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Voronoi Tessellation

Voronoi tessellations are used to model/study various
phenomena in nature:
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For f(p) = |p|?/2, consider

u(x) = sup(x- o1~ (1)) = AXP — Sw(x?.

X(pi) = {x - u(x) = x - pi — f(pi)}-
Set P = {p1. ... pn} h(p) = f(p) + oot (p & P), then u = h*.
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Write P for the convex hull of P.

1. If p is an extreme point of P, then X(p) is unbounded.

2. If p is not an extreme point of P, then X(p) is bounded.

3. Each X(p) is a polyhedron/polytope.

4. We say P is generic (points in P are in general position) if no
k points of P lie on a k — 1 affine set (for k € {2,...,d + 1}),
and no set of d + 2 points in P lie on the boundary of a ball
whose interior does not intersect P.

5. For generic P, we have a graph of degree d + 1;

Its dual is a triangulation (Delaunay triangulation).
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Given a set n distinct points P = {p1,...,pn},and c: P — R,
consider the optimization problem

; 2
=min — 2 — .
w(x) = min {|x — p/2 ~ o(p)}
(When ¢ = 0, we are back to Voronoi scenario) For each p, set
X(p) = {x: wx) = Ix = pP/2 — c(p)} .

Observe that f(p) = [p|?/2 — ¢(p),

u(x) = sup(x - p — 1(p)) = g |xP ~ wix).
peP

X(p) ={x:u(x)=x-p—1(p)}.
h(p) = f(p) + cotl(p ¢ P), then u = h*.



Laguerre Tessellation (Some Remarks)



Laguerre Tessellation (Some Remarks)

Write P for the convex hull of P.



Laguerre Tessellation (Some Remarks)

Write P for the convex hull of P.
1. If p is an extreme point of P, then X(p) is unbounded.



Laguerre Tessellation (Some Remarks)

Write P for the convex hull of P.
1. If p is an extreme point of P, then X(p) is unbounded.
2. If p is not an extreme point of P, then X(p) is bounded.



Laguerre Tessellation (Some Remarks)

Write P for the convex hull of P.

1. If pis an extreme point of P, then X(p) is unbounded.
2. If p is not an extreme point of P, then X(p) is bounded.
3. Each X(p) is a polyhedron/polytope.



Laguerre Tessellation (Some Remarks)

Write P for the convex hull of P.

1. If pis an extreme point of P, then X(p) is unbounded.

2. If p is not an extreme point of P, then X(p) is bounded.

3. Each X(p) is a polyhedron/polytope.

4. We say P is generic (points in P are in general position) if no
k points of P lie on a k — 1 affine set (for k € {2,...,d + 1}),



Laguerre Tessellation (Some Remarks)

Write P for the convex hull of P.

1. If pis an extreme point of P, then X(p) is unbounded.

2. If p is not an extreme point of P, then X(p) is bounded.

3. Each X(p) is a polyhedron/polytope.

4. We say P is generic (points in P are in general position) if no
k points of P lie on a k — 1 affine set (for k € {2,...,d + 1}),
and for any set of d + 2 points my, ..., myy1 € P, we have

{x:x-(m—my) = f(m;) — f(my), forall i,j} = 0.



Laguerre Tessellation (Some Remarks)

Write P for the convex hull of P.

1. If pis an extreme point of P, then X(p) is unbounded.

2. If p is not an extreme point of P, then X(p) is bounded.

3. Each X(p) is a polyhedron/polytope.

4. We say P is generic (points in P are in general position) if no
k points of P lie on a k — 1 affine set (for k € {2,...,d + 1}),
and for any set of d + 2 points my, ..., myy1 € P, we have

{x:x-(m—my) = f(m;) — f(my), forall i,j} = 0.

5. For generic P, we have a graph of degree d + 1;



Laguerre Tessellation (Some Remarks)

Write P for the convex hull of P.

