Kinetic Description of Hamilton-Jacobi PDE I

Fraydoun Rezakhanlou

Department of Mathematics
UC Berkeley
PDE/Probability Student Seminar

Outline

Motivation
Convex Duality
Tessellation and Triangulation
Second Polytope
Minkowski-Alexandrov Problem and Optimal Transport
Hamilton-Jacobi Dynamics
Poisson-Laguerre Point Process

Outline

Motivation

Convex Duality
Tessellation and Triangulation
Second Polytope
Minkowski-Alexandrov Problem and Optimal Transport
Hamilton-Jacobi Dynamics
Poisson-Laguerre Point Process

Outline

Motivation
 Convex Duality

Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Poisson-Laguerre Point Process

Outline

Motivation

Convex Duality

Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Poisson-Laguerre Point Process

Outline

Motivation
 Convex Duality
 Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Poisson-Laguerre Point Process

Outline

```
Motivation
Convex Duality
Tessellation and Triangulation
Second Polytope
```

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Poisson-Laguerre Point Process

Outline

```
Motivation
Convex Duality
Tessellation and Triangulation
Second Polytope
```

Minkowski-Alexandrov Problem and Optimal Transport

Hamilton-Jacobi Dynamics

Poisson-Laguerre Point Process

Outline

```
Motivation
Convex Duality
Tessellation and Triangulation
Second Polytope
Minkowski-Alexandrov Problem and Optimal Transport
Hamilton-Jacobi Dynamics
```

Poisson-Laguerre Point Process

Motivation

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location x and time t changes with a rate that depends on (x, t), and the inclination of the interface at that location.

$$
u_{t}=H\left(x, t, u_{x}\right), \quad u(x, 0)=g(x) .
$$

(In discrete setting some of the variables x, t or u are discrete.) H is often random (hence u is random), and we are interested
in various scaling limits of solutions.

Motivation

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location x and time t changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $(x, t) \mapsto u(x, t), \quad u: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$,

$$
u_{t}=H\left(x, t, u_{x}\right), \quad u(x, 0)=g(x) .
$$

(In discrete setting some of the variables x, t or u are discrete.)
H is often random (hence u is random), and we are interested
in various scaling limits of solutions.

Motivation

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location x and time t changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $(x, t) \mapsto u(x, t), \quad u: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}, \quad$ then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$
u_{t}=H\left(x, t, u_{x}\right), \quad u(x, 0)=g(x)
$$

(In discrete setting some of the variables x, t or u are discrete.)
H is often random (hence u is random), and we are interested
in various scaling limits of solutions.

Motivation

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location x and time t changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $(x, t) \mapsto u(x, t), \quad u: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}, \quad$ then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$
u_{t}=H\left(x, t, u_{x}\right), \quad u(x, 0)=g(x)
$$

(In discrete setting some of the variables x, t or u are discrete.)
in various scaling limits of solutions.

Motivation

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location x and time t changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $(x, t) \mapsto u(x, t), \quad u: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$
u_{t}=H\left(x, t, u_{x}\right), \quad u(x, 0)=g(x) .
$$

(In discrete setting some of the variables x, t or u are discrete.) H is often random (hence u is random), and we are interested in various scaling limits of solutions.

A Natural Question
Select g according to a (reasonable) probability measure μ^{0}. Let us write μ^{t} for the law of $u(\cdot, t)$ at time t. Note: If Φ_{t} is the flow (in other words $u(\cdot, t)=\left(\Phi_{t} g\right)(\cdot)$), then $\mu^{t}=\Phi_{t}^{*} \mu^{0}$. Question: Can we find a nice/tractable/explicit evolution equation for μ^{t} ?
We may also keep track of $\rho=u_{x}$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^{t}. Equilibrium Measure: $\nu^{t}=\nu^{0}$.

A Natural Question
Select g according to a (reasonable) probability measure μ^{0}. Let us write μ^{t} for the law of $u(\cdot, t)$ at time t. Note: If Φ_{t} is the flow (in other words $u(\cdot, t)=\left(\Phi_{t} g\right)(\cdot)$), then $\mu^{t}=\Phi_{t}^{*} \mu^{0}$.
Question: Can we find a nice/tractable/explicit evolution
equation for μ^{t} ?
We may also keep track of $\rho=u_{x}$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^{t}. Equilibrium Measure: $\nu^{t}=\nu^{0}$.

A Natural Question
Select g according to a (reasonable) probability measure μ^{0}. Let us write μ^{t} for the law of $u(\cdot, t)$ at time t. Note: If Φ_{t} is the flow (in other words $u(\cdot, t)=\left(\Phi_{t} g\right)(\cdot)$), then $\mu^{t}=\Phi_{t}^{*} \mu^{0}$. Question: Can we find a nice/tractable/explicit evolution equation for μ^{t} ?

