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Abstract. In this paper, we offer a simpler proof to Groeneboom’s result using recent
progress made in bridging kinetic theory to scalar conservation laws with random initial
data. According to Groenboom’s work, if the initial data of Burgers’ equation is white
noise, then at a later time the solution is a piecewise linear function that is interrupted
by random jumps. Groenboom uses Brownian excursion theory to find an explicit formula
for the jump kernel in terms of the Airy function. In this paper, we show that if ρ(x, t) is
the solution of Burgers’ equation with white noise initial data, then the small t limit of the
process x 7→

∫ x

0
V (ρ(y, t)) dy is a Brownian motion, for any function V : R → R, that is of of

zero average with respect to the one-dimensional marginal of ρ. We also provide an explicit
formula for the variance of the limiting Brownian motion. This general central limit theorem
is related to Groenboom’s work when V (ρ) = ρ.

1. Introduction and main theorem

In order to understand hydrodynamic turbulence via a simplified model, Burgers has sug-
gested the following partial differential equation

(1.1) ρt + ρρx = 0,

where ρ : R× [0,∞) → R is a function of two variables (x, t) ∈ R× [0,∞), where the variable
x represents space and t represents time. Burgers has considered the Burgers equation above
with Brownian white noise initial data, with an aim to understand the statistical moments and
correlations of the entropy solution ρ(x, t). The problem of interest is therefore to determine
the law of the solution at later times t > 0, i.e., to determine the distribution of the stochastic
process (ρ(x, t) : x ∈ R) for any fixed t > 0. This open problem has resisted to mathematical
physicists for several decades, until its resolution by Groeneboom in [Gr], who was initially
interested in a completely different question related to the large scale behavior of isotonic
estimators. These two questions are related via the variational formula - the Lax-Oleinik
formula - which gives a closed form of the entropy solution of Burgers equation. Indeed, for
any initial condition ρ(·, 0) := ρ0 ∈ L∞(R), the equation (1.1) admits a weak solution (in the
distribution sense). If we impose more physical restrictions on the solutions, we can achieve
well-posedeness, in which case we talk about an entropy solution. We present below briefly,
the closed form of this entropy solution for bounded initial condition. We refer the unfamiliar
reader with scalar conservation laws to Evans [E] monograph.

Let us define the potential U0(x) :=
∫ x
0 ρ0(y)dy, and consider the corresponding Hamilton-

Jacobi equation ut +
1
2u

2
x = 0 with unknown u : R × [0,∞) → R, and with initial condition

u(·, 0) = U0. Similarly to Burgers equation, this equation in u admits a notion of physical
solution referred to as viscosity solution and is given by the Hopf-Lax formula below

(1.2) u(x, t) = min
y∈R

(
U0(y) +

(x− y)2

2t

)
.
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Formally, at least, the spatial derivative ux of u verifies the Burgers equation. This notion is
made rigorous by the fact that the entropy solution ρ is given by the closed formula

(1.3) ρ(x, t) =
x− y(x, t)

t

where y(x, t) is the rightmost maximizer in the expression (1.2).

Coming back to our problem of interest, where the initial condition ρ0 := ξ is a Brownian
white noise, one can still make sense of an entropy solution even though ξ /∈ L∞(R). Indeed,
since the anti-derivative of the Brownian white noise (which is a two-sided Brownian motion)
is dominated at infinity by parabolas, the minimization problem in (1.2) is achieved, and
almost surely y(x, t) exists and is finite.

The purpose of the present paper is to give an alternative proof of Groneboom’s result, and
to determine the law of x 7→ ρ(x, t) for every t > 0 when U0 is a two-sided Brownian motion.
This proof is based on a different approach relying on kinetic theory, that has seen several
developments in the recent decade. This approach has been initiated by the work of Menon
and Srinivasan in [MS], and a series of recent works have showed its power by solving sev-
eral open standing problems on closure theorems of scalar conservation laws (or equivalently
Hamilton-Jacobi equations) with general Hamiltonian and random initial data.

Fix σ > 0, and let ρσ be the unique entropy solution to{
ρσt + ρσρσx = 0 for (x, t) ∈ R× (0,∞),
ρσ(x, 0) = ξσ(x) for x ∈ R,

where ξσ(x) is a Brownian white noise with the diffusion coefficient σ2. By this, we mean

that ρσ is given by ρσ(x, t) = x−yσ(x,t)
t , where yσ(x, t) is the largest y at which the process

y 7→ σB(y) + (x−y)2

2t achieves its minimum, and where B is a standard two-sided linear
Brownian motion. Using Brownian scaling, it is easy to see that

(1.4) (ρσ(x, t), x ∈ R)
d
=
(
σ

2
3 t−

1
3 ρ1((σt)−

2
3x, 1), x ∈ R

)
.

