Kinetic Theory for Hamilton-Jacobi PDEs

Fraydoun Rezakhanlou

Department of Mathematics UC Berkeley

IPAM May 2020: Stochastic Analysis Related to Hamilton-Jacobi PDEs

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Motivation

Some Examples

Main Result I

Main Result II

Kinetic Description in Dimension One

Kinetic Description in Higher Dimensions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Motivation

Some Examples

Main Result I

Main Result II

Kinetic Description in Dimension One

Kinetic Description in Higher Dimensions

Motivation

Some Examples

Main Result I

Main Result II

Kinetic Description in Dimension One

Kinetic Description in Higher Dimensions

Motivation

Some Examples

Main Result I

Main Result II

Kinetic Description in Dimension One

Kinetic Description in Higher Dimensions

Motivation

Some Examples

Main Result I

Main Result II

Kinetic Description in Dimension One

Kinetic Description in Higher Dimensions

Motivation

Some Examples

Main Result I

Main Result II

Kinetic Description in Dimension One

Kinetic Description in Higher Dimensions

Motivation

Some Examples

Main Result I

Main Result II

Kinetic Description in Dimension One

Kinetic Description in Higher Dimensions

(Stochastic) Growth Models

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location *x* and time *t* changes with a rate that depends on (*x*, *t*), and the inclination of the interface at that location. If the interface is represented by a graph of a function $u : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$u_t + H(x, t, u_x) = 0,$$
 $u(x, 0) = g(x).$

(Stochastic) Growth Models

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location *x* and time *t* changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $u : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$u_t + H(x, t, u_x) = 0,$$
 $u(x, 0) = g(x).$

(Stochastic) Growth Models

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location *x* and time *t* changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $u : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$u_t + H(x, t, u_x) = 0,$$
 $u(x, 0) = g(x).$

(Stochastic) Growth Models

In many models of interest we encounter an interface that separates different phases and is evolving with time. The interface at a location *x* and time *t* changes with a rate that depends on (x, t), and the inclination of the interface at that location. If the interface is represented by a graph of a function $u : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$, then a natural model for its evolution is a Hamilton-Jacobi PDE:

$$u_t + H(x, t, u_x) = 0,$$
 $u(x, 0) = g(x).$

Select *g* according to a (reasonable) probability measure μ^0 .

Let us write μ^t for the law of $u(\cdot, t)$ at time t. Note: If Φ_t is the flow (in other words $u(\cdot, t) = (\Phi_t g)(\cdot)$), then $\mu^t = \Phi_t^* \mu^0$. Question: Can we find a nice/tractable/explicit evolution equation for μ^t ?

We may also keep track of $\rho = u_x$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^t . Equilibrium Measure: $\nu^t = \nu^0$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Select *g* according to a (reasonable) probability measure μ^0 . Let us write μ^t for the law of $u(\cdot, t)$ at time *t*. Note: If Φ_t is the flow (in other words $u(\cdot, t) = (\Phi_t g)(\cdot)$), then $\mu^t = \Phi_t^* \mu^0$. Question: Can we find a nice/tractable/explicit evolution equation for μ^t ? We may also keep track of $\rho = u_x$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^t . Equilibrium Measure: $\nu^t = \nu^0$.

Select *g* according to a (reasonable) probability measure μ^0 . Let us write μ^t for the law of $u(\cdot, t)$ at time *t*. Note: If Φ_t is the flow (in other words $u(\cdot, t) = (\Phi_t g)(\cdot)$), then $\mu^t = \Phi_t^* \mu^0$. Question: Can we find a nice/tractable/explicit evolution equation for μ^t ?

We may also keep track of $\rho = u_x$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^t . Equilibrium Measure: $\nu^t = \nu^0$.

Select *g* according to a (reasonable) probability measure μ^0 . Let us write μ^t for the law of $u(\cdot, t)$ at time *t*. Note: If Φ_t is the flow (in other words $u(\cdot, t) = (\Phi_t g)(\cdot)$), then $\mu^t = \Phi_t^* \mu^0$. Question: Can we find a nice/tractable/explicit evolution equation for μ^t ?

We may also keep track of $\rho = u_x$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^t . Equilibrium Measure: $\nu^t = \nu^0$.

Select *g* according to a (reasonable) probability measure μ^0 . Let us write μ^t for the law of $u(\cdot, t)$ at time *t*. Note: If Φ_t is the flow (in other words $u(\cdot, t) = (\Phi_t g)(\cdot)$), then $\mu^t = \Phi_t^* \mu^0$. Question: Can we find a nice/tractable/explicit evolution equation for μ^t ?

We may also keep track of $\rho = u_x$ (more natural). The law of $\rho(\cdot, t)$ is denoted by ν^t . Equilibrium Measure: $\nu^t = \nu^0$.

- Some exactly solvable discrete models are determinantal: The finite dimensional marginals of ν^t can be expressed as a determinant of an explicit matrix. Example: TASEP A.
 Borodin, P. L. Ferrari, M. Prähofer, T. Sasamoto (2007), G.
 M. Schütz (1997)
- *d* = 1, *H*(*x*, *t*, *p*) = *p*²/2, ρ(·, 0) is a Lévy process. Then ρ(·, *t*) is also a Lévy process (Bertoin 1998). Associated Lévy measures solve a kinetic-type equation (Smoluchowsky Equation with additive kernel). When ρ(·, 0) is White Noise (*g* =Brownian Motion), then *x* ↦ ρ(*x*, *t*) is a Markov process: Linear motion interrupted by stochastic jumps with an explicit kernel (Groeneboom 1989).

- Some exactly solvable discrete models are determinantal: The finite dimensional marginals of ν^t can be expressed as a determinant of an explicit matrix. Example: TASEP A.
 Borodin, P. L. Ferrari, M. Prähofer, T. Sasamoto (2007), G.
 M. Schütz (1997)
- *d* = 1, *H*(*x*, *t*, *p*) = *p*²/2, ρ(·, 0) is a Lévy process. Then ρ(·, *t*) is also a Lévy process (Bertoin 1998). Associated Lévy measures solve a kinetic-type equation (Smoluchowsky Equation with additive kernel). When ρ(·, 0) is White Noise (*g* =Brownian Motion), then *x* → ρ(*x*, *t*) is a Markov process: Linear motion interrupted by stochastic jumps with an explicit kernel (Groeneboom 1989).

- Some exactly solvable discrete models are determinantal: The finite dimensional marginals of ν^t can be expressed as a determinant of an explicit matrix. Example: TASEP A.
 Borodin, P. L. Ferrari, M. Prähofer, T. Sasamoto (2007), G.
 M. Schütz (1997)
- *d* = 1, *H*(*x*, *t*, *p*) = *p*²/2, ρ(·, 0) is a Lévy process. Then ρ(·, *t*) is also a Lévy process (Bertoin 1998). Associated Lévy measures solve a kinetic-type equation (Smoluchowsky Equation with additive kernel). When ρ(·, 0) is White Noise (*g* =Brownian Motion), then *x* → ρ(*x*, *t*) is a Markov process: Linear motion interrupted by stochastic jumps with an explicit kernel (Groeneboom 1989).

- Some exactly solvable discrete models are determinantal: The finite dimensional marginals of ν^t can be expressed as a determinant of an explicit matrix. Example: TASEP A.
 Borodin, P. L. Ferrari, M. Prähofer, T. Sasamoto (2007), G.
 M. Schütz (1997)
- d = 1, H(x, t, p) = p²/2, ρ(⋅, 0) is a Lévy process. Then ρ(⋅, t) is also a Lévy process (Bertoin 1998). Associated Lévy measures solve a kinetic-type equation (Smoluchowsky Equation with additive kernel). When ρ(⋅, 0) is White Noise (g =Brownian Motion), then x ↦ ρ(x, t) is a Markov process: Linear motion interrupted by stochastic jumps with an explicit kernel (Groeneboom 1989).

- Some exactly solvable discrete models are determinantal: The finite dimensional marginals of ν^t can be expressed as a determinant of an explicit matrix. Example: TASEP A.
 Borodin, P. L. Ferrari, M. Prähofer, T. Sasamoto (2007), G.
 M. Schütz (1997)
- d = 1, H(x, t, p) = p²/2, ρ(·, 0) is a Lévy process. Then ρ(·, t) is also a Lévy process (Bertoin 1998). Associated Lévy measures solve a kinetic-type equation (Smoluchowsky Equation with additive kernel). When ρ(·, 0) is White Noise (g =Brownian Motion), then x ↦ ρ(x, t) is a Markov process: Linear motion interrupted by stochastic jumps with an explicit kernel (Groeneboom 1989).

- Some exactly solvable discrete models are determinantal: The finite dimensional marginals of ν^t can be expressed as a determinant of an explicit matrix. Example: TASEP A.
 Borodin, P. L. Ferrari, M. Prähofer, T. Sasamoto (2007), G.
 M. Schütz (1997)
- d = 1, H(x, t, p) = p²/2, ρ(⋅, 0) is a Lévy process. Then ρ(⋅, t) is also a Lévy process (Bertoin 1998). Associated Lévy measures solve a kinetic-type equation (Smoluchowsky Equation with additive kernel).
 When ρ(⋅, 0) is White Noise (g =Brownian Motion), then x ↦ ρ(x, t) is a Markov process: Linear motion interrupted by stochastic jumps with an explicit kernel (Groeneboom 1989).

- Some exactly solvable discrete models are determinantal: The finite dimensional marginals of ν^t can be expressed as a determinant of an explicit matrix. Example: TASEP A.
 Borodin, P. L. Ferrari, M. Prähofer, T. Sasamoto (2007), G.
 M. Schütz (1997)
- d = 1, H(x, t, p) = p²/2, ρ(⋅, 0) is a Lévy process. Then ρ(⋅, t) is also a Lévy process (Bertoin 1998). Associated Lévy measures solve a kinetic-type equation (Smoluchowsky Equation with additive kernel).
 When ρ(⋅, 0) is White Noise (g =Brownian Motion), then x ↦ ρ(x, t) is a Markov process: Linear motion interrupted by stochastic jumps with an explicit kernel (Groeneboom 1989).

