Kinetic Description of Hamilton-Jacobi PDE I

Fraydoun Rezakhanlou

Department of Mathematics UC Berkeley

PDE/Probability Student Seminar

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivation

Convex Duality

Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hamilton-Jacobi Dynamics

Motivation

Convex Duality

Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hamilton-Jacobi Dynamics

Motivation

Convex Duality

Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hamilton-Jacobi Dynamics

Motivation

Convex Duality

Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hamilton-Jacobi Dynamics

Motivation

Convex Duality

Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hamilton-Jacobi Dynamics

Motivation

Convex Duality

Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hamilton-Jacobi Dynamics

Motivation

Convex Duality

Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hamilton-Jacobi Dynamics

Motivation

Convex Duality

Tessellation and Triangulation

Second Polytope

Minkowski-Alexandrov Problem and Optimal Transport

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hamilton-Jacobi Dynamics

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location *x* and time *t* changes with a rate that depends on (*x*, *t*), and the inclination of the interface at that location. If the interface is represented by a graph of a function $(x, t) \mapsto u(x, t), \quad u : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$u_t = H(x, t, u_x), \quad u(x, 0) = g(x).$$

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location *x* and time *t* changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $(x, t) \mapsto u(x, t), \quad u : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$u_t = H(x, t, u_x), \quad u(x, 0) = g(x).$$

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location *x* and time *t* changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $(x, t) \mapsto u(x, t), \quad u : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$u_t = H(x, t, u_x), \quad u(x, 0) = g(x).$$

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location *x* and time *t* changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $(x, t) \mapsto u(x, t), \quad u : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$u_t = H(x, t, u_x), \quad u(x, 0) = g(x).$$

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location *x* and time *t* changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $(x, t) \mapsto u(x, t), \quad u : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$u_t = H(x, t, u_x), \quad u(x, 0) = g(x).$$

Select *g* according to a (reasonable) probability measure μ^0 .

Let us write μ^t for the law of $u(\cdot, t)$ at time t. Note: If Φ_t is the flow (in other words $u(\cdot, t) = (\Phi_t g)(\cdot)$), then $\mu^t = \Phi_t^* \mu^0$. Question: Can we find a nice/tractable/explicit evolution equation for μ^t ?

We may also keep track of $\rho = u_x$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^t . Equilibrium Measure: $\nu^t = \nu^0$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Select *g* according to a (reasonable) probability measure μ^0 . Let us write μ^t for the law of $u(\cdot, t)$ at time *t*. Note: If Φ_t is the flow (in other words $u(\cdot, t) = (\Phi_t g)(\cdot)$), then $\mu^t = \Phi_t^* \mu^0$. Question: Can we find a nice/tractable/explicit evolution equation for μ^t ? We may also keep track of $\rho = u_x$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^t . Equilibrium Measure: $\nu^t = \nu^0$.

Select *g* according to a (reasonable) probability measure μ^0 . Let us write μ^t for the law of $u(\cdot, t)$ at time *t*. Note: If Φ_t is the flow (in other words $u(\cdot, t) = (\Phi_t g)(\cdot)$), then $\mu^t = \Phi_t^* \mu^0$. Question: Can we find a nice/tractable/explicit evolution equation for μ^t ?

We may also keep track of $\rho = u_x$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^t . Equilibrium Measure: $\nu^t = \nu^0$.

Select *g* according to a (reasonable) probability measure μ^0 . Let us write μ^t for the law of $u(\cdot, t)$ at time *t*. Note: If Φ_t is the flow (in other words $u(\cdot, t) = (\Phi_t g)(\cdot)$), then $\mu^t = \Phi_t^* \mu^0$. Question: Can we find a nice/tractable/explicit evolution equation for μ^t ?

We may also keep track of $\rho = u_x$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^t . Equilibrium Measure: $\nu^t = \nu^0$.