A Natural Question

Select g according to a (reasonable) probability measure μ^{0}. Let us write μ^{t} for the law of $u(\cdot, t)$ at time t. Note: If Φ_{t} is the flow (in other words $u(\cdot, t)=\left(\Phi_{t} g\right)(\cdot)$), then $\mu^{t}=\Phi_{t}^{*} \mu^{0}$. Question: Can we find a nice/tractable/explicit evolution equation for μ^{t} ?
We may also keep track of $\rho=u_{x}$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^{t}.

A Natural Question

Select g according to a (reasonable) probability measure μ^{0}. Let us write μ^{t} for the law of $u(\cdot, t)$ at time t. Note: If Φ_{t} is the flow (in other words $u(\cdot, t)=\left(\Phi_{t} g\right)(\cdot)$), then $\mu^{t}=\Phi_{t}^{*} \mu^{0}$. Question: Can we find a nice/tractable/explicit evolution equation for μ^{t} ?
We may also keep track of $\rho=u_{x}$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^{t}. Equilibrium Measure: $\nu^{t}=\nu^{0}$.

First Step, Main Setting

Assume $H(x, t, p)=H(p)$ depends on p only:

$$
u_{t}=H\left(u_{x}\right), \quad u^{(x, 0)}=g(x) .
$$

This equation does not possess classical solutions in general.
The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex.
Recall

$$
\begin{aligned}
& g^{*}(\rho)=\sup _{x}(x \cdot \rho-g(x)) \\
& f^{*}(x)=\sup _{\rho}(x \cdot \rho-f(\rho)),
\end{aligned}
$$

$$
g^{* *}=g, f^{* *}=f .
$$

First Step, Main Setting

Assume $H(x, t, p)=H(p)$ depends on p only:

$$
u_{t}=H\left(u_{x}\right), \quad u(x, 0)=g(x)
$$

This equation does not possess classical solutions in general.
The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex.
Recall

$$
g^{*}(\rho)=\sup _{x}(x \cdot \rho-g(x))
$$

$$
f^{*}(x)=\sup (x \cdot \rho-f(\rho))
$$

First Step, Main Setting

Assume $H(x, t, p)=H(p)$ depends on p only:

$$
u_{t}=H\left(u_{x}\right), \quad u(x, 0)=g(x)
$$

This equation does not possess classical solutions in general. The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g.
variational description when either g or H is convex. Recall

$$
f^{*}(x)=\sup _{\rho}(x
$$

First Step, Main Setting

Assume $H(x, t, p)=H(p)$ depends on p only:

$$
u_{t}=H\left(u_{x}\right), \quad u(x, 0)=g(x)
$$

This equation does not possess classical solutions in general. The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex.
$g^{*}(\rho)=\sup _{x}(x \cdot \rho-g(x))$

First Step, Main Setting

Assume $H(x, t, p)=H(p)$ depends on p only:

$$
u_{t}=H\left(u_{x}\right), \quad u(x, 0)=g(x)
$$

This equation does not possess classical solutions in general. The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex. Recall

$$
g^{*}(\rho)=\sup _{x}(x \cdot \rho-g(x))
$$

First Step, Main Setting

Assume $H(x, t, p)=H(p)$ depends on p only:

$$
u_{t}=H\left(u_{x}\right), \quad u(x, 0)=g(x)
$$

This equation does not possess classical solutions in general. The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex. Recall

$$
\begin{aligned}
& g^{*}(\rho)=\sup _{x}(x \cdot \rho-g(x)) \\
& f^{*}(x)=\sup _{\rho}(x \cdot \rho-f(\rho)),
\end{aligned}
$$

First Step, Main Setting

Assume $H(x, t, p)=H(p)$ depends on p only:

$$
u_{t}=H\left(u_{x}\right), \quad u(x, 0)=g(x)
$$

This equation does not possess classical solutions in general. The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex. Recall

$$
\begin{aligned}
& g^{*}(\rho)=\sup _{x}(x \cdot \rho-g(x)) \\
& f^{*}(x)=\sup _{\rho}(x \cdot \rho-f(\rho)),
\end{aligned}
$$

$$
g^{* *}=g, f^{* *}=f
$$

Hopf Formula (Convex Initial Data)

(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
If g is convex, then

$$
u(x, t)=\left(g^{*}-t H\right)^{*}(x)
$$

More explicitly

$$
u^{*}(\rho, t)=\sup _{x}(x \cdot \rho-g(x)-t H(\rho))
$$

$$
u(x, t)=\sup \left(x \cdot \rho-g^{*}(\rho)+t H(\rho)\right)
$$

Hopf Formula (Convex Initial Data)