- Some exactly solvable discrete models are determinantal: The finite dimensional marginals of ν^t can be expressed as a determinant of an explicit matrix. Example: TASEP A.
 Borodin, P. L. Ferrari, M. Prähofer, T. Sasamoto (2007), G.
 M. Schütz (1997)
- d = 1, H(x, t, p) = p²/2, ρ(⋅, 0) is a Lévy process. Then ρ(⋅, t) is also a Lévy process (Bertoin 1998). Associated Lévy measures solve a kinetic-type equation (Smoluchowsky Equation with additive kernel). When ρ(⋅, 0) is White Noise (g =Brownian Motion), then x ↦ ρ(x, t) is a Markov process: Linear motion interrupted by stochastic jumps with an explicit kernel (Groeneboom 1989).

- ► Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, $\rho^0(x) = \rho(\cdot, 0)$ is a Markov process: An ODE $\dot{\rho}^0 = b^0(\rho^0)$ interrupted by random jumps with jump rate $f^0(\rho_-, \rho_+) d\rho_+$. Then this picture persists at later times: $x \mapsto \rho(x, t)$ is a Markov process of the same type:An ODE $\dot{\rho} = b(\rho, t)$ that is interrupted with random jumps with jump rate $f(\rho_-, \rho_+, t) d\rho_+$. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).
- ► $b(\cdot, t)$ solves $b_t(\rho, t) = -H''(\rho)b(\rho, t)^2$. Trivially solved. Note that if $b^0 \ge 0$, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

- Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and
 - **convex**, $\rho^0(x) = \rho(\cdot, 0)$ is a Markov process: An ODE $\dot{\rho}^0 = b^0(\rho^0)$ interrupted by random jumps with jump rate $f^0(\rho_-, \rho_+) d\rho_+$. Then this picture persists at later times: $x \mapsto \rho(x, t)$ is a Markov process of the same type: An ODE $\dot{\rho} = b(\rho, t)$ that is interrupted with random jumps with jump rate $f(\rho_-, \rho_+, t) d\rho_+$. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).
- ► $b(\cdot, t)$ solves $b_t(\rho, t) = -H''(\rho)b(\rho, t)^2$. Trivially solved. Note that if $b^0 \ge 0$, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

► Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, $\rho^0(x) = \rho(\cdot, 0)$ is a Markov process: An ODE

 $\dot{\rho}^0 = b^0(\rho^0)$ interrupted by random jumps with jump rate $f^0(\rho_-, \rho_+) d\rho_+$. Then this picture persists at later times: $x \mapsto \rho(x, t)$ is a Markov process of the same type:An ODE $\dot{\rho} = b(\rho, t)$ that is interrupted with random jumps with jump rate $f(\rho_-, \rho_+, t) d\rho_+$. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).

- ► $b(\cdot, t)$ solves $b_t(\rho, t) = -H''(\rho)b(\rho, t)^2$. Trivially solved. Note that if $b^0 \ge 0$, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, ρ⁰(x) = ρ(⋅, 0) is a Markov process: An ODE p⁰ = b⁰(ρ⁰) interrupted by random jumps with jump rate f⁰(ρ₋, ρ₊) dρ₊. Then this picture persists at later times: x ↦ ρ(x, t) is a Markov process of the same type: An ODE p = b(ρ, t) that is interrupted with random jumps with jump rate f(ρ₋, ρ₊, t) dρ₊. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).

- ► $b(\cdot, t)$ solves $b_t(\rho, t) = -H''(\rho)b(\rho, t)^2$. Trivially solved. Note that if $b^0 \ge 0$, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

- Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, ρ⁰(x) = ρ(⋅, 0) is a Markov process: An ODE ρ⁰ = b⁰(ρ⁰) interrupted by random jumps with jump rate f⁰(ρ₋, ρ₊) dρ₊. Then this picture persists at later times: x ↦ ρ(x, t) is a Markov process of the same type: An ODE ρ = b(ρ, t) that is interrupted with random jumps with jump rate f(ρ₋, ρ₊, t) dρ₊. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).
- ► $b(\cdot, t)$ solves $b_t(\rho, t) = -H''(\rho)b(\rho, t)^2$. Trivially solved. Note that if $b^0 \ge 0$, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

- Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, ρ⁰(x) = ρ(⋅, 0) is a Markov process: An ODE ρ⁰ = b⁰(ρ⁰) interrupted by random jumps with jump rate f⁰(ρ₋, ρ₊) dρ₊. Then this picture persists at later times: x ↦ ρ(x, t) is a Markov process of the same type: An ODE ρ = b(ρ, t) that is interrupted with random jumps with jump rate f(ρ₋, ρ₊, t) dρ₊. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).
- ► $b(\cdot, t)$ solves $b_t(\rho, t) = -H''(\rho)b(\rho, t)^2$. Trivially solved. Note that if $b^0 \ge 0$, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

- Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, ρ⁰(x) = ρ(⋅, 0) is a Markov process: An ODE ρ⁰ = b⁰(ρ⁰) interrupted by random jumps with jump rate f⁰(ρ₋, ρ₊) dρ₊. Then this picture persists at later times: x ↦ ρ(x, t) is a Markov process of the same type: An ODE ρ = b(ρ, t) that is interrupted with random jumps with jump rate f(ρ₋, ρ₊, t) dρ₊. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).
- ► $b(\cdot, t)$ solves $b_t(\rho, t) = -H''(\rho)b(\rho, t)^2$. Trivially solved. Note that if $b^0 \ge 0$, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

- Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, ρ⁰(x) = ρ(⋅, 0) is a Markov process: An ODE ρ⁰ = b⁰(ρ⁰) interrupted by random jumps with jump rate f⁰(ρ₋, ρ₊) dρ₊. Then this picture persists at later times: x ↦ ρ(x, t) is a Markov process of the same type:An ODE ρ = b(ρ, t) that is interrupted with random jumps with jump rate f(ρ₋, ρ₊, t) dρ₊. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).
- ► $b(\cdot, t)$ solves $b_t(\rho, t) = -H''(\rho)b(\rho, t)^2$. Trivially solved. Note that if $b^0 \ge 0$, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

- Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, ρ⁰(x) = ρ(⋅, 0) is a Markov process: An ODE ρ⁰ = b⁰(ρ⁰) interrupted by random jumps with jump rate f⁰(ρ₋, ρ₊) dρ₊. Then this picture persists at later times: x ↦ ρ(x, t) is a Markov process of the same type:An ODE ρ = b(ρ, t) that is interrupted with random jumps with jump rate f(ρ₋, ρ₊, t) dρ₊. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).
- ► $b(\cdot, t)$ solves $b_t(\rho, t) = -H''(\rho)b(\rho, t)^2$. Trivially solved. Note that if $b^0 \ge 0$, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

- Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, ρ⁰(x) = ρ(·, 0) is a Markov process: An ODE ρ⁰ = b⁰(ρ⁰) interrupted by random jumps with jump rate f⁰(ρ₋, ρ₊) dρ₊. Then this picture persists at later times: x ↦ ρ(x, t) is a Markov process of the same type:An ODE ρ = b(ρ, t) that is interrupted with random jumps with jump rate f(ρ₋, ρ₊, t) dρ₊. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).
- ► $b(\cdot, t)$ solves $b_t(\rho, t) = -H''(\rho)b(\rho, t)^2$. Trivially solved. Note that if $b^0 \ge 0$, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

- Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, ρ⁰(x) = ρ(⋅, 0) is a Markov process: An ODE ρ⁰ = b⁰(ρ⁰) interrupted by random jumps with jump rate f⁰(ρ₋, ρ₊) dρ₊. Then this picture persists at later times: x ↦ ρ(x, t) is a Markov process of the same type:An ODE ρ = b(ρ, t) that is interrupted with random jumps with jump rate f(ρ₋, ρ₊, t) dρ₊. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).
- b(·, t) solves b_t(ρ, t) = −H''(ρ)b(ρ, t)². Trivially solved. Note that if b⁰ ≥ 0, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$
- Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, ρ⁰(x) = ρ(⋅, 0) is a Markov process: An ODE ρ⁰ = b⁰(ρ⁰) interrupted by random jumps with jump rate f⁰(ρ₋, ρ₊) dρ₊. Then this picture persists at later times: x ↦ ρ(x, t) is a Markov process of the same type:An ODE ρ = b(ρ, t) that is interrupted with random jumps with jump rate f(ρ₋, ρ₊, t) dρ₊. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).
- b(·, t) solves b_t(ρ, t) = −H''(ρ)b(ρ, t)². Trivially solved.
 Note that if b⁰ ≥ 0, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

C(f) a first order differential operator (transport type).

- Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, ρ⁰(x) = ρ(⋅, 0) is a Markov process: An ODE ρ⁰ = b⁰(ρ⁰) interrupted by random jumps with jump rate f⁰(ρ₋, ρ₊) dρ₊. Then this picture persists at later times: x ↦ ρ(x, t) is a Markov process of the same type:An ODE ρ = b(ρ, t) that is interrupted with random jumps with jump rate f(ρ₋, ρ₊, t) dρ₊. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).
- b(·, t) solves b_t(ρ, t) = −H''(ρ)b(ρ, t)². Trivially solved. Note that if b⁰ ≥ 0, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

C(f) a first order differential operator (transport type).

- Assume d = 1, H(x, t, p) = H(p) independent of (x, t) and convex, ρ⁰(x) = ρ(⋅, 0) is a Markov process: An ODE ρ⁰ = b⁰(ρ⁰) interrupted by random jumps with jump rate f⁰(ρ₋, ρ₊) dρ₊. Then this picture persists at later times: x ↦ ρ(x, t) is a Markov process of the same type:An ODE ρ = b(ρ, t) that is interrupted with random jumps with jump rate f(ρ₋, ρ₊, t) dρ₊. This was conjectured by Menon-Srinivasan (2010), and rigorously established by Kaspar and FR (2016,2019).
- b(·, t) solves b_t(ρ, t) = −H''(ρ)b(ρ, t)². Trivially solved. Note that if b⁰ ≥ 0, then no blow up.
- ► f(ρ_-, ρ_+, t) solves a kinetic equation (resembles Smoluchowski but far more complicated) of the form

$$f_t + C(f) = Q(f, f) = Q^+(f, f) - Q^-(f, f),$$

C(f) a first order differential operator (transport type).