Select *g* according to a (reasonable) probability measure μ^0 . Let us write μ^t for the law of $u(\cdot, t)$ at time *t*. Note: If Φ_t is the flow (in other words $u(\cdot, t) = (\Phi_t g)(\cdot)$), then $\mu^t = \Phi_t^* \mu^0$. Question: Can we find a nice/tractable/explicit evolution equation for μ^t ?

We may also keep track of $\rho = u_x$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^t . Equilibrium Measure: $\nu^t = \nu^0$.

Assume H(x, t, p) = H(p) depends on p only:

$$u_t = H(u_x), \quad u(x,0) = g(x).$$

This equation does not possess classical solutions in general. The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex. Recall

$$g^*(\rho) = \sup_x (x \cdot \rho - g(x))$$

$$f^*(x) = \sup_{\rho} (x \cdot \rho - f(\rho)),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Assume H(x, t, p) = H(p) depends on p only:

$$u_t = H(u_x), \quad u(x,0) = g(x).$$

This equation does not possess classical solutions in general. The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex. Recall

$$g^*(\rho) = \sup_{x} (x \cdot \rho - g(x))$$

$$f^*(x) = \sup_{\rho} (x \cdot \rho - f(\rho)),$$

(日) (日) (日) (日) (日) (日) (日)

Assume H(x, t, p) = H(p) depends on p only:

$$u_t = H(u_x), \quad u(x,0) = g(x).$$

This equation does not possess classical solutions in general. The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex. Recall

$$g^*(\rho) = \sup_{x} (x \cdot \rho - g(x))$$

$$f^*(x) = \sup_{\rho} (x \cdot \rho - f(\rho)),$$

Assume H(x, t, p) = H(p) depends on p only:

$$u_t = H(u_x), \quad u(x,0) = g(x).$$

This equation does not possess classical solutions in general. The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex.

 $g^*(\rho) = \sup_{v} (x \cdot \rho - g(x))$

$$f^*(x) = \sup_{\rho} (x \cdot \rho - f(\rho)),$$

Assume H(x, t, p) = H(p) depends on p only:

$$u_t = H(u_x), \quad u(x,0) = g(x).$$

This equation does not possess classical solutions in general. The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex. Recall

$$g^*(
ho) = \sup_x (x \cdot
ho - g(x))$$

$$f^*(x) = \sup_{\rho} (x \cdot \rho - f(\rho)),$$

Assume H(x, t, p) = H(p) depends on p only:

$$u_t = H(u_x), \quad u(x,0) = g(x).$$

This equation does not possess classical solutions in general. The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex. Recall

$$g^*(
ho) = \sup_x (x \cdot
ho - g(x))$$

$$f^*(x) = \sup_{
ho} (x \cdot
ho - f(
ho)),$$

Assume H(x, t, p) = H(p) depends on p only:

$$u_t = H(u_x), \quad u(x,0) = g(x).$$

This equation does not possess classical solutions in general. The theory of viscosity solutions offers a unique generalized solution for a given Lipschitz initial g. This solution has a variational description when either g or H is convex. Recall

$$g^*(
ho) = \sup_x (x \cdot
ho - g(x))$$

$$f^*(x) = \sup_{
ho} (x \cdot
ho - f(
ho)),$$

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) If g is convex, then

$$u(x,t)=(g^*-tH)^*(x).$$

More explicitly

$$U^*(\rho, t) = \sup_{x} \left(x \cdot \rho - g(x) - tH(\rho) \right),$$

$$u(x,t) = \sup_{\rho} \left(x \cdot \rho - g^*(\rho) + t H(\rho) \right),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) If *g* is convex, then

$$u(x,t) = (g^* - tH)^*(x).$$

More explicitly

$$u^*(\rho, t) = \sup_{x} \left(x \cdot \rho - g(x) - tH(\rho) \right),$$

$$u(x,t) = \sup_{\rho} \left(x \cdot \rho - g^*(\rho) + t H(\rho) \right),$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) If *g* is convex, then

$$u(x,t)=(g^*-tH)^*(x).$$

More explicitly

$$u^{*}(\rho, t) = \sup_{x} \left(x \cdot \rho - g(x) - tH(\rho) \right),$$
$$u(x, t) = \sup_{x} \left(x \cdot \rho - g^{*}(\rho) + tH(\rho) \right)$$