(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
If g is convex, then

$$
u(x, t)=\left(g^{*}-t H\right)^{*}(x)
$$

More explicitly

$$
u^{*}(\rho, t)=\sup _{x}(x \cdot \rho-g(x)-t H(\rho))
$$

Hopf Formula (Convex Initial Data)

(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
If g is convex, then

$$
u(x, t)=\left(g^{*}-t H\right)^{*}(x)
$$

More explicitly

$$
u^{*}(\rho, t)=\sup (x \cdot \rho-g(x)-t H(\rho))
$$

Hopf Formula (Convex Initial Data)

(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
If g is convex, then

$$
u(x, t)=\left(g^{*}-t H\right)^{*}(x)
$$

More explicitly

$$
u^{*}(\rho, t)=\sup _{x}(x \cdot \rho-g(x)-t H(\rho))
$$

Hopf Formula (Convex Initial Data)

(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
If g is convex, then

$$
u(x, t)=\left(g^{*}-t H\right)^{*}(x)
$$

More explicitly

$$
\begin{aligned}
& u^{*}(\rho, t)=\sup _{x}(x \cdot \rho-g(x)-t H(\rho)), \\
& u(x, t)=\sup _{\rho}\left(x \cdot \rho-g^{*}(\rho)+t H(\rho)\right),
\end{aligned}
$$

Hopf-Lax-Oleinik Formula (Convex H)
(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
If H is convex, then

where $L=H^{*}$ is the Legendre transform of H.
Remark Define the semigroup $\Phi=\left(\Phi_{t}: t \geq 0\right)$, by
$\Phi_{t} g(x)=u(x, t)$.
When H is convex, then Φ_{t} is strongly monotone:
If $\left(g_{a}: a \in A\right)$ is a family of initial data, then

$$
\Phi_{t}\left(\sup _{a \in A} g_{\alpha}\right)=\sup _{a \in A} \Phi_{t} g_{a} .
$$

This is an immediate consequence of HLO Formula.

Hopf-Lax-Oleinik Formula (Convex H)
(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
If H is convex, then

$$
u(x, t)=\sup _{y}\left(g(y)-t L\left(\frac{y-x}{t}\right)\right)
$$

where $L=H^{*}$ is the Legendre transform of H.

This is an immediate consequence of HLO Formula.

Hopf-Lax-Oleinik Formula (Convex H)

(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
If H is convex, then

$$
u(x, t)=\sup _{y}\left(g(y)-t L\left(\frac{y-x}{t}\right)\right)
$$

where $L=H^{*}$ is the Legendre transform of H. Remark Define the semigroup $\Phi=\left(\Phi_{t}: t \geq 0\right)$, by $\Phi_{t} g(x)=u(x, t)$.
When H is convex, then Φ_{t} is strongly monotone: If $\left(g_{a}: a \in A\right)$ is a family of initial data, then

Hopf-Lax-Oleinik Formula (Convex H)

(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
If H is convex, then

$$
u(x, t)=\sup _{y}\left(g(y)-t L\left(\frac{y-x}{t}\right)\right)
$$

where $L=H^{*}$ is the Legendre transform of H. Remark Define the semigroup $\Phi=\left(\Phi_{t}: t \geq 0\right)$, by $\Phi_{t} g(x)=u(x, t)$.
When H is convex, then Φ_{t} is strongly monotone:
$f\left(g_{a}: a \in A\right)$ is a family of initial data, then

This is an immediate consequence of HLO Formula.

Hopf-Lax-Oleinik Formula (Convex H)

(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
If H is convex, then

$$
u(x, t)=\sup _{y}\left(g(y)-t L\left(\frac{y-x}{t}\right)\right)
$$

where $L=H^{*}$ is the Legendre transform of H.
Remark Define the semigroup $\Phi=\left(\Phi_{t}: t \geq 0\right)$, by
$\Phi_{t} g(x)=u(x, t)$.
When H is convex, then Φ_{t} is strongly monotone:
If $\left(g_{a}: a \in A\right)$ is a family of initial data,

This is an immediate consequence of HLO Formula.

Hopf-Lax-Oleinik Formula (Convex H)

(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
If H is convex, then

$$
u(x, t)=\sup _{y}\left(g(y)-t L\left(\frac{y-x}{t}\right)\right)
$$

where $L=H^{*}$ is the Legendre transform of H.
Remark Define the semigroup $\Phi=\left(\Phi_{t}: t \geq 0\right)$, by
$\Phi_{t} g(x)=u(x, t)$.
When H is convex, then Φ_{t} is strongly monotone:
If $\left(g_{a}: a \in A\right)$ is a family of initial data, then

$$
\Phi_{t}\left(\sup _{a \in A} g_{\alpha}\right)=\sup _{a \in A} \Phi_{t} g_{a}
$$

This is an immediate consequence of HLO Formula.