Setting

Assume d = 1, H(x, t, p) is convex in p. The function $\rho(x, t)$ solves

$$\rho_t + H(x, t, \rho)_x = 0, \quad \rho(x, 0) = \rho^0(x).$$

(Or $\rho = u_x$, and u solves $u_t + H(x, t, u_x) = 0$.)

Assume that ρ⁰ is a Markov process with a drift b⁰(ρ, x) and a jump rate f⁰(ρ₋, ρ₊; x) dρ₊. This means x → ρ⁰(x) solves and ODE ρ⁰(x) = b⁰(ρ⁰(x), x), except at stochastic jump locations. When a jump occurs at *a*, it changes from ρ₋ to ρ₊ ∈ (-∞, ρ₋), with a rate f⁰(ρ₋, ρ₊; x, t) dρ₊.

Result

This picture persists at later times: $x \mapsto \rho(x, t)$ is a Markov process with a drift $b(\rho; x, t)$ and a rate $f(\rho_{-}, \rho_{+}; x, t) d\rho_{+}$.

Setting

Assume d = 1, H(x, t, p) is convex in p. The function $\rho(x, t)$ solves

$$\rho_t + H(x, t, \rho)_x = 0, \quad \rho(x, 0) = \rho^0(x).$$

(Or $\rho = u_x$, and u solves $u_t + H(x, t, u_x) = 0$.)

Assume that ρ⁰ is a Markov process with a drift b⁰(ρ, x) and a jump rate f⁰(ρ₋, ρ₊; x) dρ₊. This means x → ρ⁰(x) solves and ODE ρ⁰(x) = b⁰(ρ⁰(x), x), except at stochastic jump locations. When a jump occurs at *a*, it changes from ρ₋ to ρ₊ ∈ (-∞, ρ₋), with a rate f⁰(ρ₋, ρ₊; x, t) dρ₊.

Result

This picture persists at later times: $x \mapsto \rho(x, t)$ is a Markov process with a drift $b(\rho; x, t)$ and a rate $f(\rho_{-}, \rho_{+}; x, t) d\rho_{+}$.

Setting

Assume d = 1, H(x, t, p) is convex in p. The function $\rho(x, t)$ solves

$$\rho_t + H(x, t, \rho)_x = 0, \quad \rho(x, 0) = \rho^0(x).$$

(Or $\rho = u_x$, and u solves $u_t + H(x, t, u_x) = 0$.)

Assume that ρ⁰ is a Markov process with a drift b⁰(ρ, x) and a jump rate f⁰(ρ₋, ρ₊; x) dρ₊. This means x → ρ⁰(x) solves and ODE ρ⁰(x) = b⁰(ρ⁰(x), x), except at stochastic jump locations. When a jump occurs at *a*, it changes from ρ₋ to ρ₊ ∈ (-∞, ρ₋), with a rate f⁰(ρ₋, ρ₊; x, t) dρ₊.

Result

This picture persists at later times: $x \mapsto \rho(x, t)$ is a Markov process with a drift $b(\rho; x, t)$ and a rate $f(\rho_{-}, \rho_{+}; x, t) d\rho_{+}$.

Setting

Assume d = 1, H(x, t, p) is convex in p. The function $\rho(x, t)$ solves

$$\rho_t + H(x, t, \rho)_x = 0, \quad \rho(x, 0) = \rho^0(x).$$

(Or $\rho = u_x$, and u solves $u_t + H(x, t, u_x) = 0$.)

Assume that ρ⁰ is a Markov process with a drift b⁰(ρ, x) and a jump rate f⁰(ρ₋, ρ₊; x) dρ₊. This means x → ρ⁰(x) solves and ODE ρ⁰(x) = b⁰(ρ⁰(x), x), except at stochastic jump locations. When a jump occurs at *a*, it changes from ρ₋ to ρ₊ ∈ (-∞, ρ₋), with a rate f⁰(ρ₋, ρ₊; x, t) dρ₊.

Result

This picture persists at later times: $x \mapsto \rho(x, t)$ is a Markov process with a drift $b(\rho; x, t)$ and a rate $f(\rho_{-}, \rho_{+}; x, t) d\rho_{+}$.

Setting

Assume d = 1, H(x, t, p) is convex in p. The function $\rho(x, t)$ solves

$$\rho_t + H(x, t, \rho)_x = 0, \quad \rho(x, 0) = \rho^0(x).$$

(Or $\rho = u_x$, and u solves $u_t + H(x, t, u_x) = 0$.)

Assume that ρ⁰ is a Markov process with a drift b⁰(ρ, x) and a jump rate f⁰(ρ₋, ρ₊; x) dρ₊. This means x → ρ⁰(x) solves and ODE ρ⁰(x) = b⁰(ρ⁰(x), x), except at stochastic jump locations. When a jump occurs at *a*, it changes from ρ₋ to ρ₊ ∈ (-∞, ρ₋), with a rate f⁰(ρ₋, ρ₊; x, t) dρ₊.

Result

This picture persists at later times: $x \mapsto \rho(x, t)$ is a Markov process with a drift $b(\rho; x, t)$ and a rate $f(\rho_{-}, \rho_{+}; x, t) d\rho_{+}$.

Setting

Assume d = 1, H(x, t, p) is convex in p. The function $\rho(x, t)$ solves

$$\rho_t + H(x, t, \rho)_x = 0, \quad \rho(x, 0) = \rho^0(x).$$

(Or $\rho = u_x$, and u solves $u_t + H(x, t, u_x) = 0$.)

Assume that ρ⁰ is a Markov process with a drift b⁰(ρ, x) and a jump rate f⁰(ρ₋, ρ₊; x) dρ₊. This means x → ρ⁰(x) solves and ODE ρ⁰(x) = b⁰(ρ⁰(x), x), except at stochastic jump locations. When a jump occurs at *a*, it changes from ρ₋ to ρ₊ ∈ (-∞, ρ₋), with a rate f⁰(ρ₋, ρ₊; x, t) dρ₊.

Result

This picture persists at later times: $x \mapsto \rho(x, t)$ is a Markov process with a drift $b(\rho; x, t)$ and a rate $f(\rho_{-}, \rho_{+}; x, t) d\rho_{+}$.

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0,$$

where $\{H, b\} = H_{\rho}b_x - H_xb_{\rho}$. The solution *b* may blow up in finite time. We will discuss an important class of examples with no blowup.

▶ The function $f(\rho_-, \rho_+; x, t)$ satisfies a kinetic (integro-)PDE

$$f_t + (vf)_x + C(f) = Q(f, f),$$

where

$$V(\rho_{-},\rho_{+},x,t) = \frac{H(x,t,\rho_{-}) - H(x,t,\rho_{+})}{\rho_{-} - \rho_{+}},$$

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0,$$

where $\{H, b\} = H_{\rho}b_x - H_xb_{\rho}$. The solution *b* may blow up in finite time. We will discuss an important class of examples with no blowup.

▶ The function $f(\rho_-, \rho_+; x, t)$ satisfies a kinetic (integro-)PDE

$$f_t + (vf)_x + C(f) = Q(f, f),$$

where

$$V(\rho_{-},\rho_{+},x,t) = \frac{H(x,t,\rho_{-}) - H(x,t,\rho_{+})}{\rho_{-} - \rho_{+}},$$

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0,$$

where $\{H, b\} = H_{\rho}b_x - H_xb_{\rho}$. The solution *b* may blow up in finite time. We will discuss an important class of examples with no blowup.

▶ The function $f(\rho_-, \rho_+; x, t)$ satisfies a kinetic (integro-)PDE

$$f_t + (vf)_x + C(f) = Q(f, f),$$

where

$$V(\rho_{-},\rho_{+},x,t) = \frac{H(x,t,\rho_{-}) - H(x,t,\rho_{+})}{\rho_{-} - \rho_{+}},$$

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0,$$

where $\{H, b\} = H_{\rho}b_x - H_xb_{\rho}$. The solution *b* may blow up in finite time. We will discuss an important class of examples with no blowup.

• The function $f(\rho_-, \rho_+; x, t)$ satisfies a kinetic (integro-)PDE

$$f_t + (vf)_x + C(f) = Q(f, f),$$

where

$$V(\rho_{-},\rho_{+},x,t) = \frac{H(x,t,\rho_{-}) - H(x,t,\rho_{+})}{\rho_{-} - \rho_{+}},$$

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0,$$

where $\{H, b\} = H_{\rho}b_x - H_xb_{\rho}$. The solution *b* may blow up in finite time. We will discuss an important class of examples with no blowup.

• The function $f(\rho_-, \rho_+; x, t)$ satisfies a kinetic (integro-)PDE

$$f_t + (vf)_x + C(f) = Q(f, f),$$

where

$$\mathbf{v}(\rho_{-},\rho_{+},\mathbf{x},t) = \frac{\mathbf{H}(\mathbf{x},t,\rho_{-}) - \mathbf{H}(\mathbf{x},t,\rho_{+})}{\rho_{-} - \rho_{+}},$$

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0,$$

where $\{H, b\} = H_{\rho}b_x - H_xb_{\rho}$. The solution *b* may blow up in finite time. We will discuss an important class of examples with no blowup.

• The function $f(\rho_-, \rho_+; x, t)$ satisfies a kinetic (integro-)PDE

$$f_t + (vf)_x + C(f) = Q(f, f),$$

where

$$\mathbf{v}(\rho_{-},\rho_{+},\mathbf{x},t)=rac{H(\mathbf{x},t,
ho_{-})-H(\mathbf{x},t,
ho_{+})}{
ho_{-}-
ho_{+}},$$

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0,$$

where $\{H, b\} = H_{\rho}b_x - H_xb_{\rho}$. The solution *b* may blow up in finite time. We will discuss an important class of examples with no blowup.