$$u(x,t) = \sup_{\rho} (x \cdot \rho - g^*(\rho) + tH(\rho)),$$

・ロト・四ト・モート ヨー うへの

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) If *g* is convex, then

$$u(x,t)=(g^*-tH)^*(x).$$

More explicitly

$$u^{*}(\rho, t) = \sup_{x} (x \cdot \rho - g(x) - tH(\rho)),$$
$$u(x, t) = \sup_{\rho} (x \cdot \rho - g^{*}(\rho) + tH(\rho)),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) If *g* is convex, then

$$u(x,t)=(g^*-tH)^*(x).$$

More explicitly

$$u^{*}(\rho, t) = \sup_{x} \left(x \cdot \rho - g(x) - tH(\rho) \right),$$
$$u(x, t) = \sup_{x} \left(x \cdot \rho - g^{*}(\rho) + tH(\rho) \right)$$

$$u(x,t) = \sup_{\rho} (x \cdot \rho - g^*(\rho) + tH(\rho)),$$

(We are solving $u_t = H(u_x), u(\cdot, 0) = g$) If *H* is convex, then

$$u(x,t) = \sup_{y} \left(g(y) - tL\left(\frac{y-x}{t}\right) \right),$$

where $L = H^*$ is the Legendre transform of H. **Remark** Define the semigroup $\Phi = (\Phi_t : t \ge 0)$, by $\Phi_t g(x) = u(x, t)$. When H is convex, then Φ_t is strongly monotone: If $(g_a : a \in A)$ is a family of initial data, then

$$\Phi_t\left(\sup_{a\in A}g_\alpha\right)=\sup_{a\in A}\Phi_tg_a.$$

This is an immediate consequence of HLO Formula

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) If *H* is convex, then

$$u(x,t) = \sup_{y} \left(g(y) - tL\left(\frac{y-x}{t}\right) \right),$$

where $L = H^*$ is the Legendre transform of H. Remark Define the semigroup $\Phi = (\Phi_t : t \ge 0)$, by $\Phi_t g(x) = u(x, t)$. When H is convex, then Φ_t is strongly monotone: If $(g_a : a \in A)$ is a family of initial data, then

$$\Phi_t\left(\sup_{a\in A}g_\alpha\right)=\sup_{a\in A}\Phi_tg_a.$$

This is an immediate consequence of HLO Formula.

・ロト・西ト・ヨト ・ヨー シック

(We are solving $u_t = H(u_x), u(\cdot, 0) = g$) If *H* is convex, then

$$u(x,t) = \sup_{y} \left(g(y) - tL\left(\frac{y-x}{t}\right) \right),$$

where $L = H^*$ is the Legendre transform of H. Remark Define the semigroup $\Phi = (\Phi_t : t \ge 0)$, by $\Phi_t g(x) = u(x, t)$.

When *H* is convex, then Φ_t is strongly monotone If $(g_a : a \in A)$ is a family of initial data, then

$$\Phi_t\left(\sup_{a\in A}g_\alpha\right)=\sup_{a\in A}\Phi_tg_a.$$

This is an immediate consequence of HLO Formula.

・ロト・西ト・西ト・西ト・日・ つんぐ

(We are solving $u_t = H(u_x), u(\cdot, 0) = g$) If *H* is convex, then

$$u(x,t) = \sup_{y} \left(g(y) - tL\left(\frac{y-x}{t}\right) \right),$$

where $L = H^*$ is the Legendre transform of H. Remark Define the semigroup $\Phi = (\Phi_t : t \ge 0)$, by $\Phi_t g(x) = u(x, t)$. When H is convex, then Φ_t is strongly monotone: If $(g_a : a \in A)$ is a family of initial data, then