Hence it suffices to evaluate the law at t = 1. The main theorem of this article, and that is
due to Groeneboom is the following:

Theorem 1 ([Gr]). The process (ρ
1√
2 (x, 1), x ∈ R) is a stationary piecewise-linear Markov

process with the generator A, given by its action on test functions φ ∈ C∞
c (R),

Aφ(y) = φ′(y) +

∫ y

−∞
(φ(z)− φ(y))n(y, z)dz.

The jump density n is given by

(1.5) n(y, z) =
J(z)

J(y)
K(y − z) , y > z

where J and K are positive functions defined on the line and the positive half-line respectively,
whose Laplace transforms

(1.6) j(q) :=

∫ ∞

−∞
e−qyJ(y)dy, k(q) :=

∫ ∞

0
e−qyK(y)dy,
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are meromorphic functions on C given by

j(q) =
1

Ai(q)
, k(q) = −2

d2

dq2
log Ai(q),

where Ai denotes the first Airy function defined by

Ai(x) =
1

π

∫ ∞

0
cos

(
t3

3
+ xt

)
dt.

Groeneboom’s original proof of the previous theorem relied extensively on Ito’s excursion
theory and results on path decompositions of Markov process at the time they achieve their
ultimate maximum. In this paper, we will give a different approach relying on kinetic theory.
Indeed, the following result due to Kaspar-Rezakhanlou in [KR2] gives a complete description
of the law at fixed times of solutions to scalar conservation laws with piecewise-deterministic
Markov initial data. Kaspar and Rezakhanlou’s theorem holds for any general scalar conser-
vation laws with C2 convex flux H, but as we are only interested in Burgers equation, we will
only state it in the case when H is quadratic, and omit some technical details in it, as we
will be using this theorem as an ansatz (indeed, the assumptions of the theorem do not hold
in our case due to some technical difficulties in proving it, however it will serve to make an
educated guess on a non-trivial solution to a kinetic equation).

Theorem 2 ([KR2]). Consider an initial data ρ0 that is a Markov process of bounded varia-
tion, and whose generator is given by its actions on test functions φ ∈ C∞

c (R)

A0φ(y) = b0(y)φ′(y) +

∫ y

−∞
(φ(z)− φ(y))n0(y, z)dz.

Let ρ be the unique entropy solution to Burgers equation with initial condition ρ(x, 0) =
ρ0(x), x ∈ R, then for any t > 0 the process x 7→ ρ(x, t) is again Markovian with bounded
variation and with generator At given by

(1.7) Atφ(y) = b(y, t)φ′(y) +

∫ y

−∞
(φ(z)− φ(y))n(y, z, t) dz.

The drift (y, t) 7→ b(y, t) verifies the ODE with parameter bt(y, t) = −b(y, t)2, and the jump
kernel n verifies the following kinetic equation

(1.8) ∂tn(y, z, t)−
1

2t
(y − z)(∂yn− ∂zn)(y, z, t) = Q(n, n)(y, z, t),

where Q = Q+ −Q− is a quadratic operator with Q−(n, n) = nL(n), and

Q+(n, n)(y, z, t) =
y − z

2

∫ y

z
n(y, w, t)n(w, z, t) dw,(1.9)

L(n)(y, z, t) =

∫ z

−∞

y − w

2
n(z, w, t) dw +

∫ y

−∞

w − z

2
n(y, w, t) dw.

Remark 1. (i) The process x 7→ ρ(x, t) is a concatenation of smooth pieces corresponding to
the flow of the ODE with drift b(·, t) (i.e the ODE ẋ(t) = b(x(t), t)) interrupted by Markovian
jumps at rate (y, z) 7→ n(y, z, t).

(ii) In [KR2] original statement, it is assumed that the Markov process ρ0 starts at the origin
at x = 0. However, in our case, we will be using it for stationary initial data. The fact
that Burgers equation is translation invariant, implies that the solution remains stationary in
space at later times.
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Let us give here an outline of our proof. From a theorem of Menon and Srinivasan in [MS]
using last exit times, we know that for any fixed t > 0 that the process x 7→ ρσ(x, t) is a
Markov process. Moreover, it is a deterministic fact that entropy solutions are of bounded
variation at later times. Therefore, if x 7→ ρσ(x, t) were to be a Feller process, then it must
have a generator of the form (1.7). As such, to determine the law of x 7→ ρσ(x, t), one only
need to find the expression of the corresponding drift b(y, t) and jump kernel n(y, z, t). Our
proof contains three steps, listed as follows

• (Step 1) We make the assumption that Theorem 2 hold for the more general situation
where the initial condition ρ(·, 0) is stationary. Therefore, should the Feller property
hold in our case (Burgers equation with white noise initial data), the drift b and jump
kernel n must satisfy the above equations. Our goal in this first step will be to find
one non-trivial solution (b, n) to this system of equations by making some ansatzes
on the form of these solutions based on the homogeneous properties of the Brownian
motion initial potential.

