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1 Introduction

Various phenomena in physics and biology, such as the formation of crystals and the spread
of infections are modeled by stochastic growth models. Many of such growth models are
macroscopically described by Hamilton-Jacobi partial differential equations. In these models,
a random interface separates regions associated with different phases and the interface can
be locally approximated by the graph of a solution to a HamiltonJacobi equation. Such
a solution gives us a macroscopic description of the interface. Microscopically though, the
interface is rough and fluctuates about the macroscopic solution. A central limit theorem
should provide us with a better description of the interface.

Perhaps the simplest example of a stochastic growth model is the Eden-Richardson model
that was studied in a biological context. In this model each lattice site i ∈ Zd represents
the center of a cubical cell and the set A(t) denotes the union of the infected cells, where
a healthy cube outside A(t) becomes infected with a rate proportional to the number of
adjacent infected cells. Richardson shows that the set A(t) grows linearly int, and as ε goes
to zero,

(1.1) εA(t/ε) ≈
{
x ∈ Rd : N(x) ≤ t

}
,

for a suitable norm N(·) associated with the model. The proof of Richardson’s theorem is
by now rather standard and follows from the celebrated Subadditive Ergodic Theorem. It is
conjectured that the error in the approximation (1.1) is of order O

(
ε2/3
)
. Put it differently

the fluctuation of set A(t) about the set
{
x ∈ Rd : N(x) ≤ t

}
is of order O(t1/3). This

conjecture is expected to be true for a wide class of planar stochastic growth models and is
still wide open for Eden-Richardson model. There are few exactly solvable models for which
not only the conjecture has been established, a lot is known for the O

(
ε2/3
)

correction term
in (1.1). In all these models the growth can only occur in one direction; this feature simplify
the geometry of the interface drastically. We now describe several models that include all
the exactly solvable examples. These examples will be examined thoroughly in subsequent
chapters. In all these examples the boundary of the growing set A is given by a graph of a
function h(x, t).

• As our first set models, we consider a family of growth models known as exclusion
processes with h : Zd × [0,∞)→ Z.

• As our second model, we discuss the celebrated Hammersley-Aldous-Diaconis (HAD)
process, where h : Rd × [0,∞)→ Z. x ∈ Rd, t ∈ [0,∞), and h ∈ Z.

• In the third model, our height function h : Rd × [0,∞) → R satisfies a classical PDE
called Hamilton-Jacobi Equation (HJE) for which the Hamiltonian function is random.
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1.1 Exclusion Processes

One of the simplest and most studied growth model is Simple Exclusion Process (SEP). The
configuration space Γ consists of the height functions h : Z→ Z such that

0 ≤ h(i+ 1)− h(i) ≤ 1,

for all i ∈ Z. With rate λ ∈ [0, 1] (respectively 1 − λ), each h(i) increases (respectively
decreases) by one unit provided that the resulting configuration does not leave the config-
uration space; otherwise the growth is suppressed. More precisely, the process h(i, t) is a
Markov process with the infinitesimal generator

(AF )(k) =
∑
i∈Z

[
(1− λ)11(ki ∈ Γ)(F (ki)− F (k)) + λ11(ki ∈ Γ)(F (ki)− F (k))

]
where F : ZZ → R is any cylindrical function (F (k) depends on finitely many k(i)’s) and
ki, ki are defined by

ki(j) =

{
k(i)− 1 if j = i,

k(j) if j 6= i ,
ki(j) =

{
k(i) + 1 if j = i,

k(j) if j 6= i .

When λ ∈ {0, 1}, we refer to the process h as the Totally Asymmetric Simple Exclusion
Process (TASEP).

Note that if we set v(i) = i+ ∈ Γ, then k ∈ Γ iff k(j)− k(i) ≤ v(j − i). More generally,
we may start from any nonnegative additive function v : Zd → Z, and define the state space

Γ(v) =
{
h : Zd → Z : h(j)− h(i) ≤ v(j − i) for all i, j ∈ Zd

}
.

By a v-exclusion process, we mean a Markov process with a generator of the form

(AF )(k) =
∑
i∈Zd

[
(1− λ)11(ki ∈ Γ(v))(F (ki)− F (k)) + λ11(ki ∈ Γ(v))(F (ki)− F (k))

]
.

As in (1.1), we may define

hε(x, t) = εh
(
[x/ε], t/ε

)
,

for (x, t) ∈ R× [0,∞). We are hoping to establish

(1.2) he(x, t) = u(x, t) + ε2/3Z(x, t) + o
(
ε2/3
)
,

where u is the macroscopic profile that satisfies a suitable Hamilton-Jacobi PDE, and Z is
a suitable stochastic process that should be universal.
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When necessary, we write h(i, t) = h(i, t; k) for the process with the initial configuration
k, i.e., h(i, 0; k) = k(i). Some of the important features of the process h(·, t; k) are as follows:

(i) Any v-exclusion process is monotone in the following sense: If k ≤ k′, then h(·, t; k) ≤
h(·, t; k′) for all t ≥ 0.

(ii) When λ = 1, any v-exclusion process is strongly monotone in the following sense:

(1.3) h
(
·, t; k ∨ k′

)
= h

(
·, t; k

)
∨ h
(
·, t; k′

)
,

Likewise, when λ = 0,

(1.4) h
(
·, t; k ∧ k′

)
= h

(
·, t; k

)
∧ h
(
·, t; k′

)
,

(iii) Assume that v(i) = i+, and d = 1 (the case of SEP), we have an explicit candidate for the
invariant measures. Given ρ ∈ [0, 1], we may consider the random initial height function kρ

that is specified with properties that kρ(0) = 0, and
(
kρ(i+1)−kρ(i) : i ∈ Z

)
are independent

with P
(
kρ(i+1)−kρ(i) = 1

)
= ρ. Then this property persists at later times. In other words,(

h(i+1, t; kρ)−h(i, t; kρ) : i ∈ Z
)

are independent with P
(
h(i+1, t; kρ)−h(i, t; kρ) = 1

)
= ρ.

We note that by Donsker Invariance Principle,

kρ,ε(x) := εkρ
(
[x/ε]

)
= ρx+

√
εBρ(x) + o

(√
ε
)
,

where Bρ(x) is a Brownian motion with variance

EBρ(x)2 = ρ(1− ρ)x.

(iv) When λ = 0, and v̂(i) = −v(−i), then v̂ ∈ Γ(v), and h(i, t; v̂) = v̂(i). That is, the
height function v̂(·) does not change with time. If λ ∈ [0, 1/2), we can construct an invariant
measure that coincides with the delta measure at v̂(·) when λ = 1. This invariant measure is
not translation invariant; in fact it is concentrated on the set of heights h ∈ Γ(v) such that
h ≤ v̂, and for any such h,

(1.5) µλ(h) = z−1

(
1− λ
λ

)∑
i(h(i)+v(−i))

,

where z is the normalizing constant. Note that µ0 = δv̂ if we interpret 00 = 1.

(v) When d = 1, there is a simple description of the dynamics of the height differences

η(i, t) = h(i+ 1, t)− h(i, t).

In particular, when v(i) = i+, we may interpret η(i, t) = 1 as the presence of a particle at
site i. Similarly, the site i is vacant at time t when η(i, t) = 0. Hence η ∈ {0, 1}Z at all
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times. We then have a Markovian particle system such that a particle jumps to the right/left
with rates λ and 1 − λ respectively. Though this jump is suppressed when the outcome is
not in our state space {0, 1}Z. It is also common to regard SEP as a Markov process with
state space {−1, 1}Z. The advantage of this interpretation is that some figures associated
with SEP would like nicer. After all if we linear interpret h : Z → Z with the convention
that when h(i + 1) − h(i) = ±1 the graph of h has a piece of slope ±, then with rate λ
(respectively 1− λ) a ∧ (respectively ∨) corner changes to a ∨ (respectively ∧) corner.

(vi) When λ = 0 and the initial height function is v, then there is a variational formula
for h(·, t; v) which is very useful. We only describe this variational formula in the case of
TASEP. For our purposes it is more convenient to consider the set

A(t) =
{

(i, j) : j ≤ h(i, t; v)
}
,

and examine its growth as t increases. For a /∈ A(0), set

T (a) = inf
{
t : a ∈ A(t)

}
.

Take a collection of independent unit mean exponential random variables{
θi,j : v(i) < j

}
.

Then T (a) is given by

(1.6) sup

{∑̀
i=1

θzi : z1 = (0, 1), z` = a, zi+1 − zi ∈ {(−1, 0), (1, 1)} for i = 1, . . . `− 1

}
.

(vii) Assume that λ = 0. Let us write v(·; j) for a translation of v: v(i) = v(i− j). We also
set w(i, t; j) := h(i, t; v(·; j). Evidently for any k ∈ Γ(v), we have

k(·) = inf
j

{
h(j) + v(·; j)

}
.

When then use the strong monotonicity to write

(1.7) h(i, t; k) = inf
j

{
k(j) + w(i, t; j)

}
.

1.2 Hammersley-Aldous-Diaconis (HAD) Process

HAD process is the analog of TASEP with the randomness now is coming from a Poisson
point process of intensity one in R×(0,∞). The state space Γ consists of functions h : R→ Z
such that for a discrete set {xi : i ∈ I} ⊂ R, we have

h′(x) =
∑
i∈I

δxi .
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In words, h is nondecreasing that increases for one unit at points in a discrete subset of
R. If for example I = Z, and xi−1 < xi for all i ∈ Z, then xi jumps to a point y that
is selected uniformly from the interval (xi−1, xi). Let us write Γ′ for the set of sequences
x = (xi : i ∈ Z), such that

lim
i→±∞

xi = ±∞.

Then we regard HAD as a Markov process that is defined on Γ or Γ′. In the latter case the
generator is given by

(AF )(x) =
∑
i∈Z

∫ xi

xi−1

(
F
(
xi,y
)
)− F (x)

)
dy,

where xi,y is the configuration we get from x by moving the i-th particle xi to y. Similarly
for the process h(·, t) ∈ Γ, we have a generator (with a slight abuse of notation, we use the
same notation)

(AF )(k) =
∑
i∈Z

∫ xi(k)

xi−1(k)

(
F
(
ki,y
)
)− F (k)

)
dy,

where xi(k) is the u-th point of increase of k, and ki,y is the height function we get from k
by increasing k by 1 over the interval (y, xi(k)]. Let us write h(·, t; k) for the height function
at time t that initially is given by k. Similarly, we write x(t; y) for the particle system
associated with A that is given by y initially. We now address several properties of the HAD
process:

(i) HAD process is strongly monotone:

h(x, t; k ∨ k′) = h(·, t; k) ∨ h(·, t; k′).

(ii) Given ρ > 0, write yρ for a Poisson point process of density/intensity ρ. Then for every
t > 0, the particle configuration x

(
t; yρ

)
is again a Poisson point process with intensity ρ.

(iii) Let us write kρ for a height function such that kρ(0) = 0, and its increases occur exactly
at the points of yρ. Given any a ∈ R, the increase points of process t 7→ h(a, t; kρ) form a
Poisson point process of intensity ρ−1. Intuitively, this has to do with the fact that product
of the intensity measure ρ dx and ρ−1 dt is the intensity measure dx dt of the Poisson point
process we started from.

(iv) Note that by the classical Law of Large Number and Donsker Invariance Principle,

εkρ(x/ε) = ρx+
√
εBρ(x) + o(

√
ε), εh(0, t/ε; kρ) = ρ−1x+

√
εB′ρ(t) + o(

√
ε),

where Bρ and B′ρ are Brownian motions with

EBρ(x)2 = ρ|x|, EB′ρ(t)2 = ρ−1t.
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From this for sure we have

εh(x/ε, t/ε; kρ) = ρx+ ρ−1t+ o(1).

We can say more. Since the noise coming from the dynamics causes fluctuations of order
O(ε2/3), such fluctuations cannot be felt for corrections of order O(

√
ε). In fact the initial

fluctuations is transport with linear speed with time as the following formula indicates:

(1.8) εh(x/ε, t/ε; kρ) = ρx+ ρ−1t+
√
εBρ

(
x− ρ−2t

)
+ ε2/3Zρ(x, t) + o(ε2/3),

for a suitable stochastic process Zρ that will be analyzed later. For now, let us write H(ρ) =
ρ−1 and observe that the Brownian noise will be transported with speed that is nothing other
than H ′(ρ). Observe that according to (1.8),

B′ρ(t) = Bρ

(
− ρ−2t

)
,

and this is consistent with the following calculation:

EBρ

(
− ρ−2t

)2
= ρρ−2t = ρ−1t.

It is worth mentioning that we may get rid of O(
√
ε) in (1.8) by choosing x = ρ−2t.

(v) In general, if initially
εk(x/ε) = g(x) + o(ε2/3),

then we expect

(1.9) εh(x/ε, t/ε; k) = u(x, t) + ε2/3Z(x, t) + o(ε2/3),

where u solves a Hamilton-Jacobi PDE of the form

(1.10) ut = H(ux), u(x, 0) = g(x),

with H(ρ) = ρ−1. (Equivalently utux = 1). One of the main goal of these notes is the
derivation of the correction term involving Z. As we will see later, we need to rescale the
correction term in order to produce an interesting stochastic process that is often referred to
as an Airy Process. Roughly speaking, the rescaled height function hε(x, t) = εh(x/ε, t/ε)
satisfies

(1.11) hεt = H(hεx) +O(ε2/3).

If we accept this, then any correction of the form

hε(x, t) = u(x, t) +
√
εB(x, t) + o(

√
ε),
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leads to an equation of the form
Bt = H ′(ux)Bx.

This equation has a solution of the form

B(x, t) = Bρ

(
x+H ′(ρ)t

)
= Bρ

(
x− ρ−2t

)
,

provided that u(x, t) = ρx+ ρ−1t, and initially B(x, 0) = Bρ(x).

(vi) There is a candidate for the analog of v function of the exclusion process that we now
describe. Though our v function is defined for x > 0 only. Imagine that v(x) =∞11(x =∞)
with the interpretation that initially there is no particle in (0,∞), and infinitely many
particles are lined up at ∞. Instantaneously these particles are rushed to finite points in
(0,∞). The description of the particle trajectories x1(t) > x2(t) > . . . (with xi(0) = ∞
for all i) is in order. For the first particle, find an up-left path X1 =

(
(x1(t), t) : t > 0

)
such that at each L corner there is a Poisson point, and there is no Poisson point between
the set

{
(x, t) : xt = 0, x, t ≥ 0

}
and X1. Inductively we define an up-left path Xn+1 =(

(xn+1(t), t) : t > 0
)

such that at each L corner there is a Poisson point, and there is no
Poisson point between the set Xn and Xn+1. Once the family X1, X2, . . . are identified, we
then set a height function w : (0,∞)2 → Z by

w(x, t) =
∞∑
n=1

n11
(
x ∈ [xn(t), xn+1(t)

)
.

There is an obvious variational description for w. Indeed

w(x, t) = max
{
` : there exist Poisson points (x1, t1) < · · · < (x`, t`) in (0, x)× (0, t)

}
.

(v) Let us write w(x, t; y) for the analog of w(x, t) where 0 is replaced with y ∈ R; the height
function w(x, t; y) is defined for x > y and uses the Poisson points to the right of y. Using
the identity

k(x) = sup
y≤x

{
k(y) + v(x− y)

}
,

and the strong monotonicity we deduce

(1.12) h(x, t; k) = sup
y≤x

{
k(y) + w(x, t; y)

}
.

This is the analog of (1.2) for HAD model.
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1.3 Stochastic Hamilton-Jacobi Equation

As our microscopic model we may use a Hamilton-Jacobi equation. More precisely, we
assume that the microscopic height function h : Rd × [0,∞)→ R satisfies

ht +H(x, t, hx) = 0, h(x, 0) = k,

for a Hamiltonian function H : Rd ×R×Rd → R that is selected according to a probability
measure that is stationary and ergodic with respect to the spatial and temporal translations:

τa,sH(x, t, p) = H(x+ a, t+ s, p).

Example 1.1 As a classical example, consider

H(x, t, p) =
1

2
|p|2 + V (x, t),

where V is selected according to probability measure that is τ -invariant and ergodic. as an
example of V , pick a smooth function W : Rd × R→ R of compact support and set

V (x, t) =
∑
i

W (x− xi, t− ti),

where {(xi, ti) : i ∈ I} is a Poisson point process of intensity one. Another classical example
is

V (x, t) =
∑
i

Vi(x)Ḃi(t),

where Vi’s are periodic functions, and Bi are independent Brownian motions. �
Again, we are interested in hε(x, t) = εh(x/ε, t/ε), that now satisfies

hεt +H
(
x/ε, t/ε, hεx

)
= 0.

Let us write h(x, t; k) for the solution with initial data k. Here are some of the features
the growth model h:

(i) The process h is monotone: If k ≤ k′, then h(x, t; k) ≤ h(x, t; k′).

(ii) When H(x, t, p) is convex in p, then the process h is strongly monotone: h(x, t; k∧k′) =
h(x, t; k) ∧ h(x, t; k′). Similarly, when H(x, t, p) is concave in p, then process h is strongly
monotone: h(x, t; k ∨ k′) = h(x, t; k) ∨ h(x, t; k′).

(iii) When H(x, t, p) is convex in p, then there is a variational description for solutions:

h(x, t; k) = inf

{
g(y(0)) +

∫ t

0

L(y(s), s, ẏ(s)) ds : y ∈ C1
(
[0, 1],Rd

)
, y(t) = x

}
,
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where L is the Legendre Transform of H:

L(x, t, v) = sup
p

(
p · v −H(x, t, p)

)
.

Similarly, when H(x, t, p) is concave in p, then

h(x, t; k) = sup

{
g(y(0)) +

∫ t

0

L̂(y(s), s, ẏ(s)) ds : y ∈ C1
(
[0, 1],Rd

)
, y(t) = x

}
,

where
L̂(x, t, v) = inf

p

(
p · v −H(x, t, p)

)
.

�

1.4 KPZ Equation

KPZ equation is a stochastic PDE that is used to study the fluctuations of a stochastic
interface. The KPZ equation can be used as a model of a stochastic height function: We
assume that the height function h : R× [0,∞)→ R satisfies the KPZ equation

ht = hxx +
1

2
h2
x + ξ.

We write ξ(x, t) for the space time white noise. In other words, ξ is Gaussian distribution
with

Eξ(x, t)ξ(y, s) = δ0(x− y)δ0(t− s), Eξ(x)ξ(y) = δ0(x− y).

To explain this further, let us write Dk = D(Rk) for the space of smooth functions of compact
support in Rk, then ξ : D2 → R is a bounded linear map such that for each J ∈ D2, the
random variable ξ(J) is a Gaussian random variable with Eξ(J) = 0, and

Eξ(J)2 =

∫
J(x, t)2 dxdt.

Note that since delta function δ0 satisfies the scaling relation

(λλ′)−1δ0(x/λ, t/λ′) = δ0(x, t),

we deduce that the white noise ξ enjoys the following scaling:

(λλ′)−1/2ξ(x/λ, t/λ′) =D ξ(x, t).

We use this to examine the scaling behavior of KPZ equation: If we set

hε(x, t) = εαh

(
x

ε
,
t

εβ
,

)
.
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with α, β > 0, then lε satisfies

hεt =
1

2
ε2−α−β(hεx)2

+ ε2−βhεxx + εα−
β
2

+ 1
2 ξ.

Observe that if α + β = 2, then we have

(1.13) hεt =
1

2

(
hεx
)2

+ εαhεxx + ε
3α
2
− 1

2 ξ.

If α ∈ (1/3, 2) and β = 2 − α, then the coefficients of the second order term and the white
noise both go to 0 in small ε limit and we expect that hε → h̄ with h̄ satisfying

(1.14) h̄t =
1

2
h̄2
x.

As it turns our (1.14) does not posses a classical solutions even when the initial data is
smooth, and the question is what we mean by a solution. As we will see, the appropriate
notion of solution we need very much depends on the value of α. Let us examine two special
cases:

• When α = 1, we can ignore the white noise contribution and we will have a viscosity
solution with a solution given by Hopf-Lax-Oleinik formula

(1.15) h̄(x, t) = sup
y

(
h(y, 0)− (x− y)2

2t

)
.

• When α = 1/2, then h̄ is not a viscosity solution and since the coefficient of white noise
is now ε1/4 which is the square root of the coefficient of the second order term, the
white noise contribution cannot be ignored; in some sense a ghost of the white noise,
called white ghost in these notes will survive. In other words, most likely the limiting
h̄ would satisfy

(1.16) h̄t =
1

2
h̄2
x + ξ̂,

where ξ̂ is our white ghost. We do not know about the exact nature of ξ̂. In fact we
have a candidate for the analog of (1.15) (see [CQR]), namely

(1.17) h̄(x, t) = sup
y

(
h(y, 0)− (x− y)2

2t
+ A (x, y; t)

)
,

where A(x, y; t) is an Airy sheet for each t. Indeed (x, y) 7→ A(x, y; t) has the same law
as

t1/3A
( x

t2/3
,
y

t2/3

)
,

where A(x, y) := A(x, y; 1). We refer to the (1.17) as KPZ Fixed Point.
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We still need to explain why KPZ equation is relevant for our growth models. So far we
know that may stochastic growth models can be described by a Hamilton-Jacobi PDE as the
first approximation. An error of order O

(
ε2/3
)

must be taken into account as we examine
the fluctuations of the microscopic height function about the macroscopic height function
given by (1.10). Roughly the rescaled microscopic height function hε(x, t) = εh

(
x/ε, t/ε

)
is

expected to satisfies

(1.18) hεt = H
(
hεx
)

+ εa
(
hεx
)
γ
(
hεx
)
x

+ εξ,

with ξ a white noise, and a, γ : R,R possibly nonlinear functions with a, γ′ > 0. Let us
explain this in the case of SEP: If we take a smooth function J of compact support and look
at ∫

J(x)hε(x, t) dx ≈ ε2
∑
i

J(εi)h(i, t/e) =: Ω(t),

then
dΩ = A dt+ dM,

where

A = ε
∑
i

[
(1− λ)η(i)(1− η(i− 1))− λη(i− 1)(1− η(i))

]
J(εi)

= (1− 2λ)ε
∑
i

η(i)(1− η(i− 1))J(εi) + ελ
∑
i

[
η(i)− η(i− 1)

]
J(εi)

= ε
∑
i

η(i)(1− η(i− 1))J(εi)− ελ
∑
i

[
J(εi)− J(ε(i+ 1))

]
η(i)

≈
∫ [

H
(
hε(x, t)

)
+ λhεxx

]
J(x) dx,

where H(p) = (1 − 2λ)p(1 − p). On the other hand for the Martingale term we have (see
Exercise (v) of Chapter 2),

EM(t)2 = Eε−1

∫ t

0

∑
i

[
(1− λ)η(i, t)(1− η(i− 1, s)) + λη(i− 1, s)(1− η(i, s))

](
ε2J(εi)

)2
ds

≈ ε2

∫
H
(
hε(x, s)

)
J2(x) ds.

These formal approximation confirms the formula (1.18) provided that we allow a possibly
inhomogeneous white noise ξ, and in the case of exclusion process, we simply have aγ′ = λ a
constant function. (The function a and λ have physical interpretations that we do not discuss
here and in the case of exclusion process, a(p) = λp(1−p), and λ(p) = p log p+(1−p) log(1−p)
is the entropy.)
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In models like SEP and HAD, we know that the equilibrium states correspond to solutions
of the form

(1.19) hε(x, t) = xp+ tH ′(p) + ε1/2B(x, t) + o(ε1/2),

with x 7→ B(x, t) a Brownian motion for each t. This explain why the choice of α = 1/2 in
(1.13) should play a special role. More generally, if we take any solution of the form

hε(x, t) = xp+ tH ′(p) + ε1/2wε(x, t) + o(ε1/2),

then wε solves

wεt = H ′(p)wεx +
1

2
ε1/2H ′′(p)

(
wεx
)2

+ εd(p)wεxx + ε1/2ξ +O(ε),

where d(p) = a(p)λ′(p). We can get ride of the term H ′(p)wεx by a linear translation: The
function

ŵε(x, t) = wε
(
x−H ′(p)t, t),

satisfies

ŵεt =
1

2
ε1/2H ′′(p)

(
ŵεx
)2

+ εd(p)ŵεxx + ε1/2ξ′ +O(ε),

where ξ′(x, t) = ξ(x − ct, t), with c = H ′(p) is again a white noise. To have a non-trivial
limit, we consider

uε(x, t) = ŵε
(
x, ε−1/2t).

The function uε satisfies

uεt ==
1

2
H ′′(p)

(
ŵεx
)2

+ ε1/2d(p)ŵεxx + ε1/4ξ +O
(
ε1/2
)
.

We may wonder whether or not the small ε limit of uε exists. If this limit exists and is
denoted by h̄ it is expected to satisfy the KPZ fixed point:

h̄t =
1

2
H ′′(p)h̄2

x.

In fact (1.21) implies that if x 7→ h̄(x, 0) is a Brownian motion, then x 7→ h̄(x, t) is also a
Brownian motion of the same diffusion coefficient. That is, the Wiener measure is invariant.
This peculiar feature of fixed point KPZ confirms our earlier assertion that h̄ cannot be a
viscosity solution: According to a classical result of Groenboom, an initial Brownian motion
for the viscosity solution of (1.14) becomes a piecewise quadratics function instantaneously!

From the above discussion we formulate a scaling law that is one of the main air of these
notes: Suppose that we have a stochastic growth model in dimension one associated with
macroscopic PDE ut = H(ux). Assume that initially

lim
ε→0

ε−1/2
(
εh
([x
ε

]
, 0
)
− xp

)
= h̄(x, 0).
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Then at later times

(1.20) lim
ε→0

ε−1/2

(
εh

([
x

ε
− tH ′(p)

ε3/2

]
,
t

ε3/2

)
−
(
xp− tε−1/2

(
pH ′(p)−H(p)

)))
= h̄(x, t),

with h̄ satisfying the KPZ fixed point.

1.5 Stochastic PDE

As we mentioned earlier the fluctuation of the interface in two dimensional growth models
are governed by a stochastic PDE known as KPZ equation. This is subsection we give a
quick review of stochastic PDEs in general.

We write ξ(x, t) for the space time white noise and ξ for the space white noise. In other
words, both ξ and ξ are Gaussian distributions with

Eξ(x, t)ξ(y, s) = δ0(x− y)δ0(t− s), Eξ(x)ξ(y) = δ0(x− y).

To explain this further, let us write Dk = D(Rk) for the space of smooth functions of compact
support in Rk, then ξ : Dd+1 → R is a bounded linear map such that for each J ∈ D, the
random variable ξ(J) is a Gaussian random variable with Eξ(J) = 0, and

Eξ(J)2 =

∫
J(x, t)2 dxdt.

The definition of ξ is similar.

Definition 1.1 Given a distribution u ∈ D′d+1, we write [u] = γ if

εγu

(
x

ε
,
t

ε2

)
=D u(x, t).

�

Example 1.2 For the space-time white noise we have [ξ] = −(d + 2)/2, and for the space
white noise we have [ξ] = −d/2. To see the latter, observe that if δ̂0(x, t) = δ0(t)δ0(x), then

ε−d−2δ0

(
x

ε
,
t

ε2

)
= δ0(x, t).

From this we can readily deduce that [ξ] = −(d+ 2)/2. �
Our goal is to make sense of various SPDEs that appear in statistical mechanics. To

make sense of these equation, we need to study the regularity of their solutions. To figure
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out what is the best regularity we can hope for, we first search for stochastically self similar
solutions (SSS). By this we mean a solution u for which

uε(x, t) = εγu

(
x

ε
,
t

ε2

)
,

is also solution. We call γ the scaling exponent of the SPDE. For our regularity question,
we use spaces Cα with the following properties:

• When α ∈ (0, 1), the space Cα is set of local α-H’́older continuous functions.

• When α ∈ (k, k+1) for k ∈ N, the set Cα consists of Ck function with all k-th derivative
in Cα−k.

• The space C1 is the Caldron-Zygmund space and is slightly larger and the space of
locally Lipschitz functions.

Definition 1.2(i) We set |(x, t)| = |x|+
√
t. Note that |(x/ε, t/ε2)| = |(x, t)|/ε.

(ii) We write B = Br for the space of Cr functions ϕ such that the support of ϕ is contained
in B(0, 1), and |Daϕ| ≤ 1 for a with |a| ≤ k. Given ϕ ∈ B, we set

ϕλz (z
′) = λ−d−2ϕ

(
x′ − x
λ

,
t′ − t
λ2

)
.

(iii) For α > 0, we write Cα for the space of functions u such that∫
u
(
ϕλz
)
dx ≤ cλα,

for every ϕ ∈ B with ∫
ϕ(P ) dx = 0,

for every polynomial P of degree [α]. The constant c is independent of ϕ and z so long as z
is in a bounded set.

(iv) For α < 0, we write Cα for the space of distribution u such that

u
(
ϕλz
)
≤ cλα,

for every ϕ ∈ B. The constant c is independent of ϕ and z so long as z is in a bounded
set. �

If we have a random process u(x), a standard way to show that u ∈ Cα for some α ∈ R
is the following generalization of Kolmogorov Theorem.
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Theorem 1.1 Let u ∈ D′(Rk) be a random distribution with

(1.21)
[
E
∣∣u(ϕλz)∣∣p] 1

p ≤ cλα,

for a constant c that is independent ϕ ∈ B and z so long as z is in a bounded domain. Then
there is a version of u ∈ Cβ for β = α− p/d. In particular, if (1.21) is true for every p > 1,
then u ∈ Cα−.

Corollary 1.1 Suppose that u ∈ Lp(P) for every p ≥ 1. If [u] = α, then u ∈ Cα−.

Proof For every p ≥ 1, [
E
∣∣u(ϕλ0)∣∣p] 1

p = λα
[
E
∣∣u(ϕ)∣∣p] 1

p = cλα.

