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1 Systems of differential equations

Consider the differential equation

(1.2)
dx

dt
= f(x, t), x ∈ U, t ∈ R,

where U ⊆ Rd is an open set, x : [t1, t2]→ U is a differentiable function and f : U ×R→ Rd

is a continuous function. The main question is this: Given an initial condition x(t0) = a,
does (2.1) possess a unique solution that is defined for all times? Before answering this, let
us examine some examples.

Example 1.1.

(i) Assume d = 1 and consider dx
dt

= x2 subject to the initial condition x(0) = a with
a 6= 0. Then x(t) = (a−1 − t)−1 is a solution. This solution blows up at time 1

a
. Hence

the ODE does not have a globally defined solution.

(ii) Consider dx
dt

=
√
|x| again in dimension 1. Consider the initial condition x(0) = 0.

Pick α1 < 0 < α2 and define x(t) =

{
1
4
(t− α2)2 for t ≥ α2

−1
4
(t− α1)2 for t ≤ α1

, and x(t) = 0 for

t ∈ (α1, α2). This x(·) is a solution. Here for the initial condition x(0) = 0, there are
infinitely many solutions. �

From the above examples we learn that some conditions are needed on the function f
in order to guarantee the existence of a unique globally defined solution for a given initial
condition. What is responsible for the blow-up in Example 1(i) is the fact that the velocity
or the growth rate is quadratic. Less is needed to have a blow-up as the following Exercise
indicates.

Exercise 1.2. Take any continuous function f : R → (0,∞). Consider the equation
dx
dt

= f(x), subject to the initial condition x(0) = a. Show that we have a blow-up if and
only if

∫∞
a

dx
f(x)

<∞.

The non-uniqueness in Example 1.1(ii) stems from the fact that the function f =
√
|x|

has a cusp at 0, i.e., f ′(0±) = ±∞. To avoid both cusp and super linear growth, it suffices
to assume that the function f is Lipschitz. More precisely, we say f is (uniformly) Lipschitz
if there exists a constant L such that for every x, y ∈ U and t ∈ R,

(1.2) |f(x, t)− f(y, t)| ≤ L|x− y|.
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Theorem 1.3. Suppose f is Lipschitz. Then (1.1) has a unique solution for every initial
condition.

Let us first address the question of uniqueness.

Lemma 1.4. Let x and y be two solutions with f satisfying (1.2). Then

(1.3) |x(t)− y(t)| ≤ eL|t−t0||x(t0)− y(t0)|.

Note that (1.3) implies the uniqueness part of Theorem 1.3 by assuming x(t0) = y(t0) = a.

Proof of Lemma 1.4. Set ϕ(t) = |x(t)− y(t)|2. We have

ϕ′(t) = 2(x(t)− y(t)) ·
(
dx
dt

(t)− dy
dt

(t)
)

= 2(x(t)− y(t)) · (f(x(t), t)− f(y(t), t)

≤ 2L|x(t)− y(t)|2 = 2Lϕ(t)

by Schwartz Inequality and (1.2). As a result,

d

dt
(ϕ(t)e−2tL) ≤ 0.

This means that ϕ(t)e−2tL is a non-increasing function of t. Hence for t > t0,

ϕ(t)e−2tL ≤ ϕ(t0)e−2t0L.

This implies (1.3) for t > t0. For t < t0, first observe that we also have ϕ′ ≥ −2Lϕ. So, the
function ϕ(t)e2Lt is now non-decreasing. Hence,

ϕ(t)e2tL ≤ ϕ(t0)e2t0L,

whenever t < t0. This completes the proof. �

Before turning to the question of existence, let us mention that in practice we may only
know an approximation of what appears on the right-hand side of (1.1). The following lemma
asserts that by solving (1.1) with an error both on the right-hand side and the initial data,
we are making a small error on the solution.

Lemma 1.5. Assume
dx

dt
= f(x, t) + E1

dy

dt
= f(y, t) + E2
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with |E1|+ |E2| < ε. Then

(1.4) |x(t)− y(t)| ≤ |x(t0)− y(t0)|eL|t−t0| + ε

L
(eL|t−t0| − 1).

Proof. We may try ϕ(t) = |x(t)− y(t)|2 as in Lemma 1.4 to write

ϕ′(t) = 2(x(t)− y(t)) · (f(x(t), t)− f(y(t), t) + E1 − E2)

≤ 2L|x(t)− y(t)|2 + 2ε|x(t)− y(t)|
= 2Lϕ(t) + 2ε

√
ϕ(t).

This does not work for us as before because
√
ϕ(t) could be much larger than ϕ(t) if ϕ(t) is

small. Instead we set ψ(t) = |x(t)− y(t)| and write

(1.5)
ψ(t) =

∣∣∣x(t0)− y(t0) +
∫ t
t0

[f(x(s), s)− f(y(s), s) + E1 − E2]ds
∣∣∣

≤ ψ(t0) + L
∫ t
t0
ψ(s)ds+ ε(t− t0).

The good news is that
√
ψ does not show up as in the previous attempt. The bad news is

that ψ is no longer a differentiable function because of the absolute value. However if we set

D+ψ(t0) = lim sup
t↓t0

ψ(t)− ψ(t0)

t− t0

then (1.5) implies that for every t0,

(1.6) D+ψ(t0) ≤ Lψ(t0) + ε.

By Grownall’s inequality, (1.6) implies that

(1.7) ψ(t) ≤ eL|t−t0|ψ(t0) +
ε

L
(eL|t−t0| − 1)

which is exactly (1.4). To establish (1.7) first observe

D+(e−Ltψ(t)) ≤ εe−Lt

and this in turn implies

D+
(
e−Ltψ(t) +

ε

L
e−Lt

)
≤ 0.

This and Exercise 1.6 below implies that if t > t0, then

e−Ltψ(t) +
ε

L
e−Lt ≤ e−Lt0ψ(t0) +

ε

L
e−Lt0
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and this is exactly (1.4). �

Exercise 1.6. Let ψ be a continuous function with D+ψ ≤ 0. Show that ψ is non-increasing.
(Hint: First define ψδ(t) = ψ(t) − δt with δ > 0. Show that ψδ is decreasing. Then send δ
to 0.)

We now turn to the question of existence. For simplicity let us assume that f(x, t) = f(x)
is independent of t. Also assume that x(0) = a. To find a solution, let us design an
approximation scheme. For n > 0, define xn(·) by the requirement that xn(0) = a, and

dxn

dt
(t) =

{
f
(
xn
(
j
n

))
if j

n
< t < j+1

n
, j ≥ 0,

f
(
xn
(
j+1
n

))
if j

n
< t < j+1

n
, j < 0.

Clearly such xn is piecewise linear and can be constructed. The existence of a solution is an
immediate consequence of Lemma 1.7.

Lemma 1.7. The sequence {xn} is Cauchy and if xn → x, then x solves (1.1).

Proof. First we establish the equicontinuity of the sequence {xn}. For this it suffices to show
that the sequence

{
xjn = xn

(
j
n

)}
is uniformly bounded for

∣∣ j
n

∣∣ ≤ T . To see this, observe
that if j > 0, then

|xjn − a| = |xjn − xj−1
n |+ |xj−1

n − a| =
∣∣ 1
n
f(xj−1

n )
∣∣+ |xj−1

n − a|
≤ 1

n
|f(a)|+ 1

n
|f(xj−1

n )− f(a)|+ |xj−1
n − a|

≤ 1
n
|f(a)|+

(
L
n

+ 1
)
|xj−1
n − a| ≤ . . .

≤ 1
n
|f(a)|

(
1 +

(
1 + L

n

)
+ · · ·+

(
1 + L

n

)j−1
)

= |f(a)|
L

((
1 + L

n

)j − 1
)
≤ |f(a)|

L
(eLj/n − 1)

≤ |f(a)|
L

(eLT − 1).

The case j < 0 can be treated likewise. By Ascoli’s theorem, we can find a convergent
subsequence of {xn}. We continue to write {xn} for such a subsequence. Note that∣∣dxn

dt
− f(xn(t))

∣∣ = |f(xn(j/n))− f(xn(t))| ≤ L|xn(j/n)− xn(t)|
≤ L

n
|f(xn(j/n))|,

provided that t ∈
(
j
n
, j+1

n

)
, j ≥ 0. Hence

xn(t) = a+

∫ t

0

f(xn(s))ds+O

(
1

n

)
.
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If xn → x, then

x(t) = a+

∫ t

0

f(x(s))ds,

for t > 0. The case t < 0 can be treated likewise. �

Exercise 1.8.

• (i) Carry out the proof for the time-dependent case.