$$\Phi_t\left(\sup_{a\in A}g_\alpha\right)=\sup_{a\in A}\Phi_tg_a.$$

This is an immediate consequence of HLO Formula

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) If *H* is convex, then

$$u(x,t) = \sup_{y} \left(g(y) - tL\left(\frac{y-x}{t}\right) \right),$$

where $L = H^*$ is the Legendre transform of H. Remark Define the semigroup $\Phi = (\Phi_t : t \ge 0)$, by $\Phi_t g(x) = u(x, t)$. When H is convex, then Φ_t is strongly monotone: If $(g_a : a \in A)$ is a family of initial data, then

$$\Phi_t\left(\sup_{a\in A}g_\alpha\right)=\sup_{a\in A}\Phi_tg_a.$$

(日) (日) (日) (日) (日) (日) (日)

This is an immediate consequence of HLO Formula
Hopf-Lax-Oleinik Formula (Convex H)

(We are solving $u_t = H(u_x), u(\cdot, 0) = g$) If *H* is convex, then

$$u(x,t) = \sup_{y} \left(g(y) - tL\left(\frac{y-x}{t}\right) \right),$$

where $L = H^*$ is the Legendre transform of H. Remark Define the semigroup $\Phi = (\Phi_t : t \ge 0)$, by $\Phi_t g(x) = u(x, t)$. When H is convex, then Φ_t is strongly monotone: If $(g_a : a \in A)$ is a family of initial data, then

$$\Phi_t\left(\sup_{a\in A}g_{\alpha}\right)=\sup_{a\in A}\Phi_tg_a.$$

This is an immediate consequence of HLO Formula.

Hopf-Lax-Oleinik Formula (Convex H)

(We are solving $u_t = H(u_x), u(\cdot, 0) = g$) If *H* is convex, then

$$u(x,t) = \sup_{y} \left(g(y) - tL\left(\frac{y-x}{t}\right) \right),$$

where $L = H^*$ is the Legendre transform of H. Remark Define the semigroup $\Phi = (\Phi_t : t \ge 0)$, by $\Phi_t g(x) = u(x, t)$. When H is convex, then Φ_t is strongly monotone: If $(g_a : a \in A)$ is a family of initial data, then

$$\Phi_t\left(\sup_{a\in A}g_{\alpha}\right)=\sup_{a\in A}\Phi_tg_a.$$

This is an immediate consequence of HLO Formula.

(We are solving $u_t = H(u_x), u(\cdot, 0) = g$)

Observe $u(x, t) = x \cdot \rho + a + tH(\rho)$ is a solution for initial $u(x, 0) = x \cdot \rho + a$. g convex means $g = g^{**}$:

$$g = \sup_{
ho \in \mathbb{R}^d} \ell_{
ho}, \quad ext{with} \quad \ell_{
ho}(x) = x \cdot
ho - g^*(
ho),$$

Assume Strong Monotonicity:

$$u(x,t) = \sup_{\rho} \left(\Phi_t \ell_{\rho} \right)(x) = \sup_{\rho} \left(\ell_{\rho}(x) + tH(\rho) \right),$$
$$u(x,t) = \sup_{\rho} \left(x \cdot \rho - \sigma^*(\rho) + tH(\rho) \right)$$

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) Observe $u(x, t) = x \cdot \rho + a + tH(\rho)$ is a solution for initial $u(x, 0) = x \cdot \rho + a$. g convex means $g = g^{**}$:

$$g = \sup_{
ho \in \mathbb{R}^d} \ell_
ho, \quad ext{with} \quad \ell_
ho(x) = x \cdot
ho - g^*(
ho),$$

Assume Strong Monotonicity:

$$u(x,t) = \sup_{\rho} (\Phi_t \ell_{\rho})(x) = \sup_{\rho} (\ell_{\rho}(x) + tH(\rho)),$$
$$u(x,t) = \sup (x \cdot \rho - g^*(\rho) + tH(\rho)),$$

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) Observe $u(x, t) = x \cdot \rho + a + tH(\rho)$ is a solution for initial $u(x, 0) = x \cdot \rho + a$. g convex means $g = g^{**}$:

$$g = \sup_{
ho \in \mathbb{R}^d} \ell_
ho, \quad ext{with} \quad \ell_
ho(x) = x \cdot
ho - g^*(
ho),$$

