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Motivation

(Stochastic) Growth Models
In many models of interest we encounter an interface that
separates different phases and is evolving with time. The
interface at a location x and time t changes with a rate that
depends on (x , t), and the inclination of the interface at that
location. If the interface is represented by a graph of a function
u : Rd × [0,∞)→ R, then a natural model for its evolution is a
Hamilton-Jacobi PDE:

ut + H(x , t ,ux ) = 0, u(x ,0) = g(x).

(In discrete setting some of the variables x , t or u are discrete;
examples SEP, HAD, etc.) H is often random (hence u is
random), and we are interested in various scaling limits of
solutions.
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A Natural Question/Strategy
Select g according to a (reasonable) probability measure µ0.
Let us write µt for the law of u(·, t) at time t . Note: If Φt is the
flow (in other words u(·, t) = (Φtg)(·)), then µt = Φ∗t µ

0.
Question: Can we find a nice/tractable/explicit evolution
equation for µt?
We may also keep track of ρ = ux (more natural). The law of
ρ(·, t) is denoted by ν t . Equilibrium Measure: ν t = ν0.
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Some Examples

I Some exactly solvable discrete models are determinantal:
The finite dimensional marginals of ν t can be expressed as
a determinant of an explicit matrix. Example: TASEP A.
Borodin, P. L. Ferrari, M. Prähofer, T. Sasamoto (2007), G.
M. Schütz (1997)

I d = 1, H(x , t ,p) = p2/2, ρ(·,0) is a Lévy process. Then
ρ(·, t) is also a Lévy process (Bertoin 1998). Associated
Lévy measures solve a kinetic-type equation
(Smoluchowsky Equation with additive kernel).
When ρ(·,0) is White Noise (g =Brownian Motion), then
x 7→ ρ(x , t) is a Markov process: Linear motion interrupted
by stochastic jumps with an explicit kernel (Groeneboom
1989).
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I Assume d = 1, H(x , t ,p) = H(p) independent of (x , t) and
convex, ρ0(x) = ρ(·,0) is a Markov process: An ODE
ρ̇0 = b0(ρ0) interrupted by random jumps with jump rate
f 0(ρ−, ρ+) dρ+. Then this picture persists at later times:
x 7→ ρ(x , t) is a Markov process of the same type:An ODE
ρ̇ = b(ρ, t) that is interrupted with random jumps with jump
rate f (ρ−, ρ+, t) dρ+. This was conjectured by
Menon-Srinivasan (2010), and rigorously established by
Kaspar and FR (2016,2019).

I b(·, t) solves bt (ρ, t) = −H ′′(ρ)b(ρ, t)2. Trivially solved.
Note that if b0 ≥ 0, then no blow up.

I f (ρ−, ρ+, t) solves a kinetic equation (resembles
Smoluchowski but far more complicated) of the form

ft + C(f ) = Q(f , f ) = Q+(f , f )−Q−(f , f ),

C(f ) a first order differential operator (transport type).
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Main Result I

Setting

I Assume d = 1, H(x , t ,p) is convex in p. The function
ρ(x , t) solves

ρt + H(x , t , ρ)x = 0, ρ(x ,0) = ρ0(x).

(Or ρ = ux , and u solves ut + H(x , t ,ux ) = 0.)
I Assume that ρ0 is a Markov process with a drift b0(ρ, x)

and a jump rate f 0(ρ−, ρ+; x) dρ+. This means x 7→ ρ0(x)
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I b satisfies the linear PDE:

bt + {H,b}+ Hρρb2 + 2Hρxb + Hxx = 0,

where {H,b} = Hρbx − Hxbρ. The solution b may blow up
in finite time. We will discuss an important class of
examples with no blowup.

I The function f (ρ−, ρ+; x , t) satisfies a kinetic (integro-)PDE

ft + (vf )x + C(f ) = Q(f , f ),

where

v(ρ−, ρ+, x , t) =
H(x , t , ρ−)− H(x , t , ρ+)

ρ− − ρ+
,

Q(f , f ) = Q+(f , f )−Q−(f , f ) is a coagulation-like operator;
C(f ) = C+(f ) + C−(f ) is a linear first order differential (in
ρ±) operator.
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Main Result II

A scenario with no blowup
We now describe an important class of examples for which b is
already determined and there is never a blowup. In this case,
even the kinetic equation for f simplifies! Recall that the job of
b(ρ; x , t) was to produce a classical solution in between jump
discontinuities. A natural candidate for a classical solution is
the fundamental solution:
Given a pair (y ,g), define a fundamental solution associated
with (y ,g) by

w(x , t ; y ,g) = g+inf
{∫ t

0
L(ż(s), z(s), s) ds : z(0) = y , z(t) = x

}
where v 7→ L(v , x , t) is the Legendre conjugate of
p 7→ H(p, x , t).
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A scenario with no blowup
Given a discrete set {(yi ,gi) : i ∈ I}, consider a solution of the
form

u(x , t) = inf
i∈I

w(x , t ; yi ,gi).