• (ii) Given a square matrix A, define its norm ‖A‖ = maxv |Av|/|v|. Show that ‖A +
B‖ ≤ ‖A‖ + ‖B‖ and ‖AB‖ ≤ ‖A‖ ‖B‖. Moreover, if A is a symmetric matrix, then
‖A‖ is the absolute value of the largest eigenvalue of A.

Assuming that f is continuous and x-Lipschitz, we have showed the existence of a unique
solution. Let us write φtt0(a) for such a solution, to display its dependence on the initial data
a. Since both x(t) = φtt0(a) and y(t) = φtt1(φ

t1
t0(a)) solve (1.1) and satisfy x(t1) = y(t1), we

deduce

(1.8) φtt0(a) = φt1t1 ◦ φ
t1
t0(a),

whenever t0 < t1 < t. This is the group property of the family {φt1t0}.

Remark 1.9. When U = Rd and f is Lipschitz, our existence proof implies that the
solutions exist for all time. This may not be true if U 6= Rd. If (t1, t2) is the largest existence
interval with, say, t2 <∞, then limt→t2 x(t) exists and belongs to ∂U . �

Note that φtt0 = φt−t00 when f is independent of t. In this case, we simply write φt for φt0
Now (1.8) becomes

(1.9) φt ◦ φs = φt+s.

Also note that by Lemma 1.4,

(1.10) |φt(x)− φt(y)| ≤ eLt|x− y|.

This certainly implies the Lipschitzness of φ in the x-variable. We can say more if f is a
differentiable function.

Theorem 1.10. If f is Ck (k-times continuously differentiable), then φ is Ck.

Proof. If we already know that φ is differentiable in x, then the ODE

d

dt
φt(x) = f(φt(x))
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can be differentiated to yield

(1.11)
d

dt
Dφt(x) = Df(φt(x))Dφt(x).

If B(t) = Df(φt(x)) and A(t) = Dφt(x) for a given x, then (1.11) means that A is a
(matrix-valued) solution to the linear ODE

(1.12)

{
dA
dt

= B(t)A

A(0) = I

Note that the function (A, t) 7→ B(t)A satisfies the Lipschitz property (1.2) so long as t
is restricted to a bounded interval. Hence (1.12) must have a unique solution. Hence we
already have a candidate for Dφt(x), namely the solution of (1.12). From this we expect to
have the differentiability of φt with respect to x.

To turn the above heuristic reasoning into a rigorous proof, we go back to Lemma 1.7
and use xn(·). In fact the approximation scheme used in Lemma 1.7 produces a flow that is
denoted by φtn(x). One can readily check that Dφtn(x) exists. Indeed

(1.13)
d

dt
Dφtn(x) =

Df
(
φ

j
n
n (x)

)
Dφ

j
n
n (x) t ∈

(
j
n
, j+1

n

)
, j ≥ 0,

Df
(
φ

j+1
n
n (x)

)
Dφ

j+1
n
n (x) t ∈

(
j
n
, j+1

n

)
, j < 0.

Note that by Lemma 1.7, if
∣∣ j
n

∣∣ ≤ T and |x| ≤ T , then

∣∣∣φ j
n
n (x)

∣∣∣ ≤ ( sup
|x|≤T

|f(x)|

)
(eLT − 1) + T =: BT .

We also set
CT = max{‖Df(x)‖ : |x| ≤ BT}.

This implies that ∣∣∣Dφ j
n
n (x)

∣∣∣ ≤ ∣∣∣Dφ j
n
n (x)−Dφ

j−1
n
n (x)

∣∣∣+
∣∣∣Dφ j−1

n
n (x)

∣∣∣
≤ 1

n
CT

∣∣∣Dφ j−1
n
n (x)

∣∣∣+
∣∣∣Dφ j−1

n
n (x)

∣∣∣
=

(
1 + 1

n
CT
) ∣∣∣Dφ j−1

n
n (x)

∣∣∣
≤ · · · ≤

(
1 + 1

n
CT
)j ≤ e

j
n
CT ≤ eTCT .
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From this and (1.13) we deduce the equicontinuity of Dxφ
n(x, t) in the t-variable. This

allows us to pass to the limit as n → ∞. Let ψ(x, t) be a limit along a subsequence for a
fixed x. Then

(1.14)

{
dψ
dt

(x, t) = Df(φt(x))ψ(x, t)

ψ(x, 0) = I.

But (1.14) has a unique solution. Hence the full sequence {Dxφ
(n)} converges to ψ uniformly

in t for every x. On the other hand φ(n) converges uniformly to φ. Since the derivatives
converge to ψ, we deduce that Dxφ must exist and that Dxφ = ψ. As a result, φ is
differentiable in x.

As our next step we would like to show that indeed ψ = Dxφ is a continuous function.
Recall that we are assuming f ∈ C1. We have

‖ψ(x, t)− ψ(y, t)‖ ≤
∥∥∥∥∫ t

t0

(Df(φs(x))ψ(x, s)−Df(φs(y))ψ(y, s))ds

∥∥∥∥+ ‖ψ(x, t0)− ψ(y, t0)‖.

Set τ(t) = ‖ψ(x, t)− ψ(y, t)‖. Set

C1 = sup
|s|,|x|≤T

‖Df(φs(x))‖, C2 = sup
|s|,|x|≤T

‖ψ(x, s)‖.

Then

τ(t) ≤ τ(t0) + C1

∫ t

t0

τ(s)ds+ C2

∫ t

t0

‖Df(φs(x))−Df(φs(y))‖.

We know that f is Lipschitz with a Lipschitz constant L. Hence

|φs(x)− φs(y)| ≤ eL|s||x− y|.

Since Df is continuous, we learn that for every ε > 0, there exists δ > 0 such that if
|x− y| < δ, then

‖Df(φs(x))−Df(φs(y))‖ ≤ ε

for s in a bounded interval. Hence for |x− y| < δ,

τ(t) ≤ τ(t0) + C1

∫ t

t0

τ(s)ds+ C2ε(t− t0)

for t > t0 and both t and t0 in a bounded interval. Using Grownwall’s inequality,

τ(t) ≤ eC1|t−t0|τ(t0) +
C2ε

C1

(eC1|t−t0| − 1).
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Note τ(0) = 0. Thus

‖ψ(x, t)− ψ(y, t)‖ ≤ C2ε

C1

(eC1|t| − 1)

for |x− y| < δ. This proves the continuity of ψ.
So far we have established the theorem for the case k = 1. For higher k, consider the

system

(1.15)
dx

dt
= f(x),

dξ

dt
= Df(x)ξ.

If f is C2, then (f,Df) is C1. Hence (1.15) has a C1-flow. If its flow is denoted by φ̂t, then
φ̂t(a, I) = (φt(a), Dφt(a)). Since ξ = Dxφ

t, we learn that φt is C2 in x-variable. Using (1.15)
again we can show that φt is C2 in both variables. This proves the theorem for k = 2. The
larger k can be treated by induction. �

The equation (1.14) plays an important role in studying the stability of the equation
dx/dt = f(x). More precisely, if x, y are two solutions to

(1.16)
dx

dt
= f(x)

with y = x+ δv then d
dt

(δv) ≈ Df(x)(δv). Hence the relevant problem to study is now

(1.17)
dv

dt
= Df(x)v

where x = x(t) is a solution to (1.16). This is closely related to (1.15) or (1.14) because
v(t) = Dφt(a)v(0) where a = x(0). If x(·) happens to be a fixed point a, then (1.17) becomes

(1.18)
dv

dt
= Av

with A = Df(a). The equation (1.18) will be studied in Section 2. The study of the
equation (1.16) when x(·) is a periodic orbit, is the subject of Section 3 and is known as
Floquet Theory.

In the case of a discrete dynamical system, we start with a function f : Rd → Rd and set
xn+1 = f(xn), so that xn = fn(a) for an initial choice a. Now if ξn = Dfn(a), then

(1.19) ξn+1 = Df(xn)ξn.

Imagine now that {yn} is another orbit and that yn is close to xn. If yn = xn + δvn, then
yn+1 = f(xn + δvn) ≈ Df(xn)δvn + f(xn). Since yn+1 = xn+1 + δvn+1, we deduce that
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δvn+1 = Df(xn)δvn. Motivated by this, let us study the non-autonomous linear dynamical
system

(1.20) vn+1 = Df(xn)vn.

provided that {xn} is an orbit of the original dynamical system xn+1 = f(xn). If {xn} is
a fixed point, i.e., f(a) = a and xn = a for all n, then (1.20) becomes vn+1 = Avn for
A = Df(a). Hence vn = Anv for an initial choice v. The behavior of vn as n→∞ depends
on the eigenvalues of A and will be treated in Section 2. Again, if {xn} is a periodic orbit,
then the sequence {vn} is analyzed by Floquet Theory and will be discussed in Section 3.