Assume Strong Monotonicity:

$$u(x,t) = \sup_{\rho} \left(\Phi_t \ell_{\rho} \right)(x) = \sup_{\rho} \left(\ell_{\rho}(x) + t H(\rho) \right),$$

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) Observe $u(x, t) = x \cdot \rho + a + tH(\rho)$ is a solution for initial $u(x, 0) = x \cdot \rho + a$. g convex means $g = g^{**}$:

$$g = \sup_{
ho \in \mathbb{R}^d} \ell_{
ho}, \quad ext{with} \quad \ell_{
ho}(x) = x \cdot
ho - g^*(
ho),$$

Assume Strong Monotonicity:

$$u(x,t) = \sup_{\rho} \left(\Phi_t \ell_{\rho} \right)(x) = \sup_{\rho} \left(\ell_{\rho}(x) + t H(\rho) \right),$$

$$u(x,t) = \sup_{\rho} \left(x \cdot \rho - g^*(\rho) + t H(\rho) \right),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) Observe $u(x, t) = x \cdot \rho + a + tH(\rho)$ is a solution for initial $u(x, 0) = x \cdot \rho + a$. g convex means $g = g^{**}$:

$$g = \sup_{
ho \in \mathbb{R}^d} \ell_{
ho}, \quad ext{with} \quad \ell_{
ho}(x) = x \cdot
ho - g^*(
ho),$$

Assume Strong Monotonicity:

$$u(x,t) = \sup_{\rho} \left(\Phi_t \ell_{\rho} \right)(x) = \sup_{\rho} \left(\ell_{\rho}(x) + tH(\rho) \right),$$
$$u(x,t) = \sup_{\rho} \left(x \cdot \rho - g^*(\rho) + tH(\rho) \right),$$

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) Observe $u(x, t) = x \cdot \rho + a + tH(\rho)$ is a solution for initial $u(x, 0) = x \cdot \rho + a$. g convex means $g = g^{**}$:

$$g = \sup_{
ho \in \mathbb{R}^d} \ell_
ho, \quad ext{with} \quad \ell_
ho(x) = x \cdot
ho - g^*(
ho),$$

Assume Strong Monotonicity:

$$u(x,t) = \sup_{\rho} (\Phi_t \ell_{\rho})(x) = \sup_{\rho} (\ell_{\rho}(x) + tH(\rho)),$$

$$u(x,t) = \sup_{\rho} \left(x \cdot \rho - g^*(\rho) + t H(\rho) \right),$$

(We are solving $u_t = H(u_x)$, $u(\cdot, 0) = g$) Observe $u(x, t) = x \cdot \rho + a + tH(\rho)$ is a solution for initial $u(x, 0) = x \cdot \rho + a$. g convex means $g = g^{**}$:

$$g = \sup_{
ho \in \mathbb{R}^d} \ell_
ho, \quad ext{with} \quad \ell_
ho(x) = x \cdot
ho - g^*(
ho),$$

Assume Strong Monotonicity:

$$u(x,t) = \sup_{
ho} (\Phi_t \ell_{
ho})(x) = \sup_{
ho} (\ell_{
ho}(x) + tH(
ho)),$$

$$u(x,t) = \sup_{\rho} (x \cdot \rho - g^*(\rho) + tH(\rho)),$$

Write C for the set of convex functions. It is an invariant set for the dynamics. When $g \in C$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_t g$: If we define $\Psi_t h := (\Phi_t h^*)^*$, then

$$\Psi_t h = (h - tH)^{**} =: (h - tH)^o.$$

(f^o means Convex Hull of f)

In words, the flow Ψ is associated with a linear motion with velocity -H.

Since h - tH may not be convex, we need to take its convex hull to stay in C.

