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Motivation

In many models of interest we encounter an interface that
separates different phases and is evolving with time. The
interface at a location x and time t changes with a rate that
depends on (x , t), and the inclination of the interface at that
location. If the interface is represented by a graph of a function
(x , t) 7→ u(x , t), u : Rd × [0,∞)→ R, then a natural model for
its evolution is a Hamilton-Jacobi PDE:

ut = H(x , t ,ux ), u(x ,0) = g(x).

(In discrete setting some of the variables x , t or u are discrete.)
H is often random (hence u is random), and we are interested
in various scaling limits of solutions.
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A Natural Question
Select g according to a (reasonable) probability measure µ0.
Let us write µt for the law of u(·, t) at time t . Note: If Φt is the
flow (in other words u(·, t) = (Φtg)(·)), then µt = Φ∗t µ

0.
Question: Can we find a nice/tractable/explicit evolution
equation for µt?
We may also keep track of ρ = ux (more natural). The law of
ρ(·, t) is denoted by ν t . Equilibrium Measure: ν t = ν0.
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First Step, Main Setting

Assume H(x , t ,p) = H(p) depends on p only:

ut = H(ux ), u(x ,0) = g(x).

This equation does not possess classical solutions in general.
The theory of viscosity solutions offers a unique generalized
solution for a given Lipschitz initial g. This solution has a
variational description when either g or H is convex.
Recall

g∗(ρ) = sup
x

(x · ρ− g(x))

f ∗(x) = sup
ρ

(x · ρ− f (ρ)),

g∗∗ = g, f ∗∗ = f .
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Hopf Formula (Convex Initial Data)

(We are solving ut = H(ux ), u(·,0) = g)
If g is convex, then

u(x , t) = (g∗ − tH)∗(x).

More explicitly

u∗(ρ, t) = sup
x

(
x · ρ− g(x)− tH(ρ)

)
,

u(x , t) = sup
ρ

(
x · ρ− g∗(ρ) + tH(ρ)

)
,
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Hopf-Lax-Oleinik Formula (Convex H)

(We are solving ut = H(ux ), u(·,0) = g)
If H is convex, then

u(x , t) = sup
y

(
g(y)− tL

(
y − x

t

))
,

where L = H∗ is the Legendre transform of H.
Remark Define the semigroup Φ =

(
Φt : t ≥ 0

)
, by

Φtg(x) = u(x , t).
When H is convex, then Φt is strongly monotone:
If (ga : a ∈ A) is a family of initial data, then

Φt

(
sup
a∈A

gα

)
= sup

a∈A
Φtga.

This is an immediate consequence of HLO Formula.
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HLO implies Hopf (Both g and H Convex)

(We are solving ut = H(ux ), u(·,0) = g)
Observe u(x , t) = x · ρ+ a + tH(ρ) is a solution for initial
u(x ,0) = x · ρ+ a.
g convex means g = g∗∗:

g = sup
ρ∈Rd

`ρ, with `ρ(x) = x · ρ− g∗(ρ),

Assume Strong Monotonicity:

u(x , t) = sup
ρ

(
Φt`ρ

)
(x) = sup

ρ

(
`ρ(x) + tH(ρ)

)
,

u(x , t) = sup
ρ

(
x · ρ− g∗(ρ) + tH(ρ)

)
,
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Assumption: H and g Convex
Write C for the set of convex functions. It is an invariant set for
the dynamics. When g ∈ C is convex, then Hopf Formula offers
a rather simple dynamics for the evolution of Φtg:
If we define Ψth :=

(
Φth∗

)∗,
then

Ψth = (h − tH)∗∗ =: (h − tH)o.

(f o means Convex Hull of f )
In words, the flow Ψ is associated with a linear motion with
velocity −H.
Since h − tH may not be convex, we need to take its convex
hull to stay in C.
Observe that when both H and g are convex, then it is possible
that (h − tH)o 6= h − tH for every t > 0. Indeed this would
always be the case if g is piecewise linear and H is strictly
convex. Nonetheless (as will see later on), there is a kinetic
description for Ψ that would give a local description of the
dynamics as opposed to what is given on the right-hand side
that involves a convex hull.
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Convex Functions (Legendre Transform/Convex Hull)

Take a function h : Rd → (−∞,+∞].

P = Dom(h) := {ρ : h(ρ) 6=∞}.

Define

u(x) = h∗(x) = sup
ρ

(x · ρ− h(ρ)) = sup
ρ∈P

(x · ρ− h(ρ)).

Observe u is convex and lower semicontinuous (lsc).
Also u∗ = h∗∗ = ho.
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Convex Functions (subgradient)

We write ∂h(a) for the set of subgradients of h at a:

p ∈ ∂h(a) ⇔ h(ρ) ≥ h(a) + (ρ− a) · p.
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As Hopf’s formula, it is more convenient to assume our convex
function can be expressed as u = h∗, where h : Rd → (−∞,∞]
with Dom(h) =: P a closed subset of Rd .
We always assume that the restriction of h to the set P is
continuous, and

lim
|ρ|→∞

h(ρ)

|ρ|
=∞,

so that u is a finite-valued convex function.
We say the set P is minimal, if the set P cannot be replaced
with any proper subset of P in

u(x) = sup
ρ∈P

(x · ρ− h(ρ)).
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Laguerre Tesselation

X(h) = X =
{
∂u∗(ρ) : ρ ∈ Rd}

P(h) = P =
{
∂u(x) : x ∈ Rd}.

For each m and a, the sets ∂u∗(m) and ∂u(a) are convex.
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