1. If pis an extreme point of P, then X(p) is unbounded.

2. If p is not an extreme point of P, then X(p) is bounded.

3. Each X(p) is a polyhedron/polytope.

4. We say P is generic (points in P are in general position) if no
k points of P lie on a k — 1 affine set (for k € {2,...,d + 1}),
and for any set of d + 2 points my, ..., myy1 € P, we have

{x:x-(m—my) = f(m;) — f(my), forall i,j} = 0.

5. For generic P, we have a graph of degree d + 1;
Its dual is a triangulation (weighted Delaunay triangulation).



Laguerre Tessellation (Some Remarks)

Write P for the convex hull of P.

1

2.
3.
4.

If p is an extreme point of P, then X(p) is unbounded.

If p is not an extreme point of P, then X(p) is bounded.

Each X(p) is a polyhedron/polytope.

We say P is generic (points in P are in general position) if no
k points of P lie on a k — 1 affine set (for k € {2,...,d + 1}),
and for any set of d + 2 points my, ..., myy1 € P, we have

{x:x-(m—my) = f(m;) — f(my), forall i,j} = 0.

. For generic P, we have a graph of degree d + 1;

Its dual is a triangulation (weighted Delaunay triangulation).

. X(p) could be empty for some p if P is not minimal

(can be replaced with a proper subset of P in the definition).



Laguerre Tessellation (Some Remarks)

Write P for the convex hull of P.

1.

2.
3.
4.

If p is an extreme point of P, then X(p) is unbounded.

If p is not an extreme point of P, then X(p) is bounded.

Each X(p) is a polyhedron/polytope.

We say P is generic (points in P are in general position) if no
k points of P lie on a k — 1 affine set (for k € {2,...,d + 1}),
and for any set of d + 2 points my, ..., myy1 € P, we have

{x:x-(m—my) = f(m;) — f(my), forall i,j} = 0.

. For generic P, we have a graph of degree d + 1;

Its dual is a triangulation (weighted Delaunay triangulation).

. X(p) could be empty for some p if P is not minimal

(can be replaced with a proper subset of P in the definition).
This has to do that f may not be strictly convex.



Laguerre Tessellation (Some Remarks)

Write P for the convex hull of P.

1.

2.
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7.

If p is an extreme point of P, then X(p) is unbounded.

If p is not an extreme point of P, then X(p) is bounded.

Each X(p) is a polyhedron/polytope.

We say P is generic (points in P are in general position) if no
k points of P lie on a k — 1 affine set (for k € {2,...,d + 1}),
and for any set of d + 2 points my, ..., myy1 € P, we have

{x:x-(m—my) = f(m;) — f(my), forall i,j} = 0.

. For generic P, we have a graph of degree d + 1;

Its dual is a triangulation (weighted Delaunay triangulation).

. X(p) could be empty for some p if P is not minimal

(can be replaced with a proper subset of P in the definition).
This has to do that f may not be strictly convex.
Unless Voronoi, we may not have p € X(p).
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Givenaset Pandamap f: P — R, we define a (marked)
tessellation

{(p, X(p)) : p< P}
This is nothing other than

{(p.0u(p)) : p € P}.

In fact u* = f° is the convex hull of . On X(p), we have
u(x)=x-p—"Ff(p)=x-p—u(p). Itis more convenient to
consider

{(n, X(p)): p R}

where X(p) := ou*(p). Assume for simplicity that P is discrete
p ¢ P (important examples of non-discrete P will be discussed
later). Then

{X(p): p e R = {C: Cis aface of X(m) for some m e P}
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How about
{(x,P(x)): x € RY},
for P(x) = 0u(x)? What we have is simply the Laguerre
tessellation associated with u* = f°. This is the dual
tessellation. If f is generic, then cells of this dual tessellation
are simplices (triangles when d = 2). They are also dual in
graph theoretical sense. Write X for the set of vertices in the
original tessellation:
X ={X(p): p e R, 1X(p) = 1}.
Then
u*(p) = sup(x - p — u(x)) = sup(x - p — u(x)).
X xeX
Summary:
1. Start from a discrete P, and f : P — R.
Use u = f* to define a tessellation {X(p) : p € P}.
2. The map u: X — R and u* in the same way yields the dual
tessellation.
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