�
We now describe four examples of SPDEs:

(1) (Stochastic Heat Equation) The SHE in Rd is the PDE

(1.22) ut = ∆u+ ξ,

where u : Rd × [0,∞) → R and ξ is the space-time white noise. We can readily find the
scaling exponent of solutions. Suppose that SSS for SHE is α. We note that if we have a
solution with [u] = α, then [ut] = α − 2, and [∆u] = α − 2. This exponent must match
[ξ] = −(d + 2)/3. Hence SSS for SHE is α = 1 − d/2. From this we expect that a solution
to SHE to be in Cα−. Based on this heuristic reasoning, we expect u to be a function only
when d = 1.

(2) Given k ∈ N, consider

(1.23) ut = ∆u+ uk + ξ.

The main challenge for making sense of (1.22) is the term uk when d ≥ 2 because we expect
u to be a distribution. To understand better the role of the nonlinearity, let us for now
pretend that we already know how to make sense of uk. Now if [u] = α as in (1), then we
expect [uk] = kα. as we will learn later, it is much easier to treat (1.22), when uk has a
better regularity that the white noise. That is

k

(
1− d

2

)
> −d

2
− 1.
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Equivalently, d < 2(k + 1)/(k − 1). If this is the case, then we say that (1.23) is subcritical.
For example, when k = 3, then d < 4 is subcritical.

(3) (Anderson Model) Consider

(1.24) ut = ∆u+ uξ.

Here the main challenge comes from the product term uξ. The point is that if we assume
u ∈ Cα− , then since ξ ∈ C−(δ/2)− , we can make sense of the product only if α > δ/2. If
we instead look at ut = ∆u + ξ, we get α = 2 − d

2
. Even for this α, we end up with the

restriction d < 2. We will see later that d < 4 is subcritical.

(4) (One dimensional SHE on a manifold) In local coordinates

(1.25) uit = uixx + Γijk(u)ujxu
k
x + σi`ξ`.

is subcritical. Since the dimension is one, we expect u ∈ C1/2− . This makes the term
Γijk(u)ujxu

k
x highly singular. �
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2 Markov Processes

Our models v-exclusion and HAD processes are examples of continuous time Markov pro-
cesses. In this Chapter we give an overview of such processes. We always consider Feller
Processes

(
x(t) : t ∈ [0,∞)

)
with state space E that is locally compact and separable com-

plete metric space. The process x(t) is always right continuous with left limit; the existence
of such realization is standard and can be guaranteed under some general conditions on the
transition probability or the infinitesimal generator of x.

Given a Borel set A ⊂ E, x ∈ E, and t ≥ 0, the transition function pt(x,A) denotes
the probability that x(t) ∈ A, conditioned that the starting point is x(0) = x. We write
Cb(E) for the space of bounded continuous functions f : E → R. We also write C0(E) for
f ∈ Cb(E) that vanishes at infinity. We define linear operators Tt : t ≥ 0 by

Ttf(x) =

∫
pt(x, dy)f(y) = Ex(0)=xf(x(t)),

for every f ∈ Cb(E). By Feller property we mean that Ttf ∈ C0(E) and

lim
t→0

Ttf = f,

for every f ∈ C0(E). The Markov property means that Tt ◦ Ts = Tt+s for all s, t ≥ 0. The
infinitesimal generator of the process x(·) is an operator L : Dom→ C0(E), that is defined
as

(2.1) Lf = lim
h→0

(
Ttf − f

)
.

Here denotes the set of f ∈ C0(E) for which the limit in (2.1) exists, and is dense subset of
C0(E). From the semigroup property, we can readily show that if f ∈ Dom, then Ttf ∈ Dom
for all t ≥ 0. On the other hand, from the identity

h−1
(
Tt+hf − Ttf

)
= Tt

(
h−1
(
Thf − f

))
= h−1

(
Th(Ttf)− Ttf

)
.

As a result

(2.2)
d

dt
Ttf = LTtf = TtLf.

When state space isE is finite, the (2.2) is an ODE, and we may regard Tt and L as matrices
and we simply have Tt = etL. In fact writing u(x, t) = Ttf(x), then u is the unique solution
to the initial value problem

ut = Lu, u(x, 0) = f(x).

The equation (2.2) is known as Kolmogorov Backward Equation. The dual of (2.2) is a
evolution equation for the distribution of the process x(t). More precisely, assume that x(0)
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is selected randomly according to a probability measure µ0. Then at later time the law of x(t)
is a probability measure µt = T ∗t µ

0 that satisfies the following identity for every f ∈ Cb(E):

Eµ0f(x(t)) :=

∫ [
Ex(0)=xf(x(t))

]
µ0(dx) =

∫
Ttf(x) µ0(dx) =

∫
f dµt.

When f ∈ Dom, we may differentiate both sides with respect to t to assert∫
f d

(
d

dt
µt
)

=

∫
Tt(Lf)(x) µ0(dx) =

∫
Lf dµt =:

∫
f d
(
L∗µt

)
.

In short,

(2.3)
d

dt
µt = L∗µt.

We say a probability measure ν is invariant if T ∗t ν = 0. In view of (2.3), a measure ν is
invariant if L∗ν = 0, or equivalently ∫

Lf dν = 0,

for every f ∈ Dom. It is often more convenient to choose a core Dom′ ⊆ Dom for the
generator L. This means that for every f ∈ Dom, we can find a sequence fn ∈ Dom′ such
that

lim
n→∞

fn = f, lim
n→∞

Lfn = Lf.

We say an invariant measure ν is reversible, if∫
fLg dν =

∫
gLf dν,

for all f, g ∈ Dom′.

Example 2.1(i) When E is countable, the generator takes the form

Lf(x) =
∑
y∈E

c(x, y)
(
f(y)− f(x)

)
,

for a suitable c : E × E → [0,∞). We think of c(x, y) as the rate of a jump from state x to
state y. The time it takes to jump from x to y is an exponential random variable and c(x, y)
is the exponential parameter of this variable. With a slight abuse of notation, we write µ(x)
for µ

{
x}
)
. Clearly ∫

Lf dµ =
∑
x,y∈E

m(x, y)
(
f(y)− f(x)

)
,
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where m(x, y) = c(x, y)µ(x). As an immediate consequence

(2.4) L∗µ(x) =
∑
y∈E

[
c(y, x)µ(y)− c(x, y)µ(x)

]
.

From this or the previous display it is clear that if m(x, y) is symmetric i.e.,

(2.5) µ(x)c(x, y) = µ(y)c(y, x),

then µ is invariant. In fact such an invariant measure is reversible:

(2.6) E(f, g) := −
∫
fLg dµ = −

∫
gLf dν =

1

2

∑
x,y∈E

m(x, y)
(
f(y)− f(x)

)(
g(y)− g(x)

)
.

The way to think about (2.5) is that we have a detailed balance: µ is invariant even when
the dynamics is restricted to jumps from x to y and back.

(ii) In the case of a diffusion, L is a second order elliptic operator. For a d-dimensional
Brownian motion L = 1

2
∆. In the case of a Compound Poisson process, the generator is

Lf(x) =

∫ (
f(x+ y)− f(x)

)
`(dy).

More generally, if x(·) is a one dimensional Lévy process with Lévy measure `, then L is a
Pseudo Differential operator of the form

Lf(x) =

∫ (
f(x+ y)− f(x)− 11(|y| ≤ 1)yf ′(x)

)
`(dy).

�
Given f ∈ Dom, we may use integrated form of (2.2) to write

Ex(s)=a

[
f(x(t))− f(x(s))−

∫ t

s

Lf(x(θ)) dθ

]
= 0,

for every a ∈ E and (s, t) with 0 ≤ s ≤ t. As a result, if we take any bounded continuous
F : Ek → R and any s1 < · · · < sk ≤ s, then by Markov property

EF
(
x(s1), . . ., x(sk)

) [
f(x(t))− f(x(s))−

∫ t

s

Lf(x(θ)) dθ

]
= EF

(
x(s1), . . . , x(sk)

)
Ex(s)=a

[
f(x(t))− f(x(s))−

∫ t

s

Lf(x(θ)) dθ

]
= 0.
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As a result, the process

Mf (t) = f(x(t))− f(x(0))−
∫ t

0

Lf(x(θ)) dθ,

is a martingale with respect to the σ-algebras
(
Ft : t ≥ 0

)
, where Ft is the σ-algebra

generated from {x(θ) : θ ≤ t}. In the same fashion we can show that for any f : E× [0, T ]→
R that is C1 in t and f(·, t) ∈ Dom, the process

(2.7) Mf (t) = f(x(t), t)− f(x(0), 0)−
∫ t

0

(∂θ + L)f(x(θ), θ) dθ,

is a Martingale. We end this section with an application of such martingales:

Example 2.2(i) Assume that E is countable, let U be a subset of E and set

τ = inf
{
t > 0 : x(t) /∈ U

}
.

We wish to evaluate Px(0)=y
(
τ > t, x(t) = a

)
. For this, we find a function u(x, s) =

u(x, s; a, t); (x, s) ∈ E × [0, t] that solves the following equation
us(x, s) + Lu(x, s) = 0, s < t,

u(x, t) = 11(x = a),

u(x, s) = 0, s ≤ t, x /∈ U.

Then M(s) := u
(
x(s ∧ τ), s ∧ τ

)
is a Martingale. As a result,

u(y, 0; a, t) = Ex(0)=yM(0) = Ex(0)=yM(t ∧ τ) = Ex(0)=yu
(
x(t ∧ τ), t ∧ τ

)
= Ex(0)=yu

(
x(t), t

)
11(τ > t) = Px(0)=y

(
τ > t, x(t) = a

)
.

We can easily express u in terms of the fundamental solution of the equation (2.2) in the
domain U . More precisely if w(x, t) = w(x, t; a) is the unique solution of

wt(x, t) = Lw(x, t), t > 0,

w(x, 0) = 11(x = a),

w(x, t) = 0, t ≥ 0, x /∈ U,

then u(x, s; a, t) = w(x, t− s; a), and u(y, 0; a, t) = w(y, t; a).
In the case of a diffusion in Rd, we may take an open subset U ⊂ Rd, and examine the

law x(t) provided that it never leave U up to time t. Then

Px(0)=y
(
x(t) ∈ dx, t < τ

)
= w(x, t; y) dx,
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where w(x, t) = w(x, t; y) solves

(2.8)


wt(x, t) = Lw(x, t), t > 0,

w(x, 0) = δy(dx),

w(x, t) = 0, t ≥ 0, x ∈ ∂U.

(ii) Let U be any bounded domain in E and let g : E → R be a continuous function. Set

τ = τU = inf
{
t > 0 : x(t) /∈ U

}
.

We wish to solve the equation {
Lv(x) = 0, x ∈ U,
v(x) = g(x), x ∈ ∂U,

If v is a solution, then M(t) := v
(
x(t ∧ τ)

)
is a martingale. As a result,

v(x) = Ex(0)=xM(0) = Ex(0)=xM(τ) = Ex(0)=xg
(
x(τ)

)
,

which expresses the desired solution in terms of the boundary data g. As an example,
take A ⊂ U c and choose g(x) = 11(x ∈ A). Then the corresponding v has the following
interpretation:

v(x) = Px(0)=x
(
x(τ) ∈ A

)
.

�
Given T ∈ (0,∞] and a ∈ E, we write DaT = Da([0, T ], E) for the set of x(·) in the

Skorohod space D([0, T ], E), such that x(0) = a. Recall that Ft denotes the σ-algebra
generated by

(
x(s) : s ∈ [0, t]

)
. The Markov process x(·) may be regarded as a probability

measure Pa on the set DaT . We wish to study other Markov processes with laws absolutely
continuous with respect to Pa. Note that if Qa � Pa, and

M(t) =
dPaT
dQa

T

∣∣∣
Ft
,

then the process M(t) is a non-negative martingale. We can readily construct positive
martingales that can be used to construct a family of Markov process associated with a
given Markov process. The key to this construction is the FFeynman-Kac Formula.

Theorem 2.1 Given a Markov process x(·) with generator L, and a bounded continuous
function V : E → R, define

T Vt f(x) = Ex(0)=x f(x(t)) e
∫ t
0 V (x(s)) ds.
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Then for any f ∈ D,

(2.9)
d

dt
T Vt f = T Vt LV f,

where LV f = Lf + V f.

Proof Given h > 0,

T Vt+hf(x) = Ex(0)=x f(x(t+ h)) e
∫ t+h
0 V (x(s)) ds

= Ex(0)=x f(x(t+ h)) e
∫ t
0 V (x(s)) ds+hV (x(t))+o(h)

= Ex(0)=x f(x(t+ h)) e
∫ t
0 V (x(s)) ds

(
1 + hV (x(t)) + o(h)

)
= Ex(0)=x e

∫ t
0 V (x(s)) ds

(
1 + hV (x(t)) + o(h)

)
Ex(t)f(x(t+ h))

= Ex(0)=x e
∫ t
0 V (x(s)) ds

(
1 + hV (x(t)) + o(h)

) (
f(x(t)) + hLf(x(t)) + o(h)

)
= T Vt f(x) + hT Vt LV f + o(h).

�

Corollary 2.1 For every positive f ∈ D, the process

Nf (t) = f(x(t)) e−
∫ t
0
Lf
f

(x(s)) ds,

is a martingale.

Proof Observe that if we choose V = −Lf/f , then LV f = 0. For this choice of V we have
that for every t,

T Vt f(x) = f(x),

by (2.9). Using this we can assert

E
(
N(t) | Ft′) = E

(
f(x(t)) e

∫ t
0 V (x(s)) ds

∣∣∣Ft′)
= e

∫ t′
0 V (x(s)) ds Ex(t′)

(
f(x(t)) e

∫ t
t′ V (x(s)) ds

)
= e

∫ t′
0 V (x(s)) ds f(x(t′)) = N(t′),

whenever t′ < t. �

Remark 2.1 More generally, if f : E × R→ R is C1 in t, then

d

dt
T Vt f(·, t) = T Vt (∂t + LV )f(·, t),
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and the process

(2.10) Nf (t) = f(x(t), t)e−
∫ t
0

(∂s+L)f
f

(x(s),s) ds,

is a martingale. �

As we mentioned earlier, we may wonder what does the measure

(2.11) dQa
T = f(a)−1Nf (T ) dPaT ,

represent.

Theorem 2.2 The measure Qa
T defined in (2.11) is the law of a Markov process with a

generator of the form

Lfg =
L(fg)

f
− gLf

f
.

We sketch the proof in Exercise (v) and (vi). We may also allow the function f to
depend on time and use the martingale Nf of (2.10) in the definition of Q in (2.11):

(2.12) dQa
T = f(a, 0)−1Nf (T ) dPaT ,

The resulting process is again Markov but possibly inhomogeneous with a time dependent
generator Lt := Lf(·,t).

Remark 2.2 Note that for the definition of Q and the martingale, we need to assume that
f > 0. This requirement can be relaxed: When f ∈ Dom is not positive, then we may set

U =
{
x : f(x) > 0

}
, τ = inf

{
t > 0 : x(t) /∈ U

}
,

then we can still talk about the martingale

Nf (t ∧ τ) = f(x(t ∧ τ)) e−
∫ t∧τ
0

Lf
f

(x(s)) ds.

�

A particular important special case is when f ∈ Dom satisfies Lf = 0. The corresponding
Q measure is known as Doob h-transform. The measure Q now takes the form

(2.13) dQa
T = f(a)−1f(x(T )) dPaT .

More generally, if we take a time dependent f that satisfies

(∂t + L)f = 0,
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then the corresponding process takes the form

(2.14) dQa
T = f(a, 0)−1f(x(T ), T ) dPaT .

The corresponding generator is

Lf (g) =
L(fg)

g
− gLf

f
=
L(fg)

g
+
gft
f
.

Here are some important examples.

Example 2.3(i) Let U be any bounded domain in E with E countable. Set

τ = τU = inf
{
t > 0 : x(t) /∈ U

}
.

Let x(·) be a Markov process in E with generator L. Pick T > 0 and write PT for law of the
process x(·) in the interval [0, T ]. We wish to study the measure

QT (A) = PT
(
A
∣∣ T < τ

)
= PaT (A; T < τ)/PaT (T < τ), A ∈ FT .

Consider the martingale M(t) = h
(
x(t ∧ τ), T − t ∧ τ

)
with h satisfying

ht = Lh, t > 0, x ∈ U
h(x, 0) = 1 x ∈ U
h(x, t) = 0 t ≥ 0, x ∈ ∂U.

We claim

dQT = h(x(0), T )−1 h
(
x(T ∧ τ), T − T ∧ τ

)
dPT

= h(x(0), T )−1 h(x(T ), 0) 11(T < τ)dPT
= h(x(0), T )−1 11(T < τ) dPT .

To verify this, it suffices to show

h(a, T ) = Px(0)=a
T (T < τ).

Indeed using the P-martingale M ,

Px(0)=a
T (T < τ) = Ex(0)=a M

(
T ∧ τ

)
= Ex(0)=a M(0) = h(a, T ).

The relationship between h and w of Example 2.2(i) is that in the discrete setting,

h(x, t) =
∑
a∈U

w(x, t; a).
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Likewise, when E = Rd, and x(·) is a diffusion,

h(x, t) =

∫
U

w(x, t; a) da.

(ii) Let us assume that the generator L is symmetric with respect to a measure m(dx). In
this case we may solve the equation ut = Lu by finding the eigenvalues and eigenfunctions
of L. When U is bounded, then the point spectrum of L consists of eigenvalues

0 < λ1 ≤ λ2 ≤ . . . .

We choose an orthonormal basis for L2(m) consisting of the corresponding eigenfunctions
w1, w2, . . . , with {

Lwi + λiwi = 0, in U

wi = 0 on ∂U,

for each i. For the sake of definiteness, let us assume that x(·) is a diffusion and that m is
the Lebesgue measure. Since for any f ∈ L2(m) we can write

f(x) =
∞∑
i=1

wi(x)

∫
wi(y)f(y) dy,

we learn
δy(dx) =

∑
i

wi(y)wi(x).

This in turn implies that the solution w of (2.8) is of the form

w(x, t; y) =
∞∑
i=1

e−λitwi(y)wi(x).

This means that the function h takes the form

h(x, t) =
∞∑
i=1

cie
−λitwi(x), with ci =

∫
U

wi(y) dy.

We wish to calculate
Q∞ = lim

T→∞
QT ,

for the measure QT of part (i). If this limit exists, we interpret Q∞ as the probability law of
the process x(·) conditioned to stay in U forever. Indeed for any pair (t, T ) with 0 < t < T ,

QT (A) =

∫
A

h(x(t), T − t)
h(x(0), T )

dP,
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for any A ∈ Ft. Hence, for determining Q∞, we need to calculate

lim
T→∞

h(x, T − t)
h(y, T )

.

For this, let us assume that the smallest eigenvalue λ1 is of multiplicity one. Assuming this,
we calculate

lim
T→∞

h(x, T − t)
h(y, T )

= lim
T→∞

e−λ1(T−t)w1(x)

e−λ1Tw1(y)
= eλ1t

w1(x)

w1(y)
.

From this we learn

dQ∞
∣∣∣
Ft

= eλ1t
w1(x(t))

w1(x(0))
dP
∣∣∣
Ft
.

This means that we have a Doob transform associated with the function k(x, t) = w1(x)+λ1t.
The corresponding generator is

L∞f = w−1
1 (L+ λ1)(w1f).

When U is unbounded, we need to understand the behavior of x(·) at ∞. This is closely
related to the Martin boundary of U . Martin boundary points can be studied by looking at
the boundary point of the convex set{

h : Ū → R : h = 0 on ∂U, h > 0 in U
}
.

�

2.1 Duality

Assume that x(·) and y(·) are two Markov processes with state spaces E and E ′ and gener-
ators Lx and Ly respectively. Given a function H : E × E ′ → R, we say that the processes
x(·) and y(·) are dual with respect to H if the following conditions are true:

(i) H(·, y) (respectively H(x, ·)) is in the domain of the definition of Lx (respectively Ly)
for every y ∈ E ′ (respectively x ∈ E).

(ii) For every (x, y) ∈ E × E ′,

(2.15) Ex(0)=x H(x(t), y) = Ey(0)=y H(x, y(t)).

The following criterion gives us a practical way of verifying (2.15).

Theorem 2.3 Assume that (i) is true. Then (ii) is true iff

(2.16)
(
LxH(·, y)

)
(x) =

(
LyH(x, ·)

)
(y).
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Proof Write Tt = etLx and T̂t = etLy for semigroup associated with the processes x(·) and
y(·). Assume that (2.16) holds. Write u(x, y, t) and û(x, y, t) for the left and right hand side
of (2.15) respectively. Evidently

ut = Lxu, û = Lyû, u(x, y, 0) = û(x, y, t) = H(x, y).

By uniqueness of the solutions for the same initial data, we are done if we can show

(2.17) û = Lxû.

Here is the proof of (2.17):

ût(x, y, t) = Ey(0)=y LyH(x, y(t)) = Ey(0)=y LxH(x, y(t))

=

∫
LxH(x, y′) p̂t(y, dy

′) = Lx
∫
H(x, y′) p̂t(y, dy

′)

= Lxû(x, y, t),

where p̂t(y, dy
′) = P

(
y(t) ∈ dy′ | y(0) = y

)
. �

Exercises

(i) Let v : Zd → Z be a nonnegative subadditive function with v(0) = 0 and v(i)+v(−i) > 0
for all i 6= 0. Recall v̂(i) = −v(−i). Show that v, v̂ ∈ Γ(v) and that vi ∈ Γ(v) iff i = 0.
Moreover vi, v̂

i /∈ Γ(v) for all i ∈ Zd.
(ii) Write Aλ for the generator of the height differences η ∈ E = {0, 1}Z in the case of SEP,
and write νρ for the equilibrium measure associated with density ρ. Show∫

fAλg dνρ =

∫
gA1−λf dν

ρ,

for any pair of functions f, g : E → R that depend on finitely many (η(i) : i ∈ Z).

(iii) Write Aλ for the generator of height function h of the v-exclusion process. Recall the
measure µλ that was defined in (1.5). Show∫

fAλg dµλ =

∫
gAλf dµλ,

for any pair of functions f, g : Γ(v)→ R that depend on finitely many (h(i) : i ∈ Z).

(iv) Let us write A for the generator of process associated with the gap between particle
in HAD process: If zi = xi − xi+1, then the dynamics of z =

(
zi : i ∈ Z

)
∈ (0,∞)Z is

Markovian with generator

AF (z) =
∑
i∈Z

∫ zi

0

(
F (zai )− F (z)

)
da,
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where zai is the configuration we obtain from z by changing zi and zi+1 to zi−a and zi+1 +a,
and leaving other zj unchanged. Show that the product of exponential measures λe−λzi dzi :
i ∈ Z is invariant for A and find the adjoint of A with respect to this measure.

(v) Suppose that we have a probability measure P on DT such that for every f ∈ D, the
process Nf (t) is a martingale. From this deduce that the processes

Mf (t) = f(x(t))− f(x(0))−
∫ t

0

Lf(x(θ)) dθ,

M ′
f (t) = Mf (t)

2 −
∫ t

0

(Lf 2 − 2fLf)(x(θ)) dθ,

are martingales. (Hint: Use martingales (Neλf : λ ∈ R). )

(vi) Let Qa
T be as in (2.10). Show that for very g ∈ D, the process

Nf,g(t) = g(x(t))e−
∫ t
0
Lf g
g

(x(s)) ds,

is a martingale with respect to Qa
T .

(vii) Let L be the generator of Markov process on a coutable state E with jump rate c(x, y)
as in Example 2.1(i). Given any bounded positive f : E → R, the process associated with
Lf of Theorem 2.2 is a Markov process with jump rate cf (x, y). Determine cf .

(viii) Let x(·) be a standard Brownian motion in R with generator Lf = 2−1f ′′. For any
C2 function h(x, t), determine Lh. Given y ∈ R and T > 0, define h : R× [0, T ]→ R by

h(x, t) = (2π(T − t))−1/2 e−
(x−y)2
2(T−t) .

Determine the generator Lh in this case and interpret the corresponding Markov process.
�
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3 Determinantal Processes

In Chapter 2 we discussed some basic properties of Markov processes. In this chapter we
explore dterminantal processes that will play central role in our study of TASEP in Chapters
5 and 6, and also for other exactly solvable models. We will show in Chapter 5 below that in
fact TASEP is an example of a determinantal process. As a preparation we give an overview
of determinantal processes in this chapter.

Let X be a discrete (countable) set and write X = 2X for the set of subsets of X. By a
Point process in X, we mean a probability measure P on X . In other words, a set x ∈ X is
selected according to the law P. The set X is equipped with the σ-field generated by sets of
the form

{
x ∈ X : A ⊂ x

}
with A ∈ X . Any point processes in X is uniquely determined

by its correlation functions ρk : Xk → R, k ∈ N; each ρk is a symmetric function that is
defined by

ρk(x1, . . . , xk) = P
({
x1, . . . , xk

}
⊆ x

)
,

for any distinct x1, . . . , xk ∈ X. Note that if f : Xk → R is any bounded function, then

E
∑

x1 6=···6=xk

f(x1, . . . , xk)11
({
x1, . . . , xk

}
⊆ x

)
=

∑
x1 6=···6=xk

f(x1, . . . , xk)ρk(x1, . . . , xk),

where x1 6= · · · 6= xk means that x1, . . . , xk are distinct. Another useful probability is the
Janossy density that is defined by

Jk,A(x1, . . . , xk) = P
(
A ∩ x =

{
x1, . . . , xk

})
,

for every A ∈ X . Given a finite set A with ]A = `, we have

(3.1) ρk(x1, . . . , xk) =
`−k∑
r=1

1

r!

∑
y1,...,yr∈A

Jk+r,A(x1, . . . , xk, y1, . . . , yr),

for every distinct x1, . . . , xk ∈ A. From this, it is not hard to deduce

(3.2) Jk,A(x1, . . . , xk) =
`−k∑
r=0

(−1)r

r!

∑
y1,...,yr∈A

ρk+r(x1, . . . , xk, y1, . . . , yr),

for every distinct x1, . . . , xk ∈ A.
We also use the compact notation

ρ(a) = P
(
a ⊆ x

)
, JA(a) = P

(
x ∩ A = a

)
.

We can then write

(3.3) ρ(a) =
∑

a⊆b⊆A

JA(b), JA(a) =
∑

a⊆b⊆A

(−1)|b|−|a|ρ(b),
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for every a ⊆ A. Here we are writing |a| for the cardinality of the set a.

Example 3.1(i) As a simple example, imagine that the variables
(
11(x ∈ x) : x ∈ X

)
are

independent with P(x ∈ x) = ρ1(x). Then

ρ(a) =
∏
a∈a

ρ1(a), JA(a) =
∏
a∈a

ρ1(a)
∏
b∈A\a

(1− ρ1(b)).

(ii) As a simple example, choose f = 11A to obtain

E ]
(
A ∩ x

)
=
∑
x∈A

ρ1(x).

�
Given a symmetric function K : X ×X → R, we say a Point process P is determinantal

with correlation kernel K, if

ρk(x1, . . . , xk) = det
[
K(xi, xj)

]k
i,j=1

,

for any distinct x1, . . . , xk ∈ X. Note that the right-hand side is symmetric by the definition
of a determinant. It is useful to think of K as a matrix for which the rows and columns are
labeled by the elements of X:

K = KX =
[
K(x, y)

]
x,y∈X .

Then we may write ρ(a) = P
(
a ⊆ x

)
= detKa, where Ka denotes the restriction of K to

a × a. If we regard K as a matrix, then it matters how we labels points in a. Though
relabeling columns and rows would not affect detKa. Regarding K as an operator acting
on `2(X), then KA corresponds to acting the operator on functions with support in a. With
the latter interpretation, it wouldn’t matter how points in a are labeled.

Remark 3.1(i) Note that if K(x, y) = ρ1(x)11(x = y), we recover the independent point
process of Example 3.1(i). However in general for a distinct pair x, y ∈ X,

P
(
{x, y} ⊆ x

)
= K(x, x)K(y, y)−K(x, y)2 < K(x, x)K(y, y) = P

(
{x} ⊆ x

)
P
(
{y} ⊆ x

)
,

whenever K(x, y) 6= 0. This means that if the matrix K is not diagonal, then the pair
correlation is negative i.e., the interaction between particles is repulsive.

(ii) If K is the correlation function and λ : X → R is a function, then the kernel Kλ defined
by

Kλ(x, y) = λ(x)−1K(x, y)λ(y),
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is also a correlation kernel for the same determinantal process because for any a ⊂ X,

det
[
Kλ(x, y)

]
x,y∈a = det

[
K(x, y)

]
x,y∈a

∏
x∈a

λ(x)−1
∏
y∈a

λ(y) = det
[
K(x, y)

]
x,y∈a.

Note that if
Kλf(x) =

∑
y∈X

Kλ(x, y)f(y), Mλf(x) = λ(x)f(x),

then Kλ =M−1
λ KMλ. In other words, we obtain the operator Kλ from K by conjugating K

with the multiplication operator Mλ. �

The following elementary calculation will be used in several occasions below.

Lemma 3.1 (i) Let A = AI =
[
aij
]
i,j∈I and B = BI =

[
bij
]
i,j∈I be two matices. Then for

any K ⊂ I

(3.4) det(A+B) =
∑
I′⊆I

det
(
χI\I′A+ χI′B

)
,

where the (i, j)-th entry of χI′B is 11(i ∈ I ′)bij.

(ii) Let B be as in part(i), and write 11I for the identity matrix
[
δij
]
i,j∈I . Then for any

K ⊂ I

(3.5) det
(
11Kc +B

)
=

∑
K⊆I′⊆I

detBI′ .