• The function $f(\rho_-, \rho_+; x, t)$ satisfies a kinetic (integro-)PDE

$$f_t + (vf)_x + C(f) = Q(f, f),$$

where

$$\mathbf{v}(\rho_{-},\rho_{+},\mathbf{x},t)=rac{H(\mathbf{x},t,
ho_{-})-H(\mathbf{x},t,
ho_{+})}{
ho_{-}-
ho_{+}},$$

A scenario with no blowup

We now describe an important class of examples for which *b* is already determined and there is never a blowup. In this case, even the kinetic equation for *f* simplifies! Recall that the job of $b(\rho; x, t)$ was to produce a classical solution in between jump discontinuities. A natural candidate for a classical solution is the fundamental solution:

Given a pair (y, g), define a fundamental solution associated with (y, g) by

$$w(x,t;y,g) = g + \inf\left\{\int_0^t L(\dot{z}(s), z(s), s) \, ds : \, z(0) = y, \, z(t) = x\right\}$$

(日) (日) (日) (日) (日) (日) (日)

A scenario with no blowup

We now describe an important class of examples for which *b* is already determined and there is never a blowup. In this case,

even the kinetic equation for f simplifies! Recall that the job of $b(\rho; x, t)$ was to produce a classical solution in between jump discontinuities. A natural candidate for a classical solution is the fundamental solution:

Given a pair (y, g), define a fundamental solution associated with (y, g) by

$$w(x,t;y,g) = g + \inf\left\{\int_0^t L(\dot{z}(s), z(s), s) \, ds : \, z(0) = y, \, z(t) = x\right\}$$

(日) (日) (日) (日) (日) (日) (日)

A scenario with no blowup

We now describe an important class of examples for which *b* is already determined and there is never a blowup. In this case, even the kinetic equation for *f* simplifies! Recall that the job of $b(\rho; x, t)$ was to produce a classical solution in between jump discontinuities. A natural candidate for a classical solution is the fundamental solution:

Given a pair (y, g), define a fundamental solution associated with (y, g) by

$$w(x,t;y,g) = g + \inf\left\{\int_0^t L(\dot{z}(s), z(s), s) \, ds : \, z(0) = y, \, z(t) = x\right\}$$

A scenario with no blowup

We now describe an important class of examples for which *b* is already determined and there is never a blowup. In this case, even the kinetic equation for *f* simplifies! Recall that the job of $b(\rho; x, t)$ was to produce a classical solution in between jump discontinuities. A natural candidate for a classical solution is the fundamental solution:

Given a pair (y, g), define a fundamental solution associated with (y, g) by

$$w(x,t;y,g) = g + \inf \left\{ \int_0^t L(\dot{z}(s), z(s), s) \, ds : \, z(0) = y, \, z(t) = x \right\}$$

A scenario with no blowup

We now describe an important class of examples for which *b* is already determined and there is never a blowup. In this case, even the kinetic equation for *f* simplifies! Recall that the job of $b(\rho; x, t)$ was to produce a classical solution in between jump discontinuities. A natural candidate for a classical solution is the fundamental solution:

Given a pair (y, g), define a fundamental solution associated with (y, g) by

$$w(x,t;y,g) = g + \inf\left\{\int_0^t L(\dot{z}(s), z(s), s) \, ds : \, z(0) = y, \, z(t) = x\right\}$$

A scenario with no blowup

We now describe an important class of examples for which *b* is already determined and there is never a blowup. In this case, even the kinetic equation for *f* simplifies! Recall that the job of $b(\rho; x, t)$ was to produce a classical solution in between jump discontinuities. A natural candidate for a classical solution is the fundamental solution:

Given a pair (y, g), define a fundamental solution associated with (y, g) by

$$w(x,t;y,g) = g + \inf \left\{ \int_0^t L(\dot{z}(s), z(s), s) \, ds : \, z(0) = y, \, z(t) = x \right\}$$

A scenario with no blowup

We now describe an important class of examples for which *b* is already determined and there is never a blowup. In this case, even the kinetic equation for *f* simplifies! Recall that the job of $b(\rho; x, t)$ was to produce a classical solution in between jump discontinuities. A natural candidate for a classical solution is the fundamental solution:

Given a pair (y, g), define a fundamental solution associated with (y, g) by

$$w(x,t;y,g) = g + \inf \left\{ \int_0^t L(\dot{z}(s), z(s), s) \, ds : \, z(0) = y, \, z(t) = x \right\}$$

Given a discrete set $\{(y_i, g_i) : i \in I\}$, consider a solution of the form

$$u(x,t) = \inf_{i \in I} w(x,t;y_i,g_i).$$

Example: If H(x, t, p) = H(p), we simply have

$$w(x,t;y,g) = g + tL\left(\frac{x-y}{t}\right)$$

Important Remark: For each *t*, there exists $I(t) \subseteq I$ such that

$$t < t' \implies l(t') \subseteq l(t),$$

$$u(x,t) = \inf_{i \in I(t)} w(x,t;y_i,g_i).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given a discrete set $\{(y_i, g_i) : i \in I\}$, consider a solution of the form

$$u(x,t) = \inf_{i \in I} w(x,t;y_i,g_i).$$

Example: If H(x, t, p) = H(p), we simply have

$$w(x,t;y,g) = g + tL\left(\frac{x-y}{t}\right).$$

Important Remark: For each *t*, there exists $I(t) \subseteq I$ such that

$$t < t' \implies l(t') \subseteq l(t),$$

$$u(x,t) = \inf_{i \in I(t)} w(x,t;y_i,g_i).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Given a discrete set $\{(y_i, g_i) : i \in I\}$, consider a solution of the form

$$u(x,t) = \inf_{i \in I} w(x,t;y_i,g_i).$$

Example: If H(x, t, p) = H(p), we simply have

$$w(x,t;y,g) = g + tL\left(\frac{x-y}{t}\right)$$

Important Remark: For each *t*, there exists $I(t) \subseteq I$ such that

$$t < t' \implies I(t') \subseteq I(t),$$

$$u(x,t) = \inf_{i \in I(t)} w(x,t;y_i,g_i).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Given a discrete set $\{(y_i, g_i) : i \in I\}$, consider a solution of the form

$$u(x,t) = \inf_{i \in I} w(x,t;y_i,g_i).$$

Example: If H(x, t, p) = H(p), we simply have

$$w(x,t;y,g) = g + tL\left(\frac{x-y}{t}\right)$$

Important Remark: For each *t*, there exists $I(t) \subseteq I$ such that

$$t < t' \implies I(t') \subseteq I(t),$$

$$u(x,t) = \inf_{i \in I(t)} w(x,t;y_i,g_i).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Given a discrete set $\{(y_i, g_i) : i \in I\}$, consider a solution of the form

$$u(x,t) = \inf_{i \in I} w(x,t;y_i,g_i).$$

Example: If H(x, t, p) = H(p), we simply have

$$w(x,t;y,g) = g + tL\left(\frac{x-y}{t}\right)$$

Important Remark: For each *t*, there exists $I(t) \subseteq I$ such that

$$t < t' \implies I(t') \subseteq I(t),$$

$$u(x,t) = \inf_{i \in I(t)} w(x,t;y_i,g_i).$$

Given a discrete set $\{(y_i, g_i) : i \in I\}$, consider a solution of the form

$$u(x,t) = \inf_{i \in I} w(x,t;y_i,g_i).$$

Example: If H(x, t, p) = H(p), we simply have

$$w(x,t;y,g) = g + tL\left(\frac{x-y}{t}\right)$$

Important Remark: For each *t*, there exists $I(t) \subseteq I$ such that

$$t < t' \implies I(t') \subseteq I(t),$$

$$u(x,t) = \inf_{i \in I(t)} w(x,t;y_i,g_i).$$

We can show that for each t, there are

 $\cdots < x_i(t) < x_{i+1}(t) < \ldots, \qquad \cdots < y_i(t) < y_{i+1}(t) < \ldots,$

such that

$$x \in (x_{i-1}(t), x_i(t)) \implies u(x, t) = w(x, t; y_i, g_i).$$

Main Result

Theorem

The process $x \mapsto \rho(x, t)$ is Markov if this is the case initially. At a discontinuity point $x_i(t)$, the position y_i jumps to $y_{i+1} \in (y_i, \infty)$ stochastically with rate $\hat{f}(y_i, y_{i+1}; x_i, t)$ d y_{i+1} .

We can show that for each t, there are

$$\cdots < x_i(t) < x_{i+1}(t) < \ldots, \qquad \cdots < y_i(t) < y_{i+1}(t) < \ldots,$$

such that

$$x \in (x_{i-1}(t), x_i(t)) \implies u(x, t) = w(x, t; y_i, g_i).$$

Main Result

Theorem

The process $x \mapsto \rho(x, t)$ is Markov if this is the case initially. At a discontinuity point $x_i(t)$, the position y_i jumps to $y_{i+1} \in (y_i, \infty)$ stochastically with rate $\hat{f}(y_i, y_{i+1}; x_i, t) dy_{i+1}$.

We can show that for each t, there are

$$\cdots < x_i(t) < x_{i+1}(t) < \ldots, \qquad \cdots < y_i(t) < y_{i+1}(t) < \ldots,$$

such that

$$x \in (x_{i-1}(t), x_i(t)) \implies u(x, t) = w(x, t; y_i, g_i).$$

Main Result

Theorem

The process $x \mapsto \rho(x, t)$ is Markov if this is the case initially. At a discontinuity point $x_i(t)$, the position y_i jumps to $y_{i+1} \in (y_i, \infty)$ stochastically with rate $\hat{f}(y_i, y_{i+1}; x_i, t)$ d y_{i+1} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We can show that for each t, there are

$$\cdots < x_i(t) < x_{i+1}(t) < \ldots, \qquad \cdots < y_i(t) < y_{i+1}(t) < \ldots,$$

such that

$$x \in (x_{i-1}(t), x_i(t)) \implies u(x, t) = w(x, t; y_i, g_i).$$

Main Result

Theorem

The process $x \mapsto \rho(x, t)$ is Markov if this is the case initially. At a discontinuity point $x_i(t)$, the position y_i jumps to $y_{i+1} \in (y_i, \infty)$ stochastically with rate $\hat{f}(y_i, y_{i+1}; x_i, t) dy_{i+1}$.