• (Step 2) Once we have a candidate (b, n) solving the above equations, we construct a
family of measures (µϵ)ϵ>0 on the space C([0,∞),D(R,R)) (recall that D(R,R) is the
set of real-valued càdlàg functions defined on the real-line) as follows: for any ϵ > 0,
the measure µϵ is the law of the unique entropy solution started from initial condition
given by the stationary Markov process with drift b(·, ϵ) and jump kernel n(·, ·, ϵ).

• (Step 3) We show that the family of measures (µϵ)ϵ>0 is tight, and thus admit a limit
along a certain subsequence ϵn ↓ 0. We denote this limit µ̄.

• (Step 4) We show that under the law of the limit µ̄, the law of the marginal

x ∈ C([0,∞),D(R,R)) 7→ x(0) ∈ D(R,R)

is a two-sided linear Brownian motion. Moreover, µ̄-almost surely, x is an entropy
solution to Burgers equation. By uniqueness of the entropy solution, we deduce the
main theorem.

2. The form of the Markov Process

The purpose of this section is twofold: we partially justify the form of our kernel n as in
(1.5), and use the kinetic equation (1.8) to determine J and K. As we will see in this section
that modulo some translation and scaling, K and J must satisfy (1.6).

We start by making some ansatzes on the form of the generator of x 7→ ρσ(x, t). As we
mentioned in the previous section, we assume that the solution at later times is a Feller process
with an infinitesimal generator At as in (1.7). Due to the scaling property (1.4), we restrict
ourselves to the case σ = 1√

2
in the statement of the main Theorem, and consequently we

don’t make any reference to the diffusion factor σ (we always assume that we start with a
Brownian white noise with variance 1

2). Again from (1.4), it is not hard to show that the drift
b and kernel n must verify the two identities

(2.1) b(y, t) = t−1b(t
1
3 y, 1) =: t−1b(t

1
3 y), n(y, z, t) = t−

1
3n(t

1
3 y, t

1
3 z, 1) =: t−

1
3n(t

1
3 y, t

1
3 z).

Let us start by finding a candidate solution to b. As b solves the ODE with parameter

bt(y, t) = −b(y, t)2, we must have that −t−2b(t
1
3 y) + 1

3 t
− 5

3 yb′(t
1
3 y) = −t−2b2(t

1
3 y). This

equation is equivalent to b(r) − 1
3rb

′(r) = b(r)2 for all r ∈ R. Let f(r) = b(r
1
3 ), then

f ′(r) = 1
3r

− 2
3 b′(r

1
3 ) = r−1(f(r)−f(r)2) which is equivalent to

(
r

f(r)

)′
= 1, which implies that

f = r/(c+r) for a constant c. The solution f = 1 is the only non-singular solution. Hence we
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take b(r) = 1 and thus b(y, t) = t−1 is our non-singular candidate solution to the ODE that
verifies the self-similarity condition.

Let us move on now to finding a non-trivial candidate for n(y, z, t). Recall that the kinetic
equation in the case of Burgers equation takes the form (1.8), with Q as in (1.9).

2.1. The Kernel n. We first partially justify the form of the kernel n that appeared in (1.5).
We first claim that in our setting, it is quite natural to express n as

(2.2) n(y, z) =
J(z)

J(y)
K(y, z),

for a suitable pair functions J and K. We can derive some of the properties of this pair by
using the fact that the process ρ(x) = ρ(x, 1) is a stationary Markov process, and a symmetry
of our PDE. It is worth emphasizing that the argument we are using is general and works
even when the Burgers equation is replaced the general scalar conservation law

ρt +H(ρ)x = 0,

for a convex function H. Equivalently, we may write ρ = ux, where u satisfies the Hamilton-
Jacobi equation,

(2.3) ut +H(ux) = 0, u(x, 0) = σB(x).

To simplify our presentation, we additionally assume that H is an even function. Since the
processes x 7→ B(x) and x 7→ B(−x) have the same law, we deduce that (u(x, t) : x ∈
R) d

=(u(−x, t) : x ∈ R). As a result

(2.4) (ρ(x, t) : x ∈ R) d
=(−ρ(−x, t) : x ∈ R).