Proof(i) Write SI for the set of permutations of the set I. We have

det(A+B) =
∑
σ∈SI

ε(σ)
∏
i∈I

(
aiσ(i) + biσ(i)

)
=
∑
σ∈SI

ε(σ)
∑
I′⊆I

∏
i∈I\I′

aiσ(i)

∏
i∈I′

biσ(i)

=
∑
I′⊆I

∑
σ∈SI

ε(σ)
∏
i∈I

(
11(i /∈ I ′)aiσ(i) + 11(i ∈ I ′)biσ(i)

)
=
∑
I′⊆I

det
(
χI\I′A+ χI′B

)
.
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(ii) We have

det
(
11Kc +M

)
=
∑
σ∈SI

ε(σ)
∏
i∈I

(
δiσ(i)11(i /∈ K) +miσ(i)

)
=
∑
σ∈SI

ε(σ)
∑
I′⊆I

∏
i∈I\I′

(
δiσ(i)11(i /∈ K)

) ∏
i∈I′

miσ(i)

=
∑
σ∈SI

ε(σ)
∑

K⊆I′⊆I

∏
i∈I\I′

δiσ(i)

∏
i∈I′

miσ(i)

=
∑
σ∈SI

ε(σ)
∑

K⊆I′⊆I

11
(
σ|I\I′ = id

) ∏
i∈I′

miσ(i)

=
∑

K⊆I′⊆I

∑
τ∈SI′

ε(τ)
∏
i∈I′

miτ(i) =
∑

K⊆I′⊆I

detMI′ .

�
When X is not a finite set, and assuming

(3.6) ‖K‖2
2 =

∑
x,y∈X

K(x, y)2 <∞,

sometime it is useful to think of K as an operator K : `2(X)→ `2(X), that is defined by

Kf(x) =
∑
y∈X

K(x, y)f(y).

We may write this an integral operator that is an example of a Hilbert-Schmidt operator.
In fact

Proposition 3.1 (i) Let P be determinantal with a kernel K. For any function u : X → R
of finite support,

(3.7) E
∏
x∈x

(1− u(x)) = det
(
11− uK

)
,

where (uK)(x, y) = u(x)K(x, y). Moreover when u ≥ 0, we may define(
u1/2Ku1/2

)
(x, y) = u1/2(x)K(x, y)u1/2(y).

In terms of u1/2Ku1/2,

det
(
11− uK

)
= det

(
11−

(
u1/2Ku1/2

))
.
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(ii) Let A be a finite subset of X. We have P
(
x∩A = ∅

)
= det

(
11A−KA

)
. More generally,

if A1, . . . , Ak are disjoints finite subsets of X, then the probability

(3.8) P
(
|x ∩ A1| = r1, . . . , |x ∩ Ak| = rk

)
,

is given by

(3.9)
(−1)

∑k
i=1 ri∏k

i=1 ri!

∂
∑k
i=1 ri

∂r1z1 . . . ∂
rk
zk

det
(
11A − z1KA1 − · · · − zkKAk

)∣∣∣
z1=···=zk=1

,

for A = A1 ∪ · · · ∪ Ak.

(iii) For every a ⊆ A,

(3.10) JA(a) = (−1)|a| det
(
11A\a −KA

)
= det

(
χA\a(11−K)A + χaKA

)
,

where χa(x) = 11(x ∈ a).

(iv) Assume that a ⊆ A. If KA is invertible, then

JA(a) = detKA det
(
L−1

)
A\a,

and if 11A −KA is invertible, then

JA(a) = det
(
11A −KA

)
detLa,

where L = LA = (11A −KA)−1KA = (11A −KA)−1 − 11A.

(v) If K is of trace class, then in part (ii) we may choose a set A that is not finite.

Proof(i) Using (3.12) and (3.11),

E
∏
x∈x

(1− u(x)) = 1 +
∑
n≥1

(−1)n E
∑

{x1,...,xn}⊆x

n∏
i=1

u(xi)

=
∑
a⊆X

(−1)|a|

(∏
a∈a

u(a)

)
detKa

=
∑
a⊆X

(−1)|a| det(uK)a = det
(
11− uK

)
.

(ii) By choosing u = 11A in (3.13) we learn

P
(
x ∩ A = ∅

)
= det

(
11X − (11AK11A)

)
= det

(
11A −KA

)
.
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More generally, if we choose

u =
k∑
i=1

zi11Ai ,

in (3.6), we obtain

E
∏
x∈x

(
k∑
i=1

(1− zi)11Ai(x) + 11X\A(x)

)
= det

(
11− z1KA1 − · · · − zkKAk

)
.

We then apply the differential operator that appears in (3.9) and evaluate both sides at
z1 = · · · = zk = 1. For example, when k = 1, we differentiate both sides with respect to
z = z1; the left-hand side yields

−
∑
a∈X

E
∏

x∈x,x 6=a

(
(1− z)11A(x) + 11X\A(x)

)
11
(
a ∈ x ∩ A

)
,

which is −P
(
|x ∩ A| = 1

)
at z = 1.

(iii) From (3.5) and (3.4),

JA(a) =
∑

a⊆b⊆A

(−1)|b|−|a| detKb = (−1)−|a|
∑

a⊆b⊆A

det(−K)b

= (−1)|a| det
(
11A\a −KA

)
,

for every a ⊆ A. Alternatively, let us set

K̂(x, y) = K(x, y)11
(
x ∈ A \ a

)
−K(x, y)11(x ∈ a), or in short K̂ = χA\aK − χaK.

Then for b with a ⊆ b ⊆ A,

(−1)|b|−|a| detKb = (−1)|b| det K̂b = det
(
− K̂

)
b
.

As a result,

JA(a) =
∑

a⊆b⊆A

(−1)|b|−|a|Kb =
∑

a⊆b⊆A

det(−K̂)b = det
(
11A\a − K̂A

)
= det

(
χA\a(11−K)A + χaKA

)
.

(iv) By (3.10),

JA(a) = det
(
χA\a(11−K)A + χaKA

)
= detKA det

(
χA\a(11−K)AK

−1
A + χa

)
,

= detKA det
(
χA\aL

−1 + χa

)
= det(11−K)A det

(
L−1

)
A\a

JA(a) = det
(
χA\a(11−K)A + χaKA

)
= det(11−K)A det

(
χA\a + χa(11A −KA)−1KA

)
= det(11−K)A det

(
χA\a + χaL

)
= det(11−K)A detLa.
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We now construct some examples of determinantal processes. In the first two examples
the probability of a configuration is given by a determinant and a configuration (restricted
to a finite set when X is infinite) can have a varying cardinality. In the remaining examples,
the cardinality of all configurations is fixed though the probability of a configuration is the
determinant of the product of two matrices of a special form.

Example 3.2(i) Assume that X is finite and let L : X ×X → R be a symmetric function
such that, regarding L as a matrix, we have detLa > 0 for every nonempty a ⊆ X. (This
condition is certainly true if L is positive definite.) We define a point process on X by

(3.11) P(x = a) = det(11 + L)−1 detLa.

for every a ∈ X . By Lemma 3.1, (3.18) is a probability measure. We now claim that the
probability measure P given by (3.11) is determinantal with correlation kernel

(3.12) K = L(11 + L)−1 = 11− (11 + L)−1.

Indeed, by (3.5)

ρ(a) = det(11 + L)−1
∑

a⊆b⊆X

detLb = det(11 + L)−1 det
(
11ac + L

)
= det

(
(11 + L)−1

(
11ac + L

))
= det ((11−K) 11ac +K) = det (11ac +K11a)

= det

[
Ka 0
Kac,a 11ac

]
= detKa,

as desired. Here we have used the decomposition X = a ∪ ac to express the matrix K in a
block form

K =

[
Ka Ka,ac

Kac,a Kac

]
.

Alternatively we may use a generalization of Cramer’s formula (see Example A1(ii) below)
to verify ρ(a) = detKa: For K as in (3.11),

detKa =
∑
b⊆a

(−1)|b| det
(
(11 + L)−1

)
b

= det(11 + L)−1
∑
b⊆a

(−1)|b| det
(
11 + L

)
bc

= det(11 + L)−1
∑
b⊆a

(−1)|b|
∑
c⊆bc

detLc

= det(11 + L)−1
∑
c⊆X

detLc

∑
b

(−1)|b| 11
(
b ⊆ a \ c

)
= det(11 + L)−1

∑
c⊆X

detLc 11
(
a \ c = ∅

)
= ρ(a).
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Here for the first and third equality we used (3.5); for the second equality we used (A.7)
below in the form

det
(
A−1

)
a

= (detA)−1 detAac ;

for the fifth equality we used the fact that if a′ = a \ c 6= ∅, then

∑
b

(−1)|b| 11
(
b ⊆ a′

)
=

|a′|∑
k=0

(−1)k
(
|a′|
k

)
= (1− 1)|a

′| = 0.

(ii) More generally, we choose any set X0 ⊆ X and define a point process y in the set X0

by the formula

(3.13) PX0(y = a) = P
(
x = a ∪Xc

0

∣∣Xc
0 ⊆ x

)
=

detLa∪Xc
0

det
(
11X0 + L

) .
Note that PX0 = P for X0 = X. We now claim that PX0 is a determinantal process in X0

with the correlation kernel K̂ : X0 ×X0 → R, that is given by

(3.14) K̂ = 11X0 −
((

11X0 + L
)−1
)
X0

.

As in part (i), we may use (3.12) and (A.7) to assert that for any a ⊆ X0

det K̂a =
∑
b⊆a

(−1)|b| det
((

11X0 + L
)−1
)
b

= det
(
11X0 + L

)−1
∑
b⊆a

(−1)|b| det
(
11X0 + L

)
bc

= det
(
11X0 + L

)−1
∑
b⊆a

(−1)|b|
∑

Xc
0⊆c⊆bc

detLc

= det
(
11X0 + L

)−1
∑

Xc
0⊆c⊆X

detLc

∑
b

(−1)|b| 11
(
b ⊆ a \ c

)
= det

(
11X0 + L

)−1
∑

Xc
0⊆c⊆X

detLc 11
(
a \ c = ∅

)
= det

(
11X0 + L

)−1
∑

a∪Xc
0⊆c⊆X

detLc

= det
(
11X0 + L

)−1
∑

a⊆b⊆X0

detLXc
0∪b = PX0

(
a ⊆ y

)
,

as desired. Note that if we write

L =

[
LX0 LX0,Xc

0

LXc
0 ,X0 LXc

0

]
,
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and assume that L, 11X0 + LX0 , LXc
0

are invertible, then by (A.9) of Appendix B,

L̂ : =
(
11X0 − K̂

)−1 − 11X0 =

(((
11X0 + L

)−1
)
X0

)−1

− 11X0

= LX0 − LX0,Xc
0
L−1
Xc

0
LXc

0 ,X0 .

(By approximation, we can show that this formula is valid whenever LXc
0

is invertible.) As a

result, the process y is also of the type we defined in (i), with the kernel L̂ playing the role
of L:

PX0(y = a) =
det L̂a

det
(
11X0 + L̂

) .
There is also a variational description for L̂: For every v ∈ `2(X0),

L̂v · v = inf
w∈`2(Xc

0)
L(v + w) · (v + w).

This is a straightforward consequence of the identity

L(v + w) · (v + w) = LX0 v · v + LXc
0
w · w + LX0,Xc

0
v · w + LXc

0 ,X0 w · v.

We may regard P as a Gibbs measure with possibly long correlation. Its potential functions
are simply given by

U
(
a | Xc

0

)
= − log det L̂a,

where L̂ = L
(
· | Xc

0

)
is defined as above.

(iii) For our next example, construct a determinantal process that is defined on

Xn =
{
a ∈ X : |a| = n

}
.

First we construct a point process with the following recipe: we take a measure µ : X →
[0,∞) and two families of functions φi, ψi : X → R, i ∈ N and define a probability measure

P
(
x = {x1, . . . , xn}

)
= Z−1 det

[
φi(xj)

]k
i,j=1

[
ψi(xj)

]k
i,j=1

n∏
i=1

µ(xi)

= Z−1 det
[
K(xi, xj)

]k
i,j=1

n∏
i=1

µ(xi).(3.15)

where Z is the normalizing constant, and

(3.16) K(x, y) =
n∑
i=1

φi(x)ψi(y).
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Here we are using (detA)(detB) = det(A∗B) for the second equality in (3.15). The normal-
izing constant is easily calculated:

Z = (n!)−1
∑

x1,...,xn∈X

det
[
φi(xj)

]k
i,j=1

[
ψi(xj)

]k
i,j=1

n∏
i=1

µ(xi)

= (n!)−1
∑
σ,τ∈Sn

ε(σ)ε(τ)
n∏
i=1

∑
xi∈X

φσ(i)(xi)ψτ(i)(xi) µ(xi)

= (n!)−1
∑
σ,τ∈Sn

ε(σ)ε(τ)
n∏
i=1

∑
x∈X

φσ(i)(x)ψτ(i)(x) µ(x)

= (n!)−1
∑
σ,τ∈Sn

ε(τσ−1)
n∏
i=1

∑
x∈X

φi(x)ψτσ−1(i)(x) µ(x)

=
∑
γ∈Sn

ε(γ)
n∏
i=1

∑
x∈X

φi(x)ψγ(i)(x) µ(x).

In summary

(3.17) Z = det

[∫
φiψj dµ

]n
i,j=1

.

Note that P(x = a) is still given by a determinant as in (i), except that the support of P is
now Xn. A natural question is whether or not P is a determinantal process. Note that the
expression

(3.18) P
(
{x1, . . . , xk} ⊂ x

)
,

equals

Z−1
[
(n− k)!

]−1
∑

xk+1,...,xn∈X

det
[
φi(xj)

]k
i,j=1

[
ψi(xj)

]k
i,j=1

n∏
i=k+1

µ(xi)

= Z−1
[
(n− k)!

]−1
∑
σ,τ∈Sn

ε(σ)ε(τ)

[
k∏
j=1

φσ(j)(xj)ψτ(j)(xj)

][
n∏

i=k+1

∑
xi∈X

φσ(i)(xi)ψτ(i)(xi) µ(xi)

]
.

To have a more tractable expression, we assume the families
{
φi : i ∈ N

}
and

{
ψi : i ∈ N

}
are biorthogonal with respect to µ:

(3.19)
∑
x∈X

φi(x)ψj(x) µ(x) = δij.
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Under this assumption, Z = 1 and (3.18) equals

[
(n− k)!

]−1
∑
σ,τ∈Sn

ε(σ)ε(τ)

[
k∏
j=1

φσ(j)(xj)ψτ(j)(xj)

]
11
(
σ = τ on {k + 1, . . . , n}

)
.

For any pair (σ, τ) ∈ Sn with σ(i) = τ(i), for i > k, we have{
σ(1), . . . , σ(k)

}
=
{
τ(1), . . . , τ(k)

}
=
{
α1, . . . , αk},

with 1 ≤ α1 < · · · < αk ≤ n. As a result

P
(
{x1, . . . , xk} ⊂ x

)
=

∑
1≤α1<···<αk≤n

∑
σ′,τ ′∈Sk

ε(σ′)ε(τ ′)

[
k∏
j=1

φασ′(j)(xj)ψατ ′(j)(xj)

]
=

∑
1≤α1<···<αk≤n

det
[
φαl(xj)

]k
j,l=1

det
[
ψαl(xj)

]k
j,l=1

.(3.20)

If we write
A =

[
φi(xj)

]n
i,j=1

, B =
[
ψi(xj)

]n
i,j=1

,

then by Cauchy-Binet (see (A.5)), we know that

ΛrC := Λr
(
A∗B

)
=
(
ΛrA

)∗(
ΛrB

)
.

In particular

detCa = detCaa =
∑
b∈Îk

detAba detBba.

This applied to (3.20) yields

P
(
{x1, . . . , xk} ⊂ x

)
= det

[
K(xi, xj)

]k
i,j=1

.

(iv) Let us assume that P is still given by (3.15) with no biorthogonality assumption. We
may hope to find φ̂1, . . . , φ̂n and ψ̂1, . . . , ψ̂n such that

φ̂i ∈ span
{
φ1, . . . , φn

}
, ψ̂i ∈ span

{
ψ1, . . . , ψ̂n

}
,

for every i, and 〈φ̂i, ψ̂j〉 = δij, where 〈·, ·〉 denotes the inner product of L2(µ). If this is the
case, then there are coefficients A =

[
aij
]n
i,j=1

and B =
[
bij
]n
i,j=1

such that

φ̂i =
n∑
j=1

aijφj, ψ̂i =
n∑
j=1

bijψj.
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Writing A−1 =
[
a′ij
]n
i,j=1

and B−1 =
[
b′ij
]n
i,j=1

, and observing

φi(xj) =
∑
i′

a′ii′φ̂i′(xj), ψi(xj) =
∑
i′

b′ii′ψ̂i′(xj),

we may write

P
(
x = {x1, . . . , xn}

)
=
(
Z detA detB

)−1
det
[
φ̂i(xj)

]k
i,j=1

[
ψ̂i(xj)

]k
i,j=1

n∏
i=1

µ(xi)

= Ẑ−1 det
[
K̂(xi, xj)

]k
i,j=1

n∏
i=1

µ(dxi),

where

K̂(x, y) =
n∑
i=1

φ̂i(x)ψ̂i(y).

Note that since the pair
(
φ̂, ψ̂

)
is biorthogonal, we learn that Ẑ = 1, or Z detA detB = 1.

Moreover
cij = 〈φi, ψj〉 =

∑
k,`

a′ikb
′
j`〈φ̂k, ψ̂`〉 =

∑
k

a′ikb
′
jk.

This means that the matrix C = [cij] satisfies

[djk]
d
j,k=1 :=

(
C−1

)∗
= A∗B, or djk =

n∑
i=1

aijbik.

This allows us to express K̂ in terms of φ and ψ:

(3.21) K̂(x, y) =
n∑

ijk=1

aijbikφj(x)ψk(y) =
d∑

j,k=1

djkφj(x)ψk(y).

This expression however is hard to use in practice when n is large because it involves the
inverse of the matrix C.

(v) In the previous example, we could have assumed that µ ≡ 1 for the price of replacing
the pair (φi, ψi) with (

√
µ φi,

√
µ ψi). Let us assume that the family {φi}ni=1, {ψi}ni=1 are as

in part (iv) and that µ ≡ 1. We now claim that the example of part (iv) can be recast as
a conditional determinantal example as in (ii). To explain this, augment the set X to

X̂ = {1, . . . , n} tX =: [n] tX.
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Define L : X̂ × X̂ → R as follows

L(a, b) =


φa(b) if a ∈ [n], b ∈ X,
ψb(a) if b ∈ [n], a ∈ X,
0 otherwise.

Expressing L as a matrix, set

Φ =
[
φi(x)

]
(i,x)∈[n]×X , Ψ =

[
ψi(x)

]
(i,x)∈[n]×X ,

then

L =

[
0 Φ

Ψ∗ 0

]
.

Note that since Φ and Ψ are not square matrices, it is natural to augment X to X̂ and
consider the matrix L as above that is a square matrix. Given a ⊆ X,

La∪[n] =

[
0 Φ[n],a(

Ψ[n],a

)∗
0

]
.

Or as a function,
La∪[n] :

(
a ∪ [n]

)
×
(
a ∪ [n]

)
→ R,

given by

La∪[n](a, b) =


φa(b) if a ∈ [n], b ∈ a,

ψb(a) if b ∈ [n], a ∈ a,

0 otherwise.

Let us consider a point process x in X with

P(x = a) = det
(
11X + L

)−1
detLa∪[n],

as in part (ii). We claim that this is the same point process we studied in part (iv) with
µ(x) = 1 for all x ∈ X. To see this, first we argue that if |a| 6= n then P(x = a) = 0. For
this it suffices to show that the matrix La∪[n] is never invertible whenever |a| 6= n. Indeed if

La∪[n]

[
v
w

]
= 0,

with v ∈ Rn, w ∈ R|a|, then
Φ[n],aw = 0, Ψ∗a,[n]v = 0,
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and one of these linear equations are under-determined whenever |a| 6= n. Moreover when
|a| = n, with a = {a1, . . . , an}, then the determinant of La∪[n] is calculated as

detLa∪[n] = (−1)n det

[
Φ[n],a 0

0
(
Ψ[n],a

)∗]
= (−1)n det

[
φi(aj)

]n
i,j=1

det
[
ψi(aj)

]n
i,j=1

,

which yields (3.15) after a normalization. Recall that the correlation kernel K̂ is given by
(3.14). According to our calculation, K̄ is also given by (3.21). It is instructive to see that
(3.14) yields (3.21). For this, we first need to invert

(3.22) 11X + L =

[
0 Φ

Ψ∗ 11X

]
.

Observe that if ΦΨ∗ =: C =
[
cij
]n
i,j=1

, then

cij =
∑
x∈X

φi(x)ψj(x) = 〈φi, ψj〉,

which is exactly what we had in part (iv). To invert 11X + L, observe

(
11X + L

) [a
b

]
=

[
a′

b′

]
,

means Φb = a′ and Ψ∗a+b = b′. Multiplying the second equation by Φ implies Ca+a′ = Φb′.
This in turn yields a = C−1Φb′ − C−1a′. From this, we can readily deduce

(3.23)
(
11X + L

)−1
=

[
−C−1 C−1Φ
Ψ∗C−1 11X −Ψ∗C−1Φ

]
.

As a result

K̂ = 11X −
((

11X + L
)−1
)
X

= 11X −
(
11X −Ψ∗C−1Φ

)
= Ψ∗C−1Φ,

which is exactly what we had in (3.21). Observe that if Φ̂ = C−1Φ with

Φ =

φ1
...
φn

 , Φ̂ =

φ̂1
...

φ̂n

 ,
then

Φ̂Ψ∗ = 11[n], φ̂i ∈ span{φ1, . . . , φn},
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for every i ∈ [n].

(vi) As our next example, we discuss a determinantal process that was studied by Eynard-
Mehta. Assume X = X1 t · · · tXN , and set

X (n) =
{
x :

∣∣x ∩Xi

∣∣ = n for i = 1, . . . , N
}
.

Given functions φi, ψi : X1 → R, i = 1, . . . , n, and

W i : Xi ×Xi+1 → R, i = 1, . . . , n− 1,

we consider a probability measure on X (n) such that

P
(
x ∩X1 =

{
z1

1 , . . . , z
1
n

}
, . . . ,x ∩XN =

{
zN1 , . . . , z

N
n

})
,

equals

(3.24) Z−1 det
[
φj(z

1
i )
]n
i,j=1

N−1∏
k=1

det
[
W k(zki , z

k+1
j ))

]n
i,j=1

det
[
ψj(z

N
i )
]n
i,j=1

.

Here Z is the normalizing constant, and we are assuming that the above expression is non-
negative. The interpretation is that the collection the sequence z1, . . . , zN is described by an
initial law for z1, a Markovian kernel W i

(
zi, zi+1

)
, and a final (conditional) law for the last

state zN . Note that P is as part (iii) or (iv) when N = 1. We now follow Borodin-Rains
[BR] to show that P is determinantal and it can be formulated as in part (ii). As in (iv),
we set X̂ = {1, . . . , n} ∪X, and consider a matrix L : X̂ × X̂ → R defined by

L(a, b) =


φa(b) if a ∈ [n], b ∈ X1,

−W k(a, b) if a ∈ Xk, b ∈ Xk+1, k = 1, . . . , N − 1,

ψb(a) if b ∈ [n], a ∈ XN ,

0 otherwise.

Expressing L as a matrix, we have

L =


0 Φ 0 0 . . . 0
0 0 −W 1 0 . . . 0
...

...
...

. . . . . .
...

0 0 0 0 . . . −WN−1

Ψ∗ 0 0 0 . . . 0

 .
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Given a1 ⊆ X1, . . . , aN ⊆ XN ,

La1∪···∪aN∪[n] =


0 Φ[n],a1 0 0 . . . 0
0 0 −W 1

a1,a2
0 . . . 0

...
...

...
. . . . . .

...
0 0 0 0 . . . −WN−1

aN−1,aN(
Ψ[n],aN

)∗
0 0 0 . . . 0

 .

Let us consider a point process x in X with

P (x ∩X1 = a1, . . . ,x ∩XN = aN) = det
(
11X + L

)−1
detLa1∪···∪aN∪[n],

as in part (ii). We claim that this is the same point process we defined by (3.24). To see
this, first we argue that if |ai| 6= n for some i = 1, . . . , N , then P

(
x = a1∪ · · ·∪aN

)
= 0. For

this it suffices to show that if a = a1∪ · · ·∪aN , the then the matrix La∪[n] is never invertible
unless |a1| = · · · = |aN | = n. Indeed if

La∪[n]


v
w
e1

...
eN−1

 = 0,

with v ∈ Rn, w ∈ R|aN |, and ei ∈ R|ai|, for i = 1, . . . , N − 1, then

(3.25) Φ[n],a1w = 0, Ψ∗aN ,[n]v = 0, W k
ak,ak+1

ek = 0,

for k = 1, . . . , N − 1. Clearly if |ak+1| > |ak|, then the last equation in (3.25) is under-
determined and has non-zero solution. So for the invertibility of La∪[n] we must have

|a1| ≥ |a2| ≥ · · · ≥ |aN |.

On the other hand, if |a1| > n, the first equation in (3.25) is under-determined. Hence the
invertibility of La∪[n] forces n ≥ |a1|. Finally if |aN | < n, then the second equation in (3.25)
is under-determined. Thus the invertibility of La∪[n] implies

|a1| = |a2| = · · · = |aN | = n.

Under this assumption, let us write ai =
{
ai1, . . . , a

n
n

}
. Then the determinant of La∪[n] is
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calculated as

detLa∪[n] = (−1)nN+(N−1) det


Φ[n],a1 0 0 . . . 0

0 W 1
a1,a2

0 . . . 0
...

...
...

. . . . . .
...

0 0 0 . . . WN−1
aN−1,aN

0

0 0 0 . . . 0
(
Ψ[n],aN

)∗


= (−1)n(N+1)−1 det

[
φi(a

1
j)
]n
i,j=1

N−1∏
k=1

det
[
W k(aki , a

k−1
j )

]n
i,j=1

det
[
ψi(a

N
j )
]n
i,j=1

,

which yields (3.25) after a normalization. Observe that if

M := ΦW 1 . . .WN−1Ψ∗,

then the normalizing constant Z in (3.24) is simply detM .
To find the correlation kernel K̂, we first need to invert

11X + L =


0 Φ 0 0 . . . 0 0
0 11X1 −W 1 0 . . . 0 0
...

...
...

. . . . . .
...

...
0 0 0 0 . . . 11XN−1

−WN−1

Ψ∗ 0 0 0 . . . 0 11XN .

 .

To invert this matrix, we first write it as

(3.26) 11X + L =

[
0 A
B∗ D

]
,

where

A =
[
Φ 0 . . . 0

]
, B =

[
0 . . . 0 Ψ

]
,

D =


11X1 −W 1 0 . . . 0 0

...
...

...
. . . . . .

...
0 0 0 . . . 11XN−1

−WN−1

0 0 0 . . . 0 11XN

 .(3.27)

Note that if we replace D with the identity matrix, then (3.25) becomes (3.22) and we already
know that the inverse is given by (3.23). On the other hand,[

11[n] 0
0 D−1

] [
0 A
B∗ D

]
=

[
0 A

D−1B∗ 11X

]
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is of the form (3.22) with inverse[
−C−1 C−1A

D−1B∗C−1 11X −D−1B∗C−1A

]
,

with C = AD−1B∗. This in turn implies[
0 A
B∗ D

]−1

=

[
−C−1 C−1A

D−1B∗C−1 11X −D−1B∗C−1A

] [
11 0
0 D−1

]
=

[
−C−1 C−1AD−1

D−1B∗C−1 D−1 −D−1B∗C−1AD−1

]
.(3.28)

As a result

(3.29) K̂ = 11X −
((

11X + L
)−1
)
X

= 11X −D−1 +D−1B∗C−1AD−1.

For this, we need to find D−1. Observe that since D = 11X − E with EN = 0, we have

D−1 = 11X + E + E2 + · · ·+ EN−1.

We may write E =
[
δi+1,jW

i
]N
i,j=1

, with the entry (i, j) representing a matrix of size |Xi| ×
|Xj|. We can then write

Er =
[
δi+r,jW[i,i+r)

]N
i,j=1

, where W[i,i+r) = W iW i+1 . . .W i+r−1.

This leads to

(3.30) D−1 =


11X1 W[1,2) W[1,3) . . . W[1,N−1) W[1,N)

...
...

...
. . .

...
...

0 0 0 . . . 11XN−1
W[N−1,N)

0 0 0 . . . 0 11XN

 =: 11X + Ŵ .

Moreover

C = AD−1B∗ =
[
Φ ΦW[1,2) . . . ΦW[1,N)

]


0
...
0

Ψ∗

 = ΦW[1,N)Ψ
∗ = M

B∗C−1A = B∗M−1A =


0
...
0

Ψ∗

 [M−1Φ 0 . . . 0
]

=


0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

Ψ∗M−1Φ 0 . . . 0

 ,
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where the last matrix is regarded as N × N matrix with (i, j)-th block of size |Xi| × |Xj|.
If we write D−1 =

[
Rij

]N
i,j=1

with again (i, j)-th block of size |Xi| × |Xj|, we learn that the

(i, j)-th block of D−1B∗M−1AD−1 of the form

RiNΨ∗M−1ΦR1j = W[i,N)Ψ
∗M−1ΦW[1,j),

with the convention that W[i,i) = 11Xi . Finally

K̂ = D−1B∗M−1AD−1 − Ŵ .

Its (i, j)-th block is given by

K̂ij = W[i,N)Ψ
∗M−1ΦW[1,j) −W[i,j)11(i < j).

We note that for every i ∈ [N ], the point process zi = x∩Xi is also a determinantal process
with correlation kernel

K̂ii = W[i,N)Ψ
∗M−1ΦW[1.i),

with M = ΦW[1.N)Ψ
∗. Writing

Φj = ΦW[1,j), Ψ∗i = W[i,N)Ψ
∗,

we realize that M = ΦiΨ
∗
i , and

K̂ii = Ψ∗iM
−1Φi.

