$$
\left\{(x, P(x)): x \in \mathbb{R}^{d}\right\},
$$

for $P(x)=\partial u(x)$? What we have is simply the Laguerre tessellation associated with $u^{*}=f^{0}$. This is the dual tessellation. If f is generic, then cells of this dual tessellation are simplices (triangles when $d=2$). They are also dual in graph theoretical sense. Write X for the set of vertices in the original tessellation:

$$
X=\left\{X(\rho): \rho \in \mathbb{R}^{d}, \sharp X(\rho)=1\right\} .
$$

Then

Summary:

1. Start from a discrete P, and $f: P \rightarrow \mathbb{R}$.

Dual Tessellation=Legendre Transform

How about

$$
\left\{(x, P(x)): x \in \mathbb{R}^{d}\right\},
$$

for $P(x)=\partial u(x)$? What we have is simply the Laguerre tessellation associated with $u^{*}=f^{0}$. This is the dual tessellation. If f is generic, then cells of this dual tessellation are simplices (triangles when $d=2$). They are also dual in graph theoretical sense. Write X for the set of vertices in the original tessellation:

$$
X=\left\{X(\rho): \rho \in \mathbb{R}^{d}, \sharp X(\rho)=1\right\} .
$$

Then

$$
u^{*}(\rho)=\sup _{x}(x \cdot \rho-u(x))=\sup _{x \in X}(x \cdot \rho-u(x)) .
$$

Summary:

1. Start from a discrete P, and $f: P \rightarrow \mathbb{R}$.

Dual Tessellation=Legendre Transform

How about

$$
\left\{(x, P(x)): x \in \mathbb{R}^{d}\right\},
$$

for $P(x)=\partial u(x)$? What we have is simply the Laguerre tessellation associated with $u^{*}=f^{0}$. This is the dual tessellation. If f is generic, then cells of this dual tessellation are simplices (triangles when $d=2$). They are also dual in graph theoretical sense. Write X for the set of vertices in the original tessellation:

$$
X=\left\{X(\rho): \rho \in \mathbb{R}^{d}, \sharp X(\rho)=1\right\} .
$$

Then

$$
u^{*}(\rho)=\sup _{x}(x \cdot \rho-u(x))=\sup _{x \in X}(x \cdot \rho-u(x)) .
$$

Summary:

1. Start from a discrete P, and $f: P \rightarrow \mathbb{R}$.

Dual Tessellation=Legendre Transform

How about

$$
\left\{(x, P(x)): x \in \mathbb{R}^{d}\right\},
$$

for $P(x)=\partial u(x)$? What we have is simply the Laguerre tessellation associated with $u^{*}=f^{0}$. This is the dual tessellation. If f is generic, then cells of this dual tessellation are simplices (triangles when $d=2$). They are also dual in graph theoretical sense. Write X for the set of vertices in the original tessellation:

$$
X=\left\{X(\rho): \rho \in \mathbb{R}^{d}, \sharp X(\rho)=1\right\} .
$$

Then

$$
u^{*}(\rho)=\sup _{x}(x \cdot \rho-u(x))=\sup _{x \in X}(x \cdot \rho-u(x)) .
$$

Summary:

1. Start from a discrete P, and $f: P \rightarrow \mathbb{R}$.

Use $u=f^{*}$ to define a tessellation $\{X(\rho): \rho \in P\}$.

Dual Tessellation=Legendre Transform

How about

$$
\left\{(x, P(x)): x \in \mathbb{R}^{d}\right\},
$$

for $P(x)=\partial u(x)$? What we have is simply the Laguerre tessellation associated with $u^{*}=f^{0}$. This is the dual tessellation. If f is generic, then cells of this dual tessellation are simplices (triangles when $d=2$). They are also dual in graph theoretical sense. Write X for the set of vertices in the original tessellation:

$$
X=\left\{X(\rho): \rho \in \mathbb{R}^{d}, \sharp X(\rho)=1\right\} .
$$

Then

$$
u^{*}(\rho)=\sup _{x}(x \cdot \rho-u(x))=\sup _{x \in X}(x \cdot \rho-u(x)) .
$$

Summary:

1. Start from a discrete P, and $f: P \rightarrow \mathbb{R}$.

Use $u=f^{*}$ to define a tessellation $\{X(\rho): \rho \in P\}$.
2. The map $u: X \rightarrow \mathbb{R}$ and u^{*} in the same way yields the dual tessellation.