Hopf-Lax-Oleinik Formula (Convex H)

(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
If H is convex, then

$$
u(x, t)=\sup _{y}\left(g(y)-t L\left(\frac{y-x}{t}\right)\right)
$$

where $L=H^{*}$ is the Legendre transform of H.
Remark Define the semigroup $\Phi=\left(\Phi_{t}: t \geq 0\right)$, by
$\Phi_{t} g(x)=u(x, t)$.
When H is convex, then Φ_{t} is strongly monotone:
If $\left(g_{a}: a \in A\right)$ is a family of initial data, then

$$
\Phi_{t}\left(\sup _{a \in A} g_{\alpha}\right)=\sup _{a \in A} \Phi_{t} g_{a}
$$

This is an immediate consequence of HLO Formula.

HLO implies Hopf (Both g and H Convex)
(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
Observe $u(x, t)=x \cdot \rho+a+t H(\rho)$ is a solution for initial
$u(x, 0)=x \cdot \rho+a$.
g convex means $g=g^{* *}$:

$$
g=\sup \ell_{\rho}, \quad \text { with } \quad \ell_{\rho}(x)=x \cdot \rho-g^{*}(\rho)
$$

Assume Strong Monotonicity:

$$
u(x, t)=\sup \left(\phi_{t} \ell_{\rho}\right)(x)=\sup \left(\ell_{\rho}(x)+t H(\rho)\right)
$$

$$
u(x, t)=\sup \left(x \cdot \rho-g^{*}(\rho)+t H(\rho)\right),
$$

HLO implies Hopf (Both g and H Convex)
(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
Observe $u(x, t)=x \cdot \rho+a+t H(\rho)$ is a solution for initial $u(x, 0)=x \cdot \rho+a$.
g convex means $g=g^{* *}$:

Assume Strong Monotonicity:

$$
u(x, t)=\sup \left(\phi_{t} \ell_{\rho}\right)(x)=\sup \left(\ell_{\rho}(x)+t H(\rho)\right)
$$

HLO implies Hopf (Both g and H Convex)
(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
Observe $u(x, t)=x \cdot \rho+a+t H(\rho)$ is a solution for initial $u(x, 0)=x \cdot \rho+a$. g convex means $g=g^{* *}$:

Assume Strong Monotonicity:
$u^{\prime}(x, t)=\sup \left(\Phi_{t} \ell_{\rho}\right)(x)=\sup \left(\ell_{\rho}(x)+t H(\rho)\right)$,

HLO implies Hopf (Both g and H Convex)
(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
Observe $u(x, t)=x \cdot \rho+a+t H(\rho)$ is a solution for initial $u(x, 0)=x \cdot \rho+a$. g convex means $g=g^{* *}$:

$$
g=\sup _{\rho \in \mathbb{R}^{d}} \ell_{\rho}, \quad \text { with } \quad \ell_{\rho}(x)=x \cdot \rho-g^{*}(\rho),
$$

Assume Strong Monotonicity:

HLO implies Hopf (Both g and H Convex)
(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
Observe $u(x, t)=x \cdot \rho+a+t H(\rho)$ is a solution for initial $u(x, 0)=x \cdot \rho+a$. g convex means $g=g^{* *}$:

$$
g=\sup _{\rho \in \mathbb{R}^{d}} \ell_{\rho}, \quad \text { with } \quad \ell_{\rho}(x)=x \cdot \rho-g^{*}(\rho),
$$

Assume Strong Monotonicity:
$u(x, t)=\sup \left(\Phi_{t} \ell_{\rho}\right)(x)=\sup \left(\ell_{\rho}(x)+t H(\rho)\right)$,

HLO implies Hopf (Both g and H Convex)
(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
Observe $u(x, t)=x \cdot \rho+a+t H(\rho)$ is a solution for initial $u(x, 0)=x \cdot \rho+a$. g convex means $g=g^{* *}$:

$$
g=\sup _{\rho \in \mathbb{R}^{d}} \ell_{\rho}, \quad \text { with } \quad \ell_{\rho}(x)=x \cdot \rho-g^{*}(\rho)
$$

Assume Strong Monotonicity:

$$
u(x, t)=\sup _{\rho}\left(\Phi_{t} \ell_{\rho}\right)(x)=\sup _{\rho}\left(\ell_{\rho}(x)+t H(\rho)\right)
$$