Example: If H(x , t ,p) = H(p), we simply have

w(x , t ; y ,g) = g + tL
(

x − y
t

)
.

Important Remark: For each t , there exists I(t) ⊆ I such that

t < t ′ =⇒ I(t ′) ⊆ I(t),

u(x , t) = inf
i∈I(t)

w(x , t ; yi ,gi).

Omit redundant indices to get I(t). By definition I(t) has no
redundant index.
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A scenario with no blowup
We can show that for each t , there are

· · · < xi(t) < xi+1(t) < . . . , · · · < yi(t) < yi+1(t) < . . . ,

such that

x ∈ (xi−1(t), xi(t)) =⇒ u(x , t) = w(x , t ; yi ,gi).

Main Result

Theorem
The process x 7→ ρ(x , t) is Markov if this is the case initially. At
a discontinuity point xi(t), the position yi jumps to yi+1 ∈ (yi ,∞)
stochastically with rate f̂ (yi , yi+1; xi , t) dyi+1.
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Main Result
I The function f̂ (y−, y+; x , t) satisfies a kinetic PDE

f̂t + (v̂ f̂ )x = Q̂(f̂ , f̂ ),

where

v̂(y−, y+, x , t) =
H(x , t , ρ−)− H(x , t , ρ+)

ρ− − ρ+
,

with ρ±(x , t) = wx (x , t ; y±,g±) (this does not depend on g).
I Here is Q̂ = Q̂+ − Q̂−: λ(y−) =

∫
f̂ (y−, y+)dy+,

A(y−) =
∫

(v̂ f̂ )(y−, y+)dy+,

Q̂+ =

∫ (
v̂(y+, y∗)− v̂(y∗, y−)

)
f̂ (y−, y∗) f̂ (y∗, y+) dy∗

Q̂− =
[
A(y+)− A(y−)− v̂(y−, y+)

(
λ(y+)− λ(y−)

)]
f̂ (y−, y+)
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Kinetic Description in Dimension One

Since H is convex in momentum variable, one may use
variational techniques to study the solutions. However for our
results, we use a different approach.
Suppose ρ is a classical solution and solves an ODE
associated with b. The compatibility of the two equations

ρt = −H(ρ, x , t)x , ρx = b(ρ, x , t),

yields the equation we stated for b:

bt + {H,b}+ Hρρb2 + 2Hρxb + Hxx = 0.

It is not hard to solve this equation; solutions can be expressed
in terms of the solutions to the Hamiltonian ODE associated
with H. Because of b2, the solution may blow up.
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Summary:
I No blow-up ⇔ We have a classical solution.
I Blow-up ⇔ We don’t have a classical solution.

A scenario for a kinetic description
I Take a solution for b with blowup; Since Hρρ ≥ 0, b may

become −∞. Then switch to +∞ and continue!
I Assume b = b0 initially has no blowup. Take a discrete set
{(xi , ρi) : i ∈ I} of points with xi < xi+1. Define an initial
profile ρ0 such that ρ0(xi+) = ρi , and it solves the ODE
ρ̇0 = b0(ρ0, x ,0) in each interval (xi , xi+1). Assume that
this ρ0(x) satisfies ρ0(xi−) > ρ0(xi+). (We want to make
sure that there is no rarefaction so that all xi lead to shock
discontinuities.)



Summary:
I No blow-up ⇔ We have a classical solution.
I Blow-up ⇔ We don’t have a classical solution.

A scenario for a kinetic description
I Take a solution for b with blowup; Since Hρρ ≥ 0, b may

become −∞. Then switch to +∞ and continue!
I Assume b = b0 initially has no blowup. Take a discrete set
{(xi , ρi) : i ∈ I} of points with xi < xi+1. Define an initial
profile ρ0 such that ρ0(xi+) = ρi , and it solves the ODE
ρ̇0 = b0(ρ0, x ,0) in each interval (xi , xi+1). Assume that
this ρ0(x) satisfies ρ0(xi−) > ρ0(xi+). (We want to make
sure that there is no rarefaction so that all xi lead to shock
discontinuities.)



Summary:
I No blow-up ⇔ We have a classical solution.
I Blow-up ⇔ We don’t have a classical solution.