2 Linear Systems

In this section we study linear dynamical systems. In the discrete case we have a d × d
matrix and we are interested in the behavior of the sequence (Anx : n ∈ Z) for a nonzero
vector x ∈ Rd. In the continuous case we study the flow of the ODE

(2.1)
dx

dt
= Ax.

We start with the discrete case. Using a Jordan normal form we can find a basis of Rd

such that the transformation x 7→ Ax has the following matrix representation:

(2.2) A =


A1 0

A2

. . .

0 An


where each block is either of the form

(2.3) Aj =


λ 0 . . . 0 0
1 λ . . . 0 0
...

...
...

0 0 . . . 1 λ


with λ a real eigenvalue of A, or else of the form

α −β 0 0 0
β α 0 0
1 0 α −β
0 1 β α

. . .

1 0 α −β
0 0 1 β α


11



with λ = α + iβ, λ̄ = α − iβ a pair of complex eigenvalues of A. For each eigenvalue λ we
write Eλ for the corresponding invariant subspace. In the case of real λ,

Eλ = {v ∈ Rd : (A− λ)kv = 0 for some k ∈ N}.

Indeed if v ∈ Eλ, then (A− λ)kAv = A(A− λ)kv = 0. We now set

(2.4) E− =
⊕
|λ|<1

Eλ, E0 =
⊕
|λ|=1

Eλ, E+ =
⊕
|λ|>1

Eλ.

Since T (Eλ) ⊆ Eλ, we have that T (E±) ⊆ E±, and T (E0) ⊆ E0.

Theorem 2.1. If x ∈ E−, then limn→∞ T
n(x) = 0 exponentially fast. If x ∈ E+, then

limn→∞ |T n(x)| =∞ exponentially fast.

Proof. By invariance, it suffices to verify the theorem when A is of the form (2.3) or
(2.2). First assume that A is of the form (2.2) and that x ∈ Eλ with |λ| < 1. For such a
transformation,

T

x1
...
xd

 =


λx1

x1 + λx2
...

xd−1 + λxd

 .
To obtain a contraction, we would like to replace the off-diagonal entries with some small
number. To achieve this, let us try a diagonal change of coordinates of the form

ϕ

x1
...
xd

 =

µ1x1
...

µdxd

 .
We have

ϕ−1Tϕ

x1
...
xd

 =


λx1

µ1
µ2
x1 + λx2

...
µd−1

µd
xd−1 + λxd

 .
This suggests choosing µi so that µ1

µ2
, . . . , µd−1

µd
are small. This can be done if µj = δ−j for a

small δ. Set T̂ = ϕ−1Tϕ. It suffices to verify the theorem for

T̂

x1
...
xd

 =


λx1

δx1 + λx2
...

δxd−1 + λxd

 .
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Here λ is real and |λ| < 1. Pick γ ∈ (0, |λ|). Then we can choose δ sufficiently small so that

|T̂ (x)| ≤ γ|x|,

simply because
∑

i(δxj +λxj+1)2 ≤ δ2|x|2 +λ2|x|2 +2λδ|x|2. Hence |T̂ n(x)| ≤ γn|x| for some
0 < γ < 1.

The case |λ| > 1 can be treated likewise. Also for A of the form (2.4), a similar argument
applies. �

Remark 2.1. Our proof indicates that the following is true: Pick γ such that γ < |λ|
for every eigenvalue λ with |λ| < 1. Then there exists a basis {u1, . . . , ur} for E+ such
that if |

∑
i xiui| = (

∑
i x

2
i )

1/2 denotes the standard norm with respect to this basis, then
|Anx| ≤ γn|x| for every n ∈ N and x ∈ E−. A similar comment applies to the space E+.

�

Exercise 2.2. Suppose A is of the form (2.3) with λ = ±1. Show that |Anx| = O(nk−1)
where k is the size of the matrix A. If A is of the form (2.4) with |λ| = 1, then show that
|Anx| = O(nk−1) where now A is of the size 2k × 2k.

We say a linear transformation T is hyperbolic if E0 = {0}. From Theorem 2.2 we learn
that we have a simple picture for the behavior of T n(x). If x = x+ + x− with x+ ∈ E+,
x− ∈ E−, then T n(x) = T n(x+) + T n(x−), with |T n(x+)| → ∞ and |T n(x−)| → 0 as
n→ +∞.

The situation is drastically different if T is not hyperbolic. For example if T

[
x1

x2

]
=[

−x1

−x2

]
, then the only eigenvalue is −1 and every orbit (T n(x) : n ∈ Z) with x 6= 0 is periodic

of period 2. To have another example, assume that T corresponds to a matrix of the formR1 0
. . .

0 Rn
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where each Ri =

[
cos θi − sin θi
sin θi cos θi

]
. In this case all eigenvalues are of norm 1 and if x =

[x1, . . . , xn]t, with xj ∈ R2, then T (x) = [R1x1, . . . , Rnxn]t. Since each Ri is a rotation, the
torus

T(ρ1, . . . , ρn) = {(x1, . . . , xn) : |x1| = ρ1, . . . , |xn| = ρn},
is invariant. If we assume that all ρj’s are nonzero, then T is an n-dimensional torus. The
effect of T on T(ρ1, . . . , ρn) is simply a translation in the following sense: If xj = ρje

iaj then

T (x) =

 ρ1e
i(a1+θ1)

...
ρne

i(an+θn).


So in terms of angles, we simply have

(a1, a2, . . . , an) 7→ (a1 + θ1, . . . , an + θn).

As we will see later, the orbits of this transformation are dense if θ1, . . . , θn, 1 are rationally
independent. That is, if c1θ1 + · · ·+ cnθn + cn+1 = 0 for integers c1, . . . , cn+1, then c1 = · · · =
cn+1 = 0.

We now turn to (2.1). We again use the form (2.2) with Aj as in (2.3) and (2.4). But
this time

(2.5) F+ =
⊕

Reλ>0

Eλ F 0 =
⊕

Reλ=0

Eλ F− =
⊕

Reλ<0

Eλ.

We now say the system (2.1) is hyperbolic if F 0 = {0}.

Theorem 2.3. If x ∈ F+, then limt→+∞ |φt(x)| = +∞ and limt→−∞ |φt(x)| = −∞.

Proof. Let us assume that T is given by a matrix A of the form
R 0 . . . 0 0
δI R . . . 0 0

. . .

0 0 . . . δI R


where R =

[
α −β
β α

]
with α > 0 and I =

[
1 0
0 1

]
. Set

Ã =


R 0 . . . 0 0
0 R . . . 0 0

. . .

0 0 . . . 0 R

 .
14



Let φt and φ̃t be the flow of A and Ã respectively. To compare φt with φ̃t, we calculate

d

dt
|φtφ̃−ta|2 = 2(φtφ̃−ta) · (A− Ã)(φtφ̃−ta).

Since

(A− Ã)

x1
...
xd

 = −δ


0
x1
...

xd−1

 ,
we have

|(A− Ã)(x)| ≤ δ|x|.

As a result,
d

dt
|φtφ̃−ta|2 ≤ 2δ|φtφ̃−ta|2.

Hence
|φtφ̃−ta| ≤ eδt|a|, t > 0,

for every a. This can be rephrased as

|φta| ≤ eδt|φ̃ta|, t > 0.

In the same fashion
|φ̃ta| ≤ eδt|φta|, t > 0.

From this we can readily deduce

|φta| ≤ e(Reλ+δ)t|a|

for t > 0. Now if Reλ < 0,then we have that limt→+∞ |φta| = 0. Since

|φta| ≥ e(Reλ−δ)t|a|,

we deduce that
lim
t→+∞

|φta| = +∞,

whenever Reλ > 0. �
The linear systems of the form we have studied so far can be used to study nonlinear

systems near a fixed point. Theorem 2.1 can be used to study the orbits of the system
xn+1 = f(xn) near a fixed point. A celebrated theorem of Hartman–Grobman asserts that
the nonlinear system and its linearization near a hyperbolic fixed point are equivalent:

15



Theorem 2.4. Assume f is smooth with f(a) = a and A = Df(a) hyperbolic. Then there
exists a homeomorphism h from a neighborhood U of a onto a neighborhood of the origin
such that f = h−1 ◦ T ◦ h in U where T (x) = Ax.

Note that if vn = Anv belongs to h(U) then h−1(Anv) = xn belongs to U and {xn} is an
orbit for the f -system. The reason is simply fn = h−1 ◦ T n ◦ h.