Observe that if the process ρ(·) is a stationary Markov process, and a > 0, then the sequence
(ρj = ρ(ja) : j ∈ Z) is a stationary Markov chain. Conditioned on ρ(0) = ρ0 and ρ(na) = ρn,
the law of (ρ1, . . . , ρn−1) has a Gibbsian representation of the form

Zn(ρ0, ρn)
−1

n∏
j=1

g(ρj−1, ρj)

n−1∏
j=1

dρj ,

for a normalizing constant Zn(ρ0, ρn). Let us define the operators

Lφ(ρ) =
∫

g(ρ, ρ∗)φ(ρ∗) dρ∗, L∗φ(ρ∗) =

∫
g(ρ, ρ∗)φ(ρ) dρ.

If eθ0 is the largest eigenvalue of L, then we can find functions J and J∗ such that

LJ = eθ0J, LJ∗ = eθ0J∗.

With the aid of (J, J∗) we can turn our Gibbsian description to a Markovian description.
More precisely, the sequence (ρj : j ∈ Z) is a stationary Markov chain with the kernel

h(ρ, ρ∗) = e−θ0 J(ρ∗)

J(ρ)
g(ρ, ρ∗),

and an invariant measure dπ = JJ∗ dρ. This in turn suggests writing the kernel as in (2.2).
The property (2.4) means that g(ρ, ρ∗) = g(−ρ∗,−ρ). This in turn implies that J∗(ρ) = J(−ρ),
and as a consequence,

(2.5) π(dρ) =: ℓ(ρ) dρ = J(ρ)J(−ρ) dρ.
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Furthermore, the reversed process x 7→ ρ(−x) is a Markov process with the generator A∗ (the
adjoint of A with respect to the inner product of L2(π)), and the jump rate density

n∗(y, z) =
ℓ(z)

ℓ(y)
n(z, y) =

J(−z)

J(−y)
K(z, y).

Hence the process x 7→ ρ(−x) is a Markov process with the jump rate density

J(z)

J(y)
K(−z,−y).

From (2.4) we deduce K(y, z) = K(−z,−y). This is the case if K(y, z) depends on y − z.

Remark 2. A deeper explanation of this fact would rely on using the exact form of the law
of the post-maximum Brownian motion with parabolic drift (recall the definition of the pure-
jump process x 7→ y(x, t) that is the inverse Lagrangian). In this case, the value of K(y, z) is
linked to a functional of the law of a Brownian motion conditioned to a certain event and to
take the values y and z at its extremities. One can show by some little work that the value
K(y+ c, z+ c) for some constant c is equivalent to the same functional but now with adding a
drift c to the Brownian motion, but it is a common fact that the law of the Brownian motion
with drift on an interval conditioned to take fixed values on the end-intervals is independent
of this drift. We omit the details of this heuristic.

We next use the self-similarity relation (1.4) to express our kinetic equation (1.8) as an
equation for the function (y, z) 7→ n(y, z). From

∂tn(y, z, t)|t=1= 3−1(−n+ y∂yn+ z∂zn)(y, z),

we learn that the left-hand side of (1.8) at t = 1 can be written as

1

3
(−n+ y∂yn+ z∂zn)−

1

2
(y − z)(∂yn− ∂zn) = −1

3
n+

(z
2
− y

6

)
∂yn+

(y
2
− z

6

)
∂zn.

As a result, the kinetic equation (1.8) is equivalent to

(2.6) −2n+ (3z − y)∂yn+ (3y − z)∂zn = 6Q(n, n).

Proposition 1. Assume that the kernel n is of the form (1.5) for a pair of C1 functions J
and K. Then n satisfies (2.6) if and only if K(0) = 0, and there are constants c0, c1, and c2
such that the following equations hold:

3(K ⋆ Ĵ)(y)− y(K ⋆ J)(y) = c0J(y),(2.7)

J ′(y) + (K ⋆ J)(y) = (c2y
2 + c1)J(y),(2.8)

2K(s) + 3s(K ⋆K)(s) + 4sK ′(s) = (c2s
3 + c1s)K(s),(2.9)

where Ĵ(y) = yJ(y).

Proof Let us set

λ(y) =

∫
n(y, z) dz, η(y) =

∫
zn(y, z) dz.

It is not hard to check that ∫
Q(n, n)(y, z) dz = 0.

From this, the the kinetic equation (2.6), and an integration by parts, we deduce

0 = −2λ(y) + 3η′(y)− yλ′(y) + λ(y) + 2ya = −λ(y)− yλ′(y) + 3η′(y) + 2ya,
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where a = K(0). This leads to 3η(y)− yλ(y) + ay2 = c0, for a constant c0. In terms of J and
K, we have

(2.10) 3(K ⋆ Ĵ)(y)− y(K ⋆ J)(y) = (c0 − ay2)J(y).