Write C for the set of convex functions. It is an invariant set for the dynamics. When $g \in C$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_t g$: If we define $\Psi_t h := (\Phi_t h^*)^*$, then

$$\Psi_t h = (h - tH)^{**} =: (h - tH)^o.$$

(f^o means Convex Hull of f)

In words, the flow Ψ is associated with a linear motion with velocity -H.

Since h - tH may not be convex, we need to take its convex hull to stay in C.

Write \mathcal{C} for the set of convex functions. It is an invariant set for

the dynamics. When $g \in C$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_t g$: If we define $\Psi_t h := (\Phi_t h^*)^*$, then

$$\Psi_t h = (h - tH)^{**} =: (h - tH)^o.$$

(f^o means Convex Hull of f)

In words, the flow Ψ is associated with a linear motion with velocity -H.

Since h - tH may not be convex, we need to take its convex hull to stay in C.

Write C for the set of convex functions. It is an invariant set for the dynamics. When $g \in C$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_t g$:

If we define $\Psi_t h := \left(\Phi_t h^st
ight)^st,$ then

$$\Psi_t h = (h - tH)^{**} =: (h - tH)^o.$$

(f^o means Convex Hull of f)

In words, the flow Ψ is associated with a linear motion with velocity -H.

Since h - tH may not be convex, we need to take its convex hull to stay in C.

Write C for the set of convex functions. It is an invariant set for the dynamics. When $g \in C$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_t g$: If we define $\Psi_t h := (\Phi_t h^*)^*$,

then

$$\Psi_t h = (h - tH)^{**} =: (h - tH)^o.$$

(f^o means Convex Hull of f)

In words, the flow Ψ is associated with a linear motion with velocity -H.

Since h - tH may not be convex, we need to take its convex hull to stay in C.

Write C for the set of convex functions. It is an invariant set for the dynamics. When $g \in C$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_t g$: If we define $\Psi_t h := (\Phi_t h^*)^*$, then

$$\Psi_t h = (h - tH)^{**} =: (h - tH)^o.$$

(f^o means Convex Hull of f)

In words, the flow Ψ is associated with a linear motion with velocity -H.

Since h - tH may not be convex, we need to take its convex hull to stay in C.

Write C for the set of convex functions. It is an invariant set for the dynamics. When $g \in C$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_t g$: If we define $\Psi_t h := (\Phi_t h^*)^*$, then

$$\Psi_t h = (h - tH)^{**} =: (h - tH)^o.$$

(fo means Convex Hull of f)

In words, the flow Ψ is associated with a linear motion with velocity -H.

Since h - tH may not be convex, we need to take its convex hull to stay in C.

Write C for the set of convex functions. It is an invariant set for the dynamics. When $g \in C$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_t g$: If we define $\Psi_t h := (\Phi_t h^*)^*$, then

$$\Psi_t h = (h - tH)^{**} =: (h - tH)^o.$$

(f^o means Convex Hull of f)

In words, the flow Ψ is associated with a linear motion with velocity -H.

Since h - tH may not be convex, we need to take its convex hull to stay in C.

Write C for the set of convex functions. It is an invariant set for the dynamics. When $g \in C$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_t g$: If we define $\Psi_t h := (\Phi_t h^*)^*$, then

$$\Psi_t h = (h - tH)^{**} =: (h - tH)^o.$$

(f^o means Convex Hull of f)

In words, the flow Ψ is associated with a linear motion with velocity -H.

Since h - tH may not be convex, we need to take its convex hull to stay in C.

Write C for the set of convex functions. It is an invariant set for the dynamics. When $g \in C$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_t g$: If we define $\Psi_t h := (\Phi_t h^*)^*$, then

$$\Psi_t h = (h - tH)^{**} =: (h - tH)^o.$$

(fo means Convex Hull of f)

In words, the flow Ψ is associated with a linear motion with velocity -H.

Since h - tH may not be convex, we need to take its convex hull to stay in C.

Write C for the set of convex functions. It is an invariant set for the dynamics. When $g \in C$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_t g$: If we define $\Psi_t h := (\Phi_t h^*)^*$, then

$$\Psi_t h = (h - tH)^{**} =: (h - tH)^o.$$

(fo means Convex Hull of f)

In words, the flow Ψ is associated with a linear motion with velocity -H.