► The function $\hat{f}(y_-, y_+; x, t)$ satisfies a kinetic PDE $\hat{f}_t + (\hat{v}\hat{f})_x = \hat{Q}(\hat{f}, \hat{f}),$

where

$$\hat{v}(y_{-}, y_{+}, x, t) = \frac{H(x, t, \rho_{-}) - H(x, t, \rho_{+})}{\rho_{-} - \rho_{+}},$$

with $\rho_{\pm}(x, t) = w_x(x, t; y_{\pm}, g_{\pm})$ (this does not depend on *g*). • Here is $\hat{Q} = \hat{Q}^+ - \hat{Q}^-$: $\lambda(y_-) = \int \hat{f}(y_-, y_+) dy_+,$ $A(y_-) = \int (\hat{v}\hat{f})(y_-, y_+) dy_+,$

$$\hat{Q}^{+} = \int \left(\hat{v}(y_{+}, y_{*}) - \hat{v}(y_{*}, y_{-}) \right) \hat{f}(y_{-}, y_{*}) \hat{f}(y_{*}, y_{+}) dy_{*}$$
$$\hat{Q}^{-} = \left[A(y_{+}) - A(y_{-}) - \hat{v}(y_{-}, y_{+}) \left(\lambda(y_{+}) - \lambda(y_{-}) \right) \right] \hat{f}(y_{-}, y_{+})$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

► The function $\hat{f}(y_-, y_+; x, t)$ satisfies a kinetic PDE $\hat{f}_t + (\hat{v}\hat{f})_x = \hat{Q}(\hat{f}, \hat{f}),$

where

$$\hat{\mathbf{v}}(\mathbf{y}_{-},\mathbf{y}_{+},\mathbf{x},t)=rac{\mathbf{H}(\mathbf{x},t,
ho_{-})-\mathbf{H}(\mathbf{x},t,
ho_{+})}{
ho_{-}-
ho_{+}},$$

with $\rho_{\pm}(x, t) = w_x(x, t; y_{\pm}, g_{\pm})$ (this does not depend on g). • Here is $\hat{Q} = \hat{Q}^+ - \hat{Q}^-$: $\lambda(y_-) = \int \hat{f}(y_-, y_+) dy_+,$ $A(y_-) = \int (\hat{v}\hat{f})(y_-, y_+) dy_+,$

$$\hat{Q}^{+} = \int \left(\hat{v}(y_{+}, y_{*}) - \hat{v}(y_{*}, y_{-}) \right) \hat{f}(y_{-}, y_{*}) \hat{f}(y_{*}, y_{+}) dy_{*}$$
$$\hat{Q}^{-} = \left[A(y_{+}) - A(y_{-}) - \hat{v}(y_{-}, y_{+}) \left(\lambda(y_{+}) - \lambda(y_{-}) \right) \right] \hat{f}(y_{-}, y_{+})$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

► The function $\hat{f}(y_-, y_+; x, t)$ satisfies a kinetic PDE $\hat{f}_t + (\hat{v}\hat{f})_x = \hat{Q}(\hat{f}, \hat{f}),$

where

$$\hat{\mathbf{v}}(\mathbf{y}_{-},\mathbf{y}_{+},\mathbf{x},t)=rac{\mathbf{H}(\mathbf{x},t,
ho_{-})-\mathbf{H}(\mathbf{x},t,
ho_{+})}{
ho_{-}-
ho_{+}},$$

with $\rho_{\pm}(x, t) = w_x(x, t; y_{\pm}, g_{\pm})$ (this does not depend on g). • Here is $\hat{Q} = \hat{Q}^+ - \hat{Q}^-$: $\lambda(y_-) = \int \hat{f}(y_-, y_+) dy_+,$ $A(y_-) = \int (\hat{v}\hat{f})(y_-, y_+) dy_+,$

$$\hat{Q}^{+} = \int \left(\hat{v}(y_{+}, y_{*}) - \hat{v}(y_{*}, y_{-}) \right) \hat{f}(y_{-}, y_{*}) \hat{f}(y_{*}, y_{+}) dy_{*}$$
$$\hat{Q}^{-} = \left[A(y_{+}) - A(y_{-}) - \hat{v}(y_{-}, y_{+}) \left(\lambda(y_{+}) - \lambda(y_{-}) \right) \right] \hat{f}(y_{-}, y_{+})$$
Main Result

► The function $\hat{f}(y_-, y_+; x, t)$ satisfies a kinetic PDE $\hat{f}_t + (\hat{v}\hat{f})_x = \hat{Q}(\hat{f}, \hat{f}),$

where

$$\hat{\mathbf{v}}(\mathbf{y}_{-},\mathbf{y}_{+},\mathbf{x},t)=rac{\mathbf{H}(\mathbf{x},t,
ho_{-})-\mathbf{H}(\mathbf{x},t,
ho_{+})}{
ho_{-}-
ho_{+}},$$

with $\rho_{\pm}(x, t) = w_x(x, t; y_{\pm}, g_{\pm})$ (this does not depend on g). • Here is $\hat{Q} = \hat{Q}^+ - \hat{Q}^-$: $\lambda(y_-) = \int \hat{f}(y_-, y_+) dy_+,$ $A(y_-) = \int (\hat{v}\hat{f})(y_-, y_+) dy_+,$

$$\hat{Q}^{+} = \int \left(\hat{v}(y_{+}, y_{*}) - \hat{v}(y_{*}, y_{-}) \right) \hat{f}(y_{-}, y_{*}) \hat{f}(y_{*}, y_{+}) dy_{*}$$
$$\hat{Q}^{-} = \left[A(y_{+}) - A(y_{-}) - \hat{v}(y_{-}, y_{+}) \left(\lambda(y_{+}) - \lambda(y_{-}) \right) \right] \hat{f}(y_{-}, y_{+})$$

・ロト・西ト・ヨト・ヨト・日・ つへぐ

Main Result

► The function $\hat{f}(y_-, y_+; x, t)$ satisfies a kinetic PDE $\hat{f}_t + (\hat{v}\hat{f})_x = \hat{Q}(\hat{f}, \hat{f}),$

where

$$\hat{\mathbf{v}}(\mathbf{y}_{-},\mathbf{y}_{+},\mathbf{x},t)=rac{\mathbf{H}(\mathbf{x},t,
ho_{-})-\mathbf{H}(\mathbf{x},t,
ho_{+})}{
ho_{-}-
ho_{+}},$$

with $\rho_{\pm}(x, t) = w_x(x, t; y_{\pm}, g_{\pm})$ (this does not depend on g). • Here is $\hat{Q} = \hat{Q}^+ - \hat{Q}^-$: $\lambda(y_-) = \int \hat{f}(y_-, y_+) dy_+,$ $A(y_-) = \int (\hat{v}\hat{f})(y_-, y_+) dy_+,$

$$\hat{Q}^{+} = \int \left(\hat{v}(y_{+}, y_{*}) - \hat{v}(y_{*}, y_{-}) \right) \hat{f}(y_{-}, y_{*}) \hat{f}(y_{*}, y_{+}) dy_{*}$$
$$\hat{Q}^{-} = \left[A(y_{+}) - A(y_{-}) - \hat{v}(y_{-}, y_{+}) \left(\lambda(y_{+}) - \lambda(y_{-}) \right) \right] \hat{f}(y_{-}, y_{+})$$

Main Result

► The function $\hat{f}(y_-, y_+; x, t)$ satisfies a kinetic PDE $\hat{f}_t + (\hat{v}\hat{f})_x = \hat{Q}(\hat{f}, \hat{f}),$

where

$$\hat{\mathbf{v}}(\mathbf{y}_{-},\mathbf{y}_{+},\mathbf{x},t)=rac{\mathbf{H}(\mathbf{x},t,
ho_{-})-\mathbf{H}(\mathbf{x},t,
ho_{+})}{
ho_{-}-
ho_{+}},$$

with $\rho_{\pm}(x, t) = w_x(x, t; y_{\pm}, g_{\pm})$ (this does not depend on g). Here is $\hat{Q} = \hat{Q}^+ - \hat{Q}^-$: $\lambda(y_-) = \int \hat{f}(y_-, y_+) dy_+$, $A(y_-) = \int (\hat{v}\hat{f})(y_-, y_+) dy_+$, $\hat{Q}^+ = \int (\hat{v}(y_+, y_*) - \hat{v}(y_*, y_-)) \hat{f}(y_-, y_*) \hat{f}(y_*, y_+) dy_*$ $\hat{Q}^- = [A(y_+) - A(y_-) - \hat{v}(y_-, y_+)(\lambda(y_+) - \lambda(y_-))] \hat{f}(y_-, y_+)$

Since H is convex in momentum variable, one may use variational techniques to study the solutions. However for our results, we use a different approach.

Suppose ρ is a classical solution and solves an ODE associated with *b*. The compatibility of the two equations

$$\rho_t = -H(\rho, x, t)_x, \quad \rho_x = b(\rho, x, t),$$

yields the equation we stated for *b*:

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0.$$

Since *H* is convex in momentum variable, one may use variational techniques to study the solutions. However for our results, we use a different approach. Suppose ρ is a classical solution and solves an ODE associated with *b*. The compatibility of the two equations

 $\rho_t = -H(\rho, x, t)_x, \quad \rho_x = b(\rho, x, t),$

yields the equation we stated for *b*:

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0.$$

Since H is convex in momentum variable, one may use variational techniques to study the solutions. However for our results, we use a different approach.

Suppose ρ is a classical solution and solves an ODE associated with *b*. The compatibility of the two equations

$$\rho_t = -\mathcal{H}(\rho, \mathbf{x}, t)_{\mathbf{x}}, \quad \rho_{\mathbf{x}} = \mathbf{b}(\rho, \mathbf{x}, t),$$

yields the equation we stated for *b*:

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0.$$

Since H is convex in momentum variable, one may use variational techniques to study the solutions. However for our results, we use a different approach.

Suppose ρ is a classical solution and solves an ODE associated with *b*. The compatibility of the two equations

$$\rho_t = -H(\rho, \mathbf{x}, t)_{\mathbf{x}}, \quad \rho_{\mathbf{x}} = b(\rho, \mathbf{x}, t),$$

yields the equation we stated for b:

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0.$$

Since H is convex in momentum variable, one may use variational techniques to study the solutions. However for our results, we use a different approach.

Suppose ρ is a classical solution and solves an ODE associated with *b*. The compatibility of the two equations

$$\rho_t = -\mathcal{H}(\rho, \mathbf{x}, t)_{\mathbf{x}}, \quad \rho_{\mathbf{x}} = \mathbf{b}(\rho, \mathbf{x}, t),$$

yields the equation we stated for b:

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0.$$

Since H is convex in momentum variable, one may use variational techniques to study the solutions. However for our results, we use a different approach.