A scenario for a kinetic description
I Take a solution for b with blowup; Since Hρρ ≥ 0, b may

become −∞. Then switch to +∞ and continue!
I Assume b = b0 initially has no blowup. Take a discrete set
{(xi , ρi) : i ∈ I} of points with xi < xi+1. Define an initial
profile ρ0 such that ρ0(xi+) = ρi , and it solves the ODE
ρ̇0 = b0(ρ0, x ,0) in each interval (xi , xi+1). Assume that
this ρ0(x) satisfies ρ0(xi−) > ρ0(xi+). (We want to make
sure that there is no rarefaction so that all xi lead to shock
discontinuities.)



Summary:
I No blow-up ⇔ We have a classical solution.
I Blow-up ⇔ We don’t have a classical solution.

A scenario for a kinetic description
I Take a solution for b with blowup; Since Hρρ ≥ 0, b may

become −∞. Then switch to +∞ and continue!
I Assume b = b0 initially has no blowup. Take a discrete set
{(xi , ρi) : i ∈ I} of points with xi < xi+1. Define an initial
profile ρ0 such that ρ0(xi+) = ρi , and it solves the ODE
ρ̇0 = b0(ρ0, x ,0) in each interval (xi , xi+1). Assume that
this ρ0(x) satisfies ρ0(xi−) > ρ0(xi+). (We want to make
sure that there is no rarefaction so that all xi lead to shock
discontinuities.)



Summary:
I No blow-up ⇔ We have a classical solution.
I Blow-up ⇔ We don’t have a classical solution.

A scenario for a kinetic description
I Take a solution for b with blowup; Since Hρρ ≥ 0, b may

become −∞. Then switch to +∞ and continue!
I Assume b = b0 initially has no blowup. Take a discrete set
{(xi , ρi) : i ∈ I} of points with xi < xi+1. Define an initial
profile ρ0 such that ρ0(xi+) = ρi , and it solves the ODE
ρ̇0 = b0(ρ0, x ,0) in each interval (xi , xi+1). Assume that
this ρ0(x) satisfies ρ0(xi−) > ρ0(xi+). (We want to make
sure that there is no rarefaction so that all xi lead to shock
discontinuities.)



Summary:
I No blow-up ⇔ We have a classical solution.
I Blow-up ⇔ We don’t have a classical solution.

A scenario for a kinetic description
I Take a solution for b with blowup; Since Hρρ ≥ 0, b may

become −∞. Then switch to +∞ and continue!
I Assume b = b0 initially has no blowup. Take a discrete set
{(xi , ρi) : i ∈ I} of points with xi < xi+1. Define an initial
profile ρ0 such that ρ0(xi+) = ρi , and it solves the ODE
ρ̇0 = b0(ρ0, x ,0) in each interval (xi , xi+1). Assume that
this ρ0(x) satisfies ρ0(xi−) > ρ0(xi+). (We want to make
sure that there is no rarefaction so that all xi lead to shock
discontinuities.)



Summary:
I No blow-up ⇔ We have a classical solution.
I Blow-up ⇔ We don’t have a classical solution.

A scenario for a kinetic description
I Take a solution for b with blowup; Since Hρρ ≥ 0, b may

become −∞. Then switch to +∞ and continue!
I Assume b = b0 initially has no blowup. Take a discrete set
{(xi , ρi) : i ∈ I} of points with xi < xi+1. Define an initial
profile ρ0 such that ρ0(xi+) = ρi , and it solves the ODE
ρ̇0 = b0(ρ0, x ,0) in each interval (xi , xi+1). Assume that
this ρ0(x) satisfies ρ0(xi−) > ρ0(xi+). (We want to make
sure that there is no rarefaction so that all xi lead to shock
discontinuities.)



Summary:
I No blow-up ⇔ We have a classical solution.
I Blow-up ⇔ We don’t have a classical solution.

A scenario for a kinetic description
I Take a solution for b with blowup; Since Hρρ ≥ 0, b may

become −∞. Then switch to +∞ and continue!
I Assume b = b0 initially has no blowup. Take a discrete set
{(xi , ρi) : i ∈ I} of points with xi < xi+1. Define an initial
profile ρ0 such that ρ0(xi+) = ρi , and it solves the ODE
ρ̇0 = b0(ρ0, x ,0) in each interval (xi , xi+1). Assume that
this ρ0(x) satisfies ρ0(xi−) > ρ0(xi+). (We want to make
sure that there is no rarefaction so that all xi lead to shock
discontinuities.)



Summary:
I No blow-up ⇔ We have a classical solution.
I Blow-up ⇔ We don’t have a classical solution.