Since h - tH may not be convex, we need to take its convex hull to stay in C.

Observe that when both *H* and *g* are convex, then it is possible that $(h - tH)^o \neq h - tH$ for every t > 0. Indeed this would always be the case if *g* is piecewise linear and *H* is strictly

convex. Nonetheless (as will see later on), there is a kinetic description for Ψ that would give a local description of the dynamics as opposed to what is given on the right-hand side that involves a convex hull.

Write C for the set of convex functions. It is an invariant set for the dynamics. When $g \in C$ is convex, then Hopf Formula offers a rather simple dynamics for the evolution of $\Phi_t g$: If we define $\Psi_t h := (\Phi_t h^*)^*$, then

$$\Psi_t h = (h - tH)^{**} =: (h - tH)^o.$$

(fo means Convex Hull of f)

In words, the flow Ψ is associated with a linear motion with velocity -H.

Since h - tH may not be convex, we need to take its convex hull to stay in C.

Take a function $h : \mathbb{R}^d \to (-\infty, +\infty]$.

$$P = Dom(h) := \{ \rho : h(\rho) \neq \infty \}.$$

Define

$$u(x) = h^*(x) = \sup_{\rho} (x \cdot \rho - h(\rho)) = \sup_{\rho \in P} (x \cdot \rho - h(\rho)).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Take a function $h : \mathbb{R}^d \to (-\infty, +\infty]$.

$$P = Dom(h) := \{ \rho : h(\rho) \neq \infty \}.$$

Define

$$u(x) = h^*(x) = \sup_{\rho} (x \cdot \rho - h(\rho)) = \sup_{\rho \in P} (x \cdot \rho - h(\rho)).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Take a function $h : \mathbb{R}^d \to (-\infty, +\infty]$.

$$P = Dom(h) := \{ \rho : h(\rho) \neq \infty \}.$$

Define

$$u(x) = h^*(x) = \sup_{\rho} (x \cdot \rho - h(\rho)) = \sup_{\rho \in P} (x \cdot \rho - h(\rho)).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Take a function $h : \mathbb{R}^d \to (-\infty, +\infty]$.

$$P = Dom(h) := \{ \rho : h(\rho) \neq \infty \}.$$

Define

$$u(x) = h^*(x) = \sup_{\rho} (x \cdot \rho - h(\rho)) = \sup_{\rho \in P} (x \cdot \rho - h(\rho)).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Take a function $h : \mathbb{R}^d \to (-\infty, +\infty]$.

$$P = Dom(h) := \{ \rho : h(\rho) \neq \infty \}.$$

Define

$$u(x) = h^*(x) = \sup_{\rho} (x \cdot \rho - h(\rho)) = \sup_{\rho \in P} (x \cdot \rho - h(\rho)).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We write $\partial h(a)$ for the set of subgradients of *h* at *a*:

$$p \in \partial h(a) \quad \Leftrightarrow \quad h(\rho) \geq h(a) + (\rho - a) \cdot p.$$

We write $\partial h(a)$ for the set of subgradients of *h* at *a*:

$$p \in \partial h(a) \quad \Leftrightarrow \quad h(\rho) \geq h(a) + (\rho - a) \cdot p.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A@

If *h* is convex and lsc, then

 $x \in \partial h(\rho) \quad \Leftrightarrow \quad \rho \in \partial h^*(x) \quad \Leftrightarrow \quad x \cdot \rho = h(\rho) + h^*(x).$

If *h* is convex and lsc, then

 $x \in \partial h(\rho) \quad \Leftrightarrow \quad \rho \in \partial h^*(x) \quad \Leftrightarrow \quad x \cdot \rho = h(\rho) + h^*(x).$

If *h* is convex and lsc, then

 $x \in \partial h(\rho) \quad \Leftrightarrow \quad \rho \in \partial h^*(x) \quad \Leftrightarrow \quad x \cdot \rho = h(\rho) + h^*(x).$

As Hopf's formula, it is more convenient to assume our convex function can be expressed as $u = h^*$, where $h : \mathbb{R}^d \to (-\infty, \infty]$ with Dom(h) =: P a closed subset of \mathbb{R}^d .