Hence the law of zi is of the type that appeared in part (i). More generally,

K̂ij = Ψ∗iM
−1Φj −W[i,j)11(i < j).

Assume that W i is invertible for all i and set

W[i,j) := W−1
[j,i),

for i > j so that W[i,j)W[j,i) = 11. We then always have

K̂ij = W[i,j)

(
K̂jj − 11(i < j)

)
.

(vii) Let us assume that n = 1 in (vii), W i = P , and Xi = X for all i. The configuration
x = (x1, . . . , xN) ∈ XN is roughly the state of Markov chain with Markovian kernel P (x, y),
initial distribution related to φ, and some conditioning at time N that is related to ψ:

P(x) = Z−1φ(x1)ψ(xN)
N−1∏
i=1

P (xi, xi+1).
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We assume that P, φ, ψ ≥ 0, and∑
y∈X

P (x, y) = 1,
∑
y∈X

φ(y) = 1,

for every x. Then the (i, j)-th block of the correlation function K̂ is now given by

K̂ij(x, y) = M−1
∑
a,b∈X

PN−i(x, a)ψ(a)φ(b)P j−1(b, y)− P j−i(x, y)11(i < j)

= M−1
(
PN−iΨ∗

)
(x)

(
ΦP j−1

)
(y)− P j−i(x, y)11(i < j),

where M = Z is the normalizing constant:

M = Z = ΦPN−1Ψ∗ =
∑
a,b∈X

PN−1(a, b)φ(a)ψ(b).

Note that if P is invertible, then

K̂ij = P j−i(K̂jj − 11(i < j)
)
.

To see this, write fi = PN−iΨ∗ and gj = ΦP j−1, so that

K̂ij = M−1 fi ⊗ gj − P j−i11(i < j) = P j−i [M−1 P i−j(fi ⊗ gj)− 11(i < j)
]

= P j−i [M−1
(
P i−jfi ⊗ gj

)
− 11(i < j)

]
.

On the other hand,
P i−jfi = P i−jPN−iΨ∗ = PN−jΨ∗ = fj,

as desired.
We now consider two special cases. For our first case, we assume that ψ = 1, so that P

is simply the law of a Markov chain of size N with kernel P and initial law φ. In this case
P rΨ∗ = 1, M = 1, and K̂ij simplifies to

K̂ij(x, y) =
(
φP j−1

)
(y)− P j−i(x, y)11(i < j).

For our second special case, we choose φ(x) = 11(x = ā) and ψ(y) = 11(y = b̄). Then
P represents a Markov chain that is conditioned to start from ā initially, and arrive at b̄ at
time N . Now the normalizing constant is

M = Z = PN−1(ā, b̄),

and K̂ij takes the form

K̂ij(x, y) = Z−1 PN−i(x, b̄) P j−1(ā, y)− P j−i(x, y)11(i < j).
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(viii) We describe a determinantal process that is very much related to TASEP (see Chapter
5) and was studied by Borodin et al. [BFPS]. We assume there are countable sets X1, . . . , XN

and a collection of functions

W k : Xk ×Xk+1 → R, k = 1, . . . , N − 1,

γi : Xi → R, ψi : XN → R, i = 1, . . . , N.

Consider a point process z that lives in the set

X = X1 t · · · tXN ,

such that z ∩Xi = zi with zi =
{
zi1, . . . , z

i
i

}
, |zi| = i and

(3.31) P(z) = Z−1 γ1

(
z1

1

)N−1∏
k=1

det Φk(z
k, zk+1) det

[
ψj(z

N
i )
]N
i,j=1

,

where Z is the normalizing constant, and Φk(z
k, zk+1) is a (k + 1)× (k + 1) matrix that we

obtain from the matrix
[
W k
(
zki , z

k+1
j

)]
i∈[k],j∈[k+1]

by adding a row (say as the last row) of

the form
γk+1

(
zk+1

)
:=
[
γk+1

(
zk+1

1

)
, . . . , γk+1

(
zk+1
k+1

)]
.

We now claim that the point process given by (3.28) can be recast as part (ii). For this, we
set X̂ = [N ] tX and define L : X̂ × X̂ → R as follows

L(a, b) =


δai γi(b) if a ∈ [N ], b ∈ Xi, i = 1, . . . , N

−W k(a, b) if a ∈ Xk, b ∈ Xk+1, k = 1, . . . , N − 1,

ψb(a) if b ∈ [N ], a ∈ XN ,

0 otherwise.

Expressing L as a matrix, we have

L =


0 E1 E2 E3 . . . EN

0 0 −W 1 0 . . . 0
...

...
...

. . . . . .
...

0 0 0 0 . . . −WN−1

Ψ∗ 0 0 0 . . . 0

 ,
where Ψ =

[
ψi(x)

]
i∈[N ],x∈XN

, and Ei has only its i-th row nonzero. Given a1 ⊆ X1, . . . , a
N ⊆

XN ,

La1∪···∪aN∪[N ] =


0 E1

[N ],a1 E1
[N ],a2 E3

[N ],a3 . . . EN
[N ],aN

0 0 −W 1
a1,a2 0 . . . 0

...
...

...
. . . . . .

...
0 0 0 0 . . . −WN−1

aN−1,aN(
Ψ[N ],aN

)∗
0 0 0 . . . 0

 .
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Let us consider a point process z in X with

(3.32) P′
(
z ∩X1 = a1, . . . , z ∩XN = aN

)
= det

(
11X + L

)−1
detLa1∪···∪aN∪[N ],

as in part (ii). We claim that this is the same point process we defined by (3.31). To see
this, first we argue that if |ai| 6= i for some i = 1, . . . , N , then P

(
a1 ∪ · · · ∪ aN

)
= 0. For this

it suffices to show that if a = a1 ∪ · · · ∪ aN , then the matrix La∪[N ] is never invertible unless
|ai| = i for all i = 1, . . . , N . Indeed if

La∪[N ]


v
e1

...
eN

 = 0,

with v ∈ RN , and ei ∈ R|ai|, for i = 1, . . . , N , then

(3.33)
N∑
i=1

Ei
[N ],aie

i = 0, , W k
ak,ak+1e

k+1 = 0 Ψ∗aN ,[N ]v = 0,

for k = 1, . . . , N − 1. Note that the last equation is under-determined unless |aN | ≥ N . If
we write

ci =
(
γi(b) : b ∈ ai

)
∈ R|ai|,

then the first equation in (3.33) means that ci · ei = 0 for i = 1, . . . , N . For i = 1, the
equation c1 · e1 = 0 is under-determined unless |a1| ≤ 1. Moreover, for k = 1, . . . , N −1, pair
of equations

ck+1 · ak+1 = 0, W k
ak,ak+1e

k+1 = 0,

is a system of |ak|+1 equations, and this system is under-determined unless |ak+1| ≤ |ak|+1.
From this and |a1| ≤ 1 we deduce |ak| ≤ k for k = 1, . . . , N . This, and |aN | ≥ N yields
|aN | = N . From this and |ak+1| ≤ |ak| + 1, and a backward induction (starting from
k = N) we can readily show that |ak| = k for k = 1, . . . , N . In summary, P′(z) = 0
unless |z ∩ Xk| = |ak| = k. Assuming this, we now examine detLz∪[N ]. Let us write
ak =

(
zk1 , . . . , z

k
k

)
. Observe that E1 = γ1(z1

1). Also observe that the second row is the vector(
0, 0, γ2(z2

1), γ2(z2
2), 0, . . . , 0

)
. We place this row below −W 2

a1,a2 and drop the minus sign.

This action turn the matrix −W 2 to Φ2

(
a1, a2). Similarly place the k-th below −W k

ak,ak+1

and drop the minus sign. From all these actions we deduce

detLa1∪···∪aN∪[N ] = ± det


0 γ1(z1

1) 0 0 . . . 0
0 0 Φ2

(
a1, a2) 0 . . . 0

...
...

...
. . . . . .

...
0 0 0 0 . . . ΦN−1

(
aN−1, aN

)(
Ψ[N ],aN

)∗
0 0 0 . . . 0

 .
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This matches P except for the normalizing constant. To find the correlation kernel K̂, we
first need to invert

11X + L =


0 E1 E2 E3 . . . EN−1 EN

0 11X1 −W 1 0 . . . 0 0
...

...
...

. . . . . .
...

...
0 0 0 0 . . . 11XN−1

−WN−1

Ψ∗ 0 0 0 . . . 0 11XN

 =

[
0 A
B∗ D

]
,

where D is as in (3.27), and

A =
[
E1 E2 . . . EN

]
, B =

[
0 . . . 0 Ψ

]
.

Then
(
11X + L

)−1
is given by (3.28) with C = AD−1B∗. This in turn implies

K̂ = 11X −D−1 +D−1B∗C−1AD−1.

as in (3.29) with D−1 as in (3.30). Observe

AD−1 =
[
E1 E1W[1,2) + E2 . . .

∑N−1
i=1 EiW[i,N) + EN

]
=:
[
Λ1 Λ2 . . . ΛN

]
:= Λ,

D−1B∗ =


W[1,N)Ψ

∗

W[2,N)Ψ
∗

...
W[N−1,N)Ψ

∗

Ψ∗

 =


W[1,N)

W[2,N)
...

W[N−1,N)

W[N,N)

Ψ∗ =: ΓΨ∗,

where we use the convention W[i,i) = 11Xi . On the other hand,

(3.34) C = AD−1B∗ = ΛB∗ = ΛNΨ∗.

As a result,

(3.35) K̂ = ΓΨ∗C−1Λ− Ŵ , Kij = W[i,N)Ψ
∗C−1Λj − 11(i < j)W[i,j).

where Kij : Xi × Xj → R denotes the (i, j)-th block of K̂. Here Γ : X × XN → R,
C : [N ]× [N ] → R is an N ×N matrix, Λi : [N ]×Xi → R, and Λ : [N ]×X → R, so that
the right-hand side of the first display is from X ×X to R. In practice, the main challenge
comes from inverting C (compare with part (vi) and (v)), or more specifically, evaluating

Φj := C−1Λj : [N ]×Xj → R.
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Note that for sure we have

ΦNΨ∗ = C−1ΛNΨ∗ = C−1C = 11[N ].

In other words ΦN is a left inverse of Ψ∗. �

We continue with some general facts about determinantal processes. The following result
is due to Shirai and Takahashi [TH]:

Proposition 3.2 Assume that K : X ×X → R is symmetric with 0 ≤ K ≤ 1. Then there
is a unique determinantal process with correlation kernel K.

Proof (Step 1.) Let M,M ′ : A×A→ R be two symmetric matrices such that MM ′ = M ′M ,
and M,M ′ ≥ 0. We then claim that for every a ⊆ A,

(3.36) det
(
χA\aM

′ + χaM
)
≥ 0.

By continuity, it suffices to establish (3.36) when M > 0. Indeed

det
(
χA\aM

′ + χaM
)

= detM det
(
χA\aM

′M−1 + χa11A
)

= detM det
(
M ′M−1

)
A\a.

On the other hand, since M ′ ≥ 0,M > 0, and

M ′M−1 = M−1/2M ′M−1/2 ≥ 0,

we deduce that det
(
M ′M−1

)
A\a, which in turn implies (3.36).

(Step 2.) Fix a nonempty finite set A ⊆ X. Motivated by (3.10), we define PA : 2A → R by
the formula

PA(a) = det
(
χA\a(11−K)A + χaKA

)
.

From (3.36) we learn that PA(a) ≥ 0. Moreover, by (3.4),∑
a⊆A

PA(a) = det
(
(11−K)A +KA

)
= 1.

As a result, PA is a probability measure. On the other hand, we may use (3.10) to assert
that for any c ⊆ A,

PA
(
a : c ⊆ a

)
=
∑
c⊆a

∑
a⊆b⊆A

(−1)|b|−|a|Kb =
∑

c⊆b⊆A

(−1)|b|−|c|Kb

∑
a

(−1)|c|−|a|11
(
c ⊆ a ⊆ b

)
=
∑

c⊆b⊆A

(−1)|b|−|c|Kb

∑
a′⊆b\c

(−1)|a
′| =

∑
c⊆b⊆A

(−1)|b|−|c|Kb 11
(
b \ c = ∅

)
= Kc.
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Hence PA is the law of a determinantal process with correlation kernel KA.

(Step 3.) We are done if we can verify the consistency for the family
(
PA : A ⊆ X

)
. Indeed

if a ⊆ A ⊂ A′, then the restriction of PA′ to A yields a determinantal process with kernel
KA which coincide with PA. �

In fact Proposition 3.2 is closely related to Example 3.2(i). Given a determinantal process
with correlation kernel K, we may wonder whether or not it is as in Example 3.2(i) for some
L : X ×X → R. In view of (3.12), we may try to find L for which (3.12) holds:

(3.37) L = (11−K)−1 − 11 = (11−K)−1K.

This is certainly well-defined if 11 − K is invertible. In particular whenever K < 11 holds.
If we assume that 0 < K < 11, then the corresponding determinantal process is a Gibbs
measure (possibly with long correlation) as was observed by Shirai and Takahashi [TH].
Roughly speaking, we need to calculate

P
(
x = a ∪ {y}

)
P(x = a)

= lim
Y→X

P
(
x ∩ Y = (a ∪ {y}) ∩ Y

)
P(x ∩ Y = a ∩ Y )

,

where Y is a finite subset of X that increases. �
When K is symmetric and 0 ≤ K ≤ 1, then we may use the eigenvalues λ1 ≥ λ2 ≥ . . .

and the corresponding eigenfunctions φ1, φ2, . . . to express

K(x, y) =
n∑
i=1

λiφi(x)φi(y) =
n∑
i=1

λi
(
φi ⊗ φi

)
(x, y),(3.38) ∑

x∈X

φi(x)φj(x) = 11(i = j),

where n = |X| is the size of the space X. It was observe by Hough et al. [HKPV] that
the total number of particles have a simple description in terms of the eigenvalues: If we
write ζ1, ζ2, . . . , for a sequence of Bernoulli random variables (i.e., with values in {0, 1}) with
P(ζi = 1) = λi, then N = |x| has the same distribution as

∑
i ζi. In particular, if K is the

correlation kernel for a determinantal process such that N is fixed and deterministic, then
we much have that there are exactly N many eigenvalues 1, and the remaining eigenvalues
are 0. In this case, (3.38) becomes

K(x, y) =
N∑
i=1

φi(x)φi(y),
∑
x∈X

φi(x)φj(x) = 11(i = j), i, j ∈ {1, . . . , N}.(3.39)

In short
K = Φ∗Φ, ΦΦ∗ = 11[N ],
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where Φ =
[
φi(x)

]
(i,x)∈[N ]×X . This means that the kernel K is associated with the projection

operator onto the span of the eigenfunctions φ1, . . . , φN , and

P(x) =
(

det
[
φi(xj)

]N
i,j=1

)2

.

The projection operator K is uniquely determined from its range ΠN = span{φ1, . . . , φN}.
In other words, if X is a discrete set and L2(X) is the set of functions f : X → R and
equipped with the inner product

〈f, g〉 =
∑
x

f(x)g(x),

then there is a one-to-one correspondence between determinantal point processes with sym-
metric kernel of exactly N particles, and N -dimensional linear subspaces of L2(X). Given
such a subspace, any orthonormal basis {φ1, . . . , φN}, yields a representation as in (3.39).
Let us write PΠ for the corresponding probability measure and x = {x1, . . . , xN} for the cor-
responding determinantal process. It is worth mentioning that x = (x1, . . . , xN)-coordinate
of the N -vector φ1 ∧ · · · ∧ φN is exactly(

φ1 ∧ · · · ∧ φN
)
(x) = det

[
φi(xj)

]
.

Hence PΠ(x) =
(
φ1 ∧ · · · ∧ φN

)
(x)2.

Proposition 3.3 Given distinct point a := {a1, . . . , ak} ⊂ X, with 0 < k < N , and an
N-dimensional linear subspace Π = ΠN =

{
φ1, . . . , φN

}
, we have

(3.40) PΠ

(
· | a ⊂ x

)
= PΠ̂,

where Π̂ is the orthogonal complement of

Πk = span
{
K(·, a1), . . . , K(·, ak)

}
=:
{
γ1, . . . , γk

}
,

with K as in (3.39).

Proof Given x, let us write
γi = K(·, xi) = Kδxi ,

where δa(b) = 11(a = b). Obviously

〈γi, γj〉 = 〈δxi ,Πδxj〉 = K(xi, xj).

From this and Gram’s identity (A.6),

PΠ(x) = det
[
K(xi, xj)

]N
i,j=1

= det
[
〈γi, γj〉

]N
i,j=1

=
∣∣γ1 ∧ · · · ∧ γN

∣∣2 =
∣∣Πδx1 ∧ · · · ∧ ΠδxN

∣∣2.
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Let ΠN−1 = ΠN ∩ γ⊥N . Also write KN−1 for the orthogonal projection onto ΠN−1. Set
ζi = KN−1γi. Evidently,

γ1 ∧ γ2 ∧ · · · ∧ γN = γ1 ∧ ζ2 ∧ · · · ∧ ζN .

From this and Gram’s identity, we deduce

∣∣γ1 ∧ γ2 ∧ · · · ∧ γN
∣∣2 =

∣∣γ1 ∧ ζ2 ∧ · · · ∧ ζN
∣∣2 = det

[
A 0
0 |γ1|2

]
= |γ1|2 detA,

where A =
[
〈ζi, ζj〉

]N−1

i,j=1
. On the other hand, since

ζi = KN−1γi = KN−1KNδxi = KN−1δxi ,

we learn
detA = det

[
KN−1(xi, xj)

]N−1

i,j=1

As we fix xN and vary xN−1, . . . , x1, we deduce that the process {x1, . . . , xN−1} is a point
process associated with the linear subspace ΠN−1 = ΠN−1(xN). In summary

(3.41) PΠ(x) = |γ1|2 PΠN−1(xN ) ({x1, . . . , xN−1}) = PΠ

(
xN ∈ x

)
PΠN−1(xN ) ({x1, . . . , xN−1}) .

This implies (3.40) when k = 1. The general case can be established by an induction on
k. �

So far we have assumed that K is symmetric. For a non-symmetric K, we may use
left and right eigenfunctions to guarantee biorthogonality. More precisely, we search for a
collection of pairs

(
(φi, ψi) : i = 1, . . . , n

)
such that

Kφi = λiφi, φiK = λiψi.

The point is that if λi 6= λj, then 〈φi, ψj〉 = 0. We may try to find a representations of K as

K =
n∑
i=1

λi
(
φi ⊗ ψi

)
,(3.42) ∑

x∈X

φi(x)ψj(x) = 11(i = j).

In the case of a constant size N for the configuration, the analog of (3.39) is

K(x, y) =
N∑
i=1

φi(x)ψi(y),
∑
x∈X

φi(x)ψj(x) = 11(i = j), i, j ∈ {1, . . . , N}.(3.43)

56



This is exactly our example Example 3,2(iii). The operator K is a projection onto ΠN , the
span of φ1, . . . , φN . Let us also define Π′N := span{ψ1, . . . , ψN}: For every f ∈ L2(X),

Kf ∈ ΠN , (f −Kf) ⊥ Π′N ,

fK ∈ Π′N , (f − fK) ⊥ ΠN .

In fact the operator K = KΠ,Π′ is uniquely defined by the the property:

f ∈ L2(X) =⇒ Kf ∈ ΠN , fK ∈ Π′N ,

(Note that the second condition is equivalent to (f −Kf) ⊥ Π′N .) As a consequence if

(3.44) Π ⊂ Π̂, Π′ ⊂ Π̂′ =⇒ KΠ̂,Π̂′ KΠ,Π′ = KΠ,Π′ KΠ̂,Π̂′ = KΠ,Π′ .

and we write K and K̂ for the corresponding projection, then
Observe

(KK∗)(x, y) =
∑
z

K(x, z)K(z, y) =
N∑

i,j=1

∑
z

φi(x)ψi(z)φj(z)ψj(y)

=
N∑
i=1

φi(x)ψi(y) = K(x, y).

Also observe ∑
x

K(x, x) = N.

In fact the operator K is determined uniquely by the two N -dimensional subspaces ΠN and
Π′N . Once they are given, we then select a basis {φ1, . . . , φN} for ΠN , and find ψ1, . . . , ψN ∈
Π′N such that the second equation in (3.40) is true. This specifies ψ1, . . . , ψN uniquely. We
write PΠ,Π′ for the corresponding determinantal process.

The following construction of the corresponding point process x gives a Gibbsian flavor
to such determinantal process:

Step 1. Pick a point x = xN according to the probability measure N−1K(x, x).

Step 2. Take the complement of γn(x) = K(x, xn) in ΠN :

ΠN−1 =
{
f ∈ ΠN : f − γb ∈ Π′N

}
.

Define KN−1 as the ψ-projection onto ΠN−1.

Step 3. Pick xN−1 according to (N − 1)−1KN−1(x, x).

Step 4. Continue inductively to construct the sequence xN , . . . , x1. �
The above algorithm produces the desired determinantal process because of the following

generalization of Proposition 3.3.
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Proposition 3.4 Given distinct point a := {a1, . . . , ak} ⊂ X, with 0 < k < N , and an
N-dimensional linear subspaces

Π = ΠN =
{
φ1, . . . , φN

}
, Π′ = Π′N =

{
ψ1, . . . , ψN

}
.

we have

(3.45) PΠ

(
· | a ⊂ x

)
= P(Π̂,Π̂′),

where Π̂ and is a suitable complement of

Πk = span
{
K(·, a1), . . . , K(·, ak)

}
=:
{
γ1, . . . , γk

}
,

with K as in (3.39).

Proof Given x, let us define γi = δxiK, γ
′
i = Kδxi . We certainly have

〈γi, γ′j〉 =
∑
x

(
N∑
r=1

φr(xi)ψr(x)

)(
N∑
r′=1

φr′(x)ψr′(xj)

)
= K(xi, xj).

From this and Gram’s identity (A.6),

PΠ(x) = det
[
K(xi, xj)

]N
i,j=1

= det
[
〈γi, γ′j〉

]N
i,j=1

= 〈γ1 ∧ · · · ∧ γN , γ′1 ∧ · · · ∧ γ′N〉.

Set
ΠN−1 = ΠN ∩ (γ′N)⊥, Π′N−1 = Π′N ∩ γ⊥N .

We also define KN−1 for the projection associated with the pair
(
ΠN−1,Π

′
N−1

)
. We now set

ζi = KN−1γi = KN−1KNδxi = KN−1δxi , ζ ′i = γ′iKN−1 = γ′iKN−1KN = δxiKN−1,

where we have used (3.44) for the third equalities. Evidently,

γ1 ∧ γ2 ∧ · · · ∧ γN = γ1 ∧ ζ2 ∧ · · · ∧ ζN , γ′1 ∧ γ′2 ∧ · · · ∧ γ′N = γ′1 ∧ ζ ′2 ∧ · · · ∧ ζ ′N .

From this and Gram’s identity, we deduce

〈γ1 ∧ γ2 ∧ · · · ∧ γN , γ′1 ∧ γ′2 ∧ · · · ∧ γ′N〉 = 〈γ1 ∧ γ2 ∧ · · · ∧ γN , γ′1 ∧ ζ ′2 ∧ · · · ∧ ζ ′N〉

= det

[
〈γ1, γ

′
1〉 0

0 A

]
= |γ1|2 detA,

where A =
[
〈ζi, ζ ′j〉

]N−1

i,j=1
. On the other hand,

detA = det
[
KN−1(xi, xj)

]N−1

i,j=1
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As we fix xN and vary xN−1, . . . , x1, we deduce that the process {x1, . . . , xN−1} is a point
process associated with the pair of linear subspaces

(
ΠN−1,Π

′
N−1

)
=
(
ΠN−1(xN),Π′N−1(xN)

)
.

In summary

PΠN ,Π
′
N

(x) = 〈γ1, γ
′
1〉 PΠN−1(xN ),Π′N−1(xN ) ({x1, . . . , xN−1})(3.46)

= PΠN ,Π
′
N

(
xN ∈ x

)
PΠN−1(xN ),Π′N−1(xN ) ({x1, . . . , xN−1}) .

This implies (3.44) when k = 1. The general case can be established by an induction on
k. �

Exercise

(i) Verify (3.3).

(ii) In Example 3.2(vi) consider the following scenario:

• Xi = 2Z is the set of even integers for i even, and Xi = 2Z+1 is the set of odd integers
for i odd.

• Xi =
{

(z1, . . . , zn) ∈ Xn
i : z1 < · · · < zn

}
.

• All W k = P are equal with P (a, b) = p−11(b = a− 1) + p+11(b = a+ 1).

• φi(x) = 11(x = ai) and ψj(y) = 11(y = bj) for some (a1, . . . , an) ∈ X1 and (b1, . . . , bn) ∈
XN .

Given z =
(
z1, . . . , zN

)
, with zi = (zi1, . . . , z

i
n) ∈ Xi, i ∈ [N ], z1 = a, zN = b, set

P(z) = Z−1

N−1∏
i=1

det
[
W (zij, z

i+1
k )

]N
j,k=1

.

(1) Show that if det
[
P (zij, z

i+1
k )

]N
j,k=1

6= 0, then

det
[
P (zij, z

i+1
k )

]N
j,k=1

=
n∏
j=1

P (zij, z
i+1
j ),

and P is the law of n walks that are conditioned on non-intersecting, and z1 = a, zN = b.

(2) Show that the corresponding M is
[
PN−1(ai, bj)

]N
i,j=1

.

(3) Show that for each i ∈ [N ], the point process zi is determinantal with correlation kernel

K̂i(x, y) =
N∑

r,s=1

PN−i(x, br)M
−1(br, as)P

i−1(as, y).
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(4) Conclude that the point process zi is of the same type that appeared in Example 3.2(v)

for Φ =
[
PN−i(x, br)

]N
r=1

and Ψ =
[
P i−1(as, y)

]N
s=1

.

(iii) Let X be a discrete set. Assume that x1, x2, . . . , xn, . . . is a Markov chain in X with
initial distribution π, and transition matrix P : X × X → R. Assume that this Markov
chain does not visit any point twice so that the matrix

Q =
∞∑
k=1

P k,

is finite. Let x = {xn : n ∈ N} be a realization of the above Markov chain. Express the
correlation function of x in terms of Q and show that x is determinantal with correlation
kernel

K(x, y) = π(x) + (πQ)(x)−Q(y, x).

�
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4 SEP and Bethe Ansatz

Totally Asymmetric Exclusion Process (TASEP) is a particle system on Z that belongs to
KPZ universality class. It is an exactly solvable model and has been used to obtain various
information about solutions to KPZ equation. For a finite TASEP with exactly N particles,
we may choose the state space

EN =
{
x = (x1, . . . , xN) ∈ ZN : x1 < · · · < xN

}
.

The process x(t) is a Markov process with the infinitesimal generator

Lf(x) =
∑
i

11
(
xi ∈ EN

)(
f(xi)− f(x)

)
,

where xi denotes the state we obtain from x by moving the i-the particle from its location xi
to the new location xi+1. It is also useful to think of xi as the height above i so that the lattice
function i 7→ xi is a strictly increasing function. The height differences ζi(t) := xi+1(t)−xi(t)
evolve as a Markov process and is an example of a family of particle systems known as Zero
Range Processes. TASEP is exactly solvable because there is a rather simple explicit formula
for its tansition probability that was derived by Schütz. This derivation is based on a useful
trick known as Bethe Ansatz that by initiated by Bethe for some classical models in quantum
mechanics. To explain this, let us write P (x, t; y) = P (x, t) for the probability of x(t) = x,
conditioned that x(0) = y. Then P , as a function of (x, t) solves the forward equation

(4.1) Pt(x, t) = L∗P (x, t) =
∑
i

11
(
xi ∈ EN

)(
P (xi, t)− P (x, t)

)
,

where xi denotes the state we obtain from x by moving the i-th particle from its location xi
to its new location xi − 1. The proof of (4.1) is a consequence of the identity∑

x∈EN

∑
i

11
(
xi + 1 < xi+1

)
f(xi)P (x) =

∑
x∈EN

∑
i

11
(
xi−1 < xi − 1

)
f(x)P (xi).

Let us define
Df(x) = f(x− 1)− f(x).

We also write Dif(x) when we apply D on the i-th variable xi. According to Bethe Ansatz,
there is an extension Q : ZN × [0,∞)→ R of P : EN × [0,∞)→ R, such that Q solves the
free equation

(4.2) Qt =
N∑
i=1

DiQ := DQ,
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subject to the boundary equation

(4.3) x ∈ EN , xi /∈ EN =⇒ DiQ(x, t) = 0,

for every i ∈ {2, . . . , N}. In other words,

Q(. . . , xi − 1, xi, . . . , t) = Q(. . . , xi, xi, . . . , t),

whenever (. . . , xi − 1, xi, . . . ) ∈ EN . The point is that when the boundary condition (4.3) is
satisfied, it is harmless to add

11
(
xi = xi+1 − 1

)(
Q(xi+1, t)−Q(x, t)

)
,

to the right-hand side of (4.1), because it is 0 when x ∈ EN . Indeed if Q satisfies (4.2) and
(4.3), then P , the restriction of Q to EN , satisfies (4.1). Indeed for every x ∈ EN ,

Pt(x, t) = Qt(x, t) = DQ(x, t) =
N∑
i=1

DiQ(x, t)

=
N∑
i=1

11
(
xi ∈ EN

)
)DiQ(x, t) +

N∑
i=1

11
(
xi /∈ EN

)
)DiQ(x, t)

=
N∑
i=1

11
(
xi ∈ EN

)
)DiP (x, t) = L∗P (x, t).