Observe

6L(n)(y, z) =3η(y)− 3η(z) + 3yλ(z)− 3zλ(y) = yλ(y)− zλ(z) + 3yλ(z)− 3zλ(y)

=(3y − z)λ(z) + (y − 3z)λ(y) + a(y2 − z2).

We now go back to the kinetic equation (2.6) and rewrite it as X1 = X2, where

X1 =− 2− (3z − y)
J ′(y)

J(y)
+ (3y − z)

J ′(z)

J(z)
− 4s

K ′(s)

K(s)
,

X2 =3s
(K ⋆K)(s)

K(s)
− (3y − z)λ(z)− (y − 3z)λ(y) + a(y2 − z2),

where s = y − z. We first send s → 0 in the both of the equation X1 = X2 to deduce that
if a ̸= 0, then we must have −2 = 0, which is absurd. As a result a = 0, and (2.10) becomes
(2.7).

Let us set

ξ :=
J ′

J
+ λ =

J ′ +K ⋆ J

J
,

so that we can rewrite our kinetic equation in a more compact form:

(2.11) −(3z − y)ξ(y) + (3y − z)ξ(z) = 2 + 3s
(K ⋆K)(s)

K(s)
+ 4s

K ′(s)

K(s)
.

Note that the right-hand side depends on s only. On the other hand, if we set ζ(y) =
ξ(y)− ξ(0), then the left-hand side of (2.11) can be rewritten as

X(s, y) :=− (2y − 3s)ξ(y) + (2y + s)ξ(y − s) = s(3ξ(y) + ξ(y + s)) + 2y(ξ(y − s)− ξ(y))

=s(3ζ(y) + ζ(y + s)) + 2y(ζ(y − s)− ζ(y)) + 4sξ(0),

which is independent of y. From X(s, y) = X(s, 0) we deduce

s(3ζ(y) + ζ(y + s)) + 2y(ζ(y − s)− ζ(y)) = sζ(s).

By dividing both sides by s and sending s → 0 we learn that 4ζ(y)−2yζ ′(y) = 0. This means
that ζ(y) = c2y

2 for a constant c2. Hence ξ(y) = c2y
2 + c1/4 for constants c1 and c2. This

and the definition of ξ yield (2.8). Moreover, for such ξ,

−(3z − y)ξ(y) + (3y − z)ξ(z) = c2s
3 + c1s.

From this and (2.11) we deduce (2.9). □

We now focus on solving the equations (2.7)-(2.9) for K and J . Observe that if c ∈ R, and
J̄(y) = J(cy), K̄(y) = c2K(cy), then

J̄ ′(y) + (K̄ ⋆ J̄)(y)

J̄(y)
= c

J ′(cy) + (K ⋆ J)(cy)

J(cy)
,

3(K̄ ⋆ ˆ̄J)(y)− y(K̄ ⋆ J̄)(y)

J(y)
=

3(K ⋆ Ĵ)(cy)− y(K ⋆ J)(cy)

J(cy)
,

2K̄(s) + 3s(K̄ ⋆ K̄)(s) + 4sK̄ ′(s)

K̄(s)
=

2K(cs) + 3(cs)(K ⋆K)(cs) + 4(cs)K ′(cs)

K(cs)
.



8 MEHDI OUAKI AND FRAYDOUN REZAKHANLOU

From this we learn that if (J,K) solves (2.7)-(2.9), for the constant (c1, c2, c3), then (J̄ , K̄)
solves (2.7)-(2.9),for constant (c1, c

3c2, cc3). From this we learn that without loss of generality,
we may assume that c2 = 1.

From now on, we assume that c2 = 1. We apply the Laplace transform to the equations
(2.7) and (2.8), to obtain

(2.12) 3(kj′)(q)− (jk)′(q) = c0j(q), (jk)(q) + qj(q) = j′′(q) + c3j(q).

Note that if (j, k) is a solution, and ĵ(q) = j(q + c3), then (ĵ, k) is solves the same system of
equations for c3 = 0. Hence, without loss of generality, we may assume that c3 = 0. In this,
(2.12) is equivalent to equations k′j + c0j = 2j′k, and j(q)(k(q) + q) = j′′(q). These can be
rewritten as

(2.13) l′(q) = k(q) + q − l2(q), k′(q) = 2l(q)k(q)− c0,

where l = j′/j. To solve (2.13), we first derive an equation for l:

l′′ = k′ − 2ll′ + 1 = 2lk − 2ll′ + 1− c0 = 2l(k − l′) + 1− c0 = 2l(l2 − q) + 1− c0.