A scenario for a kinetic description
I Take a solution for b with blowup; Since Hρρ ≥ 0, b may

become −∞. Then switch to +∞ and continue!
I Assume b = b0 initially has no blowup. Take a discrete set
{(xi , ρi) : i ∈ I} of points with xi < xi+1. Define an initial
profile ρ0 such that ρ0(xi+) = ρi , and it solves the ODE
ρ̇0 = b0(ρ0, x ,0) in each interval (xi , xi+1). Assume that
this ρ0(x) satisfies ρ0(xi−) > ρ0(xi+). (We want to make
sure that there is no rarefaction so that all xi lead to shock
discontinuities.)



Summary:
I No blow-up ⇔ We have a classical solution.
I Blow-up ⇔ We don’t have a classical solution.

A scenario for a kinetic description
I Take a solution for b with blowup; Since Hρρ ≥ 0, b may

become −∞. Then switch to +∞ and continue!
I Assume b = b0 initially has no blowup. Take a discrete set
{(xi , ρi) : i ∈ I} of points with xi < xi+1. Define an initial
profile ρ0 such that ρ0(xi+) = ρi , and it solves the ODE
ρ̇0 = b0(ρ0, x ,0) in each interval (xi , xi+1). Assume that
this ρ0(x) satisfies ρ0(xi−) > ρ0(xi+). (We want to make
sure that there is no rarefaction so that all xi lead to shock
discontinuities.)



Summary:
I No blow-up ⇔ We have a classical solution.
I Blow-up ⇔ We don’t have a classical solution.

A scenario for a kinetic description
I Take a solution for b with blowup; Since Hρρ ≥ 0, b may

become −∞. Then switch to +∞ and continue!
I Assume b = b0 initially has no blowup. Take a discrete set
{(xi , ρi) : i ∈ I} of points with xi < xi+1. Define an initial
profile ρ0 such that ρ0(xi+) = ρi , and it solves the ODE
ρ̇0 = b0(ρ0, x ,0) in each interval (xi , xi+1). Assume that
this ρ0(x) satisfies ρ0(xi−) > ρ0(xi+). (We want to make
sure that there is no rarefaction so that all xi lead to shock
discontinuities.)



CLAIM: The picture we have initially persists at later times. The
PDE reduces to an interacting particle system!

Particles Configuration
There are particles q(t) = {(xi(t), ρi(t)) : i ∈ Z} with
xi(t) < xi+1(t) (we may replace Z with a finite set).
xi(t) represents the location of the i-th particle.
ρi(t) = ρ(xi(t)+, t)
ρ(·, t) solves the ODE ρ̇ = b(ρ, x , t) in each (xi , xi+1).

Dynamics

I q motion We can set up a collection of ODEs for the
evolution of q(t). For example

dxi

dt
= v(ρ−i (t), ρi(t), xi(t), t),

where ρ−i (t) = ρ(xi(t)−, t).
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Dynamics

I Coagulation/Loss of Particle When two particles meet i.e.
xi(t) = xi+1(t), kill the i-particle, and relabel particles to its
right.

I The Birth of a Particle At each blowup of b, a particle is
created. How? Details! Can be worked out in some cases.

Our Results
I Our two results avoid particle births.
I If there is creation of particles (blowup of b), the kinetic

equation for f must be modified. When H is also random,
we need to add a term representing the creation.

I For a variant of our model, when a particle is created, it
fragments into two particles.
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Kinetic Description in Higher Dimension
In Progress, Joint work with Mehdi Ouaki

Moral
Assume d = 1. For a solution of the form
u(x , t) = infi∈I(t) w(x , t ; yi ,gi), there are two ways to examine it:
(1) Examine the set {(yi ,gi) : i ∈ I(t)} ∈ I(t). As t increases,

the state space I(t) is changing with time. All particles
(yi ,gi) stay put. Occasionally a particle dies, because it
becomes redundant. Or put it differently, because the set
of allowed particles change with time. This point of view is
not mathematically tractable.

(2) Instead, we may switch to {(yi , xi) : i ∈ I(t)} ∈ J with xi ’s
representing the locations of discontinuities. yi stays put
but xi changes with time. Though the state space no
longer changes with time (xi ’s and yi ’s are ordered). This is
the point of view that we have successfully adopted in
dimension one. We now have a billiard! Disappearance of
a particle means that state has reached the boundary to
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Higher Dimensions
What are the analogs of xi ’s in higher dimensions?

Answer:
There is a Voronoi type tessellation initially that evolves to a
Laguerre type tessellation at a later time.
The vertices of this tessellation play the role of xi ’s. Each
particle has a velocity. When two particles collide, two things
can happen (different from what we had in the case of d = 1):

I They gain new velocities.
I They kind of coagulate! (For example, when d = 2, a

triangular face collapses to a vertex; a particle dies.)
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