Here we used (4.3) to assert that each summand in the second sum on second line is zero.
In summary, we now need to solve the free equation (4.2) for the price of some boundary

conditions given by (4.3). Schütz found an explicit formula for (4.2)-(4.3). We arrive at this
formula in 3 stages:

(i) We first ignore the boundary equation and derive an explicit formula for solutions to
the free equation (4.2).

(ii) We replace the boundary condition (4.3) with a simpler boundary equation, namely
we kill x(t) as it exits EN . This has the same flavor as Example 1.3 and we derive an
explicit formula for its solution.

(iii) What we really have in (4.3) is a Neumann-type boundary condition. After all by
suppressing jumps that would take x outside EN , the configuration stays inside EN for
all time. We modify our formula in (ii) to satisfy the requirement (4.3).

Remark 4.1 It is worth mentioning that when we have to solve ut = Lu in a domain U
with some boundary condition, we first find eigenvalues and eigenfunctions of L in U and
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use them to to write down an expression for u. When U is bounded (or the dimension is
finite), then we only need to consider the point spectrum of L. When L is symmetric, we
have a discrete set of eigenvalues λ1 ≤ · · · ≤ λk ≤ . . . , and the corresponding eigenfunctions
can be chosen to form an orthonormal basis. However, since the set EN is unbounded, we
are really dealing with the continuous spectrum. �

(i) We first solve the free equation:

(4.4)

{
pt(x, t) = Dp(x, t), t > 0,

p(x, 0) = 11(x = y);

The solution of (4.4) is simply given by

(4.5) p(x, t) =
d∏
i=1

p(xi − yi, t),

where p(x, t) solves

(4.6)

{
pt(x, t) = p(x− 1, t)− p(x, t), t > 0,

p(x, 0) = 11(x = 0).

We already know what the solution is because x1(t) is simply a Poisson process:

p(x, t) =
tx

x!
e−t11(x ≥ 0).

We may also solve (4.6) with the aid of Fourier series: Indeed if

ϕ(z, t) =
∞∑

x=−∞

p(x, t)zx,

then
ϕt(z, t) = (z − 1)ϕ(z, t), ϕ(z, 0) = 1,

which leads to the identity ϕ(z, t) = et(z−1). As a result,

p(x, t) = (2π)−1

∫ 2π

0

e−ixθ+t(e
iθ−1) dθ = (2πi)−1

∮
|z|=1

z−x−1et(z−1) dz,

where the last integral is a contour integration over the unit circle |z| = 1. This circle may
be replaced with any positively oriented contour γ about the origin. In summary,

(4.7) p(z, t) = (2πi)−1

∮
γ

z−x−1et(z−1) dz.
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solves (4.6) for any positive contour γ with 0 inside γ. More generally, if

(4.8)

{
pt(x, t) = p(x− 1, t)− p(x, t), t > 0,

p(x, 0) = p0(z),

then

(4.9) p(z, t) = (2πi)−1

∮
γ

z−x−1et(z−1)ϕ0(z) dz,

where
ϕ0(z) =

∑
x∈Z

p0(x)zx.

Alternatively, we may solve (4.9) by separation of variables. For any z ∈ C \ {0}, the
function x 7→ z−x is an eigenfunction of D associated with the eigenvalue z − 1. Similarly
the function

N∏
i=1

zxii ,

is an eigenfunction for the operator D =
∑

iDi, associated with the eigenvalue

N∑
i=1

(zi − 1).

Hence z−xet(z−1) solves (4.8) with initial condition z−x. On the other hand the eigenfunctions
satisfy

(2πi)−1

∮
γ

z−x−1 dz = 11(x = 0),

which explains why (4.7) is true. �

(ii) We next search for a solution R of (4.2) for which the boundary condition (4.3) is
replaced with zero Dirichlet boundary condition:

(4.10) x ∈ EN , xi−1 = xi =⇒ R(x, t) = 0.

Recall that by Example 2.2(i), we may interpret R as

R(x, t) = Pa(0)=y
(
a(s) ∈ EN for all s ∈ [0, t], a(t) = x

)
,

where a(·) is the random walk generated by the generator D.
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For a start, let us assume that N = 2. The solution we found in (i), namely p(x1, x2, t) =
p(x1 − y1, t)p(x2 − y2, t), does not satisfy the boundary condition (4.9) because

p(x1, x1, t) = p(x1 − y1, t)p(x1 − y2, t) 6= 0.

Now imagine that we can find a function q(x1, x2, t) such that solves (4.2), and have the
following initial and boundary conditions:

q(x1, x1, t) = p(x1, x1, t), q(x1, x2, 0) = 0,

whenever x1 < x2, and t ≥ 0. Then

R(x1, x2, t) = p(x1, x2, t)− q(x1, x2, t),

does the job. In fact for q we may choose

q(x1, x2, t) = p(x1, x2, t; y2, y1) = p(x1 − y2, t)p(x2 − y1, t),

because y1 < y2 which implies that (x1, x2) 6= (y1, y2), whenever x1 < x2. In summary, when
N = 2, we simply have

R(x1, x2, t) = p(x1 − y1, t)p(x2 − y2, t)− p(x1 − y2, t)p(x2 − y1, t) = det
[
p(xi − yj, t)

]3
i,j=1

.

Now it is easy to guess the form of R for general N :

R(x, t) =
∑
σ

ε(σ)p(x, t;σy) = det
[
p(xi − yj, t)

]N
i,j=1

,

where the summation is over the permutations of {1, . . . , N}, and σy =
(
yσ(1), . . . , yσ(N)

)
.

Indeed R solves the free equation (4.2) because each p(x, t;σy) is a solution; it satisfies the
initial condition because when x ∈ EN and σ is not identity, then σy /∈ EN , and we have

p(x, 0;σy) = 11
(
x = σy

)
= 0;

and it satisfies the boundary condition because when xi = xi+1, we have two equal columns

in the matrix det
[
p(xi − yj, t)

]N
i,j=1

.

The formula we have obtained for R is due to Karlin and McGregor. It is worth men-
tioning that there is nothing special about random walk in our formula for R; we could have
replaced p(x− y, t) with any kernel p(x, y, t) of a Markov process in Z and derive the above
formula for the probability of non intersection up to time t.

We may use our representation (4.7) to write

R(x, t) = (2πi)−N
∮
γ1

. . .

∮
γN

det
[
z
−xi+yj−1
j

]N
i,j=1

et
∑N
j=1(zj−1) dz1 . . . dzN .
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Note that we could have used z
−xi+yj−1
i instead of z

−xi+yj−1
j . However the function

det
[
z
−xi+yj−1
j

]N
i,j=1

,

has the advantage to be an eigenfunction of D in domain EN with 0 boundary condition.
The corresponding eigenvalue is again

∑
i(zi − 1). �

(iii) We now turn to the equation (4.2) with boundary condition (4.3). We first focus on the
case N = 2. If we try p(x1, x2, t), it fails the boundary equation as before. We may search
for a solution Q(x1, x2, t) of the form

p(x1 − y1, t)p(x2 − y2, t)− q−(x1 − y2, t)q
+(x2 − y1, t) = det

[
p(x1 − y1, t) q−(x1 − y2, t)
q+(x2 − y1, t) p(x2 − y2, t)

]
,

for function q± with the following properties:

• q± solves (4.7).

• Either q−(x1 − y2, 0) = 0, or q+(x2 − y1, 0) = 0, whenever x1 < x2.

• Q(x, x, t) = Q(x, x+ 1, t).

The latter means

det

[
p(x− y1, t) q−(x− y2, t)
q+(x− y1, t) p(x− y2, t)

]
= det

[
p(x− y1, t) q−(x− y2, t)

q+(x+ 1− y1, t) p(x+ 1− y2, t)

]
.

Equivalently

det

[
p(x− y1, t) q−(x− y2, t)

q+(x+ 1− y1, t)− q+(x− y1, t) p(x+ 1− y2, t)− p(x− y2, t)

]
= 0.

We may achieve this by choosing q± so that

p(a, t) = −(q+(a+ 1, t)− q+(a, t)), q−(a, t) = −(p(a+ 1, t)− p(a, t)).

(The minus sign in the definition of q± is selected to avoid a minus sign in (4.14) below.)
We may define

(
pn(x, t) : n ∈ Z

)
by the requirements:

(4.11) p0 = p, pn(x, t) = −
(
pn+1(x+ 1, t)− pn+1(x, t)

)
.

In terms of pn’s we have q± = p±1, and

(4.12) Q(x1, x2, t) = det

[
p0(x1 − y1, t) p−1(x1 − y2, t)
p1(x2 − y1, t) p0(x2 − y2, t)

]
.
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Starting from p0 = p, and using (4.11), we certainly have

(4.13) p−n(x, t) = (2πi)−1

∮
γ

z−x−1
(
1− z−1

)n
et(z−1) dz,

for n ≥ 0. (Here γ is any positive contour that includes 0 and 1.) Moreover, once pn is
determined for n ≥ 0, then we may define pn+1 by

(4.14) pn+1(x, t) =
∞∑
y=x

pn(y, t),

This and (4.7) yield

(4.15) pn(x, t) = (2πi)−1

∮
γ

z−x−1
(
1− z−1

)−n
et(z−1) dz,

for n ≥ 0. In comparison with (4.14) we deduce that (4.15) is true for all n ∈ Z.
Motivated by (4.13), we set

(4.16) Q(x, t) = det
[
pi−j(xi − yj, t)

]N
i,j=1

.

We may use our representation (4.7) to write

(4.17) Q(x, t) = (2πi)−N
∮
γ1

. . .

∮
γN

det
[
z
−xi+yj−1
j

(
1− z−1

j

)j−i]N
i,j=1

et
∑N
j=1(zj−1)

N∏
j=1

dzj.

Observe that the function

w(x) = w(x; y, z) = det
[
z
−xi+yj−1
j

(
1− z−1

j

)j−i]N
i,j=1

,

is an eigenfunction of D in domain EN with Neumann boundary condition (4.3). The
corresponding eigenvalue is again

∑
j(zj − 1).

Theorem 4.1 (Schütz) Let x(t) be the standard TASEP. Then for every y,x ∈ EN ,

P
(
x(t) = x|x(0) = y

)
= Q(x, t; y).

Proof (Step 1.) To show that Q(x, t) = Q(x, t; y) solves (4.2), it simply use the fact that
that pn satisfies (4.5). For the boundary condition, take any x with xi−1 + 1 = xi. Then

DiQ(x, t) = det
[
. . .

[
pi−j−1(xi−1 − yj, t)

]N
j=1

[
pi−j(xi − yj − 1, t)− pi−j(xi − yj, t)

]N
j=1

. . .
]

= det
[
. . .

[
pi−j−1(xi−1 − yj, t)

]N
j=1

[
pi−j−1(xi − yj − 1, t)

]N
j=1

. . .
]

= det
[
. . . ,

[
pi−j−1(xi−1 − yj, t)

]N
j=1

[
pi−j−1(xi−1 − yj, t)

]N
j=1

. . .
]

= 0,
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as desired. Alternatively, we may directly verify the boundary conditions for the eigenfunc-
tion w: If xi−1 + 1 = xi, then Diw(x) equals

det

[
. . .

[
z
−xi−1+yj−1
j

(
1− z−1

j

)j−i+1
]N
j=1

[(
z
−xi+yj
j − z−xi+yj−1

j

)(
1− z−1

j

)j−i]N
j=1

. . .

]
= det

[
. . .

[
z
−xi−1+yj−1
j

(
1− z−1

j

)j−i+1
]N
j=1

[
z
−xi+yj
j

(
1− z−1

j

)j−i+1
]N
j=1

. . .

]
= 0.

(Step3.) For the initial condition, we need figure out how each pn behaves initially. From
p0(x, 0) = 11(x = 0), (4.11), and an induction on n, it is not hard to show

(4.18) x < −n or x > 0 =⇒ p−n(x, 0) = 0, and p−n(−n, 0) = (−1)n,

for every n ≥ 0. On the other hand, with the aid of (4.14) and induction on n we can show

(4.19) x > 0 =⇒ pn(x, 0) = 0,

for every n ≥ 0.
We wish to show that if Q(x, 0) 6= 0, then x = y and Q(y, 0) = 1. If x1 − y1 > 0, then

xi−y1 > 0 for all i, and this implies the first column is 0 by (4.18), contradicting Q(x, 0) 6= 0.
On the other hand, if x1 − y1 ≤ −1, then x1 − yi ≤ −i, which in turn implies that the first
row is zero by (4.18), contradicting again Q(x, 0) 6= 0. As a result, x1 = y1. We also have
pi(xi − y1, 0) = 0 for i > 1. This implies

Q(x, 0) = det
[
pi−j(xi − yj, 0)

]N
i,j=2

.

We are now in a position to apply the above argument to x2 < · · · < xN and y2 < · · · < yN
to deduce that x2 = y2. Continuing this manner, we deduce that x = y. �

We now turn to general SEP. Recall that the jump rates to the right and left are given
by λ and 1− λ. Let us define an operator D̂ : ZR → ZR by

D̂f(x) = (1− λ)
(
f(x+ 1)− f(x)

)
+ λ
(
f(x− 1)− f(x)

)
.

This operator is the adjoint of the underlying random walk in SEP. We also write D̂if(x)
when we apply D on the i-th variable xi. Set

D̂Q =
N∑
i=1

D̂i.

As before let us write P (x, t; y) for the probability of x(t) = x provided that x(0) = y. We
wish to find a function Q(x, t; y) that extends P to ZN . As before, Q solves the free equation

(4.20) Qt = D̂Q,
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such that if x ∈ EN , and xi−1 + 1 = xi, for some i ∈ {2, . . . , N}, then

(4.21) λQ(. . . , xi−1, xi − 1, t) + (1− λ)Q(. . . , xi−1 + 1, xi, t)−Q(. . . , xi−1, xi, t) = 0.

We wish to derive an explicit formula for Q. We prepare for this derivation in three steps:

(i) For z ∈ C \ {0}, the operator D̂ has an eigenfunction of the form zx corresponding to
the eigenvalue e(z) = λz + (1− λ)z−1 − 1. The equation

(4.22)

{
pt(x, t) = D̂p(x, t), t > 0,

p(x, 0) = 11(x = 0).

has an explicit solution of the form

(4.23) p(z, t) = (2πi)−1

∮
γ

z−x−1ete(z) dz.

solves (4.22) for any positive contour γ that encloses 0.

(ii) We make an ansatz that the solution Q of (4.20), with boundary condition (4.21) takes
the form

(4.24) (2πi)−N
∑
σ

∮
γ

. . .

∮
γ

∑
σ

A(σ, z)
N∏
i=1

z
−xi+yσ(i)−1

σ(i)

N∏
j=1

ee(zj)tdzj,

where z = (z1, . . . , zN), and the summation is over the permutations of {1, . . . , N}. In the
case of TASEP, we simply have e(z) = z − 1 and

A(σ, z) = ε(σ)
N∏
i=1

(
1− z−1

σ(i)

)σ(i)−i
.

We wish to find A(σ, z) for general SEP. We start with the case N = 2. There are two
permutations id = (1, 2), and σ = (2, 1), assuming that A(id, z) = 1, and simply writing
A(σ, z) = A(z) = A, our candidate for the eigenfunction reads as

z−x1+y1−1
1 z−x2+y2−1

2 + Az−x2+y1−1
1 z−x1+y2−1

2 = zy1−1
1 zy2−1

2

(
z−x11 z−x22 + Az−x21 z−x12

)
=: zy1−1

1 zy2−1
2 w(x1, x2).

We would like to choose A so that the eigenfunction w satisfies the boundary condition:

0 =(1− λ)w(x+ 1, x+ 1) + λw(x, x)− w(x, x+ 1)

=(1− λ)
(
z−x−1

1 z−x−1
2 + Az−x−1

1 z−x−1
2

)
+ λ
(
z−x1 z−x2 + Az−x1 z−x2

)
− z−x1 z−x−1

2 − Az−x−1
1 z−x2

=z−x−1
1 z−x−1

2

(
λ(A+ 1)z1z2 + (1− λ)(A+ 1)− Az2 − z1

)
.
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This leads to the choice

A = −(1− λ)− z1 + λz1z2

(1− λ)− z2 + λz1z2

,

which coincides with what we had when λ = 1. We also note that the corresponding solution
Q now takes the form

Q(x1, x2, t) = p(x1 − y1, t)p(x2 − y2, t)− q(x1 − y2, x2 − y1, t),

with q a solution to the free equation that has no longer a product form.

(iii) We now turn to the general case. Our candidate for the eigenfunction is now

G(x) = G(x; y, z) =
∑
σ

A(σ, z)
N∏
i=1

z
−xi+yσ(i)−1

σ(i) .

We wish to choose the coefficients A(σ, z) so that the boundary condition

(4.25) λG(. . . , xi, xi, . . . ) + (1− λ)G(. . . , xi + 1, xi + 1, . . . )−G(. . . , xi, xi + 1, . . . ) = 0.

Here xi + 1 = xi+1, and (4.26) holds if

0 =(1− λ)
(
A1z

−x−1
σ(i) z−x−1

σ(i+1) + A2z
−x−1
σ(i+1)z

−x−1
σ(i)

)
+ λ
(
A1z

−x
σ(i)z

−x
σ(i+1) + A2z

−x
σ(i+1)z

−x
σ(i)

)
− A1z

−x
σ(i)z

−x−1
σ(i+1) − A2z

−x−1
σ(i+1)z

−x
σ(i)

=z−x−1
σ(i) z−x−1

σ(i+1)

(
λ(A1 + A2)zσ(i)zσ(i+1) + (1− λ)(A1 + A2)− A1zσ(i+1) − A2zσ(i)

)
,

where A1 = A(σ, z), and A2 = A(τiσ, z), with τiσ is the permutation we get from σ by
interchanging σ(i) with σ(i+ 1). This equation means

A2

A1

= −
λ− zσ(i+1) + (1− λ)zσ(i)zσ(i+1)

λ− zσ(i) + (1− λ)zσ(i)zσ(i+1)

.

To satisfy this, we may choose

(4.26) A(σ, z) = ε(σ)

∏
i<j

(
λ− zσ(i) + (1− λ)zσ(i)zσ(j)

)∏
i<j

(
λ− zi + (1− λ)zizj

) .

Theorem 4.2 (Tracy-Widom) The function Q given by (4.24) with A as in (4.26) satisfies
(4.20) and (4.21).
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Exercise

(i) Define h : RN → R by

h(x) =
∏

1≤i<j≤N

(xj − xi) = det
[
xj−1
i

]N
i,j=1

,

write hk(x) for the corresponding h where instead of x1, . . . , xN , we use x1, . . . , xk−1, xk+1, . . . , xN .
Show

h(x) = (−1)N
N∑
k=1

(−1)kxN−1
k hk(x),

N∑
k=1

(−1)kxrkhk(x) = 0,

for r = 0, 1, . . . , N − 2. Use this and an induction on N to show that ∆h = 0 and Dh = 0.
When N = 2, determine the processes associated with Dh and ∆h.

(ii) Given α ∈ (0, 1), define a discrete time Markov chain on ZN such that
(
xi(t) : i ∈

{1, . . . , N}) are independent, and

P
(
xi(1) = x|xi(0) = y) = (1− α)11(x = y) + α11(x = y + 1).

Write
Tf(y) = Ex(0)=yf(x(1)).

Show that Th = h for h as in part (i). �
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5 TASEP as a Determinantal Process

In Chapter 4 we learned that the distribution of x(t) can be expressed as a determinant
in the case of TASEP. We now would like to show that in fact TASEP is a determinantal
process. This means that even

P
{
{a1, . . . , ak} ⊂ {x1(t), . . . , xN(t)}

}
,

can be expressed as determinant for any a1, . . . , ak ∈ Z with a1 < · · · < ak. Our interest in
such probabilities stems from the fact that we are ultimately looking for the certain scaling
behavior of x as N → ∞. To achieve this, we need some preparations. Let us relabel our
particles from right to left; we set

x̂i = xN+1−i, ŷi = yN+1−i.

This new labeling is particularly advantageous if we have infinitely many particles that are
bounded above and we wish to approximate it by a finite configuration. Our first result is
due to Borodin er al. [BFPS] and can be established with the aid of determinantal process
we studied in Example 3.2(viii). In Theorem 5.1 we show that the point process x̂ is
determinantal. Note that x̂ is a point process of size N in Z. Once a set a ⊂ Z with |a| = N
is specified, we label the points of a in a decreasing order to recover x̂1 > x̂2 > · · · > x̂N .
However we would rather think of x̂ as a point process in [N ]× Z. The point is that when
we evaluate

P
({

(n1, a1), . . . , (nk, ak)
}
⊂
{

(1, x1(t)), . . . , (N, xN(t))
})
,

we have more information by specifying the labels of our k particles.

Theorem 5.1 For each t, the law of the process x̂(t) of a TASEP is determinantal with

correlation kernel K(t) = K :
(
[N ]× Z

)2 → R, given by

K
(
(i, x), (j, y)

)
= −φj−i(x, y)11(i < j) +

j∑
k=1

ψik(x)ϕjk(y),

where φ(x, y) = 11(x > y), ψik(x) = (−1)k−ipk−i(x− ŷk, t), and ϕjk(·) is a polynomial of degree
at most j such that ∑

x∈Z

ϕjk(x)ψj`(x) = 11(k = `),

for all k, ` ∈ [j] and every j ∈ N.

It is worth mentioning that the very form of K is compatible with our expectation as
formulated in (3.46). We first use an idea of Sasamoto to rewrite Schütz’ formula in a more
suggestive way. The only ingredient for Sasamoto’s derivation is (4.14). Let us write

ÊN =
{

(z1, . . . , zN) ∈ ZN : z1 > · · · > zN
}
.
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By slight abuse of notation, we write P (x̂, t) for P (x, t) as we switched to x̂.
Recall

P (x̂, t) = det

 p0

(
x̂N − ŷN , t

)
. . . p−N+1

(
x̂N − ŷ1, t

)
...

. . .
...

pN−1

(
x̂1 − ŷN , t

)
. . . p0

(
x̂1 − ŷ1, t

)


by applying (4.14) twice to the last row, and once to the penultimate row, we obtain

(5.1) P (x̂, t) =
∑

z33≥z22≥z11

∑
z32≥z21

det


p0

(
zN1 − ŷN , t

)
. . . p−N+1

(
zN1 − ŷ1, t

)
...

. . .
...

pN−3

(
z3

1 − ŷN , t
)

. . . p−2

(
z3

1 − ŷ1, t
)

pN−3

(
z3

2 − ŷN , t
)

. . . p−2

(
z3

2 − ŷ1, t
)

pN−3

(
z3

3 − ŷN , t
)

. . . p−2

(
z3

3 − ŷ1, t
)
.


Here the first sum is over (z2

2 , z
3
3), the second sum is over z3

2 , and we have written ziN for x̂i.
Note that if z2

2 ≤ z3
2 , then we have

z1
1 ≤ z2

2 ≤ z3
2 , z1

1 ≤ z2
2 ≤ z3

3 ,

which is symmetric in (z3
2 , z

3
3). This means that we can swap z3

2 with z3
3 and the set triplet

(z2
2 , z

3
2 , z

3
3) on which the summation is performed is not changed. However swapping z3

2

with z3
3 is equivalent to swapping the last row with the penultimate row, which result in

changing sign of the corresponding determinant. From this we learn that the contribution
of those triplets (z2

2 , z
3
2 , z

3
3) with z2

2 ≤ z3
2 to the sum is zero. As a result, we may restrict the

summation in (5.1) to those triplets (z2
2 , z

3
2 , z

3
3) such that

(5.2) z3
3 ≥ z2

2 ≥ z1
1 , z2

2 > z3
2 ≥ z2

1 .

When N = 3, we now have a representation of the form

P (x̂, t) =
∑

z∈GT3(x)

det

p0

(
z3

1 − ŷ3, t
)

p−1

(
z3

1 − ŷ2, t
)

p−2

(
z3

1 − ŷ1, t
)

p0

(
z3

2 − ŷ3, t
)

p−1

(
z3

1 − ŷ2, t
)

p−2

(
z3

2 − ŷ1, t
)

p0

(
z3

3 − ŷ3, t
)

p−1

(
z3

1 − ŷ3, t
)

p−2

(
z3

3 − ŷ1, t
)
.


Here GT3(x) is the set of (z2

2 , z
3
2 , z

3
3) such that (4.2) holds, and zi3 = x̂i for i = 1, 2, 3. The

inequalities in (5.2) are related to the celebrated Gelfand-Tsetlin pattern.
More generally, we define

GTN =
{(
zji : 1 ≤ i ≤ j ≤ N

)
∈ Z

N(N+1)
2 : zni < zn−1

i ≤ zni+1 for (i, n) with 1 ≤ i < n ≤ N
}

For N > 3, we repeat the above procedure to obtain

P (x̂, t) =
∑

z∈GTN (x̂)

det


p0

(
zN1 − ŷN , t

)
. . . p−N+1

(
zN1 − ŷ1, t

)
...

. . .
...

p0

(
zNN−1 − ŷN , t

)
. . . p−N+1

(
zNN−1 − ŷ1, t

)
p0

(
zNN − ŷN , t

)
. . . p−N+1

(
zNN − ŷ1, t

)
,
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where the summation is over
(
zji : 1 < i ≤ j ≤ N

)
and

GTN(x̂) =
{
z ∈ GTN : zi1 = x̂i for i = 1, . . . , N

}
.

In short,

(5.3) P (x̂, t) =
∑

z∈GTN (x)

det
[
p1−j

(
zNi − yj, t

)]N
i,j=1

.

Note that if zk =
(
zk1 , . . . , z

k
k

)
, then zk ∈ Ek. The configurations zk−1 and zk are interlaced:

For i ∈ {1, . . . , k−1}, we have zki < zk−1
i ≤ zki+1. If this is the case, we simply write zk−1 ≺ zk.

Remark 5.1(i) As our first reaction to (5.3), we may wonder whether or not there is Markov
process z(t) such that its marginal x̂(t) =

(
z1

1(t), . . . , zN1 (t)
)

is a TASEP. The most natural
candidate for the evolution of the triangular array z(t) is as follows: Each zij has a rate one
Poisson clock for its jumping times to the right, with these clocks all independent. However
the jump of zki is suppressed whenever zki +1 = zk−1

i , and when the jump of zki is materialized,
all particles with

zk+r
i+r = · · · = zk+1

i+1 = zki ,

are pushed to jump as well. For example the generator for N = 2 looks like

LF
(
z2

1 , z
1
1 , z

2
2

)
=11
(
z2

1 + 1 < z1
1

) [
F
(
z2

1 + 1, z1
1 , z

2
2

)
− F

(
z2

1 , z
1
1 , z

2
2

)]
+ 11

(
z1

1 < z2
2

) [
F
(
z2

1 , z
1
1 + 1, z2

2

)
− F

(
z2

1 , z
1
1 , z

2
2

)]
+ 11

(
z1

1 = z2
2

) [
F
(
z2

1 , z
1
1 + 1, z2

2 + 1
)
− F

(
z2

1 , z
1
1 , z

2
2

)]
+
[
F
(
z2

1 , z
1
1 , z

2
2 + 1

)
− F

(
z2

1 , z
1
1 , z

2
2

)]
.

The triangular array process z(t) =
(
zkj (t) : 1 ≤ j ≤ k, 1 ≤ k ≤ N

)
enjoys the following

properties:

• The left side
(
zi1 : i = 1, . . . , N

)
is evolved as a TASEP.

• The right side
(
zii : i = 1, . . . , N

)
is evolved as a pushed collection of random walks.

When a particle zii is jumping to the right, any other particle zjj , j > i, that shares the
same site as zii jumps with it.

(ii) Given a = (a1, . . . , aN) ∈ Ek, we can show

(5.4) ]
{
z ∈ GTN : zNi = ai for i = 1, . . . N

}
=

(
N−1∏
j=1

j!

)−1

∆N(a),
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where
∆N(a) =

∏
1≤i<j≤N

(ai − aj) 11
(
a ∈ EN

)
.

It turns out that the function h = ∆N satisfies Dh = 0. The restriction of ∆N to EN is
a positive “harmonic” function with zero boundary condition. This function is very much
related to the (Martin) boundary point ∞ of EN . The ∆N -Doob transform of DN (with
generator D∆N

N is the Markov process we get from the independent walks that are conditioned
on never meeting in finite time (reaching the boundary ∞ at time ∞).

(iii) Borodin and Ferrari show that if z initially starts from a packed configuration (i.e.,
zji = −j − 1 + i, 1 ≤ i ≤ j ≤ N), the dynamics of its marginal x = z1 = (z1

1 , . . . , z
N
1 ) is

the DN -Doob transform of free particles. This Markov process is known as Charlier process.
The same applies if we take any horizontal line zk =

(
zki : i = 1, . . . , k

)
; it is ∆k-Doob

transform of the free walk in Ek. Moreover, the pair
(
zk, zk−1

)
is an example of intertwined

processes. In fact once the law of zk(t) is known, then we can determine the law of zk−1(t)
in a Markovian fashion. The Markov kernel is given by

Λk
k−1

(
zk, zk−1

)
= (k − 1)!

∆k−1(zk−1)

∆k(zk)
11
(
zk−1 ≺ zk

)
.

Let us define
(T kk−1f

)(
zk
)

=
∑
zk−1

f
(
zk−1

)
Λk
k−1

(
zk, zk−1

)
.

We also write Dk for the generator of the free motion in Ek and zk(i) for the configuration
we get from zk by moving the i-th particle to the right. For zk ∈ Ek,

(
D∆k
k T kk−1f

)(
zk
)

=
k∑
i=1

∑
zk−1

f
(
zk−1

)∆k(z
k(i))

∆k(zk)

(
Λk
k−1

(
zk(i), zk−1

)
− Λk

k−1

(
zk, zk−1

))
=(k − 1)!

k∑
i=1

∑
zk−1

f
(
zk−1

)∆k−1(zk−1)

∆k(zk)

(
11
(
zk−1 ≺ zk(i)

)
− Λk

k−1

(
zk, zk−1

))
(
T kk−1 D

∆k−1

k−1 f
)(
zk
)

=
∑
zk−1

k−1∑
i=1

(
f
(
zk−1(i)

)
− f

(
zk−1

)) ∆k−1(zk−1(i))

∆k−1(zk−1)
Λk
k−1

(
zk, zk−1

)
=(k − 1)!