Suppose ρ is a classical solution and solves an ODE associated with *b*. The compatibility of the two equations

$$\rho_t = -\mathcal{H}(\rho, \mathbf{x}, t)_{\mathbf{x}}, \quad \rho_{\mathbf{x}} = \mathbf{b}(\rho, \mathbf{x}, t),$$

yields the equation we stated for b:

$$b_t + \{H, b\} + H_{\rho\rho}b^2 + 2H_{\rho x}b + H_{xx} = 0.$$

- No blow-up \Leftrightarrow We have a classical solution.
- Blow-up \Leftrightarrow We don't have a classical solution.

- Take a solution for *b* with blowup; Since H_{ρρ} ≥ 0, *b* may become −∞. Then switch to +∞ and continue!
- ► Assume $b = b^0$ initially has no blowup. Take a discrete set $\{(x_i, \rho_i) : i \in I\}$ of points with $x_i < x_{i+1}$. Define an initial profile ρ^0 such that $\rho^0(x_i+) = \rho_i$, and it solves the ODE $\dot{\rho}^0 = b^0(\rho^0, x, 0)$ in each interval (x_i, x_{i+1}) . Assume that this $\rho^0(x)$ satisfies $\rho^0(x_i-) > \rho^0(x_i+)$. (We want to make sure that there is no rarefaction so that all x_i lead to shock discontinuities.)

- No blow-up \Leftrightarrow We have a classical solution.
- Blow-up \Leftrightarrow We don't have a classical solution.

- Take a solution for *b* with blowup; Since H_{ρρ} ≥ 0, *b* may become −∞. Then switch to +∞ and continue!
- ► Assume $b = b^0$ initially has no blowup. Take a discrete set $\{(x_i, \rho_i) : i \in I\}$ of points with $x_i < x_{i+1}$. Define an initial profile ρ^0 such that $\rho^0(x_i+) = \rho_i$, and it solves the ODE $\dot{\rho}^0 = b^0(\rho^0, x, 0)$ in each interval (x_i, x_{i+1}) . Assume that this $\rho^0(x)$ satisfies $\rho^0(x_i-) > \rho^0(x_i+)$. (We want to make sure that there is no rarefaction so that all x_i lead to shock discontinuities.)

- No blow-up \Leftrightarrow We have a classical solution.
- Blow-up \Leftrightarrow We don't have a classical solution.

- ► Take a solution for b with blowup; Since H_{pp} ≥ 0, b may become -∞. Then switch to +∞ and continue!
- ► Assume $b = b^0$ initially has no blowup. Take a discrete set $\{(x_i, \rho_i) : i \in I\}$ of points with $x_i < x_{i+1}$. Define an initial profile ρ^0 such that $\rho^0(x_i+) = \rho_i$, and it solves the ODE $\dot{\rho}^0 = b^0(\rho^0, x, 0)$ in each interval (x_i, x_{i+1}) . Assume that this $\rho^0(x)$ satisfies $\rho^0(x_i-) > \rho^0(x_i+)$. (We want to make sure that there is no rarefaction so that all x_i lead to shock discontinuities.)

- No blow-up \Leftrightarrow We have a classical solution.
- Blow-up \Leftrightarrow We don't have a classical solution.

- Take a solution for *b* with blowup; Since H_{ρρ} ≥ 0, *b* may become −∞. Then switch to +∞ and continue!
- ► Assume $b = b^0$ initially has no blowup. Take a discrete set $\{(x_i, \rho_i) : i \in I\}$ of points with $x_i < x_{i+1}$. Define an initial profile ρ^0 such that $\rho^0(x_i+) = \rho_i$, and it solves the ODE $\dot{\rho}^0 = b^0(\rho^0, x, 0)$ in each interval (x_i, x_{i+1}) . Assume that this $\rho^0(x)$ satisfies $\rho^0(x_i-) > \rho^0(x_i+)$. (We want to make sure that there is no rarefaction so that all x_i lead to shock discontinuities.)

- No blow-up \Leftrightarrow We have a classical solution.
- Blow-up \Leftrightarrow We don't have a classical solution.

- Take a solution for *b* with blowup; Since H_{ρρ} ≥ 0, *b* may become −∞. Then switch to +∞ and continue!
- ► Assume $b = b^0$ initially has no blowup. Take a discrete set $\{(x_i, \rho_i) : i \in I\}$ of points with $x_i < x_{i+1}$. Define an initial profile ρ^0 such that $\rho^0(x_i+) = \rho_i$, and it solves the ODE $\dot{\rho}^0 = b^0(\rho^0, x, 0)$ in each interval (x_i, x_{i+1}) . Assume that this $\rho^0(x)$ satisfies $\rho^0(x_i-) > \rho^0(x_i+)$. (We want to make sure that there is no rarefaction so that all x_i lead to shock discontinuities.)

- No blow-up \Leftrightarrow We have a classical solution.
- Blow-up \Leftrightarrow We don't have a classical solution.

- ► Take a solution for *b* with blowup; Since H_{ρρ} ≥ 0, *b* may become -∞. Then switch to +∞ and continue!
- ► Assume $b = b^0$ initially has no blowup. Take a discrete set $\{(x_i, \rho_i) : i \in I\}$ of points with $x_i < x_{i+1}$. Define an initial profile ρ^0 such that $\rho^0(x_i+) = \rho_i$, and it solves the ODE $\dot{\rho}^0 = b^0(\rho^0, x, 0)$ in each interval (x_i, x_{i+1}) . Assume that this $\rho^0(x)$ satisfies $\rho^0(x_i-) > \rho^0(x_i+)$. (We want to make sure that there is no rarefaction so that all x_i lead to shock discontinuities.)

- No blow-up \Leftrightarrow We have a classical solution.
- Blow-up \Leftrightarrow We don't have a classical solution.

A scenario for a kinetic description

- Take a solution for *b* with blowup; Since H_{ρρ} ≥ 0, *b* may become −∞. Then switch to +∞ and continue!
- ► Assume $b = b^0$ initially has no blowup. Take a discrete set $\{(x_i, \rho_i) : i \in I\}$ of points with $x_i < x_{i+1}$. Define an initial profile ρ^0 such that $\rho^0(x_i+) = \rho_i$, and it solves the ODE $\dot{\rho}^0 = b^0(\rho^0, x, 0)$ in each interval (x_i, x_{i+1}) . Assume that this $\rho^0(x)$ satisfies $\rho^0(x_i-) > \rho^0(x_i+)$. (We want to make sure that there is no rarefaction so that all x_i lead to shock discontinuities.)

- No blow-up \Leftrightarrow We have a classical solution.
- Blow-up \Leftrightarrow We don't have a classical solution.

- ► Take a solution for *b* with blowup; Since H_{ρρ} ≥ 0, *b* may become -∞. Then switch to +∞ and continue!
- ► Assume $b = b^0$ initially has no blowup. Take a discrete set $\{(x_i, \rho_i) : i \in I\}$ of points with $x_i < x_{i+1}$. Define an initial profile ρ^0 such that $\rho^0(x_i+) = \rho_i$, and it solves the ODE $\dot{\rho}^0 = b^0(\rho^0, x, 0)$ in each interval (x_i, x_{i+1}) . Assume that this $\rho^0(x)$ satisfies $\rho^0(x_i-) > \rho^0(x_i+)$. (We want to make sure that there is no rarefaction so that all x_i lead to shock discontinuities.)

- No blow-up \Leftrightarrow We have a classical solution.
- Blow-up \Leftrightarrow We don't have a classical solution.

A scenario for a kinetic description

- ► Take a solution for *b* with blowup; Since H_{ρρ} ≥ 0, *b* may become -∞. Then switch to +∞ and continue!
- ► Assume $b = b^0$ initially has no blowup. Take a discrete set $\{(x_i, \rho_i) : i \in I\}$ of points with $x_i < x_{i+1}$. Define an initial profile ρ^0 such that $\rho^0(x_i+) = \rho_i$, and it solves the ODE $\dot{\rho}^0 = b^0(\rho^0, x, 0)$ in each interval (x_i, x_{i+1}) . Assume that this $\rho^0(x)$ satisfies $\rho^0(x_i-) > \rho^0(x_i+)$. (We want to make sure that there is no rarefaction so that all x_i lead to shock discontinuities.)

- No blow-up \Leftrightarrow We have a classical solution.
- Blow-up \Leftrightarrow We don't have a classical solution.

- ► Take a solution for *b* with blowup; Since H_{ρρ} ≥ 0, *b* may become -∞. Then switch to +∞ and continue!
- ► Assume $b = b^0$ initially has no blowup. Take a discrete set $\{(x_i, \rho_i) : i \in I\}$ of points with $x_i < x_{i+1}$. Define an initial profile ρ^0 such that $\rho^0(x_i+) = \rho_i$, and it solves the ODE $\dot{\rho}^0 = b^0(\rho^0, x, 0)$ in each interval (x_i, x_{i+1}) . Assume that this $\rho^0(x)$ satisfies $\rho^0(x_i-) > \rho^0(x_i+)$. (We want to make sure that there is no rarefaction so that all x_i lead to shock discontinuities.)

- No blow-up \Leftrightarrow We have a classical solution.
- Blow-up \Leftrightarrow We don't have a classical solution.

- ► Take a solution for *b* with blowup; Since H_{ρρ} ≥ 0, *b* may become -∞. Then switch to +∞ and continue!
- ► Assume $b = b^0$ initially has no blowup. Take a discrete set $\{(x_i, \rho_i) : i \in I\}$ of points with $x_i < x_{i+1}$. Define an initial profile ρ^0 such that $\rho^0(x_i+) = \rho_i$, and it solves the ODE $\dot{\rho}^0 = b^0(\rho^0, x, 0)$ in each interval (x_i, x_{i+1}) . Assume that this $\rho^0(x)$ satisfies $\rho^0(x_i-) > \rho^0(x_i+)$. (We want to make sure that there is no rarefaction so that all x_i lead to shock discontinuities.)

CLAIM: The picture we have initially persists at later times. The

PDE reduces to an interacting particle system!