Let us assume that c0 = 2. Define h := l′ − l2 + q. Then

h′ = l′′ − 2ll′ + 1 = l′′ − 2l(h+ l2 − q) + 1 = −2lh.

This means that h′/h = −2l = −2j′/j, which in turn implies that h = c4j
−2, for a constant

c4. In summary, once we find j, such that

(2.14) l′ − l2 + q = h, h = c4j
−2, l = j′/j,

then we set k = h+2(l2−q), which satisfies the second equation of (2.13). It remains to solve
(2.14) for a given constant c4. To achieve this, we set A = j−1, so that A′ = −j′/j2 = −l/j,
and

A′′(q)

A(q)
= (l2 − l′)(q) = q − h = q − c4A

2(q).

In summary

A′′(q) = qA(q)− c4A
3(q).

When c4 = 0, we obtain a special solution which correspond to Groeneboom’s calculation.
We now argue that the equations (2.7) and (2.8) imply (2.9) when c2 = 1 and c3 = 0.

Indeed applying Laplace transform to both sides (2.9) yields

k′′′ = 3(k2)′ + 4qk′ + 2k(2.15)

We differentiate the second equation and use the first two identities above in (2.15)

k′′ = 2lk′ + 2l′k = 4l2k − 2c0l + 2k(k + q − l2)

= 2k2 + 2kq + 2kl2 − 2c0l

We differentiate a second time to get

k′′′ = 2(k2)′ + 2k′q + 2k + 2k′l2 + 4kll′ − 2c0l
′

= 2(k2)′ + 2k′q + 2k + 2k′(k + q − l′) + 2l′(k′ + c0)− 2c0l
′

= 3(k2)′ + 4k′q + 2k.

This is exactly (2.15), and thus follows from (2.14).
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3. Central Limit Theorem

As mentioned above, the construction of the measure µϵ is straightforward. Let

Φ : D(R) → C([0,∞),D(R,R))

g 7→ ρ

the map that maps any initial condition g to ρ the unique entropy solution to Burgers equation
with initial condition ρ(·, 0) = g. For ϵ > 0, we define the measure µϵ on C([0,∞),D(R))) as
the push-forward measure of Φ of the stationary Markov process ρϵ with generator

Aϵφ(ρ−) =
1

ϵ
φ′(ρ−) +

∫ ρ−

−∞
(φ(ρ+)− φ(ρ−))nϵ(ρ−, ρ+)dρ+

and stationary marginal density given by ρ 7→ 1
2J

ϵ(ρ)J ϵ(−ρ), where nϵ(y, z) = Jϵ(z)
Jϵ(y)K

ϵ(y−z),

with J ϵ(x) = J(ϵ
1
3x) and Kϵ(x) = ϵ−

1
3K(ϵ

1
3x), where J and K are given above. The fact that

ρ 7→ J ϵ(ρ)J ϵ(−ρ) is a stationary density for this Markov process follows from the spectral
considerations that we mentioned above when considering the integral operator with kernel
n. We give a quick proof of this stationarity for the sake of completeness and that follows for
the equations verified by J and K above, We restrict ourselves to ϵ = 1 by self-similiarity,
and denote the corresponding generator A1 by L. To prove that the marginal with density
ℓ(ρ) = 1

2J(ρ)J(−ρ) with respect to Lebesgue measure is stationary for this Markov process,
it suffices to prove that for any test function φ, we have that

∫
R L(φ)(u)ℓ(u)du = 0. First,

let us give a more friendly expression of the generator L in terms of convolutions using the
formulas above verified by the functionals J and K. For a test function φ

Lφ = φ′ +
(φJ) ⋆ K − φ (J ⋆ K)

J

Using the relation (J ⋆ K)(s) + J ′(s) = s2J(s), we have then

Lφ = φ′ +
(φJ) ⋆ K − φ

(
x2J − J ′)

J

=
φ′J + φJ ′ + (φJ) ⋆ K − x2(φJ)

J

Lφ =
(φJ)′ + (φJ) ⋆ K − x2(φJ)

J

Thus ∫
R
L(φ)(u)ℓ(u)du =

1

2

∫
R
(h′(u) + (h ⋆ K)(u)− u2h(u))J(−u)du

where h = φJ . Now∫
R
(h ⋆ K)(u)J(−u)du =

∫
R

∫
R
h(z)K(u− z)J(−u)dzdu

=

∫
R×R

h(−z)K(z − u)J(u)dudz

=

∫
R
h(−z)(J ⋆ K)(z)dz
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Hence∫
R
L(f)(u)ℓ(u)du =

1

2

∫
R
(h′(−u)J(u) + h(−u)(J ⋆ K)(u)− u2h(−u)J(u))du

=
1

2

∫
R
(h′(−u)J(u) + h(−u)(u2J(u)− J ′(u))− u2h(−u)J(u))du

= −1

2

∫
R
(h(−·)J)′(u)du = 0

confirming that ℓ is indeed a density of a stationary distribution for the Markov process with
generator L. The fact that ℓ is a density (its integral is equal to 1) is a fact from the analysis
of contour integrals on Airy functions that is discussed in detail in Groeneboom’s work.

