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Voronoi Tessellation

Voronoi tessellations are used to model/study various
phenomena in nature:



Voronoi Tessellation
Given n distinct points ρ1, . . . , ρn (in general position), consider
the optimization problem

w(x) = min
i
|x − ρi |.

For each i , set

X (ρi) = {x : w(x) = |x − ρi |}.
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Voronoi Tessellation (alternative formulation)

For f (ρ) = |ρ|2/2, consider

u(x) = sup
i
(x · ρi − f (ρi)) =

1
2
|x |2 − 1

2
w(x)2.

X (ρi) = {x : u(x) = x · ρi − f (ρi)}.

Set P = {ρ1, . . . , ρn}, h(ρ) = f (ρ) +∞11(ρ /∈ P), then u = h∗.
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Voronoi Tessellation (Some Remarks)

Write P̂ for the convex hull of P.
1. If ρ is an extreme point of P̂, then X (ρ) is unbounded.
2. If ρ is not an extreme point of P̂, then X (ρ) is bounded.
3. Each X (ρ) is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no

k points of P lie on a k − 1 affine set (for k ∈ {2, . . . ,d + 1}),
and no set of d + 2 points in P lie on the boundary of a ball
whose interior does not intersect P.

5. For generic P, we have a graph of degree d + 1;
Its dual is a triangulation (Delaunay triangulation).
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Delaunay triangulation



Laguerre Tessellation
Given a set n distinct points P = {ρ1, . . . , ρn}, and c : P → R,
consider the optimization problem

w(x) = min
ρ∈P

{
|x − ρ|2/2− c(ρ)

}
.

(When c = 0, we are back to Voronoi scenario) For each ρ, set

X (ρ) =
{

x : w(x) = |x − ρ|2/2− c(ρ)
}
.

Observe that f (ρ) = |ρ|2/2− c(ρ),

u(x) := sup
ρ∈P

(x · ρ− f (ρ)) =
1
2
|x |2 − w(x).

X (ρ) = {x : u(x) = x · ρ− f (ρ)}.

h(ρ) = f (ρ) +∞11(ρ /∈ P), then u = h∗.
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Laguerre Tessellation (Some Remarks)

Write P̂ for the convex hull of P.
1. If ρ is an extreme point of P̂, then X (ρ) is unbounded.
2. If ρ is not an extreme point of P̂, then X (ρ) is bounded.
3. Each X (ρ) is a polyhedron/polytope.
4. We say P is generic (points in P are in general position) if no

k points of P lie on a k − 1 affine set (for k ∈ {2, . . . ,d + 1}),
and for any set of d + 2 points m1, . . . ,md+1 ∈ P, we have

{x : x · (mi −mj) = f (mi)− f (mj), for all i , j} = ∅.

5. For generic P, we have a graph of degree d + 1;
Its dual is a triangulation (weighted Delaunay triangulation).

6. X (ρ) could be empty for some ρ if P is not minimal
(can be replaced with a proper subset of P in the definition).
This has to do that f may not be strictly convex.

7. Unless Voronoi, we may not have ρ ∈ X (ρ).
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k points of P lie on a k − 1 affine set (for k ∈ {2, . . . ,d + 1}),
and for any set of d + 2 points m1, . . . ,md+1 ∈ P, we have

{x : x · (mi −mj) = f (mi)− f (mj), for all i , j} = ∅.

5. For generic P, we have a graph of degree d + 1;
Its dual is a triangulation (weighted Delaunay triangulation).

6. X (ρ) could be empty for some ρ if P is not minimal
(can be replaced with a proper subset of P in the definition).
This has to do that f may not be strictly convex.

7. Unless Voronoi, we may not have ρ ∈ X (ρ).
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Dual Tessellation=Legendre Transform
Given a set P and a map f : P → R, we define a (marked)
tessellation

{(ρ,X (ρ)) : ρ ∈ P}.

This is nothing other than

{(ρ, ∂u∗(ρ)) : ρ ∈ P}.

In fact u∗ = f o is the convex hull of f . On X (ρ), we have
u(x) = x · ρ− f (ρ) = x · ρ− u∗(ρ). It is more convenient to
consider

{(ρ,X (ρ)) : ρ ∈ Rd}.

where X (ρ) := ∂u∗(ρ). Assume for simplicity that P is discrete
ρ /∈ P (important examples of non-discrete P will be discussed
later). Then

{X (ρ) : ρ ∈ Rd} = {C : C is a face of X (m) for some m ∈ P}
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Dual Tessellation=Legendre Transform
How about

{(x ,P(x)) : x ∈ Rd},
for P(x) = ∂u(x)? What we have is simply the Laguerre
tessellation associated with u∗ = f o. This is the dual
tessellation. If f is generic, then cells of this dual tessellation
are simplices (triangles when d = 2). They are also dual in
graph theoretical sense. Write X for the set of vertices in the
original tessellation:

X = {X (ρ) : ρ ∈ Rd , ]X (ρ) = 1}.
Then

u∗(ρ) = sup
x

(x · ρ− u(x)) = sup
x∈X

(x · ρ− u(x)).

Summary:
1. Start from a discrete P, and f : P → R.

Use u = f ∗ to define a tessellation {X (ρ) : ρ ∈ P}.
2. The map u : X → R and u∗ in the same way yields the dual

tessellation.
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