HLO implies Hopf (Both g and H Convex)
(We are solving $u_{t}=H\left(u_{x}\right), u(\cdot, 0)=g$)
Observe $u(x, t)=x \cdot \rho+a+t H(\rho)$ is a solution for initial $u(x, 0)=x \cdot \rho+a$. g convex means $g=g^{* *}$:

$$
g=\sup _{\rho \in \mathbb{R}^{d}} \ell_{\rho}, \quad \text { with } \quad \ell_{\rho}(x)=x \cdot \rho-g^{*}(\rho)
$$

Assume Strong Monotonicity:

$$
\begin{gathered}
u(x, t)=\sup _{\rho}\left(\Phi_{t} \ell_{\rho}\right)(x)=\sup _{\rho}\left(\ell_{\rho}(x)+t H(\rho)\right) \\
u(x, t)=\sup _{\rho}\left(x \cdot \rho-g^{*}(\rho)+t H(\rho)\right)
\end{gathered}
$$

Assumption: H and g Convex

Write \mathcal{C} for the set of convex functions. It is an invariant set for the dynamics. When $g \in \mathcal{C}$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_{t} g$:
If we define $\Psi_{t} h:=\left(\Phi_{t} h^{*}\right)^{*}$,
then

$$
\Psi_{t} h=(h-t H)^{* *}=:(h-t H)^{o} .
$$

(f° means Convex Hull of f)
In words, the flow ψ is associated with a linear motion with velocity $-H$.
Since $h-t H$ may not be convex, we need to take its convex hull to stay in \mathcal{C}.
Observe that when both H and g are convex, then it is possible that $(h-t H)^{0} \neq h-t H$ for every $t>0$. Indeed this would always be the case if g is piecewise linear and H is strictly convex. Nonetheless (as will see later on), there is a kinetic description for ψ that would give a local description of the dynamics as opposed to what is given on the right-hand side that involves a convex hull.

Assumption: H and g Convex

Write \mathcal{C} for the set of convex functions. It is an invariant set for
the dynamics. When $g \in \mathcal{C}$ is convex, then Hopf Formula offers
a rather simple dynamics for the evolution of $\Phi_{t} g$:
If we define $\Psi_{t} h:=\left(\Phi_{t} h^{*}\right)^{*}$,
then

$$
\Psi_{t} h=(h-t H)^{* *}=:(h-t H)^{0} .
$$

(f° means Convex Hull of f)
In words, the flow ψ is associated with a linear motion with velocity -H.
Since $h-t H$ may not be convex, we need to take its convex hull to stay in \mathcal{C}.
Observe that when both H and g are convex, then it is possible that $(h-t H)^{0} \neq h-t H$ for every $t>0$. Indeed this would always be the case if g is piecewise linear and H is strictly convex. Nonetheless (as will see later on), there is a kinetic description for ψ that would give a local description of the dynamics as opposed to what is given on the right-hand side that involves a convex hull.

Assumption: H and g Convex

Write \mathcal{C} for the set of convex functions. It is an invariant set for the dynamics.
a rather simple dynamics for the evolution of $\Phi_{t} g$:
If we define $\Psi_{t} h:=\left(\Phi_{t} h^{*}\right)^{*}$,
then

$$
\Psi_{t} h=(h-t H)^{* *}=:(h-t H)^{o} .
$$

(f° means Convex Hull of f)
In words, the flow ψ is associated with a linear motion with velocity -H.
Since $h-t H$ may not be convex, we need to take its convex
hull to stay in \mathcal{C}.
Observe that when both H and g are convex, then it is possible that $(h-t H)^{0} \neq h-t H$ for every $t>0$. Indeed this would always be the case if g is piecewise linear and H is strictly convex. Nonetheless (as will see later on), there is a kinetic description for ψ that would give a local description of the dynamics as opposed to what is given on the right-hand side that involves a convex hull.

Assumption: H and g Convex

Write \mathcal{C} for the set of convex functions. It is an invariant set for the dynamics. When $g \in \mathcal{C}$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_{t} g$:
then

$$
\Psi_{t} h=(h-t H)^{* *}=:(h-t H)^{o} .
$$

(f° means Convex Hull of f)
In words, the flow ψ is associated with a linear motion with
velocity -H.
Since $h-t H$ may not be convex, we need to take its convex
hull to stay in \mathcal{C}.
Observe that when both H and g are convex, then it is possible
that $(h-t H)^{0} \neq h-t H$ for every $t>0$. Indeed this would
always be the case if g is piecewise linear and H is strictly
convex. Nonetheless (as will see later on), there is a kinetic
description for ψ that would give a local description of the
dynamics as opposed to what is given on the right-hand side
that involves a convex hull.