Particles Configuration

There are particles $\mathbf{q}(t) = \{(x_i(t), \rho_i(t)) : i \in \mathbb{Z}\}$ with $x_i(t) < x_{i+1}(t)$ (we may replace \mathbb{Z} with a finite set). $x_i(t)$ represents the location of the *i*-th particle. $\rho_i(t) = \rho(x_i(t)+, t)$ $\rho(\cdot, t)$ solves the ODE $\dot{\rho} = b(\rho, x, t)$ in each (x_i, x_{i+1}) .

Dynamics

q motion We can set up a collection of ODEs for the evolution of q(t). For example

$$\frac{dx_i}{dt} = v(\rho_i^-(t), \rho_i(t), x_i(t), t),$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Particles Configuration

There are particles $\mathbf{q}(t) = \{(x_i(t), \rho_i(t)) : i \in \mathbb{Z}\}$ with $x_i(t) < x_{i+1}(t)$ (we may replace \mathbb{Z} with a finite set). $x_i(t)$ represents the location of the *i*-th particle. $\rho_i(t) = \rho(x_i(t)+, t)$ $\rho(\cdot, t)$ solves the ODE $\dot{\rho} = b(\rho, x, t)$ in each (x_i, x_{i+1}) .

Dynamics

q motion We can set up a collection of ODEs for the evolution of q(t). For example

$$\frac{dx_i}{dt} = v(\rho_i^-(t), \rho_i(t), x_i(t), t),$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Particles Configuration

There are particles $\mathbf{q}(t) = \{(x_i(t), \rho_i(t)) : i \in \mathbb{Z}\}$ with $x_i(t) < x_{i+1}(t)$ (we may replace \mathbb{Z} with a finite set). $x_i(t)$ represents the location of the *i*-th particle. $\rho_i(t) = \rho(x_i(t)+, t)$ $\rho(\cdot, t)$ solves the ODE $\dot{\rho} = b(\rho, x, t)$ in each (x_i, x_{i+1}) .

Dynamics

q motion We can set up a collection of ODEs for the evolution of q(t). For example

$$\frac{dx_i}{dt} = v(\rho_i^-(t), \rho_i(t), x_i(t), t),$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Particles Configuration

There are particles $\mathbf{q}(t) = \{(x_i(t), \rho_i(t)) : i \in \mathbb{Z}\}$ with $x_i(t) < x_{i+1}(t)$ (we may replace \mathbb{Z} with a finite set). $x_i(t)$ represents the location of the *i*-th particle. $\rho_i(t) = \rho(x_i(t)+, t)$ $\rho(\cdot, t)$ solves the ODE $\dot{\rho} = b(\rho, x, t)$ in each (x_i, x_{i+1}) .

Dynamics

q motion We can set up a collection of ODEs for the evolution of q(t). For example

$$\frac{dx_i}{dt} = v(\rho_i^-(t), \rho_i(t), x_i(t), t),$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Particles Configuration

There are particles $\mathbf{q}(t) = \{(x_i(t), \rho_i(t)) : i \in \mathbb{Z}\}$ with $x_i(t) < x_{i+1}(t)$ (we may replace \mathbb{Z} with a finite set). $x_i(t)$ represents the location of the *i*-th particle. $\rho_i(t) = \rho(x_i(t)+, t)$ $\rho(\cdot, t)$ solves the ODE $\dot{\rho} = b(\rho, x, t)$ in each (x_i, x_{i+1}) .

Dynamics

q motion We can set up a collection of ODEs for the evolution of q(t). For example

$$\frac{dx_i}{dt} = v(\rho_i^-(t), \rho_i(t), x_i(t), t),$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Particles Configuration

There are particles $\mathbf{q}(t) = \{(x_i(t), \rho_i(t)) : i \in \mathbb{Z}\}$ with $x_i(t) < x_{i+1}(t)$ (we may replace \mathbb{Z} with a finite set). $x_i(t)$ represents the location of the *i*-th particle. $\rho_i(t) = \rho(x_i(t)+, t)$ $\rho(\cdot, t)$ solves the ODE $\dot{\rho} = b(\rho, x, t)$ in each (x_i, x_{i+1}) .

Dynamics

q motion We can set up a collection of ODEs for the evolution of q(t). For example

$$\frac{dx_i}{dt} = v(\rho_i^-(t), \rho_i(t), x_i(t), t),$$

Particles Configuration

There are particles $\mathbf{q}(t) = \{(x_i(t), \rho_i(t)) : i \in \mathbb{Z}\}$ with $x_i(t) < x_{i+1}(t)$ (we may replace \mathbb{Z} with a finite set). $x_i(t)$ represents the location of the *i*-th particle. $\rho_i(t) = \rho(x_i(t)+, t)$ $\rho(\cdot, t)$ solves the ODE $\dot{\rho} = b(\rho, x, t)$ in each (x_i, x_{i+1}) .

Dynamics

q motion We can set up a collection of ODEs for the evolution of q(t). For example

$$\frac{dx_i}{dt} = v(\rho_i^-(t), \rho_i(t), x_i(t), t),$$

Particles Configuration

There are particles $\mathbf{q}(t) = \{(x_i(t), \rho_i(t)) : i \in \mathbb{Z}\}$ with $x_i(t) < x_{i+1}(t)$ (we may replace \mathbb{Z} with a finite set). $x_i(t)$ represents the location of the *i*-th particle. $\rho_i(t) = \rho(x_i(t)+, t)$ $\rho(\cdot, t)$ solves the ODE $\dot{\rho} = b(\rho, x, t)$ in each (x_i, x_{i+1}) .

Dynamics

q motion We can set up a collection of ODEs for the evolution of q(t). For example

$$\frac{dx_i}{dt} = \mathbf{v}(\rho_i^-(t), \rho_i(t), x_i(t), t),$$

- Coagulation/Loss of Particle When two particles meet i.e. $x_i(t) = x_{i+1}(t)$, kill the *i*-particle, and relabel particles to its right.
- ► The Birth of a Particle At each blowup of *b*, a particle is created. How? Details! Can be worked out in some cases.

- Our two results avoid particle births.
- If there is creation of particles (blowup of b), the kinetic equation for f must be modified. When H is also random, we need to add a term representing the creation.
- For a variant of our model, when a particle is created, it fragments into two particles.

- ► Coagulation/Loss of Particle When two particles meet i.e. x_i(t) = x_{i+1}(t), kill the *i*-particle, and relabel particles to its right.
- ► The Birth of a Particle At each blowup of *b*, a particle is created. How? Details! Can be worked out in some cases.

- Our two results avoid particle births.
- If there is creation of particles (blowup of b), the kinetic equation for f must be modified. When H is also random, we need to add a term representing the creation.
- For a variant of our model, when a particle is created, it fragments into two particles.

- Coagulation/Loss of Particle When two particles meet i.e. $x_i(t) = x_{i+1}(t)$, kill the *i*-particle, and relabel particles to its right.
- ► The Birth of a Particle At each blowup of *b*, a particle is created. How? Details! Can be worked out in some cases.

- Our two results avoid particle births.
- If there is creation of particles (blowup of b), the kinetic equation for f must be modified. When H is also random, we need to add a term representing the creation.
- For a variant of our model, when a particle is created, it fragments into two particles.

- Coagulation/Loss of Particle When two particles meet i.e. $x_i(t) = x_{i+1}(t)$, kill the *i*-particle, and relabel particles to its right.
- The Birth of a Particle At each blowup of b, a particle is created. How? Details! Can be worked out in some cases.

- Our two results avoid particle births.
- If there is creation of particles (blowup of b), the kinetic equation for f must be modified. When H is also random, we need to add a term representing the creation.
- For a variant of our model, when a particle is created, it fragments into two particles.

- Coagulation/Loss of Particle When two particles meet i.e. $x_i(t) = x_{i+1}(t)$, kill the *i*-particle, and relabel particles to its right.
- The Birth of a Particle At each blowup of b, a particle is created. How? Details! Can be worked out in some cases.

- Our two results avoid particle births.
- If there is creation of particles (blowup of b), the kinetic equation for f must be modified. When H is also random, we need to add a term representing the creation.
- For a variant of our model, when a particle is created, it fragments into two particles.

- Coagulation/Loss of Particle When two particles meet i.e. $x_i(t) = x_{i+1}(t)$, kill the *i*-particle, and relabel particles to its right.
- The Birth of a Particle At each blowup of b, a particle is created. How? Details! Can be worked out in some cases.

- Our two results avoid particle births.
- If there is creation of particles (blowup of b), the kinetic equation for f must be modified. When H is also random, we need to add a term representing the creation.
- For a variant of our model, when a particle is created, it fragments into two particles.

- Coagulation/Loss of Particle When two particles meet i.e. $x_i(t) = x_{i+1}(t)$, kill the *i*-particle, and relabel particles to its right.
- The Birth of a Particle At each blowup of b, a particle is created. How? Details! Can be worked out in some cases.

- Our two results avoid particle births.
- If there is creation of particles (blowup of b), the kinetic equation for f must be modified. When H is also random, we need to add a term representing the creation.
- For a variant of our model, when a particle is created, it fragments into two particles.

- Coagulation/Loss of Particle When two particles meet i.e. $x_i(t) = x_{i+1}(t)$, kill the *i*-particle, and relabel particles to its right.
- The Birth of a Particle At each blowup of b, a particle is created. How? Details! Can be worked out in some cases.

- Our two results avoid particle births.
- If there is creation of particles (blowup of b), the kinetic equation for f must be modified. When H is also random, we need to add a term representing the creation.
- For a variant of our model, when a particle is created, it fragments into two particles.
Dynamics

- Coagulation/Loss of Particle When two particles meet i.e. $x_i(t) = x_{i+1}(t)$, kill the *i*-particle, and relabel particles to its right.
- The Birth of a Particle At each blowup of b, a particle is created. How? Details! Can be worked out in some cases.

Our Results

- Our two results avoid particle births.
- If there is creation of particles (blowup of b), the kinetic equation for f must be modified. When H is also random, we need to add a term representing the creation.
- For a variant of our model, when a particle is created, it fragments into two particles.

Dynamics

- Coagulation/Loss of Particle When two particles meet i.e. $x_i(t) = x_{i+1}(t)$, kill the *i*-particle, and relabel particles to its right.
- The Birth of a Particle At each blowup of b, a particle is created. How? Details! Can be worked out in some cases.