Given the equation dx/dt = f(x) with f(a) = 0 and set A = Df(a). Let us write φt and
ψt for the flow associated with dx/dt = f(x) and dx/dt = Ax respectively. In the continuous
case, the analogue of Theorem 2.4 is this:

Theorem 2.5. Assume f is smooth and f(a) = 0. Assume that A = Df(a) is hyperbolic in
the sense that A has no purely imaginary eigenvalue. Then there exists a homeomorphism h
from a neighborhood of a onto a neighborhood of the origin such that

(2.10) φt = h−1 ◦ ψt ◦ h.

Exercise 2.6. Given a matrix A, use Jordan Normal Form Theorem to find a collec-
tion of numbers l1 < l2 < · · · < lk, positive integers n1, n2, . . . , nk and linear subspaces
G1, G2, . . . , Gk such that dimGj = nj and that if v ∈ (G1⊕G2⊕· · ·⊕Gj)−(G1⊕· · ·⊕Gj−1)
then

lim
n→∞

1

n
log |Anv| = lj.

(The numbers lj are known as Lyapunov exponents.) �

Observe that if

A =

R1 0
. . .

0 Rn
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with

Rj =

[
0 −βj
βj 0

]
,

then

φt

x1
...
xn

 =

ψ
1
t x1
...

ψnt xn

 ,
where x1, . . . , xn ∈ R2 and ψjt z =

[
cos βjt − sin βjt
sin βjt cos βjt

]
z. Again the torus (4.5) is invariant

and the flow on this torus is simply

(a1, a2, . . . , an) 7→ (a1 + β1t, . . . , an + βnt).

In other words, we have a free motion on this torus. It turns out that the flow restricted
to Td is dense if and only if (β1, . . . , βn) are linearly independent over rationals. Consider
T : Td → Td defined by T (a1, . . . , an) = (a1+θ1, . . . , an+θn). We have the following theorem.

Theorem 2.7. Suppose θ1, θ2, . . . , θn, 1 are rationally independent, i.e.,
∑d

j=1 λjθj is not an

integer for any λ = (λ1, . . . , λd) ∈ Zd with λ 6= 0. Then the orbit (T nx : n ∈ Z+) is dense
in Td for every x ∈ Td. Conversely, if an orbit is dense, then (θ1, . . . , θn, 1) are rationally
independent.

Let us use this theorem as an excuse to make a definition. We say a transformation
T : X → X is topologically transitive if (T n(x) : n ∈ Z+) is dense for some x ∈ X.

Theorem 2.8. Assume that X is locally compact, second countable, with no isolated point.
Suppose T : X → X is continuous. Then the following statements are equivalent:

(i) T is topologically transitive.

(ii) For any pair of nonempty open sets U and V , there exists an integer N ≥ 0 such that
T−N(U) ∩ V 6= ∅.

(iii) If U is an open and T−1(U) ⊆ U , then either U = φ or U is dense.

Proof. (i) ⇒ (ii). Take x ∈ X with {T n(x) : n ∈ Z+} is dense. Then there are infinitely
many indices n1, n2 ∈ Z+ such that T n1(x) ∈ U and T n2(x) ∈ V . We may assume n1 ≥ n2

so that T n2(x) ∈ V ∩ T−N(U) for N = n1 − n2.
(ii)⇒ (i). Let {U1, U2, . . . } be a countable open base for X. Find n1 such that T−n1U2∩

U1 6= ∅. Find an open set V2 such that V̄2 ⊆ T−n1U2 ∩U1 and V2 6= ∅. We then pick n2 ∈ Z+

17



such that T−n2U3 ∩ V2 6= ∅ and a nonempty open set V3 such that V̄3 ⊆ T−n2U3 ∩ V2 etc. By
induction, we find a sequence of open sets U1 = V1 ⊇ V̄2 ⊇ V2 ⊇ V̄3 ⊇ . . . with Vj 6= ∅ and
a sequence of positive integers such that V̄j ⊆ Vj−1 ∩ T−nj−1Uj. Without loss of generality,
we may assume V̄1 is compact. Let A =

⋂∞
j=1 V̄j. Evidently A 6= ∅ and if x ∈ A then

T nj(x) ∈ Uj+1 for all j, and x ∈ U1. Hence (T n(x) : n ∈ Z+) is dense.
(ii) ⇒ (iii). Suppose U 6= ∅ is open and invariant. We have T−1(U) ⊆ U which implies

T−N(U) ⊆ U for N ≥ 0. Take a nonempty open set V . For some N ≥ 0 we have ∅ 6=
T−N(U) ∩ V ⊆ U ∩ V . Since U ∩ V 6= ∅ for every nonempty open set V , the set U is dense.

(iii)⇒ (ii). Let U and V be two nonempty open sets and set Û =
⋃
n≥0 T

−n(U). Clearly

Û is open and invariant. Hence Û is dense and Û ∩ V 6= ∅. This implies T−n(U)∩ V 6= ∅ for
some n ≥ 0. �

If T : X → X is a homeomorphism, then we can talk about the full orbit O(x) = (T n(x) :
n ∈ Z). The proof of Theorem 2.8 implies this.

Corollary 2.9. Let X be as in Theorem 2.8 and assume T : X → X is a homeomorphism.
Then the following statements are equivalent:

(i) For some x, O(x) is dense.

(ii) For every nonempty open sets U and V , there exists N ∈ Z such that TN(U)∩ V 6= ∅.

(iii) If U is open and T (U) = U , then either U = ∅ or U is dense.

Remark 2.2. Note that if T is invertible and instead of (i) we have
(i′) there exists x ∈ X such that O−(x) = {T−n(x) : n ∈ N} is dense,
then as in Theorem 2.8 we can show that (i′)⇒ (ii). (We simply assume n2 ≥ n1.) Since

(ii) ⇒ (i), we deduce that (i′) ⇒ (i).

We now show that the denseness of the full orbit is equivalent to the topological transivity.

Lemma 2.10. Let X be as in Theorem 2.8. Suppose T : X → X is a homeomorphism. If
(T n(x) : n ∈ Z) is dense for some x, then T is topologically transitive.

Proof. Suppose that (T n(x) : n ∈ Z) is dense for some x. Let ω(x) and α(x) be the set of
limit points of O+(x) and O−(x) respectively. Note that both ω(x) and α(x) are closed sets.
By assumption α(x) ∪ ω(x) = X. Hence either x ∈ ω(x) or x ∈ α(x). In the former case,
O(x) ⊆ ω(x) and this implies that ω(x) = X. In the latter case X = O(x) ⊆ α(x). By the
previous remark, we deduce that T is topologically transitive. �

We are now ready to prove Theorem 2.7.
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Proof of Theorem 2.7. Suppose θ1, . . . , θn, 1 are not rationally dependent. Since a
translation of a dense set is dense, it suffices to show that the corresponding transformation
T is topologically transitive. Using Corollary 2.9 and Lemma 2.10, it suffices to show that
if U is open with T (U) = U , then either U = ∅ or U is dense. Set f = 11U . We may regard
f : Rd → R as a periodic function (here we lifted f to a transformation on Rd.) Since
T (U) = U , we have f ◦ T = f . Write the Fourier expansion of f :

f(x) =
∑

n1,...,nd∈Zd

a(n1, . . . , nd) exp(2πi(n1x1 + · · ·+ ndxd)).

From f = f ◦ T we learn∑
n

a(n) exp(2πix · n) =
∑
n

a(n) exp(2πix · n) exp(2πiθ · n).

By uniqueness of the Fourier coefficients,

a(n) = a(n)e2πiθ·n

for every n ∈ Zd. Since θ · n is never an integer for n 6= 0, e2πiθ·n is never 1 for n 6= 0. As a
result a(n) = 0 whenever n 6= 0. Thus f is a constant almost everywhere. Since U is open,
we deduce that either U = ∅ or U is dense.

Conversely, assume n̄ · θ is an integer for some n̄ 6= 0. Define f(x) = sin(2πn̄ · x). This
induces a transformation on Td because n̄ ∈ Zd. Moreover, f ◦ T = f because n̄ · θ = 0.
Since n̄ 6= 0, f is not a constant function. As a result, the sets

U = {x ∈ Td : f(x) > 0}, V = {x ∈ Td : f(x) < 0}

are two nonempty invariant open sets. From Corollary 2.11 (T n(x) : n ∈ Z) is not dense for
every x ∈ Td. �

Example 2.11. (Free motion on a torus). The ODE dx
dt

= v, v ∈ Rd, has a simple flow:

φt(x) = x+ tv. This induces a flow on the torus Td by φ̂t(x) = x+ tv(mod 1).