We always assume that the restriction of *h* to the set *P* is continuous, and

$$\lim_{\rho|\to\infty}\frac{h(\rho)}{|\rho|}=\infty,$$

so that *u* is a finite-valued convex function.

We say the set *P* is *minimal*, if the set *P* cannot be replaced with any proper subset of *P* in

$$u(x) = \sup_{\rho \in P} (x \cdot \rho - h(\rho)).$$

▲□ > ▲圖 > ▲ 国 > ▲ 国 > → 国 → のへで

As Hopf's formula, it is more convenient to assume our convex function can be expressed as $u = h^*$, where $h : \mathbb{R}^d \to (-\infty, \infty]$ with Dom(h) =: P a closed subset of \mathbb{R}^d .

We always assume that the restriction of *h* to the set *P* is continuous, and

$$\lim_{\rho|\to\infty}\frac{h(\rho)}{|\rho|}=\infty,$$

so that u is a finite-valued convex function. We say the set P is *minimal*, if the set P cannot be replaced with any proper subset of P in

$$u(x) = \sup_{\rho \in P} (x \cdot \rho - h(\rho)).$$

◆□▶ ◆□▶ ◆三≯ ◆三≯ ● ● ● ●

As Hopf's formula, it is more convenient to assume our convex function can be expressed as $u = h^*$, where $h : \mathbb{R}^d \to (-\infty, \infty]$ with Dom(h) =: P a closed subset of \mathbb{R}^d . We always assume that the restriction of *h* to the set *P* is continuous, and

$$\lim_{|\rho|\to\infty}\frac{h(\rho)}{|\rho|}=\infty,$$

so that *u* is a finite-valued convex function.

We say the set *P* is *minimal*, if the set *P* cannot be replaced with any proper subset of *P* in

$$u(x) = \sup_{\rho \in P} (x \cdot \rho - h(\rho)).$$

(日) (日) (日) (日) (日) (日) (日)
As Hopf's formula, it is more convenient to assume our convex function can be expressed as $u = h^*$, where $h : \mathbb{R}^d \to (-\infty, \infty]$ with Dom(h) =: P a closed subset of \mathbb{R}^d . We always assume that the restriction of *h* to the set *P* is continuous, and

$$\lim_{|\rho|\to\infty}\frac{h(\rho)}{|\rho|}=\infty,$$

so that *u* is a finite-valued convex function.

We say the set P is *minimal*, if the set P cannot be replaced with any proper subset of P in

$$u(x) = \sup_{\rho \in P} (x \cdot \rho - h(\rho)).$$

(日) (日) (日) (日) (日) (日) (日)

$$\mathbb{X}(h) = \mathbb{X} = \left\{ \partial u^*(\rho) : \ \rho \in \mathbb{R}^d \right\}$$
$$\mathbb{P}(h) = \mathbb{P} = \left\{ \partial u(x) : \ x \in \mathbb{R}^d \right\}.$$

$$\mathbb{X}(h) = \mathbb{X} = \left\{ \partial u^*(\rho) : \rho \in \mathbb{R}^d \right\}$$
$$\mathbb{P}(h) = \mathbb{P} = \left\{ \partial u(x) : x \in \mathbb{R}^d \right\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathbb{X}(h) = \mathbb{X} = \left\{ \partial u^*(\rho) : \rho \in \mathbb{R}^d \right\}$$
$$\mathbb{P}(h) = \mathbb{P} = \left\{ \partial u(x) : x \in \mathbb{R}^d \right\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathbb{X}(h) = \mathbb{X} = \{ \partial u^*(\rho) : \rho \in \mathbb{R}^d \}$$

 $\mathbb{P}(h) = \mathbb{P} = \{ \partial u(x) : x \in \mathbb{R}^d \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