Assumption: H and g Convex

Write \mathcal{C} for the set of convex functions. It is an invariant set for the dynamics. When $g \in \mathcal{C}$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_{t} g$: If we define $\psi_{t} h:=\left(\Phi_{t} h^{*}\right)^{*}$, then

$$
\Psi_{t} h=(h-t H)^{* *}=:(h-t H)^{o} .
$$

($f 0$ means Convex Hull of f)
In words, the flow ψ is associated with a linear motion with
velocity $-H$.
Since $h-t H$ may not be convex, we need to take its convex
hull to stay in \mathcal{C}.
Observe that when both H and g are convex, then it is possible
that $(h-t H)^{0} \neq h-t H$ for every $t>0$. Indeed this would
always be the case if g is piecewise linear and H is strictly
convex. Nonetheless (as will see later on), there is a kinetic
description for ψ that would give a local description of the
dynamics as opposed to what is given on the right-hand side
that involves a convex hull.

Assumption: H and g Convex

Write \mathcal{C} for the set of convex functions. It is an invariant set for the dynamics. When $g \in \mathcal{C}$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_{t} g$: If we define $\Psi_{t} h:=\left(\Phi_{t} h^{*}\right)^{*}$, then

$$
\Psi_{t} h=(h-t H)^{* *}=:(h-t H)^{0} .
$$

(fo means Convex Hull of f)
In words, the flow Ψ is associated with a linear motion with
velocity $-H$.
Since h - it' may not be convex, we need to take its convex
hull to stay in \mathcal{C}.
Observe that when both H and g are convex, then it is possible
that $(h-t H)^{0} \neq h-t H$ for every $t>0$. Indeed this would
always be the case if g is piecewise linear and H is stricitly
convex. Nonetheless (as will see later on), there is a kinetic
description for ψ that would give a local description of the
dynamics as opposed to what is given on the right-hand side
that involves a convex hull.

Assumption: H and g Convex

Write \mathcal{C} for the set of convex functions. It is an invariant set for the dynamics. When $g \in \mathcal{C}$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_{t} g$: If we define $\Psi_{t} h:=\left(\Phi_{t} h^{*}\right)^{*}$, then

$$
\Psi_{t} h=(h-t H)^{* *}=:(h-t H)^{0} .
$$

(f° means Convex Hull of f)

Assumption: H and g Convex

Write \mathcal{C} for the set of convex functions. It is an invariant set for the dynamics. When $g \in \mathcal{C}$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_{t} g$: If we define $\Psi_{t} h:=\left(\Phi_{t} h^{*}\right)^{*}$, then

$$
\Psi_{t} h=(h-t H)^{* *}=:(h-t H)^{0} .
$$

(f° means Convex Hull of f)
In words, the flow Ψ is associated with a linear motion with velocity $-H$.

Assumption: H and g Convex

Write \mathcal{C} for the set of convex functions. It is an invariant set for the dynamics. When $g \in \mathcal{C}$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_{t} g$:
If we define $\psi_{t} h:=\left(\Phi_{t} h^{*}\right)^{*}$, then

$$
\Psi_{t} h=(h-t H)^{* *}=:(h-t H)^{0} .
$$

(f° means Convex Hull of f)
In words, the flow Ψ is associated with a linear motion with velocity $-H$.
Since $h-t H$ may not be convex, we need to take its convex hull to stay in \mathcal{C}.
\square
dynamics as opposed to what is given on the right-hand side

Assumption: H and g Convex

Write \mathcal{C} for the set of convex functions. It is an invariant set for the dynamics. When $g \in \mathcal{C}$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_{t} g$:
If we define $\psi_{t} h:=\left(\Phi_{t} h^{*}\right)^{*}$,
then

$$
\Psi_{t} h=(h-t H)^{* *}=:(h-t H)^{0} .
$$

(f° means Convex Hull of f)
In words, the flow Ψ is associated with a linear motion with velocity $-H$.
Since $h-t H$ may not be convex, we need to take its convex hull to stay in \mathcal{C}.
Observe that when both H and g are convex, then it is possible that $(h-t H)^{0} \neq h-t H$ for every $t>0$.
always be the case if g is piecewise linear and H is strictly
 description for ψ that would give a local description of the dynamics as opposed to what is given on the right-hand side