Exercise 2.12. Show that if v = (v1, . . . , vd) and v1, . . . , vd are not rationally dependent,
then (φ̂t(x) : t ∈ R+) is dense for every x ∈ Td. Conversely, if v1, . . . , vd are rationally
dependent, then (φ̂t(x) : t ∈ R) is never dense when d ≥ 2.

Exercise 2.13. Define T : T2 → T2 by T (x, y) = (x + α, x + y)(mod 1). Show that T is
topologically transitive iff α is irrational.

Exercise 2.14. Show that the decimal expansion of 2n may start with any finite combination
of digits. (Hint: use T : T1 → T1 defined by T (x) = x+ α(mod 1) with α = log10 2.)
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Example 2.15. A function f : [0, 1]→ R with f(0) = 0, f ′(x) > 1 for all x ∈ [0, 1], induces
an expanding map T : T1 → T1 by T (x) = f(x)(mod 1). Such a function T is an example
of a chaotic dynamical system and its orbit structure is significantly more complex than
translations. As an example, take f(x) = mx with m > 1 an integer. If we identify T1 with
the set of complex numbers z such that |z| = 1, then T corresponds to the transformation
z 7→ zm.

Theorem 2.16. T is topologically transitive and periodic points of T are dense in T1.

Proof. Since T n(z) = zm
n
, the condition T n(z) = z means zm

n−1 = 1. As a result, there
are exactly mn − 1 points of period at most n. There are roots of unity and are uniformly
spread over T1. Hence we have a dense set of periodic orbits.

If we represent x = a1m
−1 + a2m

−2 + · · · + akm
−k + . . . , a1, a2, · · · ∈ {0, 1, . . . ,m − 1},

then T (x) = a1 +a2m
−1 + . . . (mod 1) = a2m

−1 + . . . . Now let A =
[
i
mk ,

i+1
mk

)
, B =

[
j
mk ,

j+1
mk

)
for some i, j ∈ {0, 1, . . . ,mk − 1}. In base m representation

A = {x : x = ·a1a2 . . . ak ∗ ∗ ∗ . . . }, B = {x : x = ·b1b2 . . . bk ∗ ∗ ∗ . . . }

for some a1a2 . . . akb1 . . . bk ∈ {0, 1, . . . ,m− 1}. Since

T−n(A) = {x : x = ·
n︷ ︸︸ ︷

∗ ∗ · · · ∗ a1a2 . . . ak ∗ ∗ . . . }.

Now it is clear that if n ≥ k then

T−n(A) ∩B = {x : x = ·b1 . . . bk ∗ ∗ · · · ∗︸ ︷︷ ︸
n

a1 . . . ak ∗ ∗ . . . } 6= ∅.

From this and Theorem 4.8, we can readily deduce that T is topologically transitive. �

Theorem 2.16 implies that some orbits are periodic and there exists a dense orbit. Do we
have any other type of an orbit? We now claim that, for example, when m = 3, then there
exists a point x for which ω(x) is the Cantor set. To see this, set

K = {a13−1 + a23−1 + · · · : aj = 0 or 2 for all j},

and define h : K → [0, 1] by h(a13−1 + a23−1 + . . . ) = a1
2

2−1 + a2
2

2−2 + . . . .
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In fact h is continuous and strictly increasing except for points of finite expansion. Let us
write Tm for z 7→ zm. We can now see that in fact h ◦ T3 = T2 ◦ h in K. Since T2 is
topologically transitive, there exists x with {T n2 (x) : n ∈ N} dense. Each T n2 (x) cannot
be a dyadic rational because dyadic rationals have finite orbits. Set y = h−1(x). Then
{T n3 y : n ∈ N} is dense in K.

In fact what we have shown for Tm is stronger than topological transitivity. Namely, Tm
is topologically mixing in the following sense:

If U and V are two nonempty open sets, then there exists N = N(U, V ) such that
T−n(U) ∩ V 6= ∅ for n > N .

3 Floquet Theory

In this section we study the orbits of a linear system with periodic coefficients. This is the
subject of the Floquet Theory.

In the discrete case, we are interested in the behavior of the sequence (xn : n ∈ N) with
xn+1 = Anxn for a given collection of invertible matrices An satisfying

(3.1), An+N = An

for every n. In other words we have a non-autonomous system with periodic coefficients. If
the period N = 1 then An is independent of n and we studied the corresponding problem in
Section 2. In the continuous setting, we are interested in the flow of the dynamical system

(3.2)
dx

dt
= A(t)x

with A satisfying

(3.3) A(t+ T ) = A(t)

for all t.
Recall that if xn = fn(a), then its variation satisfies vn+1 = Df(xn)vn. If xn is a periodic

orbit of period N then we have (3.1) for An = Df(xn). Similarly if we start with a nonlinear
problem of the form dx

dt
= f(x) and look at its variation dv

dt
= Df(x(t))v then A(t) = Df(x(t))

satisfies (3.3) whenever x(·) is periodic of period T .
We start with the discrete problem

(3.4) vn+1 = Anvn, An+T = An.

Set

(3.5) Rn = AnAn−1 . . . A1.
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We certainly have

(3.6) vn = Rnv0, Rn+N = RnRN .

We start with a simple fact.

Proposition 3.1. Assume that all the eigenvalues of RN belong to the set {z : |z| < 1}.
Then limn→∞ vn = 0 exponentially fast. In fact limn→∞Rn = 0 exponentially fast.

Proof. If n = Nk + r with r ∈ {0, 1, . . . , N − 1}, then

Rn = Ar . . . A2A1R
k
N

if r > 0 and Rn = Rk
N otherwise. Hence

‖Rn‖ ≤ ‖Ar . . . A1‖ ‖Rk
N‖.

Set c0 = max{1, ‖A1‖, . . . , ‖AN−1 . . . A1‖}. If all the eigenvalues of RN belong to {z : |z| <
1}, then Rk

N → 0 as k → +∞ exponentially fast. This completes the proof. �

In this context, we would like to have a result similar to Theorem 2.1. It turns out that
Exercise 2.6 has a generalization.

Theorem 3.2. There exists a collection of numbers l1 < l2 < · · · < lk, positive integers
n1, n2 . . . nk and linear subspaces G1, . . . , Gk, such that n1 + · · · + nk = d, and if v ∈ (G1 ⊕
· · · ⊕Gj)− (G1 ⊕ · · · ⊕Gj−1), then

lim
n→∞

1

n
log |Rnv| = lj.

Proof. If n = kN + r with r ∈ {0, 1, . . . , N − 1}, then Rn = RrR
k
N . Hence

|Rnv| ≤ c0|Rk
Nv|

where c0 = max{1, ‖R1‖, . . . , ‖RN−1‖}. Similarly

|Rk+1
N v| = |AN . . . Ar+1Rnv| ≤ ‖AN . . . Ar+1‖|Rnv| ≤ c1|Rnv|,

where c1 = max{1, ‖AN‖, ‖ANAN−1‖, . . . , ‖ANAN−1 . . . A1‖}. As a result,

lim
n→∞

1

n
log |Rnv| =

1

N
lim
k→∞

1

k
log |Rk

Nv|.
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We now apply Exercise 2.6 to RN . �

Remark 3.3. In fact l1 < · · · < lk are the numbers
{

1
N

log |λ1|, . . . , 1
N

log |λn|
}

written in
increasing order, where λ1 . . . λk are the eigenvalues of RN .

More can be said about the orbit of (3.4). For this let us discuss a useful linear algebra
lemma.

Lemma 3.4. Let R be an invertible matrix. Then there exists a matrix C such that expC =
R.

Proof. In some sense C = “ logR” and in fact we can define f(R) for any analytic f . More
precisely let us take an analytic function f : Ω → C, where Ω is a domain in C. Assume
Spect(R) ⊆ Ω where

Spect(R) = {z : zI −R is not invertible}.
We then use Cauchy’s formula to define f(R). For this let γ be any closed curve γ in Ω that
winds once around Spect(R). Define

(3.7) f(R) =
1

2πi

∫
γ

(zI −R)−1f(z)dz.

It is straightforward to find a simple expression for f(R). Note that if R̂ = P−1RP then
f(R̂) = P−1f(R)P because (zI − P−1RP )−1 = P−1(zI − R)−1P . Hence for (3.7) we may
assume that R is in a Jordan Normal Form. As a result, it suffices to calculate f(R) when
R is of the form 

λ 0

1
. . .
. . .

0 1 λ

 =: B + λI.