∑
zk−1

k−1∑
i=1

(
f
(
zk−1(i)

)
− f

(
zk−1

)) ∆k−1(zk−1(i))

∆k(zk)
11
(
zk−1 ≺ zk

)
�

To establish Theorem 5.1, it suffice to show that the process z is determinantal.
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Theorem 5.2 The point process z = (z1, . . . , zN) is determinantal in X = X1 t · · · t XN

with X1 = · · · = XN = Z and each zi a point process in Xi for i ∈ [N ]. The correlation
kernel K : X ×X → R has (i, j)-th block Kij : Xi ×Xj → R of the form

(5.5) Kij = −φj−i11(i < j) + Ψ∗i,jΦj,

with Φj,Ψi,j : [j]× Z→ R, where

Ψi,j(k, x) = ψik(x), Φj(k, x) = ϕik(x),

with ψ and ϕ as in Theorem 5.1.

Proof Observe

11
(
zk ≺ zk+1

)
= det

[
11
(
zki > zk−1

j

)]k
i,j=1

,

provided that zk+1
1 < zk1 , zk ∈ Ek, and we set zkk+1 =∞. Using this, we can show

(5.6) 11
(
z ∈ GTN

)
=

N−1∏
k=1

det
[
11
(
zki > zk+1

j

)]k+1

i,j=1
,

provided that zN1 < · · · < z1
1 .

If we write ΛN(x̂) for the set of triangular array
(
zji : 1 ≤ i ≤ j ≤ N

)
such that zj1 = x̂j

for j = 1, . . . , N , then by (5.6),

(5.7) P (x̂, t) =
∑

z∈ΛN (x̂)

N−1∏
k=1

det
[
11
(
zki > zk+1

j

)]k+1

i,j=1
det
[
p1−j

(
zNi − yj, t

)]N
i,j=1

,

where ΛN(x̂) is the set z ∈ Z
N(N+1)

2 such that zi1 = x̂i for i = 1, . . . , N . Observe

det
[
p1−j

(
zNi − yj, t

)]N
i,j=1

= (−1)N(N−1)/2 det
[
(−1)1−jp1−j

(
zNi − yj, t

)]N
i,j=1

= (−1)N(N−1)/2+bN/2c det
[
(−1)N−jpj−N

(
zNi − yN+1−j, t

)]N
i,j=1

= det
[
(−1)j−Npj−N

(
zNi − ŷj, t

)]N
i,j=1

,

because N(N − 1)/2 + bN/2c is always even. From this and (5.7) we deduce

(5.8) P (x̂, t) =
∑

z∈ΛN (x̂)

N−1∏
k=1

det
[
φ
(
zki , z

k+1
j

)]k+1

i,j=1
det
[
ψj
(
zNi
)]N

i,j=1
,
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where
φ(x, y) = ϕ(x− y) = 11(x > y), ψj(x) = (−1)j−Npj−N(x− ŷj, t).

This is very much an example of the point process we examined in Example 3.2(viii) with

X1 = · · · = XN = Z, W k(x, y) = φ(x, y), γi(x) = 1.

Recall

pn(x, t) =
1

2πi

∮
γ

z−x−1
(
1− z−1

)−n
et(z−1) dz

with γ any positive contour including 0 and 1. In fact for n ≤ 0, z = 1 is no longer a pole,
and we may choose γ any positive contour that includes 0. Recall that for all n, we have

pn+1(x, t) =
∑
y≥x

pn(y, t).

However, for n ≤ 0, we also have

(5.9) pn+1(x, t) = −
∑
y<x

pn(y, t).

Regarding pn = pn(·, t) : Z→ R as a function on Z, (5.9) means

φpn = −pn+1, φ−1pn+1 = −pn,

where φ−1 = D+ is simply the operator

D+f(x) = f(x+ 1)− f(x).

To take advantage of this, let us write

ψkj (x) : = (−1)j−kpj−k(x− ŷj, t), Ψk :=
[
ψkj (x)

]
j∈[k],x∈Z.

Clearly,

(5.10) Ψ∗i,k := φk−iΨ∗k =
[
ψij(x)

]
x∈Z,j∈[k]

.

As we demonstrated in Chapter 3, the probability measure P is determinantal with correla-
tion kernel that is given by K as in (3.35). In other words

(5.11) K =
[
Kij

]N
i,j=1

= ΓΨ∗C−1Λ− Ŵ ,

where Ki,j : Xi ×Xj → R is the (i, j)-th block of the matrix K. From (3.34),

(5.12) Kij = −11(i < j)φj−i + φN−iΨ∗C−1Λj.
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with Ψ = ΨN = ΨN,N , C = CN = ΛNΨ∗, and

Λj =

j∑
k=1

Ekφj−k.

Here we have used the fact that W[i,j) = φj−i because all W k’s are equal to φ. Note that by
(5.10),

(5.13) φN−iΨ∗ = φN−iΨ∗N = Ψ∗i,N .

On the other-hand, for ϕ(x) = 11(x ≥ 1), we can inductively derive

ϕ∗k(x) =
(x− 1) . . . (x− k + 1)

(k − 1)!
11(x ≥ k),

because
x−1∑
y=k

(y − 1) . . . (y − k + 1) = k−1 (x− 1) . . . (x− k),

that can be verified by induction on x. From this we deduce

(5.14) φk(x, y) =

(
x− y − 1

k − 1

)
11(x ≥ y + k).

We now turn to Λj. First observe

Ek(i, x) = δik11(ak > x) = δikφ(ak, x),

where ak = zkk+1. Even though ak = ∞, we would rather think of it as a fixed finite point.
After all we only need to calculate detL[N ]tz for a finite configuration z; for such a finite
configuration any sufficiently large ak can serve as zkk+1. After this interpretation, we take
n ∈ [N ] and x ∈ Z, and observe

Λj(n, x) =

(
j∑

k=1

Ekφj−k

)
(n, x) =

j∑
k=1

∑
y

δnk φ(ak, y)φj−k(y, x)

= 11(1 ≤ n ≤ j) φj−n+1(an, x).(5.15)

Observe that each Λj(n, ·) is a polynomial of degree j − n.

If we define Λ̂j : [j]× Z→ R by Λ̂j(n, x) = φj−n+1(an, x), then

Λj =

[
Λ̂j

0

]
.
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This implies (
ΛjΨ

∗
j,N

)
(n,m) = 11(1 ≤ n ≤ j)

∑
y

φj−n+1(an, y)Ψ∗j,N(y,m)

= 11(1 ≤ n ≤ j)Ψ∗n−1,N(an,m)

= 11(1 ≤ n ≤ j)(−1)m−n+1pm−n+1(an − ŷm, t).

In particular

(5.16) C = CN =
[
(−1)m−n+1pm−n+1(an − ŷm, t)

]N
n,m=1

.

Recall

p0(x, t) =
tx

x!
11(x ≥ 0), pk−1(x, t) = pk(x, t)− pk(x+ 1, t).

From this we learn
k ≤ 0 =⇒ pk(∞, t) = 0.

Since we may send an to infinity, we learn that the matrix CN is upper-triangular. From
this and Cramer’s formula for C−1

N we learn that C−1
N is also upper-triangular.

C =

[
C11 C12

0 C22,

]
, C−1 =

[
R11 R12

0 R22,

]
with R11 and C11 matrices of size j × j, and R22 and C22 matrices of size (N − j)× (N − j).
As a result R11 = C−1

11 , and

C−1Λj =

[
R11 R12

0 R22

] [
Λ̂j

0

]
=

[
C−1

11 Λ̂j

0

]
.

We may write Cj for C11. Indeed if we switch from N to j, then the matrix C11 is the
corresponding C-matrix. From all this we learn

φN−iΨ∗C−1
N Λj = Ψ∗i,N

[
C−1
j Λ̂j

0

]
,

with C−1
j Λ̂j : [j]× Z→ R. Observe

Ψ∗i,N =
[
Ψ∗i,j ∗

]
,

with Ψi,j : Z× [j]→ R. From this we deduce

(5.17) Kij = −11(i < j)φj−i + Ψ∗i,jC
−1
j Λ̂j.
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If we write

(5.18) Φj := C−1
j Λ̂j,

then (5.17) can be written as

(5.19) Kij = −11(i < j)φj−i + φj−iΨ∗jΦj,

with Φ satisfying
ΦjΨ

∗
j = 11[j].

We set
ϕjk(x) := Φj(k, x).

From (5.15) and (5.18) we learn that each ϕk(x; j) is a polynomial of degree at most j − k
because the matrix C−1

j is upper triangular.We may write

(
Ψ∗i,jΦj

)
(x, y) =

j∑
k=1

Ψi,j(k, x)Φj(k, y) =

j∑
k=1

ψik(x)ϕjk(y).

In summary

(5.20) Kij(x, y) = −11(i < j)φj−i(x, y) +

j∑
k=1

ψik(x)ϕjk(y),

with

(5.21)
∑
x∈Z

ϕnk(x)ψn` (x) = δk`,

for every k, ` ∈ [n] and n ∈ N. �
We now introduce some notations that would help us to simplify(5.19). Let us write

D±f(x) = ±
(
f(x± 1)− f(x)

)
.

Observe that φ−1 = D+, D = −D−, and recall

ψnk (x) = (−1)k−npk−n(x− ŷk, t).

Now writing Pk(x, y; t) = pk(x− y, t) and regard it as a kernel/operator, we have

(−1)rφ−rPk = Pk−r.

Hence
ψnk (x) =

(
φk−nP0

)(
x, ŷk

)
.
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On the other hand,
P0

(
x, ŷk

)
=
(
etDδŷk

)
(x) =

(
etDδŷk

)
(x).

As a result,

(5.22) ψnk = φk−netDδŷk = etDφk−nδŷk ,

because kernels associated with φk−n and etD depend on x−y and convolution is commutative.
This suggests defining Θn : Z× [n]→ R such that Ψ∗n = etDΘn, and

Θn =
[
φk−n(x, ŷk)

]
x∈Z,k∈[n]

.

Recall that φ−1 = D+. We wish to find Φn that is a left inverse of Ψ∗. For this, we find Hn

so that Φn = Hne
−tD, with Hn =

[
hnk
]
k∈[n],x∈Z;

(5.23) ϕnk(x) =
∑
y

hnk(y)e−tD(y, x), hnk(x) =
∑
y

ϕk(y;n)etD−(y, x).

This means that now Hn satisfies HnΘn = 11[n], or more explicitly,

δk` =
∑
x

hnk(x)φ`−n(x, ŷ`) =
(
hnkφ

`−n)(ŷ`).
We note that the operator e−tD = etD− , the inverse of etD is well-defined:

etD(x, y) = et
tx−y

(x− y)!
11(x ≥ y) =: Rt(x− y), e−tD(x, y) = e−t

(−t)x−y

(x− y)!
11(x ≥ y).

Indeed,

(
Rt ∗R−t

)
(x) =

x∑
y=0

tx−y

(x− y)!

(−t)y

y!
= 11(x = 0) + 11(x > 0)(x!)−1(t− t)x = 11(x = 0).

We wish to find
(
hnk : k ∈ [n]

)
with the following properties:

(1)
(
hnkφ

`−n)(ŷ`) = 11(k = `);

(2) hnk is a polynomial of degree at most n− k.

Note that since
(
φ−1
)∗

= −D− = D is a discrete differentiation, the requirement (2) is
equivalent to the assertion that Dn−khnk is a constant. This constant must be 1 because(
Dn−khnk

)(
ŷk
)

= 1, by (1). In other words,

Dn−khnk = 1,
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for k ∈ [n]. To determine hnk , we use the requirement (1). More precisely, we fix k and n,
and determine uniquely the polynomial hnk of degree n − k such that the following n − k
conditions are satisfied:

(5.24) Dn−khnk = 1,
(
Dn−k−1hnk

)
(ŷk+1) = 0,

(
Dn−k−2hnk

)
(ŷk+2) = 0, . . . , hnk(ŷn) = 0.

This can be achieved inductively in the following fashion: If for some integer ` ∈ [k, n), the
function g` := Dn−`hnk is determined, then we find g`+1 := Dn−`−1hnk by solving

Dg`+1 = g`, g`+1(ŷ`+1) = 0.

(The second condition also follows from (1) because ` + 1 > k.) We may display the
dependence of hnk on ŷ by writing hnk

(
·; ŷnk+1

)
, where ŷnk+1 =

(
ŷk+1, . . . , ŷn

)
. Because of this,

we may also write Vj
(
x, y; ŷnk+1

)
or simply Vj(x, y; ŷ) for Vj(x, y). Note that hnk = gn and

(5.25) hnk(ŷn) = 0,

provided that k < n. By (5.24), we also know

(5.26) hnn = 1.

We can now express our correlation kernel in terms of Θ and H:

Kij = Kij(t) = φj−i
(
Kjj − 11(i < j)

)
, Kjj = etD Vje

−tD.

where

Vj(x, y) =
(
ΘjHj

)
(x, y) =

j∑
k=1

φk−j(x, ŷk)h
j
k(y).

Observe that since φ and etD commute, we always have

(5.27) Kij(t) = etD Vije
−tD.

Evidently
dKij(t)

dt
=

d

dt

(
etDVije

−tD) = etD
(
DVij − VijD

)
e−tD.

In other words,

(5.28)
dKij

dt
= DKij −KijD.

Since D and φk commute, we have

DVij − VijD = φj−i
(
DVj − VjD

)
.
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By the definition of hjk,

Dhjk
(
y; ŷk+1, . . . , ŷj

)
= hj−1

k

(
y; ŷk+1, . . . , ŷj−1

)
.

Since
(
φ−1
)∗

= D, We have
φVjφ

−1 = Vj−1.

We now study V = K(0), which has

Vij = Kij(0) = φj−i
(
Kjj − 11(i < j)

)
= φj−i

(
Vj − 11(i < j)

)
,

for its (i, j)-th block. Also note that for j ≤ n,

Vij = φn−iVnφ
j−n − 11(i < j)φj−i.

This means that V and K are determined from VN .
Needless to say that V should serve as a correlation kernel for a point process that is

concentrated on a single configuration, namely ŷ. We will verify this directly.

Theorem 5.3 (i) The operator V is the correlation function of the trivial point process that
is concentrated on the single configuration ŷ.

(ii) For each r, the operator ∂rVN is rank-one. Moreover

(5.29) ŷr + 1 = ŷr−1, 1 ≤ r < N =⇒ VN(x, y; ŷr) = VN(x, y; ŷ).

(iii) The function VN(x, y; ŷ) satisfies DyVN = [D, VN ].

As a preparation, we explore some of the properties of the polynomials hjk. We define

τaf(x) = f(x+ a), τ̂aF
(
ŷ
)

= F
(
τaŷ
)
,

where τaŷ = ŷ − a = (ŷ1 − a, . . . , ŷN − a). We also set

ĥjk(ŷ) = ĥjk
(
ŷk+1, . . . , ŷj

)
:= hjk(0; ŷ).

To ease the notation, we also define

∂rF
(
ŷ
)

= F
(
ŷr
)
− F

(
ŷ
)
.

Proposition 5.1 The following statements are true:

(i) Drhjk
(
y; ŷk+1, . . . , ŷj

)
= hj−rk

(
y; ŷk+1, . . . , ŷj−r

)
, for r ∈ {1, . . . , j − k}.

(ii) hjk(y; ŷ) = ĥjk
(
τ̂yŷ
)
.
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(iii) We have

(5.30) ∂rh
j
k(y; ŷ) =


hr−1
k (ŷr + 1; ŷk+1, . . . , ŷr−1)hjr(y; ŷr+1, . . . , ŷj) k + 1 < r < j,

−hjk+1(y; ŷk+2, . . . , ŷj) k + 1 = r,

hj−1
k (ŷj + 1; ŷk+1, . . . , ŷj−1) r = j.

(iv) hjk satisfies the Neumann boundary conditions: If ŷr−1 = ŷr + 1, and r > k + 1, then
∂rh

j
k = 0.

(v) We have the following (anti)duality relationship

(5.31) Dŷh
j
k(y; ŷ) = hjk(y; ŷ)− hjk(y + 1; ŷ).

Proof (i) and (ii) follow from the definition and the elementary identity τaD = Dτa.

(iii) We only verify (5.30) when k+ 1 < r < j. Set g(y) = hjk(y; ŷr)−hjk(y; ŷ). We certainly
have

Dj−kg = 0, Dj−k−1g
(
ŷk+1

)
= Dj−k−2g

(
ŷk+2

)
= · · · = Dj−r+1g

(
ŷr−1

)
= 0.

This inductively implies

Dj−kg = Dj−k−1g = Dj−k−2g = · · · = Dj−r+1g = 0.

Hence c = Dj−rg is a constant, and g′ = c−1g satisfies

Dj−rg′ = 1, Dj−r−1g′
(
ŷr+1

)
= · · · = Dg′

(
ŷj−1

)
= g′

(
ŷj
)
.

Hence g′ = hjr. On the other hand,

c = hrk(y; ŷr)− hrk(y; ŷ) = hrk(ŷr; ŷr)− hrk(ŷr; ŷ) = hrk(ŷr; ŷr)

= hrk(ŷr; ŷr)− hrk(ŷr + 1; ŷr) = Dhrk(ŷr + 1; ŷr) = hr−1
k (ŷr + 1; ŷr)

= hr−1
k (ŷr + 1; ŷ),

as desired.

(iv) Clearly, if ŷr−1 = ŷr + 1, and r > k + 1, then

hr−1
k (ŷr + 1; ŷ) = hr−1

k (ŷr−1; ŷk+1, . . . , ŷr−1) = 0,

by the definition hr−1
k . This and (5.30) imply ∂rh

j
k = 0.

(v) Define
Trŷ =

(
ŷk+1 − 1, . . . , ŷr − 1, ŷr+1, . . . , ŷj

)
.
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Note that
(
Trŷ
)
r

= Tr−1ŷ. Hence by (5.30) and part (ii),

hjk
(
y;Tr−1ŷ

)
− hjk

(
y;Trŷ

)
= hr−1

k

(
ŷr;Trŷ

)
hjr(y; ŷ)

= ĥr−1
k (ŷk+1 − ŷr − 1, . . . , ŷr−1 − ŷr − 1)hjr(y; ŷ)

= hr−1
k

(
ŷr + 1; ŷ

)
hjr(y; ŷ) = ∂rh

j
k

(
y; ŷ
)
.

By summing over r = k + 1, . . . , j, we arrive at

(5.32) Dhjk(y; ŷ) = hjk(y; ŷ)− hjk(y; τ̂1ŷ),

which is equivalent to (5.31). �

Proof of Theorem 5.3(i) (Step 1)The main ingredient for the proof is the following:

(5.33) V
(
(i, x), (j, y)

)
= Vij(x, y) =

{
φj−i(x, ŷj)11(i ≥ j), y = ŷj;

−φj−i(x, y)11(i < j), x < ŷi.

First note that by (5.26)

(5.34) Vj(x, y) =

j∑
k=1

φk−j(x, ŷk)h
j
k(y) =

j−1∑
k=1

φk−j(x, ŷk)h
j
k(y) + 11(x = ŷj).

Let us write (τf)(x) = f(x+ 1) so that φ−1 = D+ = τ − 11. We certainly have

φ−`(x, y) =
∑̀
s=0

(−1)k−s
(
`

s

)
τ s(x, y) =

∑̀
s=0

(−1)k−s
(
`

s

)
11(y = x+ s).

From this and (5.14) we learn

(5.35) r ∈ Z , x− a < r =⇒ φr(x, a) = 0.

We claim that Vj(x, y) = 0 for x < ŷj. To see this observe that if x < ŷj, then for every
k ∈ [j],

x− ŷk = x− ŷj + ŷj − ŷk < k − j,

which leads to φk−j(x, ŷk) = 0 by (5.34). This and (5.34) imply that Vj(x, y) = 0. Moreover,
using (5.14), and

φj−iVj(x, y) =
∑
a

φj−i(x, a)Vj(a, y) =
∑
a≥ŷj

φj−i(x, a)Vj(a, y),
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we deduce

(5.36) x < ŷi =⇒ φj−iVj(x, y) = 0,

because x < ŷi and a ≥ ŷj imply x− a < ŷi − ŷj ≤ j − i.
Using (5.25) and (5.34),

Vj(x, ŷj) = 11(x = ŷj).

This and (5.34) lead to

Vj(x, y) = 11(x ≥ ŷj 6= y)

j−1∑
k=1

φk−j(x, ŷk)h
j
k(y) + 11(x = ŷj),(5.37) (

φj−iVj
)
(x, ŷj) =

∑
a

φj−i(x, a)Vj(a, ŷj) = φj−i(x, ŷj).

As a consequence,

(5.38) Vij(x, ŷj) =
(
φj−iVj

)
(x, ŷj)− φj−i(x, ŷj)11(i < j) = φj−i(x, ŷj)11(i ≥ j).

(Step 2.) Given a1, . . . , aN ∈ Z, let us define u : [N ] × Z → R by u(i, x) = 11(x ≤ ai). We
use Proposition 3.1(iii) to assert

(5.39) P
(
x̂1 > a1, . . . , x̂N > aN

)
= det

(
11− K̂

)
,

where

K̂
(
(i, x), (j, y)

)
= K

(
(i, x), (j, y)

)
(0)u1/2(i, x)u1/2(j, y) = Kij(0)(x, y)11(x ≤ ai, y ≤ aj).

Note that since the sequence
(
x̂i : i ∈ [N ]

)
is decreasing , we may replace the sequence

(ai : i ∈ [N ]) with (a′i : i ∈ [N ]), for a′i = max(aj : j ≥ i). Hence, we may assume that
a1 > · · · > aN without loss of generality. Under this assumption, we wish to show that the
right-hand side of (5.36) is

11
(
ŷ1 > a1, . . . , ŷN > aN

)
=: 11

(
ŷ ∈ a

)
.

To prove this, first assume ŷ /∈ a. This means that ŷj ≤ aj for some j ∈ [N ]. Without
loss of generality, we assume that j is the largest such index. Under such circumstances, the
(j, ŷj)-th column of K̂ is the vector(

Vij(x, ŷj)11(x ≤ ai) : i ∈ [N ], x ∈ Z
)

=
(
φj−i(x, ŷj)11(i ≥ j, x ≤ ai) : i ∈ [N ], x ∈ Z

)
.

Observe that if φj−i(x, ŷj) 6= 0, then

ŷi ≤ ŷj + j − i ≤ x.
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by (5.35). As a result

φj−i(x, ŷj)11(i ≥ j, x ≤ ai) 6= 0 =⇒ i ≥ j, ŷi ≤ ai.

But since j is the largest possible index for which ŷj ≤ aj, we learn(
Vij(x, ŷj)11(x ≤ ai) : i ∈ [N ], x ∈ Z

)
=
(
φj−i(x, ŷj)11(i = j, x ≤ ai) : i ∈ [N ], x ∈ Z

)
=
(
11(x = ŷj, i = j) : i ∈ [N ], x ∈ Z

)
.

As a result, the matrix 11− K̂ has a 0 column. In particular,

ŷ /∈ a =⇒ det
(
11− K̂

)
= 0.

We now turn to the case ŷ ∈ a, which means that ŷi > ai for all i ∈ [N ]. Let us write

V̂ij for the (i, j)-th block of K̂. Then by (5.36),

V̂ij(x, y) = Vij(x, y)11(x ≤ ai, y ≤ aj) =
(
φj−iVj − φj−i11(i < j)

)
(x, y)11(x ≤ ai, y ≤ aj)

= −φj−i(x, y)11(i < j)11(x ≤ ai, y ≤ aj)

= −φj−i(x, y)11(i < j)11(x ≤ ai, y ≤ aj, x− y > 0).

As a consequence, the matrix K̂ is strictly lower triangular. This implies that det(11−K̂) = 1,
as desired.

Proof of (ii) Clearly if r > j, then ∂rVj = 0. On the other hand, if r ≤ j, then by
Proposition 5.1(iii),

∂rVj
(
ŷ
)
(x, y) =

r−1∑
k=1

φk−j(x, ŷk)∂rh
j
k

(
y; ŷ
)

+
(
φr−j(x, ŷr + 1)− φr−j(x, ŷr)

)
hjr(y; ŷ)

=

(
r−1∑
k=1

φk−j(x, ŷk)h
r−1
k (ŷr + 1; ŷ)

)
hjr(y; ŷ)

+
(
φr−j(x, ŷr + 1)− φr−j(x, ŷr)

)
hjr(y; ŷ)

= : f jr
(
x; ŷ

)
hjr
(
y; ŷ
)
,

where

f jr
(
x; ŷ

)
= φr−j(x, ŷr + 1)− φr−j(x, ŷr) +

r−1∑
k=1

φk−j(x, ŷk)h
r−1
k (ŷr + 1; ŷ).

Note that if ŷr + 1 = ŷr−1, then hr−1
k (ŷr + 1; ŷ) = hr−1

k (ŷr−1; ŷ) = 0, whenever k < r − 1.
Thus,

ŷr + 1 = ŷr−1 and 1 < r ≤ j =⇒ Vj
(
ŷr
)
− Vj

(
ŷ
)

= 0,
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as desired.

Proof of (iii) Since D(x, y) = 11(y = x− 1)− 11(y = x) = 11(x = y + 1)− 11(y = x),(
DVj − VjD

)
(x, y) = Vj(x− 1, y)− Vj(x, y)−

(
Vj(x, y + 1)− Vj(x, y)

)
.

Note

Vj(x− 1, y)− Vj(x, y) =

j∑
r=1

(
φr−j(x− 1, ŷk)− φr−j(x, ŷk)

)
hjr(y)

=

j∑
r=1

(
φr−j(x, ŷr + 1)− φr−j(x, ŷr + 1)

)
hjr(y),

Vj(x, y + 1)− Vj(x, y) =

j∑
k=1

φk−j(x, ŷk)
(
hjk
(
y + 1; ŷ

)
− hjk

(
y; ŷ
))
.

On the other hand, DŷVj = Ω1 + Ω2, with

Ω1 =

j∑
r=1

r−1∑
k=1

φk−j(x, ŷk)
(
hjk
(
y; ŷr

)
− hjk(y; ŷ)

)
=

j−1∑
k=1

φk−j(x, ŷk)

j∑
r=k+1

(
hjk
(
y; ŷr

)
− hjk(y; ŷ)

)
=−

j−1∑
k=1

φk−j(x, ŷk)
(
hjk
(
y + 1; πjk+1ŷ

)
− hjk

(
y; πjk+1ŷ

))
=−

(
Vj(x, y + 1)− Vj(x, y)

)
,

Ω2 =

j∑
r=1

(
φr−j(x, ŷr + 1)− φr−j(x, ŷr)

)
hjr(y; ŷ)

=Vj(x− 1, y)− Vj(x, y).

Here we used (5.31) for the fourth equality. This completes the proof. �

If we set
F (ŷ, t) = P(x̂(t) > a | x̂(0) = ŷ),

then

(5.40)
dF

dt
(ŷ, t) = LF (ŷ, t), F (ŷ, 0) = 11

(
ŷ > a

)
.
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On the other hand, we have a candidate for F with the aid of our determinantal formula:

(5.41) F (ŷ, t) == det
(
11− K̂(ŷ, t)

)
,

where
K̂(ŷ, t) = K(ŷ, t)χ = etDV(ŷ)e−tDχ,

where χ
(
(i, x), (j, y)

)
= 11

(
x ≥ ai, y ≥ aj

)
. It is instructive to verify this directly.

Theorem 5.4 The function F , given by (5.41) satisfies (5.40).

Proof Set G(ŷ, t) =
(
11− K̂

)−1
. From the elementary identity

det(A+ δB) = detA
(
1 + δ tr

(
A−1B

)
+O(δ2)

)
,

we deduce

Ft(ŷ, t) = −F (ŷ) tr

(
G(ŷ, t)

d

dt
K̂(ŷ, t)

)
(5.42)

= −F (ŷ) tr
(
G(ŷ, t)

(
DK(ŷ, t)−K(ŷ, t)D

)
χ
)
.

On the other hand, by Theorem 5.3(ii), the kernel K(ŷ, t) satisfies the same boundary
condition as in (5.29) because V satisfies (5.29). This in turn implies the function F also
satisfies the same boundary condition. Hence we can replace L with D =

∑
r D+

r in (5.40),
where D+

r acts on xr only. Let us write

K
(
(i, x), (j, y); ŷr, t

)
−K

(
(i, x), (j, y); ŷ, t

)
= ar((i, x); ŷ, t)⊗ br((j, y); ŷ, t),

because D+
r K is a rank-one matrix. Observe that for a matrix A and vectors a,b, we always

have

det(A+ a⊗ b) = detA det
(
11 + A−1a⊗ b

)
= detA det

(
11 +

(
A−1a

)
⊗ b

)
= detA

∑
c

det
((
A−1a

)
⊗ b

)
c

= detA
∑
|c|=1

det
((
A−1a

)
⊗ b

)
c

= (detA)
(
A−1a · b

)
= (detA) tr

(
A−1a⊗ b

)
.