3.1. Step 3. To prove the tightness of the family of measures (µϵ)ϵ>0, we can use the following
theorem due to Prohorov for the criterion on the tightness of a family of probability measures
defined on the space of Banach-valued continuous functions.

Theorem 3 (Prohorov). For a function X, define its modulus of continuity by ωX(δ) =
sup||t−s||<δ||Xt−Xs|| for any δ > 0. A family Γ of probability measures on a space of Banach-
valued continuous functions is tight if and only if the following conditions holds

(1) For each positive η, there exists an a such that

P
{
x : ||x(0)|| > a

}
≤ η, for all P ∈ Γ

(2) For each positive ϵ and η, there exists a δ ∈ (0, 1) such that

P
{
x : ωx(δ) ≥ ϵ

}
≤ η, for all P ∈ Γ

We can apply this theorem in our context and use the self-similarity to show that there is
no blow-up when ϵ ↓ 0.

3.2. Step 4. To finish our proof, we just need to prove that any limit in law of the process x 7→∫ x
0 ρϵ(y)dy along a certain subsequence has the law of a two-sided linear standard Brownian

motion with variance 1
2 . By self-similarity, this process has the same law as the process

x 7→ ϵ
1
3

∫ x

ϵ
2
3

0
ρ(y, 1)dy

We denote ρ := ρ(·, 1). We will use the fact that the following process

M ϵ(x) := exp

(
g(ρϵ(x))− g(ρϵ(0))−

∫ x

0
e−gAϵeg(ρϵ(y))dy

)
is a martingale for any nice function g. This martingale has the same law as the martingale

(we put δ = ϵ
2
3 )

Nδ(x) = exp

(
g
(√

δρ
(x
δ

))
− g(

√
δρ(0))−

∫ x
δ

0
e−

√
δgLe

√
δg(y)dy

)
, x ∈ R

where L is the generator of the Markov process ρ. Recall that the generator L is given by its
action on test functions φ ∈ C∞

c (R):

Lφ(y) = φ′(y) +

∫ y

−∞
(φ(z)− φ(y))

J(z)

J(y)
K(y − z)dz
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where the Laplace transform j(q) =
∫
R e−qyJ(y)dy of J is given by j(q) = 1

Ai(q) and the

Laplace transform k(q) =
∫∞
0 e−qyK(y)dy of K is given by k(q) = −2 d2

dq2
log Ai(q). We can

rewrite the expression of the martingale Nδ in this following form in order to exhibit the

expression of the process of interest x 7→
√
δ
∫ x

δ
0 ρ(y)dy

Nδ(x) = exp

(
g
(√

δρ
(x
δ

))
− g(

√
δρ(0))−

√
δ

∫ x
δ

0
Lg(ρ(y))dy

−
∫ x

δ

0
(e−

√
δgLe

√
δg −

√
δLg)(ρ(y))dy

)
Let x1 < x2 < · · · < xn be real numbers, by the martingale property, we know that for any
bounded continuous functions f1, · · · , fn−1, we have

E

[
n−1∏
i=1

fi(Nδ(xi))Nδ(xn)

]
= E

[
n−1∏
i=1

fi(Nδ(xi))Nδ(xn−1)

]
We fix a number λ ∈ R. As a first step, we wish to find a function g such that Lg = λId. In
other words, we wish to find L−1(Id) the image of the identity by the inverse of the operator
L. This will allow us to plug-in this function g in the expression of the martingale Nδ and
recover partly the Laplace transform of the process of interest. Put h = Jg and solve the
equation Lg = λId, we obtain the equality

λId =
h′ + h ⋆ K − x2h

J

which translates to λxJ = h′ + h ⋆ K − x2h. Consider now the Laplace transform of h to be
ĥ(q) =

∫
R e−qyh(y)dy, by taking the Laplace transform of the previous equality, one obtains

−λj′(q) = qĥ(q) + ĥ(q)k(q)− ĥ′′(q)

= (q + k(q))ĥ(q)− ĥ′′(q)