Here λ is an eigenvalue (possibly complex) and the matrix B satisfies Bd = 0 where R is a
d× d matrix. In this case

(zI −R)−1 = ((z − λ)I −B)−1 =
1

(z − λ)

(
I − 1

z − λ
B

)−1

=
1

z − λ
I +

1

(2− λ)2
B + · · ·+ 1

(z − λ)d
Bd−1.

Therefore

(3.8)

f(R) =
1

2πi

∫
γ

(
f(z)

z − λ
I + · · ·+ f(z)

(z − λ)d
Bd−1

)
dz

= f(λ)I + f ′(λ)B + · · ·+ 1

(d− 1)!
f (d−1)(λ)Bd−1.
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This formula yields a candidate for f(R) for every analytic function f . If f is simply a
polynomial, then we already know how to calculate f(R) and we now would like to show
that this calculation is consistent with (3.8). We only need to verify this when f(z) = zn.
The verification in this case is left to the reader. Also if f is given by

∑∞
0 anz

n over a region
containing γ, then (3.8) is verified by approximating f by polynomials.

We are now ready to define logR for an invertible matrix R. Since R is invertible,
0 /∈ Spect(R). Pick a half-line L such that L∩Spect(R) = ∅. Set Ω = C−L. Take a branch
of log z defined in Ω. Use this branch for f in (3.7) to define C = logR. More precisely,

(3.9) logR = (log λ)I +
1

λ
B − 1

λ2
B2 + · · ·+ (−1)d−1

λd−1
Bd−1.

This is simply obtained by using the expansion of log and using the fact Bd = 0:

log(λI +B) = log λ+ log

(
I +

1

λ
B

)
= log λ+

∞∑
j=1

(
1

λ
B

)j
(−1)j−1.

By direct calculation one can show that indeed eC = R. �

Even when R is a real matrix in Lemma 3.4, there might not exist a real C such that
eC = R. For a real logR we need additional conditions.

Lemma 3.5. Let R be a real invertible matrix. There exists a real matrix C with eC = R if
R has no negative real eigenvalue. Moreover we can always find a real Z such that eZ = R2.

Proof. We would like to use (3.7):

C =
1

2πi

∫
γ

(zI −R)−1 log zdz.

Since R has no negative eigenvalue, we may choose the standard branch of log. That is
Ω = C−{x : x ≤ 0} and log(ρeiθ) = log ρ+ iθ for θ ∈ (−π, π). Note that log z = log ρ− iθ =
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log z̄. As a result

C̄ =
−1

2πi

∫
γ

(z̄I −R)−1 log z̄dz̄.

Recall γ winds around Spect(R) once. Since R is real, Spect(R) = Spect(R). Hence the
curve γ̄ winds once clockwise around Spect(R). As a result

C̄ =
1

2πi

∫
−γ̄

(zI −R)−1 log zdz = C.

For the existence of Z, without loss of generality we assume that R =

A1 0
. . .

0 Ak

 is

its Jordan Normal Form. We find Z =

Z1 0
. . .

0 Zk

 such that eZj = A2
j . If Aj corresponds

to a pair of complex conjugate eigenvalues α ± iβ with β 6= 0, then we can find Cj such

that eCj = Aj with Cj real. We then set Zj = 2Cj in this case. If Aj =


λ 0

1
. . .
. . .

0 1 λ


corresponds to a real eigenvalue, then A2

j has no negative eigenvalue, so we can find Zj such
that eZj = A2

j . �

We are now ready for the Floquet representation.

Theorem 3.6. Let Rn = An . . . A1 with An+N = An. Assume that RN is invertible. Then
there exist (possibly complex) matrices Pn and Z such that Pn+N = Pn and

(3.10) Rn = PnZ
n.

Also there exist real matrices P̂n and Ẑ such that P̂n+2N = P̂n and

(3.11) Rn = P̂nẐ
n.

Proof. For (3.10) we simply choose Z = 1
N

logRN and set

Pn = RnZ
−n.
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We then have

Pn+N = Rn+NZ
−n−N = RnRNZ

−NZ−n = RnZ
−n = Pn.

For (3.11), observe that the matrix RN may not have real log but R2
N always has a real

log. So choose Ẑ = 1
2N

logR2
N = 1

2N
logR2N . We certainly have Ẑ2N = R2N . We then set

P̂n = RnẐ
−n so that (3.11) holds and

P̂n+2N = Rn+2N Ẑ
−2N Ẑ−n = RnR2N Ẑ

−2N Ẑ−n = P̂n.

�

The statement (3.10) is often phrased as the existence of a periodic change of coordinates
x = Pny that transforms the system vn = Rnv0 to the system wn = Znv0. Note that the
latter is linear with constant coefficients.

We now turn to the continuous problem (3.2)–(3.3). First observe that if we solve the
matrix equation

(3.12)

{
d
dt
R(t) = A(t)R(t)

R(0) = I

with R(t) a d× d matrix for each t, then v(t) = R(t)v0 solves

dv(t)

dt
= A(t)v(t), v(0) = v0.

We now argue that if (3.3) holds, then

(3.13) R(t+ T ) = R(t)R(T ).

This follows from the uniqueness; both R1(t) = R(t+ T ) and R2(t) = R(t)R(T ) solve{
dX
dt

= AX

X(0) = R(T ).

Throughout we assume that A(·) is continuous so that R(·) is also continuous.

Proposition 3.7. If all the eigenvalues of R(T ) belongs to {z : |z| < 1}, then limt→+∞R(t) =
0 exponentially fast.

The proof of Proposition 3.7 is very similar to the proof of Proposition 3.1 and is omitted.
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Before stating and proving the analogue of Theorem 3.2, let us observe that R(t) is always
invertible. In fact we have a candidate for B = R−1:

d

dt
B(t) = −R(t)−1 d

dt
R(t)R(t)−1

= −R(t)−1A(t)R(t)R(t)−1

= −B(t)A(t).

Hence if B solves {
d
dt
B(t) = −B(t)A(t)

B(0) = I,

then
d

dt
BR = −BAR +BAR = 0.

Hence BR = I, i.e., R is invertible. Obviously R(t) = φt0 and R(t)−1 = φ0
t .

Theorem 3.8. There exists a collection of numbers l1 < · · · < lk, positive integers n1, . . . , nk
and linear subspaces H1, . . . , Hk, such that n1 + · · · + nk = d, and if v ∈ H1 ⊕ · · · ⊕ Hj −
H1 ⊕ · · · ⊕Hj−1, then

lim
t→+∞

1

t
log |R(t)v| = lj.

Proof. If t = kT + r with r ∈ [0, T ), then

(3.14) |R(t)v| = |R(r)R(T )kv| ≤ ‖R(r)‖|R(T )kv| ≤ c0|R(T )kv|

where δ = maxr∈[0,T ] ‖R(r)‖. On the other hand, since

R(t) = R(r)R(T )k,

R(T )k = R(r)−1R(t).

Hence
|R(T )kr| ≤ c1|R(t)r|

where c1 = maxr∈[0,T ] ‖R(r)−1‖. From this and (3.14) we deduce that

lim
t→∞

1

t
log |R(t)r| = 1

T
lim
k→∞

1

R
|R(T )kr|.

We now apply Exercise 2.6 to the matrix R(T ). �
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Remark 3.9. If λ1, . . . , λn are the eigenvalues of R(T ), then the set {l1, . . . , lk} coincides
with the set

{
1
T

log |λ1|, . . . , 1
T

log |λn|
}

. �

Theorem 3.10. There exists matrices P (t) and C such that R(t) = P (t)etC and P (t+T ) =
P (t). Moreover there exist real matrices P̂ (t) and Ĉ such that P̂ (t + 2T ) = P̂ (t) and

R(t) = P̂ (t)etĈ.

Proof. Since R(T ) is invertible, there exists a matrix C such that R(T ) = eTC . Set
P (t) = R(t)e−TC . We have

P (t+ T ) = R(t+ T )e−TCe−tC = R(t)R(T )e−TCe−tC

= P (t).

Since R(2T ) = R(T )2, we can find a real matrix Ĉ such that R(2T ) = exp(2TĈ). Set

P̂ (t) = R(t)e−tĈ . Then

P̂ (t+ 2T ) = R(t+ 2T )e−2TĈe−tĈ

= R(t)R(T )2e−2TĈe−tĈ

= P̂ (t).

�

The eigenvalues of R(T ) are the Floquet multipliers. In practice it is hard to calculate
them. The following lemma is useful in some cases.

Lemma 3.11. We have a solution x(t) = p(t)λt with p(t+ T ) = p(t) if and only if λT is an
eigenvalue of R(T ).