As a result

LF (ŷ, t) = DF (ŷ, t) =
∑
r

[
det
(

11− K̂(ŷ, t)−
(
K̂(ŷr, t)− K̂(ŷ, t)

))
− det

(
11− K̂(ŷ, t)

) ]
=
∑
r

[
det
(

11− K̂(ŷ, t)− ar(ŷr, t)⊗ br(ŷr, t) χ
)
− det

(
11− K̂(ŷ, t)

) ]
= −F (ŷ)

∑
r

tr
(
G(ŷ, t) ar(ŷr, t)⊗ br(ŷr, t) χ

)
= −F (ŷ) tr

(
G(ŷ, t)DK̂(ŷ, t)

)
.
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We are done if we can show

(5.43) tr
(
G(ŷ, t)

(
DK̂(ŷ, t)− K̂(ŷ, t)D

))
== tr

(
G(ŷ, t)DK̂(ŷ, t)

)
.

This is an immediate consequence of Theorem 5.3. �

Remark 5.2 From the proof of Theorem 5.4, we learn this: If K(x, y; ŷ, t) = K(ŷ, t) satisfies

• Kt(ŷ, t) = DK(ŷ, t).

• DiK(ŷ, t) is a rank-one matrix for each i,

then F given by (5.41) satisfies (5.40). �

Example 5.1 When ŷi = i+ r for i = k, . . . , j, then

hjk(y; ŷ) = hjk(y; ŷk+1, . . . , ŷj) = (j − k)!−1(y − ŷk+1)(y − ŷk+2) . . . (y − ŷj).

Indeed hk+1
k (y; ŷ) = 1, and

Dhjk(y; ŷ) = hjk(y − 1; ŷ)− hjk(y; ŷ)

= (ŷj − ŷk)(j − k)!−1(y − ŷk+1)(y − ŷk+2) . . . (y − ŷj−1)

= hj−1
k (y; ŷ),

which implies our claim. �

Remark 5.3 We now try to justify the form of the kernel V orK. Our discussion in Chapter 4
suggests a representation of the form (3.43) for the correlation kernel when the total number
of particles is fixed and equals N . In other setting we are cosidering an extended kernel
V : X̂2 → R, where X̂ = [N ]×X, X = Z, and

Vij(x, y) = V
(
(i, x), (j, y)

)
=

N∑
k=1

φk(i, x)hk(j, y) =
N∑
k=1

φik(x)hjk(y).

However what we really have is of the form

Vij(x, y) = V
(
(i, x), (j, y)

)
=

N∑
k=1

φik(x)hjk(y)− 11(i < j)φj−i(x, y),

where φik(x) = φk−i(x, ŷk). To understand what is is going on, observe

Vijφ
j
r = φir − 11(i < j)φj−iφjr = φir − 11(i < j)φir = 11(j ≤ i)φir,

hirVij = hjr − 11(i < j)hirφ
j−i = hjr − 11(i < j)hjr = 11(j ≤ i)hjr.
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For the second equality on the second line we have used Proposition 5.1(i): If i < j, then

hjrφ
i−j =

(
φ∗
)i−j

hjr = Dj−ihjr = hir, or hirφ
j−i = hjr.

Exercise

(i) Derive (5.6). �
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6 Scaling Limits for TASEP and KPZ Fixed Point

In Section 1.4 of Introduction, we formulated a scaling limit (1.22) that should be for any
stochastic growth model in dimension 2. The determinantal formula of Chapter 5 for TASEP
allows us to establish this scaling limit for TASEP. In fact since the determinantal formulation
of Chapter 5 is for the particle location (as opposed to the height function), it is more
convenient to establish such a scaling limit for particle locations. It is worth mentioning
that the particle system x(t) is an example of a Zero Range Process (ZRP). The relationship
between h and x is that the map h 7→ x(h) and x 7→ h(x) is

h(x(i))− h(x(0)) = i.

From this, it is not hard to see that if

u(x, t) = lim
ε→0

εh

([x
ε

]
,
t

ε

)
, v(a, t) = lim

ε→0
εx

([a
ε

]
,
t

ε

)
,

then u
(
v(a, t), t) = a. As for the macroscopic equation, if

ut = H(ux), vt = Ĥ(va),

then using H(p) = −p(1− p), uxva = 1, and ut + uxvt = 0, we obtain

Ĥ(ρ) = 1− ρ−1.

Note,
Ĥ ′(ρ) = ρ−2, L̂(ρ) := ρĤ ′(ρ)− Ĥ(ρ) = 2ρ−1 − 1, Ĥ ′′(ρ) = −2ρ−3.

In particular, for ρ = 2, we have L̂(2) = 0, Ĥ ′(2) = 4−1, and Ĥ ′′(2) = −4−1. According to
our formulation (1.22) we expect

(6.1) h̄(a, t) := lim
ε→0

Xε(a, t) := lim
ε→0

ε−1/2

(
εx

([
a

ε
− t

4ε3/2

]
,
t

ε3/2

)
− 2a

)
,

to be a solution to the KPZ fixed point

(6.2) h̄t + 8−1 h̄2
a = 0.

For each ρ ≥ 1 ZRP has an invariant measure that can be interpreted as a random walk
with geometric jump law. In other words we have an i.i.d sequence

(
xi+1 − xi : i ∈ Z

)
with

νρ
(
xi+1 − xi = k

)
= ρ−1

(
1− ρ−1)k−1 11(k ≥ 1).
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This invariant measure is particularly simple when ρ = 2. In this case, we think of (xi : i ∈ Z)
as a Markov process process with

(6.3) ν
(
x̂n+1 = y

∣∣ x̂n = x
)

= ν
(
xn+1 = x

∣∣ xn = y
)

= 2y−x11(x > y).

Recall that by Remark 3.1(ii), we may conjugate a correlation kernel of a determinantal
process by a function λ(x) to obtain another correlation kernel for the same process. The
form of (6.3) (keeping in mind that for our scaling formulation we have chosen ρ = 2)
suggests that we conjugate our kernel of Theorem 5.1 by the function λ(x) = 2x. Note that
if K1 and K2 are two operators associated with kernels K1 and K2, then(

K1K2)λ = Kλ
1 Kλ

2 .

Hence conjugating the kernel K with λ is equivalent to conjugating both φ and Ψ. We write
φ̂ for the λ-conjugation of φ. Observe

φ̂(x, y) = 2y−x11(x > y),

which is (6.3) and can be regarded as the jump kernel of a walk. In view of the scaling
formulation (6.1), we wish to rewrite the correlation kernel in terms of macroscopic time
T , macroscopic locations X and Y , and macroscopic labels a and b. This means that in
Theorem 5.1, we have

t = ε−3/2T, i =
[
ε−1a− 4−1ε−3/2T

]
, j =

[
ε−1b− 4−1ε−3/2T

]
,

x = 2ε−1a+ ε−1/2X, y = 2ε−1b+ ε−1/2Y.(6.4)

Let us first examine the first term on the right-hand side of (5.5): Since j > i means that

b > a, and j − i = ε−1(b− a), we wish to analyze φ̂k, for k = rε−1, r > 0 and after a change
of variable (x, y) 7→ (X, Y ) as in (6.4). Note that if (θi : i ∈ N) is a sequence of iid positive
random variables with θi = n ∈ N occurring with probability 2−n, then

θ1 + · · ·+ θ[rε−1] = 2rε−1 + 21/2ε−1/2B(r) + o
(
ε−1/2

)
,

where B(r) is a standard Brownian motion. (This is a consequence of the classical Donsker
Invariance Principle, though we only need CLT for (6.5) below.) Now take any bounded
continuous f : R→ R. We certainly have

ε1/2
∑
y∈Z

ε−1/2φ̂ε
−1(b−a)

(
2ε−1a+ ε−1/2X, y

)
f
(
ε1/2
(
y − 2ε−1b

))
= Ef

(
X + 21/2B(b− a)

)
+ o(1),

in small ε limit; the left-hand side is the expected value of f(Y ) for a walk that starts at
time i from the location x = 2ε−1a + ε−1/2X, and lands at y = 2ε−1b + ε−1/2Y at time j.
Our convergence is an immediate consequence of CLT. In summary, weakly

(6.5) lim
ε→0

ε−1/2 φ̂ε
−1(b−a)

(
2ε−1a+ ε−1/2X, 2ε−1b+ ε−1/2Y

)
= e(b−a)∂2(X, Y ),
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with
e(b−a)∂2(X, Y ) = (4π(b− a))−1/2 exp

(
− (X − Y )2/(4t)

)
.

The convergence (6.5) is also true locally uniformly in (X, Y ). To see this, recall that
explicitely

φ̂k(x, y) = 2x−y
(
x− y − 1

k − 1

)
11(x > y + k).

We may use this and Stirling’s formula to establish (6.5).
We now turn our attention to the operator/matrix

Ψj =
[
ψk(x; j)

]
k∈[j],x∈Z =

[
e−tD−φk−j

(
x, δŷk

)]
k∈[j],x∈Z .

After conjugation with 2x we get

Ψ̂j =
[
e−tD̂−φ̂k−j

(
x, δŷk

)]
k∈[j],x∈Z

,

with D̂− the conjugation of D−. Observe that φ−1 = D+ and φ̂−1 is D̂+, the conjugation of
D+. Indeed(

D̂±f
)
(x) = ±2−x

(
f(x± 1)2x±1 − f(x)2x

)
= ±

(
2±f(x± 1)− f(x)

)
.

Hence
D̂+ = id+ 2D+, D̂− = −2−1

(
D− + id

)
.

Our strategy for the derivation of (6.1) is as follows:

Theorem 6.1 Given macroscopic parameters (X, Y, a, b, T ), define microscopic parameters
(x, y, i, j, t) as in (6.1). Then

(6.6) lim
ε→0

ε−1/2K
(
(i, x), (j, y); t

)
= lim

ε→0
ε−1/2Kij(x, y; t) =: K̄a,b(X, Y ;T ),

where K̄ will be defined below.

To get a feel for K̄, write

Kij = etDVije
−tD = etDφj−i

(
Vj − 11(i < j)

)
e−tD

= etDφ−i
(
φ−jVjφ

j
)
φ−je−tD − 11(i < j)φj−i

We already know the limit of the last time by (6.5). We next examine the operator etD̂−φ̂−i.
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Proposition 6.1 Fot T > 0, we have

(6.7) lim
ε→0

ε−1/2
(
e
− T

2ε3/2
D− φ̂

a
ε
− T

4ε3/2

)( X

ε1/2
,
2a

ε
+

Y

ε1/2

)
= ea∂

2+T
6
∂3(X, Y ).

If we write V̄b for the contribution coming from (φ−jVjφ
j, we end up with a candidate

for K̄ of the form

(6.8) K̄a,b = ea∂
2−T

6
∂3V̄ eb∂

2+T
6
∂3 − 11(a < b)e(b−a)a∂2 .

Before embarking on the proof we make some conventions and comments, and give a
heuristic proof of (6.7).

(i) So far we have used the same notation for an operator an its kernel. This is a extension
of the common convention that we identify a linear operator with its matrix representation
in finite dimension. We now push this convention further in the case of a convolution.
More precisely, when the kernel A(x, y) of an operator depends on x − y, then we write
A(x, y) = A(x− y). Our convention allows us to write

Discrete Setting: (Af)(x) =
∑
y∈Z

A(x, y)f(y) =
∑
y∈Z

A(y)f(x− y) = (A ∗ f)(x),

Continuous Setting: (Af)(x) =

∫
A(x, y)f(y) dy =

∫
A(y)f(x− y) dy = (A ∗ f)(x),

for a convolution operator. The next thing to address is the effect of our spatial rescaling.
Given a kernel A(x, y) = A(x− y), let us write(

SεA
)
(X, Y ) = ε−1/2A

(
ε−1/2X, ε−1/2Y

)
.

Observe that in continuous setting(
SεA

)
f(X) =

∫
ε−1/2A

(
ε−1/2Y

)
f(X − Y ) dY =

∫
A(y)f

(
X − ε1/2y

)
dy.

(ii) Next we clarify what we really mean by (6.6) because both D± and φ̂ are operators on
Z. As in (4.9), we may represent the kernel φk(x, y) = φ∗k(x−y) by a contour integral. Here
we also write φ(x) = 11(x > 0) and φ∗k we mean the k-fold convolution of φ by itself. Note
that since ∑

y∈Z

φ(y)zy = z(1− z)−1,

we have ∑
y∈Z

φ∗k(y)zy = zk(1− z)−k.
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By Fourier inversion

φ∗k(x) =
1

2πi

∮
C1(0)

z−x−1zk(1− z)−k dz,

where C1(0) denotes the circle of radius 1 about the origin. So far we know this is true for
k ∈ N. But we also have ∑

y

φ−1(y)zy = z−1(1− z) = z−1 − 1,

where φ−1(y) = 11(y = −1) − 11(y = 0) is the kernel of the operator φ−1 = D+. Hence it is
true for k ∈ Z. (Note that z−x is an eigenfunction of the operator φk, with the corresponding
eigenvalue zk(1 − z)−k.) When k is negative, z = 1 is no longer a pole and we can deform
the circle C1 to any positive contour that includes 0. In other words, for any integer k < 0,

φ∗k(x) =
1

2πi

∮
γ

z−x−1
(
z−1 − 1)−k dz,

or equivalently

φk(x, y) =
1

2πi

∮
γ

z−(x−y)−1
(
z−1 − 1)−k dz.

We may also conjugate our operators with λ(x) = 2x. The outcome is

(6.9) φ̂k(x, y) =
1

2πi

∮
γ

2x−yz−(x−y)−1
(
z−1 − 1)−k dz,

for any integer k < 0. In the same manner we arrive at

(6.10)
(
e−

t
2

(id+D−) φ̂k
)

(x, y) =
1

2πi

∮
γ

2x−yz−(x−y)−1zk(1− z)−ket(z−1) dz.

Equivalently

(6.11)
(
e−

t
2
D− φ̂k

)
(x, y) =

1

2πi

∮
γ

2x−yz−(x−y)−1zk(1− z)−ket(z−1/2) dz.

(iii) We now provide a heuristic proof of (6.6) when a = 0. Observe that since

φ̂−1 = id+ 2D+,

we may formally write

e−2−1ε−3/2TD− φ̂−4−1ε−3/2T = exp

[
2−1ε−3/2T

(
−D− +

1

2
log
(
id+ 2D+

))]
.
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We now apply Sε to both sides. This turns the operator D± to Dε
± = SεD± with(

Dε
±f
)
(X) = ±

(
f
(
X ± ε−1/2

)
− f(X)

)
.

Since these operators are of order O(ε1/2), we may write

−Dε
− +

1

2
log
(
id+ 2Dε

+

)
= Dε

+ − Dε
− −

(
Dε

+

)2
+

4

3

(
Dε

+

)3
+O

(
ε2
)
.

On the other hand, the expression(
Dε

+ − Dε
− −

(
Dε

+

)2
+

4

3

(
Dε

+

)3
)
f(X),

equals to

f
(
X + ε1/2

)
+ f
(
X − ε1/2

)
− 2f(X)−

[
f
(
X + 2ε1/2

)
− 2f

(
X + ε1/2

)
+ f(X)

]
+

4

3

[
f
(
X + 3ε1/2

)
− 3f

(
X + 2ε1/2

)
+ 3f

(
X + ε1/2

)
− f(X)

]
=εf ′′(X)−

(
εf ′′(X) + ε3/2f ′′′(X)

)
+

4

3
ε3/2f ′′′(X) +O

(
ε2
)

=3−1ε3/2f ′′′(X) +O
(
ε2
)
.

(iv) The kernel of the right-hand side of (6.6) can be expressed as the Airy function. Origi-
nally the Airy function was defined as a solution of the simple ODE y′′(x) = xy(x). We may
attempt to find a solution by Fourier Transform, or more generally as

y(x) =

∫
γ

f(z)e−xz dz,

for a suitable of a function f and a path γ : (a−, a+)→ C. Observe

y′′(x)− xy(x) =

∫
γ

z2f(z)e−xz dz +

∫
γ

f(z) de−xz

= f(γ(a−))e−xγ(a−) − f(γ(a+))e−xγ(a+) +

∫
γ

(
z2f(z)− f ′(z)

)
e−xz dz,

which is zero if f ′(z) = z2f(z) and f(γ(a±))e−xγ(a±) = 0. We choose f(z) = z3/3, and a±
suitable points at ∞ so that

y(x) =

∫
γ

ez
3/3−zx dz.
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For this we require

lim
z→a±

∣∣∣ez3/3−zx∣∣∣ = 0.

By choosing a± different points at ∞, we may get different solutions. Indeed if z = reiθ,
then ∣∣∣ez3/3−zx∣∣∣ = er

3 cos(3θ)−xr cos θ → 0,

provided that r → ∞ and cos(3θ) remains negative. A simple choice would be this: take γ
the union two half lines emanating from the origin that make angles ±π/3 for the positive
x-axis. We orient this γ as ∞e−iπ/3 → 0 → ∞eiπ/3. Given such a path γ, and after a
renormalization, we define the Airy function by

Ai(x) =
1

2πi

∫
γ

ez
3/3−zx dz.

In fact we may even choose θ = 3π/2, though we will not have a convergence of the integral
and we need to take an improper integral. When θ = π/2, the integral is over the imaginary
axis and we arrive at

Ai(x) =
1

2πi

∫ i∞

−i∞
ez

3/3−zx dz =
1

2π

∫ ∞
−∞

e−i(r
3/3+rx) dr =

1

π

∫ ∞
0

cos
(
r3/3 + rx

)
dr

:= lim
a→∞

1

π

∫ a

0

cos
(
r3/3 + rx

)
dr.

Airy function may be used to determine the kernel of the operator et∂
3
: The function

u(x, t) =
1

2πi

∫
γ

etz
3/3−zxf(z) dz,

solves the PDE ut = 3−1uxxx for any bounded measurable function f with the initial condition

u(x, 0) =
1

2πi

∫
γ

e−zxf(z) dz

If we choose γ to be the imaginary axis, we obtain

u(x, 0) =

∫ ∞
−∞

e−2πixξf(iξ) dξ =

∫ ∞
−∞

e−2πixξg(ξ) dξ = ĝ(x).

Hence by choosing

g(ξ) = û(ξ, 0) =

∫ ∞
−∞

e−2πixξu(x, 0) dx,
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we have the following expression: If u0(x) = u(x, 0), then

u(x, t) = et∂
3/3u0(x) =

(
At ∗ u0

)
(x),

with

At(x) =
1

t1/3
Ai
( x

t1/3

)
=

1

2πi

∫
γ

etz
3/3−zx dz.

�

Proof of Proposition 6.1 Since all the operators that appear on the left-hand side of (6.6)
are convolution operators, we may set X = 0 in (6.6) and evaluate the following limit

lim
ε→0

Xε = lim
ε→0

1

2πi

∮
γ

ε−1/22−xz−x−1zk(1− z)−ket(z−1/2) dz = lim
ε→0

1

2πi

∮
γ

ε−1/2eF (z) dz

with γ a circle about the origin of radius 1/2, and

x =
2a

ε
+

Y

ε1/2
, t =

T

2ε3/2
, k =

a

ε
− T

4ε3/2
,

F (z) = −x log 2 + (k − x− 1) log z − k log(1− z) + t(z − 1/2).

We now change variables z = 2−1
(
1− wε

)
:= 2−1

(
1− ε1/2w

)
to write

Xε = − 1

2πi

∮
γ′

1

2
eG(w) dw,

where γ′ is a positively oriented circle of center ε−1/2 and radius ε−1/2, and

G(w) = log 2 + (k − x− 1) log
(
1− wε

)
− k log

(
1 + wε

)
− 2−1twε

= log 2− log
(
1− wε

)
− Y

ε1/2
log
(
1− wε

)
− a

ε
log
(
1− w2

ε

)
+

T

4ε3/2
log

1 + wε
1− wε

− T

2ε3/2
wε

= log 2 + wε +O
(
εw
)

+ Y w +O
(
ε1/2w

)
+ aw2 +O

(
εw4
)

+ Tw3/6 +O
(
ε1/2w4

)
=: log 2 +Hε(w) = log 2 + Y w + aw2 + Tw3/6 +O

(
ε1/2(w4 + 1)

)
,

because

log
1 + wε
1− wε

− 2wε =
2

3
w3
ε +O

(
w4
ε

)
=

2

3
ε3/2w +O

(
ε2w4

)
.

As a result,

Xε = − 1

2πi

∮
γ′
eHε(w) dw.
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for a function Hε(w) such that for each w ∈ C,

lim
ε→0

Hε(w) = Y w + aw2 + Tw3/6.

We now write γ′ = γ′ ∪ γ′′, where γ′ is the set w = reiθ ∈ γ such that θ /∈ [−π/6, π/6]. After
reversing the orientation in γ′ and deforming γ′ to two lines through the origin with angles
±π/3 that lie inside γ′, it is not hard to show

lim
ε→0

−1

2πi

∮
γ′
eHε(w) dw =

1

2πi

∮
C

eY w+aw2+Tw3/6 dw,

with C the union of oriented half lines
(
∞e−iπ/3, 0

]
and

[
0,∞eiπ/3

)
. To complete the proof,

it remains to show

(6.12) lim
ε→0

1

2πi

∮
γ′′
eHε(w) dw = 0.

For w = reiθ ∈ γ′′, we have θ ∈ [−π/6, π/6]. Since for z = 2−1eiα,

ε1/2reiθ = ε1/2w = 1− 2z = 1− eiα = (1− cosα)− i sinα,

we deduce ∮
γ′′
eHε(w) dw = ε1/2

∮
γ̂

eF (z) dz,

where γ̂ represents the part of the circle γ for which

tan
(
π/2− θ) = cot θ = −1− cosα

sinα
= −2

sin2(α/2)

sinα
= − tan(α/2),

for some θ ∈ [−π/6, π/6]. Hence arg z = α ∈ [2π/3, 4π/3], on γ̂. On the other hand,∣∣eF (z)| = <F (z) = −x log 2− (k − x− 1) log 2− k log |1− z|+ 2−1t
(

cosα− 1)

= log 2− k
[

log 2 + 2−1 log(5/4− cosα)
]

+ 2−1t
(

cosα− 1)

= log 2− 2−1k log(5− 4 cosα) + 2−1t
(

cosα− 1)

= log 2− 2−1k log
(
1 + 4(1− cosα)

)
+ 2−1t

(
cosα− 1)

= log 2−
(
2k + 2−1t

)
(1− cosα) + kζ

(
cosα− 1),

where
ζ(a) = 2a− 2−1 log(1 + 4a),

which is a positive function if a > 0. On the other hand 2k + 2−1t = 2aε−1, and for T > 0,
−k is positive and of order ε−3/2. As a result, there exists a positive constant c0 such that∣∣eF (z)| = log 2− 2aε−1(1− cosα) + kζ

(
cosα− 1) ≥ −c0ε

−3/2,
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for small ε. This completes the proof of (6.12). �

Exercise

(i) Suppose that η is a white noise in Rd. Show that its Fourier transform η̂ is also a white
noise. When η : Td → R is a white noise on the d-dimensional torus Td, describe its Fourier
expansion.

(ii) Consider the PDE ut = uxxx. Show that if u is initially a white, then it is a white noise
at later times.

(iii) Use

ϕ∗k(x) =
1

2πi

∮
Cr(0)

z−x−1
(
z−1 − 1

)−k
dz,

to show that if k = −n for some n ∈ N, then

ϕ∗k(x) = 11(k ≤ x ≤ 0)(−1)k−x
(
−k
−x

)
.

�
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7 Multiline and Multiclass Processes

Definition 7.1(i) Let us write Ω for the set of discrete subsets of R × (0,∞) that are
unbounded in both coordinates. We also write X for unbounded discrete subsets of R such
that if (a, s), (b, t) are two distinct points in ωωω ∈ Ω, then a 6= b and s 6= t. We write
x =

(
xi : i ∈ Z

)
for members of X, and assume

xi < xi+1, lim
i→±∞

xi = ±∞.

for every i ∈ Z. We write X for the set of non-crossing paths

x(·) =
(
xi(·) : i ∈ Z

)
: [0,∞)→ X,

such that each xi(·) is an up-left left-continuous path which stays constant in between jumps
to the left.

(ii) We define Φ− : X × Ω → X with the following rule: If Φ−(x,ωωω) = x(·), then each
time an ω = (a, t) ∈ ωωω point shows up between xi−1(t) and xi(t), then xi(t) jumps to a,
i.e., xi(t+) = a. We also write Φ−(t)(x,ωωω) = Φ−(x,ωωω)(t) = x(t). Think of x(t) as a point
process in R with initial configuration x = x(0). Note that each xi path has an ωωω point on
every of its L corners. We also define Λ− : X ×Ω→ Ω, where Λ−(x,ωωω) = ω̂ωω is the set of all
¬ corners:

ω̂ωω =
{

(xi(t), t) : either (xi(t), t) ∈ ωωω, or (xi(t+), t) ∈ ωωω, t ∈ R+, i ∈ Z
}
.

Note that by convention, if (xi(t), t) = ω ∈ ωωω, then xi(t+) = xi(t) and we do include such a
point in ω̂. Similarly, we define Φ+ : X×Ω→ X with the following rule: If Φ+(x,ωωω) = x(·),
then each time an ω = (a, t) ∈ ωωω point shows up between xi(t) and xi+1(t), then xi(t) jumps
to a, i.e., xi(t+) = a. In the same fashion, we define Λ+.

(iii) We define Φ−n : Xn × Ω→ X n in the following manner:

Φ−n
(
x1, . . . ,xn, ω) =

(
x1(·), . . . ,xn(·)

)
,

means that inductively,

ωωωn = ωωω, xn(·) = Φ−
(
xn,ωωωn

)
,

ωωωn−1 = Λ
(
xn,ωωωn

)
, xn−1(·) = Φ−

(
xn−1,ωωωn−1

)
,

...
...

ωωω1 = Λ
(
x2,ωωω2

)
, x1(·) = Φ−

(
x1,ωωω1

)
.

We think of −→x (t) =
(
x1(t), . . . ,xn(t)

)
as a multiline process with initial condition(

x1(0), . . . ,xn(0)
)

= −→x =
(
x1, . . . ,xn

)
.
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In the same fashion, we define Φ+
n .

(iv) The process x(t) = x±(t) = Φ±t (x,ωωω) is random once we put a probability measure P
on Ω. If P is a Poisson point process of intensity one, then Φ−(x, ω) is HAD process as was
defined in Chapter 1. We refer to Φ+(x, ω) as the reverse HAD process. More generally, we
refer to the multiline Φ−n (x, ω) as PSF process after the work of Prähofer-Sphon [PS] and P.
L. Ferrari [F]. We refer to Φ+

n (x, ω) as the reverse PSF process. In our presentation, we have
followed P.A. Ferrari and Martin [FM2]. �

The multiline process can be used to explore the monotonicity properties of HAD process.
PSF process is a Markov process with the generator

A−F
(−→x ) =

∫
R

(
F
(
J−a
−→x
)
− F

(−→x )) da,
where J−a

−→x is the configuration we obtain from−→x by performing nmany particle movements:

• For the first movement, find xnin ∈ xn such that a ∈
(
xnin−1, x

n
in

)
. Move xnin to a.

• For the second movement, find xn−1
in−1
∈ xn−1 such that xnin ∈

(
xn−1
in−1−1, x

n−1
in−1

]
. Move

xn−1
in−1

to xnin .

• Inductively repeat the above operation n times till a particle x1
i1
∈ x1 such that x2

i2
∈(

x1
i1−1, x

1
i1

]
is moved to x2

i2
.

Similarly the reverse PSF process has a generator of the form

A+F
(−→y ) =

∫
R

(
F
(
J+
b
−→y
)
− F

(−→y )) db,
where J+

b
−→y is the configuration we obtain from−→y by performing nmany particle movements:

• For the first movement, find y1
i1
∈ y1 such that b ∈

(
y1
i1
, y1
i1+1

)
. Move y1

i1
to b.

• For the second movement, find y2
i2
∈ y2 such that y1

i1
∈
[
y2
i2
, y2
i2+1

)
. Move y2

i2
to y1

i1
.

• Inductively repeat the above operation n times till a particle ynin ∈ yn such that
yn−1
in−1
∈
[
ynin , y

n
in+1

)
is moved to yn−1

in−1
.

The following result of Cator and Groeneboom [CG] supports the relevance of the mul-
tiline process:

Theorem 7.1 . Assume that x is independent of ωωω, and that x is a Poisson point process
of intensity ρ > 0, and ω is a Poisson point process of intensity one. Then ω̂ωω = Λ±(x,ωωω) is
also a Poisson point process of intensity one.
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Now imagine that −→x and ωωω are independent with ωωω distributed according to a Poisson
point process of intensity one, and −→x selected according to

νρ1,...,ρn = νρ1 × . . .× νρn , ρ1, . . . , ρn > 0,

where νρ represents a Poisson point process in R of intensity ρ. Then by Theorem 7.1, each
xi(t) is a stationary HAD process for i = 1, . . . , n. P. A. Ferrari and Martin [FM2] show
that in fact νρ1,...,ρn is an invariant measure for the process −→x (t).

Theorem 7.2 The adjoint A−∗ of the operator A− with respect to the measure νρ1,...,ρn is
A+, the generator of the reverse PSF process. In particular, the measure νρ1,...,ρn is invariant
for PSF process for every ρ1, . . . , ρn > 0.

Proof Let us write ν for νρ1,...,ρn . We wish to show∫
G
(−→x )A−F(−→x ) ν(d−→x ) =

∫
F
(−→y )A+G

(−→y ) ν(d−→y ).
for bounded continuous F,G : Xn → R. For this, it suffice to show∫

R

∫
G
(−→x )F(J−a −→x ) ν(d−→x )da =

∫
R

∫
F
(−→y )G(J+

b
−→y
)
ν
(
d−→x
)
db.