Assumption: H and g Convex

Write \mathcal{C} for the set of convex functions. It is an invariant set for the dynamics. When $g \in \mathcal{C}$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_{t} g$:
If we define $\psi_{t} h:=\left(\Phi_{t} h^{*}\right)^{*}$,
then

$$
\Psi_{t} h=(h-t H)^{* *}=:(h-t H)^{o} .
$$

(f° means Convex Hull of f)
In words, the flow Ψ is associated with a linear motion with velocity $-H$.
Since $h-t H$ may not be convex, we need to take its convex hull to stay in \mathcal{C}.
Observe that when both H and g are convex, then it is possible that $(h-t H)^{0} \neq h-t H$ for every $t>0$. Indeed this would always be the case if g is piecewise linear and H is strictly convex.
dynamics as opposed to what is given on the right-hand side

Assumption: H and g Convex

Write \mathcal{C} for the set of convex functions. It is an invariant set for the dynamics. When $g \in \mathcal{C}$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_{t} g$:
If we define $\psi_{t} h:=\left(\Phi_{t} h^{*}\right)^{*}$,
then

$$
\Psi_{t} h=(h-t H)^{* *}=:(h-t H)^{o} .
$$

(f° means Convex Hull of f)
In words, the flow Ψ is associated with a linear motion with velocity $-H$.
Since $h-t H$ may not be convex, we need to take its convex hull to stay in \mathcal{C}.
Observe that when both H and g are convex, then it is possible that $(h-t H)^{0} \neq h-t H$ for every $t>0$. Indeed this would always be the case if g is piecewise linear and H is strictly convex. Nonetheless (as will see later on), there is a kinetic description for ψ that would give a local description of the dynamics as opposed to what is given on the right-hand side that involves a convex hull.

Convex Functions (Legendre Transform/Convex Hull)

Take a function $h: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$.

$$
P=\operatorname{Dom}(h):=\{\rho: h(\rho) \neq \infty\} .
$$

Define

$$
u(x)=h^{*}(x)=\sup _{\rho}(x \cdot \rho-h(\rho))=\sup _{\rho \in P}(x \cdot \rho-h(\rho))
$$

Observe u is convex and lower semicontinuous (Isc). Also $u^{*}=h^{* *}=h^{\circ}$.

Convex Functions (Legendre Transform/Convex Hull)

Take a function $h: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$.

$$
P=\operatorname{Dom}(h):=\{\rho: h(\rho) \neq \infty\} .
$$

Define

$$
u(x)=h^{*}(x)=\sup _{\rho}(x \cdot \rho-h(\rho))=\sup _{\rho \in P}(x \cdot \rho-h(\rho))
$$

Observe u is convex and lower semicontinuous (Isc). Also $u^{*}=h^{* *}=h^{\circ}$.

Convex Functions (Legendre Transform/Convex Hull)

Take a function $h: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$.

$$
P=\operatorname{Dom}(h):=\{\rho: h(\rho) \neq \infty\} .
$$

Define

$$
u(x)=h^{*}(x)=\sup _{\rho}(x \cdot \rho-h(\rho))=\sup _{\rho \in P}(x \cdot \rho-h(\rho))
$$

Observe u is convex and lower semicontinuous (ISC). Also $u^{*}=h^{* *}=h^{\circ}$.

Convex Functions (Legendre Transform/Convex Hull)

Take a function $h: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$.

$$
P=\operatorname{Dom}(h):=\{\rho: h(\rho) \neq \infty\} .
$$

Define

$$
u(x)=h^{*}(x)=\sup _{\rho}(x \cdot \rho-h(\rho))=\sup _{\rho \in P}(x \cdot \rho-h(\rho)) .
$$

Observe u is convex and lower semicontinuous (Isc).
Also $u^{*}=h^{* *}=h^{\circ}$.

Convex Functions (Legendre Transform/Convex Hull)

Take a function $h: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$.

$$
P=\operatorname{Dom}(h):=\{\rho: h(\rho) \neq \infty\} .
$$

Define

$$
u(x)=h^{*}(x)=\sup _{\rho}(x \cdot \rho-h(\rho))=\sup _{\rho \in P}(x \cdot \rho-h(\rho)) .
$$

Observe u is convex and lower semicontinuous (Isc). Also $u^{*}=h^{* *}=h^{\circ}$.