Proof. Suppose x(t) = p(t)λt is a solution with p a T -periodic function. Recall x(t) =
P (t)etCx0 with P (·) periodic. We have

P (t+ T )e(t+T )Cx0 = λTP (t)etCx0,

P (t)etC(eTC − λT I)x0 = 0.

This implies that eTC − λT I is not invertible. (Recall that R(t) = P (t)etC is invertible.)
Hence λT is an eigenvalue of R(T ) = eTC .

Conversely if λT is an eigenvalue of eTC , then we may choose µ such that µ is an eigenvalue
of C and Cx0 = µx0, λT = eTµ. We then set p(t) = P (t)x0 so that p(t + T ) = p(t) and if
x(t) = p(t)etµ then

P (t)etCx0 = P (t)etµx0 = p(t)etµ = x(t).

So x(t) is a solution. �
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Lemma 3.12. If z(t) = detR(t), then z(t) = e
∫ t
0 tr(A(s))ds.

Proof. It is well known that as δ → 0,

(3.15) det(I + δA) = 1 + δ tr(A) +O(δ2).

Because of this,
d

dt
det(R(t)) = trA(t) detR(t),

or ż(t) = tr(A(t))z(t) with z(0) = 1. This implies the lemma. �

Exercise 3.11. Verify (3.15).
As a consequence of Lemma 3.10, if λ1, . . . , λn are the eigenvalue of R(T ) then

(3.16) λ1 . . . λn = exp

(∫ T

0

tr(A(s))ds

)
.

Exercise 3.12. Consider (3.2) with

A(t) =

[
−1 + 3

2
cos2 t 1− 3

2
cos t sin t

−1− 3
2

sin t cos t −1 + 3
2

sin2 t

]
.

Show that v(t) = (− cos t, sin t)et/2 is a solution to (3.2). Find the Floquet multipliers. (Hint:
Use Lemma 3.9 and (3.16).)

Exercise 3.13. Consider the ODE ẋ = f(x) with

f(x1, x2) = (x1 − x2 − x1(x2
1 + x2

2), x1 + x2 − x2(x2
1 + x2

2)).

Show that x̄(t) = (sin t,− cos t) is a solution. Find the Floquet multipliers for the variation
equation

dv

dt
= Df(x̄(t))v.

4 Planar Dynamical Systems

In Section 2 we learned that if f : Rd → Rd is a Lipschitz cotinuous function, then the ODE

(6.1)
dx

dt
= f(x)

produces a Lipschitz flow φt satisfying φt+s = φt ◦ φs.
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As it turns out, in the very low dimensional cases, the orbit structure of (6.1) cannot be
too complex.

Exercise 4.1. Let f : R → R, f(a) = f(b) = 0, a < b and f > 0 on (a, b). Show that for
every x ∈ (a, b),

ω(x) = {b}, α(x) = {a}.
�

In this section we study the orbits of (4.1) when d = 2. A lot can be said in this case
because of Jordan Curve Theorem, a closed simple curve in the plane divides the plane into
two connected components.

Theorem 4.2 (Poincaré–Bendixon). Assume ω(x) 6= ∅ and is bounded with no fixed point.
Then ω(x) is a closed orbit.

We can generalize this further.

Theorem 4.3. Suppose that {φt(x) : t ≥ 0} is a subset of a closed bounded set K with K
having only finitely many fixed points. Then either ω(x) is a fixed point, or ω(x) is a closed
orbit, or ω(x) contains a finite number of fixed points and a set of orbits γ1, . . . , γl with ω(γj)
and α(γj) a fixed point.

Set O+(x) = {φt(x) : t ≥ 0}, O−(x) = {φt(x) : t ≤ 0}.

Lemma 4.4. Suppose O+(x) ∩ ω(x) 6= ∅. Then either x is a fixed point or a closed orbit.

To prepare for the proof of Lemma 4.4, let us make some observations. Suppose we have
an ODE in Rd as in (4.1) and let γ : U → Rd be a parametrization of a surface of codimension
one in Rd. We assume that γ(0) = x0 and that f(x0) = is not tangent to Γ = γ(U). Define

F : U × R→ Rd, U ⊆ Rd−1

by F (y, t) = φt(γ(y))
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We have

DF (y, t) = [Dφt(γ(y))Dγ(y), f(φt(γ(y)))],

DF (0, 0) = [Dγ(0), f(x0)]

because φ0(x) = x and Dφ0(x) = Identity. Since f(x0) is not tangent to Γ, we have that
DF (0, 0) is invertible. Hence in a neighborhood of (0, 0), say U0× (−δ, δ) we have that F is
an invertible differentiable map with a differentiable inverse.

We now consider a planar dynamical system with Γ a curve transverse to f , i.e., f(x) is
not tangent to Γ at every x ∈ Γ. Let γ be a parametrization of Γ with I an interval. We
also assume that we have a flow box (chart) about Γ.

Lemma 4.5. Assume that γ : I → R2 with γ(I) = Γ transverse to f as above. Let {yn} be
a distinct collection of points in Γ with φtn(y0) = yn, and 0 < t1 < t2 < . . . . Then {yn} is a
monotone sequence on Γ, i.e., yn = γ(sn) with {sn} a monotone sequence in I.

Proof. It suffices to show that y1 is between y0 and y2. Let β be a simple curve made up of
{φt(y0) : 0 ≤ t ≤ t1} and the segment L of Γ between y0 and y1. By Jordan Curve Theorem,
β divides R2 into a bounded region Ω1 and unbounded region Ω2.

Now either φt(y1) enters Ω1, i.e., φt(y1) ∈ Ω1 for t > 0 and small or φt(y1) enters Ω2.
Let us assume the former. Set E1 = {y ∈ L : φt(y) enters Ω1, for t > 0} and E2 = L− E1.
Since we have a flow chart about Γ, it is not hard to see that both E1 and E2 are open in L.
Since L is connected and by assumption E1 6= ∅, we deduce that φt(y) enters Ω1 for every
y ∈ L. From this we deduce that in fact {φt(y1) : t > 0} ⊆ Ω1 because φt(y1) cannot exit Ω1

through L, and cannot exit through β − L by the uniqueness of our ODE.
The complement of L in Γ consists of two connected arcs Γ0 and Γ1 with y0 an endpoint

of Γ0 and y1 an endpoint of Γ1. If we can show that in fact Γ0 ⊆ Ω2, Γ1 ⊆ Ω1, we are
done because y2 = φt(y0) = φt−t1(y1) ∈ Γ1 which means that y1 is between y0 and y2. It
is not hard to see Γ1 ⊆ Ω1 because near Γ we have a flow box and in the box Γ1 and
{φt(y1) : t > 0, t small} belong to the same connected component.

�

31



Proof of Lemma 4.4. Assume that O+(x) ∩ ω(x) 6= ∅. Let a ∈ O+(x) ∩ ω(x) and if a
is a fixed point, then we are done. If a is not a fixed point, erect a transverse L through a.
Since a ∈ ω(x) = ω(a), there exist tn → +∞ with φtn(a) = an ∈ L and an → a. If an = am
for some n 6= m, then a is a periodic point which implies that x is a periodic point and we
are done. If an’s are distinct, then by Lemma 6.5 {an} is a monotone sequence. But this is
impossible because limn→∞ an = a0. �

Recall that an invariant set A is called minimal if it has no proper invariant subset. As
a corollary to Lemma 4.4 we have this:

Corollary 4.6. If A is minimal and compact, then A is either a fixed point or a periodic
orbit.

Proof. Let A be a minimal set and let a ∈ A. By invariance O+(a) ⊆ A. By compactness
ω(a) ⊆ A. Since ω(a) is invariant, ω(a) = A. Since a ∈ ω(a) ∩O+(a), we use Lemma 4.4 to
deduce that a is a fixed point or a periodic point. �

Note that if A is compact and invariant, then we can use Zorn’s lemma to deduce that
A has a nonempty compact subset that is minimal. (Here we are using the fact that the
intersection of a finite number of invariant sets is again invariant.)

Let us state an exercise regarding the connectedness of ω(x):

Exercise 4.7.

(i) Show that ω(x) =
⋂
τ>0 {φt(x) : t ≥ τ}.

(ii) Use (i) to show that if O+(x) is bounded then ω(x) is connected.