Our Results

- Our two results avoid particle births.
- If there is creation of particles (blowup of b), the kinetic equation for f must be modified. When H is also random, we need to add a term representing the creation.
- For a variant of our model, when a particle is created, it fragments into two particles.

Moral

Assume d = 1. For a solution of the form

- (1) Examine the set $\{(y_i, g_i) : i \in I(t)\} \in \mathcal{I}(t)$. As *t* increases, the state space $\mathcal{I}(t)$ is changing with time. All particles (y_i, g_i) stay put. Occasionally a particle dies, because it becomes redundant. Or put it differently, because the set of allowed particles change with time. This point of view is not mathematically tractable.

Moral

Assume d = 1. For a solution of the form

- (1) Examine the set $\{(y_i, g_i) : i \in I(t)\} \in \mathcal{I}(t)$. As *t* increases, the state space $\mathcal{I}(t)$ is changing with time. All particles (y_i, g_i) stay put. Occasionally a particle dies, because it becomes redundant. Or put it differently, because the set of allowed particles change with time. This point of view is not mathematically tractable.

Moral

Assume d = 1. For a solution of the form

- (1) Examine the set $\{(y_i, g_i) : i \in I(t)\} \in \mathcal{I}(t)$. As *t* increases, the state space $\mathcal{I}(t)$ is changing with time. All particles (y_i, g_i) stay put. Occasionally a particle dies, because it becomes redundant. Or put it differently, because the set of allowed particles change with time. This point of view is not mathematically tractable.

Moral

Assume d = 1. For a solution of the form

- (1) Examine the set $\{(y_i, g_i) : i \in I(t)\} \in \mathcal{I}(t)$. As *t* increases, the state space $\mathcal{I}(t)$ is changing with time. All particles (y_i, g_i) stay put. Occasionally a particle dies, because it becomes redundant. Or put it differently, because the set of allowed particles change with time. This point of view is not mathematically tractable.

Moral

Assume d = 1. For a solution of the form

- (1) Examine the set $\{(y_i, g_i) : i \in I(t)\} \in \mathcal{I}(t)$. As *t* increases, the state space $\mathcal{I}(t)$ is changing with time. All particles (y_i, g_i) stay put. Occasionally a particle dies, because it becomes redundant. Or put it differently, because the set of allowed particles change with time. This point of view is not mathematically tractable.

Moral

Assume d = 1. For a solution of the form

- (1) Examine the set $\{(y_i, g_i) : i \in I(t)\} \in \mathcal{I}(t)$. As *t* increases, the state space $\mathcal{I}(t)$ is changing with time. All particles (y_i, g_i) stay put. Occasionally a particle dies, because it becomes redundant. Or put it differently, because the set of allowed particles change with time. This point of view is not mathematically tractable.

Moral

Assume d = 1. For a solution of the form

- (1) Examine the set $\{(y_i, g_i) : i \in I(t)\} \in \mathcal{I}(t)$. As *t* increases, the state space $\mathcal{I}(t)$ is changing with time. All particles (y_i, g_i) stay put. Occasionally a particle dies, because it becomes redundant. Or put it differently, because the set of allowed particles change with time. This point of view is not mathematically tractable.

Moral

Assume d = 1. For a solution of the form

- (1) Examine the set $\{(y_i, g_i) : i \in I(t)\} \in \mathcal{I}(t)$. As *t* increases, the state space $\mathcal{I}(t)$ is changing with time. All particles (y_i, g_i) stay put. Occasionally a particle dies, because it becomes redundant. Or put it differently, because the set of allowed particles change with time. This point of view is not mathematically tractable.
- (2) Instead, we may switch to {(y_i, x_i): i ∈ l(t)} ∈ J with x_i's representing the locations of discontinuities. y_i stays put but x_i changes with time. Though the state space no longer changes with time (x_i's and y_i's are ordered). This is the point of view that we have successfully adopted in dimension one. We now have a billiard! Disappearance of a particle means that state has reached the boundary to jump to another component of state space

Moral

Assume d = 1. For a solution of the form

- (1) Examine the set $\{(y_i, g_i) : i \in I(t)\} \in \mathcal{I}(t)$. As *t* increases, the state space $\mathcal{I}(t)$ is changing with time. All particles (y_i, g_i) stay put. Occasionally a particle dies, because it becomes redundant. Or put it differently, because the set of allowed particles change with time. This point of view is not mathematically tractable.
- (2) Instead, we may switch to {(y_i, x_i): i ∈ l(t)} ∈ J with x_i's representing the locations of discontinuities. y_i stays put but x_i changes with time. Though the state space no longer changes with time (x_i's and y_i's are ordered). This is the point of view that we have successfully adopted in dimension one. We now have a billiard! Disappearance of a particle means that state has reached the boundary to jump to another component of state space

Moral

Assume d = 1. For a solution of the form

- (1) Examine the set $\{(y_i, g_i) : i \in I(t)\} \in \mathcal{I}(t)$. As *t* increases, the state space $\mathcal{I}(t)$ is changing with time. All particles (y_i, g_i) stay put. Occasionally a particle dies, because it becomes redundant. Or put it differently, because the set of allowed particles change with time. This point of view is not mathematically tractable.
- (2) Instead, we may switch to {(y_i, x_i): i ∈ l(t)} ∈ J with x_i's representing the locations of discontinuities. y_i stays put but x_i changes with time. Though the state space no longer changes with time (x_i's and y_i's are ordered). This is the point of view that we have successfully adopted in dimension one. We now have a billiard! Disappearance of a particle means that state has reached the boundary to jump to another component of state space

Moral

Assume d = 1. For a solution of the form

- (1) Examine the set $\{(y_i, g_i) : i \in I(t)\} \in \mathcal{I}(t)$. As *t* increases, the state space $\mathcal{I}(t)$ is changing with time. All particles (y_i, g_i) stay put. Occasionally a particle dies, because it becomes redundant. Or put it differently, because the set of allowed particles change with time. This point of view is not mathematically tractable.
- (2) Instead, we may switch to {(y_i, x_i) : i ∈ l(t)} ∈ J with x_i's representing the locations of discontinuities. y_i stays put but x_i changes with time. Though the state space no longer changes with time (x_i's and y_i's are ordered). This is the point of view that we have successfully adopted in dimension one. We now have a billiard! Disappearance of a particle means that state has reached the boundary to jump to another component of state space

Higher Dimensions What are the analogs of x_i 's in higher dimensions?

Answer:

There is a Voronoi type tessellation initially that evolves to a Laguerre type tessellation at a later time.

The vertices of this tessellation play the role of x_i 's. Each particle has a velocity. When two particles collide, two things can happen (different from what we had in the case of d = 1):

- They gain new velocities.
- They kind of coagulate! (For example, when d = 2, a triangular face collapses to a vertex; a particle dies.)

Higher Dimensions What are the analogs of x_i 's in higher dimensions?

Answer:

There is a Voronoi type tessellation initially that evolves to a Laguerre type tessellation at a later time.

The vertices of this tessellation play the role of x_i 's. Each particle has a velocity. When two particles collide, two things can happen (different from what we had in the case of d = 1):

- They gain new velocities.
- ► They kind of coagulate! (For example, when d = 2, a triangular face collapses to a vertex; a particle dies.)

Higher Dimensions

What are the analogs of x_i 's in higher dimensions?

Answer:

There is a Voronoi type tessellation initially that evolves to a Laguerre type tessellation at a later time.

The vertices of this tessellation play the role of x_i 's. Each particle has a velocity. When two particles collide, two things can happen (different from what we had in the case of d = 1):

- They gain new velocities.
- ► They kind of coagulate! (For example, when d = 2, a triangular face collapses to a vertex; a particle dies.)

Higher Dimensions What are the analogs of x_i 's in higher dimensions?

Answer:

There is a Voronoi type tessellation initially that evolves to a Laguerre type tessellation at a later time.

The vertices of this tessellation play the role of x_i 's. Each

particle has a velocity. When two particles collide, two things can happen (different from what we had in the case of d = 1):

- They gain new velocities.
- They kind of coagulate! (For example, when d = 2, a triangular face collapses to a vertex; a particle dies.)

Higher Dimensions What are the analogs of x_i 's in higher dimensions?

Answer:

There is a Voronoi type tessellation initially that evolves to a Laguerre type tessellation at a later time.

The vertices of this tessellation play the role of x_i 's. Each particle has a velocity. When two particles collide, two things can happen (different from what we had in the case of d = 1):

- They gain new velocities.
- They kind of coagulate! (For example, when d = 2, a triangular face collapses to a vertex; a particle dies.)

Higher Dimensions What are the analogs of x_i 's in higher dimensions?

Answer:

There is a Voronoi type tessellation initially that evolves to a Laguerre type tessellation at a later time.

The vertices of this tessellation play the role of x_i 's. Each particle has a velocity. When two particles collide, two things can happen (different from what we had in the case of d = 1):

- They gain new velocities.
- They kind of coagulate! (For example, when d = 2, a triangular face collapses to a vertex; a particle dies.)

Higher Dimensions What are the analogs of x_i 's in higher dimensions?

Answer:

There is a Voronoi type tessellation initially that evolves to a Laguerre type tessellation at a later time.

The vertices of this tessellation play the role of x_i 's. Each particle has a velocity. When two particles collide, two things can happen (different from what we had in the case of d = 1):

- They gain new velocities.
- They kind of coagulate! (For example, when d = 2, a triangular face collapses to a vertex; a particle dies.)

Higher Dimensions What are the analogs of x_i 's in higher dimensions?

Answer:

There is a Voronoi type tessellation initially that evolves to a Laguerre type tessellation at a later time.

The vertices of this tessellation play the role of x_i 's. Each particle has a velocity. When two particles collide, two things can happen (different from what we had in the case of d = 1):

- They gain new velocities.
- They kind of coagulate! (For example, when d = 2, a triangular face collapses to a vertex; a particle dies.)

Higher Dimensions What are the analogs of x_i 's in higher dimensions?

Answer:

There is a Voronoi type tessellation initially that evolves to a Laguerre type tessellation at a later time.

The vertices of this tessellation play the role of x_i 's. Each particle has a velocity. When two particles collide, two things can happen (different from what we had in the case of d = 1):

- They gain new velocities.
- They kind of coagulate! (For example, when d = 2, a triangular face collapses to a vertex; a particle dies.)