As j′′(q) = j(q)(q + k(q)), we get after replacing

λj′(q)j(q) = j′′(q)ĥ(q)− j(q)ĥ′′(q) = (j′ĥ)′ − (jĥ′)′

which is equivalent to (λj
2

2 + jĥ′)′ = (j′ĥ)′, i.e
(
ĥ
j

)′
= −λ

2 , or equivalently that ĥ(q) =

−λ
2 qj(q) = −λ

2 Ĵ
′(q). Taking the inverse Laplace transform, we find the expression of g to be

g = L−1(λId) = −λ

2

J ′

J

As a second step, we explicitly compute the last term of the martingale Nδ

efLe−f − Lf = e−f

(
(ef )′ +

(efJ) ⋆ K − ef (J ⋆ K)

J

)
−
(
f ′ +

(fJ) ⋆ K − f(J ⋆ K)

J

)
=

e−f (efJ) ⋆ K − (J ⋆ K)− (fJ) ⋆ K + f(J ⋆ K)

J

Writing this down pointwise leads to

(efLe−f − Lf)(y) =
∫
R

(
ef(z)−f(y) − 1− (f(z)− f(y))

)
J(z)K(y − z)

J(y)
dz



12 MEHDI OUAKI AND FRAYDOUN REZAKHANLOU

We substitute now f =
√
δg. We have then by Taylor expansion that(

e
√
δgLe−

√
δg −

√
δLg

)
(y) = δ

∫
R
(g(z)− g(y))2n(y, z)dz + r(δ, y)

where supy|r(δ, y)|= o(δ) as δ ↓ 0. This is straightforward from the expression above and the
regularity of the kernel n. Now, we can write

Nδ(x) = exp

(
g
(√

δρ
(x
δ

))
− g
(√

δρ(0)
)
− λ

√
δ

∫ x
δ

0
ρ(y)dy

− λ2

2
δ

∫ x
δ

0

∫
R

(
g(z)− g(ρ(y))

)2
n(ρ(y), z)dzdy + o(δ)

)

Let B∞(x) := limδn↓0
√
δn
∫ x

δn
0 ρ(y)dy be the almost sure limit along a subsequence to our

process, then by the ergodic theorem we get that Nδn(x) converges almost surely to

lim
δn↓0

Nδn(x) = exp

(
−λB∞(x)− λ2

2
x

∫
R

∫
R
(g(z)− g(u))2n(u, z)ℓ(u)dudz

)
where ℓ(u) = 1

2J(u)J(−u). Now, to finish we just need to compute the integral∫
R

∫
R
(g(z)− g(u))2n(u, z)ℓ(u)dudz

For any nice function f , let us compute L(f2)− 2fL(f). We have

L(f2)− 2fL(f) = (f2J)′ + (f2J) ⋆ K − x2(f2J)

J
− 2

f(fJ)′ + f(fJ ⋆ K)− x2fJ

J

=
2ff ′J + f2J ′ + (f2J) ⋆ K − x2f2J − 2ff ′J − 2f2J ′ − 2f(fJ ⋆ K) + 2x2f2J

J

=
−f2J ′ + x2f2J + (f2J ⋆ K)− 2f(fJ ⋆ K)

J

=
f2(J ⋆ K) + (f2J ⋆ K)− 2f(fJ ⋆ K)

J

This identity pointwise translates to

(L(f2)− 2fL(f))(y) =
∫
R

f(y)2J(z)K(y − z) + f(z)2J(z)K(y − z)− 2f(y)f(z)J(z)K(y − z)

J(y)
dz

=

∫
R
(f(y)− f(z))2n(y, z)dz

Hence ∫
R

∫
R
(g(z)− g(u))2n(u, z)ℓ(u)dudz =

∫
R
(L(g2)− 2gL(g))(u)ℓ(u)du

= −2

∫
R
g(u)L(g)(u)ℓ(u)du

=
1

2

∫
R

J ′(u)

J(u)
uJ(u)J(−u)du

=
1

2

∫
R
uJ ′(u)J(−u)du = c
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By doing integration by parts, we have that

c = −1

2

∫
R
J(u)(J(−u)− uJ(−u))du =

1

2

∫
R
J(u)J(−u)du− c

Hence

c =
1

4

∫
R
J(u)J(−u)du =

1

2

E

[
n−1∏
i=1

M(xi))M(xn)

]
= E

[
n−1∏
i=1

fi(M(xi))M(xn−1)

]
where

M(x) := exp

(
−λB∞(x)− λ2

4
x

)
this shows that M is a martingale and that B∞ is a standard Brownian motion with variance
equal to 1

2 .
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