(iii) Give an example of a disconnected ω-set in R2. �

Proof of Theorem 4.2. Assume that ω(x) is bounded with no fixed point. Let γ0 be
a minimal subset of ω(x). Then γ0 must be a periodic orbit by Corollary 4.6. Let a ∈ γ0
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and erect a transverse L through a. Since a ∈ ω(x), we can find tn → +∞ such that
φtn(x) = xn ∈ L and xn → a. By Lemma 6.5, the sequence xn is monotone. (Note that if
xn = xm for some tn 6= tm, then x is a periodic point and a = xn for all n. In this case we
are done already.) If γ1 is another minimal set and if γ1 intersects L as well at a point b,
then xn → b and a monotone xn cannot converge to two distinct points a 6= b. Hence there
exists a neighborhood Ba of a so that Ba ∩ω(x) = Ba ∩ γ0. This is true for every a ∈ γ0. By
compactness of γ0, we can find a neighborhood B of γ such that B ∩ ω(x) = B ∩ γ0. Since
ω(x) is connected, we must have ω(x) = γ0. �

Proof of Theorem 4.3. Assume that ω(x) is neither a fixed point nor a periodic orbit.
In fact the proof of Theorem 4.2 reveals that if ω(x) contains a periodic orbit, then it must
be equal to it. Hence ω(x) does not contain any periodic orbit. Since ω(x) is connected, it
cannot consist of fixed points only. Let y ∈ ω(x) is not a fixed point. Evidently ω(y) ⊆ ω(x),
α(y) ⊆ ω(x). To complete the proof, it suffices to show that ω(y) consists of a single fixed
point and the same is true for α(y). We only verify the former. Indeed if z ∈ ω(y) and
z is not a fixed point, then we can erect a transverse L at z. We can repeat the proof of
Theorem 4.2 to deduce that ω(x) ∩ L = ω(y) ∩ L = {z} because a transverse can only have
one point of ω(x). Also O+(y) must intersect L at some point, say at y0. But O+(y) ⊆ ω(x).
So y0 = z. As a result, O+(y) ∩ ω(y) 3 z and by Lemma 4.4, y must be a periodic point.
This contradicts our assumption that ω(x) is not a periodic orbit. Hence ω(y) is a fixed
point, completing the proof. �
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Example 4.8. Consider the system{
ẋ1 = −x2 + x1(1− r2),

ẋ2 = x1 + x2(1− r2).

In polar coordinates (r, θ), we have

θ̇ = 1, ṙ = r(1− r2).

Now if a 6= 0 does not lie on the circle r = 1 then ω(a) is a single periodic orbit, namely the
circle r = 1.

Exercise 4.9. Consider a system that in polar coordinates is given by{
ṙ = r(1− r)
θ̇ = sin2 θ + |1− r|α.

Assume that 0 < |a| < 1. Find ω(a). �

Consider the linear equation

(4.2)
dx

dt
= Ax
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with A a 2× 2 matrix. If A =

[
α −β
β α

]
, then

x(t) = eαt
[
cos βt − sin βt
sin βt cos βt

]
x(0).

If we write x(t) = ρ(t)

[
cos θ(t)
sin θ(t)

]
, then

lim
t→∞

1

t
log ρ(t) = α, lim

t→∞

θ(t)

t
= β

where θ is the lifted angle. Note that α ± iβ are the eigenvalues of A and α measures the
exponential rate of increase in ρ and β measures the linear growth rate of θ.

Exercise 4.10. Show that if A =

[
λ 0
1 λ

]
in (4.1) and x(t) = ρ(t)

[
cos θ
sin θ

]
, then 1

t
log ρ(t)→ λ

and 1
t
θ(t)→ 0 as t→∞. �

What we learn is that in (4.2) we always have

lim
t→∞

1

t
θ(t) = Imλ

where λ is the eigenvalue of A.
We now turn to

(4.3)
dx

dt
= A(t)x

with A a 2× 2 and T -periodic matrix-valued continuous function. Again we write

x = ρ

[
cos θ
sin θ

]
with t 7→ θ(t) lifted, i.e., θ(t) ∈ R and t 7→ θ(t) continuous. We can readily come up with

equations for ρ and θ; if u =

[
cos θ
sin θ

]
, u⊥ =

[
− sin θ
cos θ

]
, then (4.3) means

(4.4) ρ̇u+ ρu̇ = ρA(t)u,

multiplying both sides by u⊥ yields

u⊥ · u̇ = A(t)u · u⊥.
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Since u̇ = θ̇u⊥, we obtain

(4.5) θ̇ = A(t)u · u⊥.

Note that this equation is a first order nonlinear equation in θ and does not depend on ρ.
Multiplying both sides of (4.4) by u yields

(4.6) ρ̇ = ρ(A(t)u · u)

or

(4.7) ρ(t) = e
∫ t
0 A(t′)u(θ(t′))·u(θ(t′))dt′ρ(0).

We are interested in

(4.8) lim
t→∞

1

t
log ρ(t) = lim

t→∞

1

t

∫ t

0

A(s)u(s) · u(s)ds =: ρ̄

(4.9) lim
t→∞

1

t
θ(t) =: θ̄

where for simplicity we wrote u(s) for u(θ(s)) =

[
cos θ(s)
sin θ(s)

]
. In fact we already know what ρ̄

is. Recall that by Floquet Theory,

(4.10) x(t) = P (t)etCx(0)

with P (t) periodic in t, and e2TC = R(2T ) where R(t) is the fundamental solution. If λ1 and
λ2 are the Floquet multipliers, then ρ̄ exists and belongs to the set

{
1
T

log |λ1|, 1
T

log |λ2|
}

.
Let µ1 and µ2 denote the eigenvalues of the real matrix C. Then 1

T
log |λj| = Reµj. When

A(t) ≡ A is independent of t, then µ1, µ2 are simply the eigenvalues of A.

Theorem 4.11. If A is T -periodic, then the rotation number θ̄ exists and equals Imµj or
− Imµj.

Proof. We first verify the Theorem when A(t) ≡ A is independent of t. Then C = A. If C
is in Jordan Normal Form

C =

[
α −β
β α

]
or C =

[
λ 0
1 λ

]
,

then the result follows from Exercise 4.10 and the preceding discussion. In this case θ̄ = Imµ
where µ = α + iβ or λ. If C is not in Jordan Normal Form, we can find a matrix Q such
that C = QĈQ−1 with Ĉ in Jordan Form. So,

etC = QetĈQ−1.
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We already know that if etĈv = ρ(t)

[
cos θ(t)
sin θ(t)

]
, then 1

t
θ(t) → θ̄ as t → +∞. Hence we

only need to make sure that if

Q

[
cos θ(t)
sin θ(t)

]
= ρ̂(t)

[
cos θ̂(t)

sin θ̂(t)

]
,

then we still have 1
t
θ̂(t)→ ±θ̄. For this define f : T1 → T1 by f(z) = Qz

|Qz| where z is a vector
of length 1. Clearly f is a continuous function. Also f is a homeomorphism because Q is
invertible. Indeed f−1(z) = Q−1z

|Q−1z| . As a result, f has a continuous lift F : R→ R. Then

θ̂(t) = F (θ(t)).

Here we regard T1 as the interval [0, 2π] with 0 = 2π an F enjoys the property F (θ+ 2π) =
F (θ) ± 2π. (Note that we either have degF = 1 or degF = −1 by Lemma 5.3.) It is not
hard to see that

lim
θ→±∞

F (θ)

θ
= ± degF = ±1.

Since we know that θ(t)
t
→ θ̄ as t→ +∞, we learn that θ̂(t)

t
→ ±θ̄ as t→ +∞, we learn that

θ̂(t)
t
→ ±θ̄. Of course we get θ̄ if the matrix Q does not reverse the orientation.
We now turn to the general periodic case. We know (4.10) and by the previous argument,

if y(t) = etCx(0) and y(t) = ρ(t)

[
cos θ(t)
sin θ(t)

]
, then limt→+∞

θ(t)
t

= θ̄ exists. We only need to

make sure that the matrices P (t) do not change the angles by much, i.e., if

P (t)

[
cos θ(t)
sin θ(t)

]
= r(t)

[
cos θ̂(t)

sin θ̂(t)

]
,

then we still have limt→∞
θ̂(t)
t

= ±θ̄. Indeed if f(t, ·) : T → T is defined by f(t, x) = P (t)x
|P (t)x| ,

then f(t, ·) has a lift F (t, ·) : R→ R and

θ̂(t) = F (t, θ(t)).

It is not hard to show that F can be chosen to be continuous in t, and T -periodic. By
continuity, degF (t, ·) ≡ 1 for all t, or degF (t, ·) ≡ −1 for all t. In the former case,

sup
t,θ
|F (t, θ)− θ| <∞

because F (t, θ)− θ is T -periodic in t and 2π-periodic in θ. This immediately implies that

lim
t→∞

θ̂(t)

t
= lim

t→∞

θ(t)

t
.
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Similarly if degF ≡ −1, then

lim
t→∞

θ̂(t)

t
= − lim

t→∞

θ(t)

t
.

�
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