Convex Functions (subgradient)

We write $\partial h(a)$ for the set of subgradients of h at a :

$$
p \in \partial h(a) \quad \Leftrightarrow \quad h(\rho) \geq h(a)+(\rho-a) \cdot p .
$$

Convex Functions (subgradient)

We write $\partial h(a)$ for the set of subgradients of h at a :

$$
p \in \partial h(a) \quad \Leftrightarrow \quad h(\rho) \geq h(a)+(\rho-a) \cdot p .
$$

Convex Functions (subgradient)

If h is convex and Isc, then

$$
x \in \partial h(\rho) \quad \Leftrightarrow \quad \rho \in \partial h^{*}(x) \quad \Leftrightarrow \quad x \cdot \rho=h(\rho)+h^{*}(x) .
$$

Convex Functions (subgradient)

If h is convex and Isc, then

$$
x \in \partial h(\rho) \quad \Leftrightarrow \quad \rho \in \partial h^{*}(x) \quad \Leftrightarrow \quad x \cdot \rho=h(\rho)+h^{*}(x) .
$$

Convex Functions (subgradient)

If h is convex and Isc, then

$$
x \in \partial h(\rho) \quad \Leftrightarrow \quad \rho \in \partial h^{*}(x) \quad \Leftrightarrow \quad x \cdot \rho=h(\rho)+h^{*}(x) .
$$

As Hopf's formula, it is more convenient to assume our convex function can be expressed as $u=h^{*}$, where $h: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$ with $\operatorname{Dom}(h)=: P$ a closed subset of \mathbb{R}^{d}.
We always assume that the restriction of h to the set P is continuous, and

$$
\lim _{|\rho| \rightarrow \infty} \frac{h(\rho)}{|\rho|}=\infty
$$

so that u is a finite-valued convex function. We say the set P is minimal, if the set P cannot be replaced with any proper subset of P in

$$
u(x)=\sup _{\rho \in P}(x \cdot \rho-h(\rho))
$$

As Hopf's formula, it is more convenient to assume our convex function can be expressed as $u=h^{*}$, where $h: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$ with $\operatorname{Dom}(h)=: P$ a closed subset of \mathbb{R}^{d}.
We always assume that the restriction of h to the set P is continuous, and

so that u is a finite-valued convex function.
We say the set P is minimal, if the set P cannot be replaced
with any proper subset of P in

As Hopf's formula, it is more convenient to assume our convex function can be expressed as $u=h^{*}$, where $h: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$ with $\operatorname{Dom}(h)=: P$ a closed subset of \mathbb{R}^{d}.
We always assume that the restriction of h to the set P is continuous, and

$$
\lim _{|\rho| \rightarrow \infty} \frac{h(\rho)}{|\rho|}=\infty
$$

so that u is a finite-valued convex function.

As Hopf's formula, it is more convenient to assume our convex function can be expressed as $u=h^{*}$, where $h: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$ with $\operatorname{Dom}(h)=: P$ a closed subset of \mathbb{R}^{d}.
We always assume that the restriction of h to the set P is continuous, and

$$
\lim _{|\rho| \rightarrow \infty} \frac{h(\rho)}{|\rho|}=\infty
$$

so that u is a finite-valued convex function.
We say the set P is minimal, if the set P cannot be replaced with any proper subset of P in

$$
u(x)=\sup _{\rho \in P}(x \cdot \rho-h(\rho))
$$

Laguerre Tesselation

$$
\begin{aligned}
& \mathbb{X}(h)=\mathbb{X}=\left\{\partial u^{*}(\rho): \rho \in \mathbb{R}^{d}\right\} \\
& \mathbb{P}(h)=\mathbb{P}=\left\{\partial u(x): x \in \mathbb{R}^{d}\right\}
\end{aligned}
$$

For each m and a, the sets $\partial u^{*}(m)$ and $\partial u(a)$ are convex.

Laguerre Tesselation

$$
\begin{aligned}
& \mathbb{X}(h)=\mathbb{X}=\left\{\partial u^{*}(\rho): \rho \in \mathbb{R}^{d}\right\} \\
& \mathbb{P}(h)=\mathbb{P}=\left\{\partial u(x): x \in \mathbb{R}^{d}\right\} .
\end{aligned}
$$

For each m and a, the sets $\partial u^{*}(m)$ and $\partial u(a)$ are convex.

Laguerre Tesselation

$$
\begin{aligned}
& \mathbb{X}(h)=\mathbb{X}=\left\{\partial u^{*}(\rho): \rho \in \mathbb{R}^{d}\right\} \\
& \mathbb{P}(h)=\mathbb{P}=\left\{\partial u(x): x \in \mathbb{R}^{d}\right\} .
\end{aligned}
$$

Laguerre Tesselation

$$
\begin{aligned}
& \mathbb{X}(h)=\mathbb{X}=\left\{\partial u^{*}(\rho): \rho \in \mathbb{R}^{d}\right\} \\
& \mathbb{P}(h)=\mathbb{P}=\left\{\partial u(x): x \in \mathbb{R}^{d}\right\} .
\end{aligned}
$$

For each m and a, the sets $\partial u^{*}(m)$ and $\partial u(a)$ are convex.