This is basically achieved by making a change of variable J−a
−→x = −→y . We may express the

left-hand side as a sum over integrals of the form∫
R
da

∫
Rn

dxnin . . . dx
1
i1

11
(
a =: xn+1

in+1
< xnin < xn−1

in−1
< · · · < x1

i1

)
n∏
k=1

ρk exp
(
ρk
(
xk+1
ik+1
− xkik

)) ∫
ν̂
(
d−→x
)
G
(−→x )F(−→x a

)
,

where ν̂ is the measure ν conditioned that xk has a particle at location xkik , and no particle

in the interval
(
xk+1
ik+1

, xkik
)
. Now as we make a change of variable −→x a = −→y , and rename

a = xn+1
in+1

, xnin , x
n−1
in−1

, . . . , x1
i1
, as ynjn , y

n−1
jn−1

, . . . , y1
j1
, y0
j0

=: b,

we arrive at∫
R
db

∫
Rn

dynjn . . . dy
1
j1

11
(
ynjn < yn−1

jn−1
< · · · < y1

j1
< y0

j0
= b
)

n∏
k=1

ρk exp
(
ρk
(
ykjk − y

k−1
jk−1

)) ∫
ν̂ ′
(
d−→y
)
G
(−→y b

)
F
(−→y ),
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where ν̂ ′ is the measure ν conditioned that yk has a particle at location ykjk and no particle

in the interval
(
yk−1
jk−1

, ykjk
)
. We are done. �

We next construct a multiclass processes. The idea of the multiclass process is related to
the monotonicity of the operator Φ−:

Proposition 7.1 If x ⊆ y, then Φ(t)(x,ωωω) ⊆ Φ(t)(y,ωωω).

The proof of this Proposition is elementary and omitted. This Proposition allows us to
define the multiclass process associated with HAD process.

Definition 7.2(i) We write

Xn =
{(

x1, . . . ,xn
)
∈ Xn : x1 ⊂ x2 ⊂ · · · ⊂ xn

}
.

We define R : Xn → Xn by R
(
x1, . . . ,xn

)
=
(
z1, . . . , zn

)
, where z1 = x1, and zk = xk \xk−1

for k = 2, . . . , n.

(ii) We define Φ̂n : Xn × Ω→ Xn, by

Φ̂±n
(
x1, . . . ,xn,ωωω

)
=
(
Φ
(
x1,ωωω

)
, . . . ,Φ

(
xn,ωωω

))
.

(iii) We define the multiclass operator Ψn : Xn × Ω→ X n, by

Ψ±n
(−→z ,ωωω) = RΦ̂±n

(
R−1−→z ,ωωω

)
.

We refer to
−→z (t) = Ψ±n

(−→z ,ωωω)(t) = RΨ±n (t)
(
R−1−→z ,ωωω

)
,

as the multiclass process. �

Remark 7.1 For multiclass process, it is more convenient to consider the state space

Z =
{−→z = (x,m) : x ∈ X, m ∈ (0,∞)Z

}
.

In other words the i-th particle of coordinates z̄i = (xi,mi) has a location xi ∈ R and a class
mi > 0, where particles of lower classes have higher priority for jumping. We then define
−→z (t) = Φ−

(−→z ,ωωω)(t) to be a trajectory of a multiclass process. What we have in mind is
that if we set

xm =
{
xi : (xi,mi) ∈ −→z (t), mi ≤ m

}
,

then xm(t) = Φ−
(
xm(0),ωωω

)
evolves as HAD process for every m > 0. We may write

R−1−→z =
(
xm : m > 0

)
.
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For ω = (y0, t) ∈ ωωω, a particle of coordinate y0 shows up at time t. When this happen we
consider all particles that are to the right of y0. For example, if−→z = (x,m) with x = (xi : i ∈
Z), and xi−1 < y0 < xi, then we can find a unique sequence i1 = i < i2 < · · · < ik such that
the following conditions hold: mi1 > mi2 > · · · > mik , and if j ∈ (ir, ir+1), then mj ≥ mir .
We now change the configuration −→z (t) to Ky0

−→z that is defined by the following recipe:
Replace (xi1 ,mi1), (xi2 ,mi2) . . . , (xik ,mik) with (y0,mik), (xi2 ,mi1) . . . , (xik ,mik−1

). In other
words, if we write yj = xij , nj = mij , then

(y1, y2, . . . , yk) → (y0, y2, . . . , yk), (m1,m2, . . . ,mk) → (mk,m1, . . . ,mk−1).

�

Using an idea of Angle [A], we construct invariant measure for multiclass process. For
our presentation we follow [FM2] to use queuing interpretation for Angle collapsing process.

Definition 7.3(i) We first define collapsing process for periodic configuration. Write X(per)
for set of 1-periodic x ∈ X. In other words, x ∈ X(per) means that τ1x = x where τ1x
denotes the set we get from x by adding 1 to elements of x. Now given two x,y ∈ X(per)
with ∣∣x ∩ [0, 1)

∣∣ ≤ ∣∣y ∩ [0, 1)
∣∣,

we define D+(x,y) ∈ X(per) to be the unique configuration z with the following two prop-
erties:

(7.1) z ⊆ y,
∣∣x ∩ [0, 1)

∣∣ =
∣∣z ∩ [0, 1)

∣∣,
and for every a ∈ z, there exists b ≤ a such that∣∣[b, a] ∩ x

∣∣ ≥ ∣∣[b, a] ∩ y
∣∣.

Similarly, we define D−(x,y) ∈ X(per) to be the unique configuration z for which (7.1) is
true, and and for every a ∈ z, there exists b ≤ a such that∣∣[a, b] ∩ x

∣∣ ≥ ∣∣[a, b] ∩ y
∣∣.

(ii) Let x,y ∈ X be two stationary processes with intensities m and m′. Assume that
m < m′. We may approximate x and y with `-periodic configurations x` and y`. By
Ergodic Theorem we have ∣∣x` ∩ [0, `)

∣∣ < ∣∣y` ∩ [0, `)
∣∣,

for sufficiently large `, almost surely. We then define z` = D(x`,y`). Finally we set

z = D+(x,y) = lim
`→∞

D+(x`,y`),
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with satisfies the following two properties: z ⊆ y, and for every a ∈ z, there exists b ≤ a
such that

(7.2)
∣∣[b, a] ∩ x

∣∣ ≥ ∣∣[b, a] ∩ y
∣∣.

We write D2 : X2 → X2 for
D+

2 (x,y) =
(
D(x,y),y

)
.

We define D− and D−2 is a similar fashion.

(iii) Given −→x =
(
x1, . . . ,xn

)
, we define

D±n
(−→x ) = −→z =

(
x1, . . . ,xn

)
∈ Xn,

in the following manner:

zn = xn, zn−1 = D±
(
xn−1,xn

)
,

zn−2 = D±
(
xn−2,xn−1,xn

)
:= D±

(
D±
(
xn−2,xn−1

)
,xn
)
,

...
...

...

z1 = D±
(
x1, . . . ,xn

)
:= D±

(
D
(
x1, . . . ,xn−1

)
,xn
)
.

�

Remark 7.2(i) The following interpretation of z = D+(x,y) was given in [PM]. We think
of x as the set of times at which a costumer arrive at a queue. We think of y as the set of
times at which service is provided to costumers. The set z is the departure times at which a
costumer is received service and departs the queue, whereas y \z is the set of unused service
times. When inequality (7.2) is true, then for sure b is a departure time because the number
of costumers arriving during [a, b] is at least the number of services available during the same
period. Alternatively, we may use the points of x and y to define a process q : R → N∗,
which represents the length of the queue. More precisely at each occurrence of x ∈ x, the
function q increases by 1 i.e., q(x+) = q(x) + 1, and at each occurrence of y, the function
q decreases by 1, provided that q(x) > 0. When x and y are Poisson point processes of
intensity ρ1 and ρ2, then q is a birth-death process with the birth and death rates ρ1 and
ρ2 respectively. We may then define D+(x,y) to be the set at which q decreases. A similar
interpretation can be given for D−.

It is worth mentioning that D is monotone in the first argument:

(7.3) x ⊆ x′ =⇒ D±(x′,y) ⊆ D±(x,y).

(ii) More generally we have a queuing interpretation for D+
n

(−→x ) = −→z that involves n − 1
many queues. For this, we provide a queuing interpretation for D+

(
x1,x2, . . . ,xn

)
. We
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think of points in x1 as the arrival times for costumers, and x2, . . . ,xn as the services times
for queues 1, 2, . . . , n − 1, respectively. As a costumer departs the first queue, it enters the
second queue to receive service some time later at a moment in x3. This process continues
until the costumer receives service in the n− 1-th queue. The departure times from the last
queue are the members of the set zn = D+

(
x1,x2, . . . ,xn

)
. �

Our next result is due to P. A. Ferrari and James; it establishes a connection between
the multiline and multiclass processes.

Theorem 7.3 We have Φ̂±
(
D±n
(−→x ),ωωω) = D±n

(
Φ±
(−→x ,ωωω)). In particular, for every ρ1, . . . , ρn,

the measure D±n
(
νρ1,...,ρn

)
is invariant for the multi-class process.

Proof Note that Φ̂± preserves the order but the multiline operator Φ± does not. We basically
need to prove this: If −→x ∈ Xn, and y ∈ R, then

(7.4) D−n J
−
y
−→x = L−y

−→x .

In other words, for a sequence of ordered −→x =
(
x1, . . . ,xn

)
, we perform a multi-jump as a

Poisson point (y, t) occurs at y. This multi-jump may mess up the order, i.e., J−y
−→x may not

be in Xn. We restore the order by applying D−n to J−y
−→x . The outcome coincide with the

multiclass jump L−y that is related to Ky of Remark 7.1:

L−y
−→x = R−1KyR

−→x .

We first verify (7.4) when n = 2. Recall that x1 ⊆ x2. Choose a1 ∈ x1 and a2 ∈ x2 so
that y ≤ a2 ≤ a1 and (y, ai) ∩ xi = ∅ for i = 1, 2. There are two cases to consider:

(i) (Case a = a1 = a2) We have J−y
−→x =

(
x1,
(
x2\{a}

)
∪{y}

)
=
(
x1, x̂2

)
, and after matching

a1 of x1 with y of x̂2, we arrive at D2

(
x1, x̂2

)
=
(
x̂1, x̂2

)
, where x̂1 =

(
x1 \ {a}

)
∪ {y}.

Evidently L−y
−→x =

(
x̂1, x̂2

)
.

(ii) (Case a1 > a2) We have J−y
−→x =

(
x̂1, x̂2

)
, where x̂2 =

(
x2 \ {a2}

)
∪ {y}, and x̂1 =(

x1 \ {a1}
)
∪ {a2}. After matching a2 of x̂1 with y of x̂2, we arrive at D2

(
x̂1, x̂2

)
=
(
y, x̂2

)
,

where y =
(
x1 \ {a1}

)
∪ {y}. Evidently L−y

−→x =
(
y, x̂2

)
.

We now turn to the general n. Recall that x1 ⊆ · · · ⊆ xn. Choose ai ∈ xi so that
y = y0 ≤ an ≤ an−1 ≤ · · · ≤ a1 and (y, ai) ∩ xi = ∅ for i = 1, . . . , n. Choose 1 ≤ n1 < n2 <
· · · < nk = n so that

y0 < y1 : = ank = · · · = ank−1−1 < y2 := ank−1
= · · · = ank−2−1 < y3 := ank−2

= · · · < yk := an1 = · · · = a1.
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Note that J−y
−→x =

(
x̂1, . . . , x̂n

)
, where

x̂nk =
(
xnk \ {y1}

)
∪ {y0}, . . . x̂nk−1−1 = xnk−1−1,

x̂nk−1 =
(
xnk−1 \ {y2}

)
∪ {y1}, . . . x̂nk−2−1 = xnk−2−1,

...
...

...

x̂n1 =
(
xn1 \ {yk}

)
∪ {yk−1}, . . . . . . .

After matching the points

yk ∈ x̂1, . . . , y1 ∈ x̂nk−1 , . . . , y1 ∈ x̂n−1, y0 ∈ x̂n,

we arrive at
Dn

(
x̂1, . . . , x̂n

)
= L−y

−→x .

�
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A Exterior Algebra and Cauchy-Binet Formula

Given a vector space V , its r-fold exterior power ∧rV is a vector space consisting of

∧rV =
{
v1 ∧ · · · ∧ vr : v1, . . . , vr ∈ V

}
.

What we have in mind is that the r-vector v1 ∧ · · · ∧ vr represents the r-dimensional linear
subspace that is spanned by vectors v1, . . . , vr. By convention, v1 ∧ · · · ∧ vr = 0 if v1, . . . , vr
are not linearly independent. The wedge product is characterized by two properties: it is
multilinear and alternative. By the former we mean that for all scalers c and c′,

(cv1 + c′v′1) ∧ v2 ∧ · · · ∧ vr = c(v1 ∧ v2 ∧ · · · ∧ vr) + c′(v′1 ∧ v2 ∧ · · · ∧ vr).

By the latter we mean that interchanging two vectors in a = v1 ∧ · · · ∧ vr changes the sign
of a. If {e1, . . . , ed} is a basis for V , then

{ei1,i2,...,ir := ei1 ∧ · · · ∧ eir : ir < · · · < ir} ,

is a basis for ∧rV . In particular dim∧rV =
(
d
r

)
. If

vj =
d∑
i=1

vijei,

for coefficients vij ∈ R, and j = 1, . . . , r, then

v1 ∧ · · · ∧ vr =
∑

1≤i1<···<ir≤d

vi1,...,ir ei1 ∧ · · · ∧ eir ,

where
vi1,...,ir =

∑
σ∈Sr

ε(σ)v
iσ(1)
1 . . . v

iσ(r)
r = det

[
vikj
]r
j,k=1

.

In fact we may use (A.1) as our definition of the wedge product. To have a compact notation,
write

M =
[
vij
]
, i ∈ I = {1, . . . , d}, j ∈ J = {1, . . . , r}.

Let us write Îr for the set of subsets a = {i1, . . . , ir} ⊆ I with i1 < · · · < ir. We then set

Ma,J =
[
vikj
]r
j,k=1

, ea = ei1 ∧ · · · ∧ eir ,

for any a ∈ Ik. Then (A.1) can be written as

(A.1) v1 ∧ · · · ∧ vr =
∑
a∈Îk

detMa,J ea.
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To appreciate the role of exterior algebra in differential geometry, observe that if P (v1, . . . , vk)
denotes a parallelepiped formed from vectors v1, . . . , vr, then detMa,J is the signed r-
dimensional volume of the projection of detMa,J on the linear span of ei1 , . . . , eir . As a
consequence

(A.2)
∣∣v1 ∧ · · · ∧ vr

∣∣ :=

∑
a∈Îk

(
detMa,J

)2

1/2

,

is nothing other than the r-dimensional volume of P (v1, . . . , vk).

Let V and V ′ be two vector spaces and assume that A : V → V ′ is a linear transformation.
We define

∧rA : ∧rV → ∧rV ′,
by (

∧r A
)
(v1 ∧ · · · ∧ vr) = (Av1) ∧ · · · ∧ (Avr).

We continue with a list of straightforward properties of r-vectors.

Proposition A.1 (i) Let A : V ′ → V be a linear transformation. Assume that {e1, . . . , ed}
and {e′1, . . . , e′d′} are bases for V and V ′ respectively. If A is represented by a d× d′ matrix

with respect to the above bases, then the transformation ∧rA is represented by a
(
d
r

)
×
(
d′

r

)
matrix we obtain by taking the determinants of all r × r submatrices of A.

(iii) If V, V ′, V ′′ are three vector spaces and A : V ′ → V , B : V ′′ → V ′, are linear, then

∧r
(
A ◦ B

)
=
(
∧r A ◦ ∧rB

)
. If A is invertible, then ∧rA−1 =

(
∧r A

)−1
. If V and V ′ are

inner product spaces and A∗ : V ′ → V is the transpose of A, then ∧rA∗ =
(
∧r A

)∗
.

Proof(i) If we write

aj = Ae′j =
d∑
i=1

aijei,

then (
ΛrA)

(
e′j1 ∧ · · · ∧ e

′
jr

)
= (Ae′j1) ∧ · · · ∧ (Ae′jr) = aj1 ∧ · · · ∧ ajr .

Given two sets a = {i1, . . . , ir} and b = {j1, . . . , jr}, with i1 < · · · < ir and j1 < · · · < jr,
we write

Aa,b =
[
aisjt

]r
s,t=1

.

We now use (A.1) to write

(A.3)
(
ΛrA)e′b =

∑
a∈Îr

detAa,b ea,
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as desired.

(ii) The proof follows from the definition of ΛrA. �

Given a d× d′ matrix A, we may write

(A.4) ΛrA =
[

detAab

]
(a,b)∈Îr×Î′r

,

where Îr (respectively Î ′r) denotes the set of subsets a of I = {1, . . . , d} (respectively I ′ =
{1, . . . , d′}) with |a| = r. On account of Proposition A1, we have

(A.5) (Λr(AB)
)
ab

= det(AB)ab =
∑
c∈Î′r

detAac detBcb, (a,b) ∈ Îr × Î ′′r ,

for any matrices A and B of sizes d×d′ and d′×d′′. This identity is known as Cauchy-Binet
Formula.

Example A1(i) Assume that v1, . . . , vr ∈ Rd with r ∈ {1, . . . , d}. Let A be a d× r matrix

with rows v1, . . . , vr. Then ΛrA is a column vector in R(dr) that is exactly the expression

(A.1) or (A.2), if we identify ΛrRd with R(dr). The identity

Λr(A∗A) =
(
ΛrA∗

)(
ΛrA

)
=
(
ΛrA

)∗(
ΛrA

)
,

means

(A.6) det
[
vi · vj

]r
i,j=1

=
∑
a∈Îr

detA2
a,J =

∣∣v1 ∧ · · · ∧ vr|2,

by (A.1). Here J = {1, . . . , r}.
(ii) We now derive a generalization of Cramer’s formula for the inverse of a square matrix.
Let A be a d × d matrix. Set I = {1, . . . k} and assume that 1 ≤ r < k. We claim that for
any b, c ∈ Îr,

(A.7) det
(
A−1

)
bc

= (−1)ζ(b)+ζ(c) (detA)−1 det
(
Accbc

)
,

where bc = I \ b, cc = I \ c and

ζ(b) =
∑
i∈b

i.

This is the classical Cramer’s formula when r = 1. To prove (A.7), write b = {i1, . . . , ir},
and c = {j1, . . . , jr} with i1 < · · · < ir and j1 < · · · < jr. Observe that by (A.3)(

Λr
(
A−1

)
ec
)
∧ ebc =

∑
a∈Îr

det
(
A−1

)
ac
ea ∧ ebc = det

(
A−1

)
bc
eb ∧ ebc .
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We now apply ΛdA to both sides. The left-side yields[(
ΛrA

)
Λr
(
A−1

)
ec
]
∧
(
Λd−rA

)
ebc = ec ∧

(
Λd−rA

)
ebc = ec ∧

∑
a∈Îr

(
detAabc

)
ea

=
(

detAccbc
)
ec ∧ ecc .

The right-hand side yields
det
(
A−1

)
bc

(detA) eb ∧ ebc .

From this we deduce (
detAccbc

)
= ± det

(
A−1

)
bc

(detA).

To figure out the sign, observe that in the expression

eb ∧ ebc = ei1 ∧ · · · ∧ eir ∧ ebc ,

we need ir − r adjacent swapping to move eir to its original place in e1 ∧ · · · ∧ ed. Hence

eb ∧ ebc = (−1)η(b)e1 ∧ · · · ∧ ed

for
η(b) = i1 + · · ·+ ir − (1 + · · ·+ r).

Similarly
ec ∧ ecc = (−1)η(c)e1 ∧ · · · ∧ ed.

This completes the proof of (A.7).

(iii) Let A :
(
a ∪ {y}

)2 → R be a symmetric matrix. Then

(A.8)
detA

detAa

= A(y, y)−
∑
a,b∈a

(Aa)−1(b.a)A(a, y)A(y, b).

Label points in a ∪ {y} so that y is labeled |a| + 1. By expanding the determinant with
respect to the last row we obtain

detA = A(y, y) detAa +
∑
b∈a

(−1)b+|a|+1A(y, b) detA1b,

where A1b is the matrix that we obtain from A by deleting the last row and the b-th column.
We now expand detA1b with respect to the last column:

detA1b =
∑
a∈a

(−1)a+|a|A(a, y) detAaba ,

113



where Aaba is the matrix that we obtain from Aa by deleting the a-th row and the b-th column.
As a result

detA = A(y, y) detAa −
∑
a,b∈a

(−1)a+bA(a, y)A(y, b) detAaba .

This and Cramer’s rule imply (A.8). �

If 〈·, ·〉 is an inner product on the vector space V , then we equip ∧rV with the inner
product

〈v1 ∧ · · · ∧ vr, v′1 ∧ · · · ∧ v′r〉 = det
[
〈vi, v′j〉

]r
i,j=1

.

By Example A1, the quantity

‖v1 ∧ · · · ∧ vr‖2 = 〈v1 ∧ · · · ∧ vr, v1 ∧ · · · ∧ vr〉 = det
[
〈vi, vj〉

]r
i,j=1

,

represents the r-dimensional volume of the parallelepiped generated by vectors v1, . . . , vr.

Proposition A.2 (i) If 〈·, ·〉 is an inner product on the vector space V , and {e1, . . . , ed}
is an orthonormal basis for V , then the set

{
ei1 ∧ · · · ∧ eir : 1 ≤ i1 < · · · < ir

}
is an

orthonormal basis for ∧rV .

(ii) Suppose that V is an inner product space of dimension d, and A : V → V is a symmetric
linear transformation. If {e1, . . . , ed} is an orthonormal basis consisting of eigenvectors,
associated with eigenvalues λ1 ≤ · · · ≤ λd, then the set

{
ei1 ∧ · · · ∧ eir : 1 ≤ i1 < · · · <

ir
}

is an orthonormal basis consisting of eigenvectors of ∧rA associated with eigenvalues{
li1 . . . lir : 1 ≤ i1 < · · · < ir

}
.

We end this chapter with a useful matrix identity.

Proposition A.3 Consider the matrices A ∈ Mat(d× d), D ∈ Mat(d′ × d′), B ∈ Mat(d×
d′), C ∈Mat(d′ × d), and set

E =

[
A B
C D

]
.

If E is symmetric and positive definite, so are A and D. If E, A and D are invertible, so
are G = A−BD−1C and H = D − CA−1B. Moreover

(A.9) E−1 =

[
G−1 −G−1BD−1

−H−1CA−1 H−1

]
.

Proof Note

E

[
x
y

]
=

[
x′

y′

]
=⇒ Ax+By = x′, Cx+Dy = y′.
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In particular, y = D−1y′ − D−1Cx, which in turn implies that Gx + BD−1y′ = x′. This
implies the entries for the first row in E−1. n the same fashion, we derive CA−1x′+Hy = y′,
as desired. The first claim follows from

E

[
a
b

]
·
[
a
b

]
= Aa · a+ 2Bb · a+Db · b.

For the second claim observe

E

[
a
b

]
= 0 =⇒ Ga = Hb = 0.

�

B Trace Class Operators and Fredholm Determinant

In this chapter we review some basic facts about bounded operator on Hilbert spaces.

(i) Let H be a separable Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. For a bounded
linear operator K : H → H, we write ‖K‖ for its norm:

‖K‖ = sup
‖f‖=1

‖K(f)‖.

We write B(H) for the set of such operators which is a Banach algebra with respect to the
above norm. We say that K is of finite rank if the dimension of its range is finite. We
write B0(H) for the set of finite rank operators. The topological closure of B0(H) in B(H)
is denoted by Bc(H). This set coincides with the set of compact operators. In other words
a linear operator K ∈ Bc(H) iff it maps bounded closed sets onto compact subsets of H.
One can show that if K ∈ Bc(H), then K∗ ∈ Bc(H). The spectrum of a compact operator
is countable with the only possible accumulation point at 0. Any non-zero point in the
spectrum is an eigenvalue of finite multiplicity.

(ii) Fix an orthonormal basis
{
en : n ∈ I

}
of H. We write B2(H) for the set of Hilbert-

Schmidt operators: K ∈ B2(H) iff

‖K‖2
2 :=

∑
i∈I

‖Kei‖2 =
∑
i∈I

〈(K∗K)ei, ei〉 <∞.

Note

‖Kx‖2 =

∥∥∥∥∥∑
n

〈x, en〉Ken

∥∥∥∥∥
2

≤

(∑
n

|〈x, en〉| ‖Ken‖

)2

≤ ‖x‖2‖K‖2
2.
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Hence ‖K‖ ≤ ‖K‖2. In fact we may define an inner product on B2(H) by

〈K,K′〉 =
∑
i∈I

〈Kei,K′ei〉 <∞.

One can show that this inner product is independent of the choice of the orthonormal basis.
Let us assume that H is infinite dimensional and write N for I. If we set

Kn(f) =
n∑
i=1

〈K(f), ei〉ei,

then Kn ∈ B0(H), and ∥∥K −Kn‖2
2 =

∑
i>n

‖Kei‖2 → 0,

as n→∞. This implies that B2(H) ⊂ B0(H) and that B0(H) is dense in B2(H) with respect
to the Hilbert-Schmidt topology.

Note that for K ∈ B2(H), we know that K∗K is a symmetric compact operator. Hence by
Spectral Theorem, there exists an orthonormal basis {en : n ∈ I} consisting of eigenvectors
of |K|2 := K∗K. In other words if r1 ≥ r2 ≥ · · · ≥ 0 are the eigenvalues of |K| (they are
called the singular values of K), then |K|2en = r2

nen, and

‖K‖2
2 =

∑
n

r2
n.

If K is symmetric as well and λ1, λ2, . . . are its eigenvalues, then ‖K‖2
2 =

∑
n λ

2
n. In this case,

we may apply the Spectral Theorem to write

(B.1) K =
∑
n

λnen ⊗ en.

Here {en}n is an orthonormal basis with Ken = λnen, en ⊗ en is defined by (en ⊗ en)x =
〈x, en〉en, and the convergence occurs with respect to the Hilbert-Schmidt norm:∥∥∥∥∥K −∑

n≤N

λnen ⊗ en

∥∥∥∥∥
2

2

=
∑
n>N

|λn‖2 → 0,

as N →∞.

(iii) For our purposes, we need to make sense of det(id + K), known as the Fredholm de-
terminant of an operator K. This is possible for any trace class operator: an operator such
that

‖K‖1 =
∑
n∈I

〈(K∗K)1/2en, en〉 <∞.
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The set of trace class operators is denote by B1(H). Evidently any trace class operator is
Hilbert-Schmidt. Indeed in terms of the singular values of K, we have

‖K‖1 =
∑
n∈I

〈(K∗K)1/2en, en〉 =
∑
n∈I

rn,

provided that {en : n ∈ I} consists of eigenvectors of |K|. If K is self-adjoint and positive,
then eigenvalues λ1 ≥ λ2 ≥ . . . of K are positive, and we obtain

‖K‖1 =
∑
n∈N

λn <∞.

Then for the determinant of 11 +K we have a natural candidate

(B.2) det(11 +K) =
∏
n∈N

(1 + λn) ≤ e
∑
n λn ,

that is finite.

(iv) As a classical example, let µ be a σ-finite measure on X and choose H = L2(µ). In
particular H = `2(X) when X is countable and µ is the counting measure. Given any
K : X ×X → R with K ∈ L2(µ× µ), define the operator

Kf(x) =

∫
K(x, y)f(y) µ(dy).

The operator K is Hilbert-Schmidt because for any orthonormal basis {φn : n ∈ N},

‖K‖2
2 =

∑
n

∫ (∫
K(x, y)φn(y) µ(dy)

)2

µ(dx)

=

∫ ∑
n

〈K(x, ·), φn〉2 µ(dx) =

∫
‖K(x, ·)‖2

L2(µ) µ(dx) = ‖K‖2
L2(µ×µ).

If K(x, y) = K(x, y) (or in the case of a complex-valued K, assume K(x, y) = K(y, x)), the
operator K is compact and symmetric. By Spectral Theorem, we can find an orthonormal
basis {φn : n ∈ N}, consisting of eigenfunctions of K: Kφn = λnφn. By Spectral Theorem

Kf(x) =

∫
K(x, y)f(y) µ(dy) = lim

N→∞

∑
n≤N

(∫
φn(y)f(y) µ(dy)

)
(Kφn)(x)

= lim
N→∞

∫
KN(x, y)f(y) µ(dy),
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where KN(x, y) =
∑

n≤N λnφn(x)φn(y). On the other hand

lim
N→∞

KN(x, y) = K̂(x, y) :=
∑
n

λnφn(x)φn(y),

with the convergence occurring in L2(µ× µ). Indeed if we set(
φn ⊗ φn

)
(x, y) = φn(x)φn(y),(

φn ⊗ φn : n ∈ N
)

consists of mutually orthogonal functions in L2(µ× µ), that allows us to

make sense of K̂ because
‖K̂‖2

L2(µ×µ) =
∑
n

|λn|2 <∞,

and
‖K̂ −KN‖2

L2(µ×µ) =
∑
n>N

|λn|2 → 0,

as N →∞. Since

Kf(x) =

∫
K(x, y)f(y) µ(dy) =

∫
K̂(x, y)f(y) µ(dy),

for every f ∈ L2(µ), we deduce that K = K̂ µ× µ-almost everywhere. In summary,

(B.3) K(x, y) =
∑
n

λnφn(x)φn(y),

µ× µ-almost everywhere, with right-hand side converging in L2(µ× µ).

(v) If X is countable and µ is the counting measure, then a symmetric kernel K : X×X → R
is Hilbert-Schmidt iff

(B.4)
∑
x,y

|K(x, y)|2 <∞.

Moreover, if {φn : n ∈ N} is an orthonormal basis consisting of eigenfunctions of the
associated K, then for every x, y ∈ X, we have (B.3). Assume that the operator K is
non-negative so that the eigenvalues satisfy λn ≥ 0. Then using (B.3),∑

x∈X

K(x, x)2 =
∑
x∈X

∑
n

λnφn(x) =
∑
n

λn.

Hence such K is in the trace class iff

(B.5)
∑
x∈X

K(x, x)2 <∞.
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