METASTABILITY OF ZERO RANGE PROCESSES VIA POISSON
EQUATIONS
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ABsTrACT. We prove the metastability of zero range processes on a finite set
with an approach using the Poisson equation. Certain zero range processes on
a finite set exhibit condensation. Most of the time, nearly all particles of the
zero range process are at one single site. The site of condensate asymptotically
behaves as a Markov chain. This is proven in [4] for the reversible case, [14]
for the totally asymmetric case, and [18] for the non-reversible case. In these
articles, the martingale approach is used and precise estimates of capacities
are needed. We take an approach using solutions of Poisson equations. We
circumvent precise estimates of capacities and prove the metastability for both
reversible and non-reversible cases.

1. INTRODUCTION

Metastability is a dynamical phenomenon of some non-linear system with tempo-
ral random forces (noises). Metastability can be seen as first-order phase transition.
We refer to monographs [9, 17] for an overview on metastability.

Some zero range processes exhibit condensation in the physics literature, which
means above the critical density, as the number of particles increases to the infinity,
a finite fraction of particles gather at a single site in the steady state. We refer to
[11] for the review of condensation.

The site of condensate of the zero range process follows a Markov chain asymp-
totically after suitable time rescaling. This phenomenon is proved in [4, 14, 18] by
Beltran, Landim and Seo, using the martingale approach. We refer to [5] for review
of the martingale approach and differences between this approach, the pathwise
approach [10], and the potential theoretic approach |7, 8]. Also we refer to [15] for
some review and recent progress.

We prove metastabilty of condensed zero range processes on a finite set with an
approach using solutions of Poisson equations. The model is the same as one in
[4, 14, 18]. We assume that the invariant measure of underlying random walk is
the uniform measure for simplification. We anticipate that our approach can be
applied for the case of the general invariant measure with little modification. We
refer to the Section 8 of [15] for introduction to this approach.

First we get an estimate on the solutions of Poisson equations and obtain as-
ymptotic mean jump rates from the estimate. At the beginning, we investigate the
properties of solutions of speeded-up Poisson equations —0n Ly EFn(n) = hn(n) in
the Section 4. Then we get asymptotic mean jump rates of the zero range process
in the Section 5 in the following way. We multiply an auxiliary function to the
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Poisson equation and integrate the equation with respect to the unique invariant
measure of the zero range process. Using several estimates, approximation and
manipulation, we get asymptotics for the solutions of the Poisson equations. From
asymptotic values of the solutions, we obtain the asymptotic mean jump rates.

Second we prove that the site of condensate follows a Markov chain asymptot-
ically in Section 6. The asymptotic mean jump rates of the zero range process
become the jump rates of the asymptotic Markov chain. We show tightness and
convergence of stochastic processes using properties and estimate of the solutions
of the Poisson equations in the Sections 4, 5 and martingale problems for Markov
processes.

The first advantage of our method is that we circumvent sharp estimates of ca-
pacities. The martingale approach needs precise estimates of capacities. Getting
sharp estimates are challenging, especially for the non-reversible case. It requires
delicate construction of approximating objects. We use an auxiliary function, which
is similar to the approximating function for the reversible case in [4]. The auxiliary
function is simpler than approximating objects for the non-reversible case. Han-
dling the auxiliary function and the solution of the Poisson equation is easier than
handling approximating objects for the non-reversible case.

Also getting asymptotic mean jump rates is direct in this article, and not from
capacities of the zero range process. For the reversible case, mean jump rates can be
expressed in terms of capacities(Lemma 6.8 in [2]). But for non-reversible case, we
don’t have direct relation between mean jump rates and capacities. The collapsed
chain is introduced in [3] as a tool for getting asymptotic mean jump rates. Also a
general method is established in [18].

The method of using the Poisson equations have been applied for other models,
but not for interacting particle systems such as the condensing zero range process
in this article. This method is applied for elliptic operators on R? of the form
Lyf=e"VV-(e7MVaVf)in[12, 19], and one-dimensional diffusions with periodic
boundary conditions in [16]. We refer to the Section 8 of [15].

We expect that this method can be applied for the case of the zero range process
when the numbers of sites and particles of zero range process increases to infinity
with a fixed ratio of numbers of sites and particles. The metastability of this model
is proven in [1] for a parameter o > 20. We hope to be able to use this method for
small «.

Organization of the article. In Section 2, we introduce definitions, notations,
and statements that we use in this article. In Section 3, we states main result of
this article. In Section 4, we state and prove the properties of the solution of the
Poisson equation. In Section 5, we estimate asymptotic mean jump rate for the
zero range process. In Section 6, we prove main result using outcomes in previous
sections.

2. ZERO RANGE PROCESSES

Definitions and notations in this section are similar to [4]. We assumed that the
uniform measure is an invariant measure for the underlying random walk of the
zero range process for making calculation simpler.

2.1. Underlying Random Walk. Define S := {1,2,..., L}, where L is a fixed
natural number larger than 1. For z,y € S, let r(z,y) be the jump rate for a
2



random walk on S. Assume that this random walk is irreducible and has the
uniform invariant measure on S.

2.2. Definition of Zero Range Process. For Sy C S, an integer N > 1, define

Ens, = {neN§°; > :N}.

rE€So

Let Ey = En,s- Let o be a real number larger than 1.
Define a function g : Ny — R by
a(n)

9(0) =0, g(1) =1, and g(n) = m

For x,y € S, we define a function ¢*¥ : Ey — En by the following way. For
x #y,n € Eyx with n, > 1, define %Yy € Ey by

for n > 2, where a(n) = n“.

Ne—1 forz==x
(c™n), = ny+1 forz=y
iy otherwise .
If n, = 0 or z = y, then define c™¥n := 1. ¢*¥n is the configuration obtained
from 7 by moving a particle from z to y.
The zero range process is a jump-type Markov process on Ey g, whose infinites-
imal generator is given by

(LNF) () = Y g(n:)r(z,w) (F(o*n) — F(n)),
zZ,weS
where F' is a function from Fy to R.

The interpretation for the zero range process is that we have N many particles
that are scattered on a periodic lattice with L sites. Each particle performs a
random walk with jump rate r, and the jump probabilities are adjusted by certain
rules that depend on the number of particles of the departing site. To experience
a condensation phenomenon, we choose g(n) to be a decreasing function of n > 2
so that the particles tend to pile up at a site.

For a function F' from Ey to R, define the Dirichlet form associated the generator
LN by

Dn(F) == Y F(n) (LnF) (n) p(n).
nekbEn

2.3. The Invariant Measure for the Zero Range Process. This zero range
process defined in the previous section has a unique invariant measure py given by
N 1 N

H 1
= = P 6 E )
pne () IN.s pog ) Znsalp) TN

where a(n) = [[,cg a(n:) and Zy s is the normalizing constant. Also define I'(a) :=
Yco ﬁ and Zg := LT (a)l!
Fix a sequence of integers ({y : N > 1) with 1 << ¢y << N. For z € S, define
gjgf; I:{HGENST]E ZN*EN}
Let £y = U, &% and Ay = Ey \ (Uxesgﬁ,).
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We omit the subscript N when there’s no confusion.
The following propositions hold.

Proposition 2.1. For every L > 2,
limy 400 ZN,5 = Zs.

Proof. See the proof of Proposition 2.1 in Section 3 of [4]. O
Proposition 2.2. limy_, pun(Ax) =0.

Proof. See the derivation of the equation (3.2) in [4] O
Proposition 2.3. limy_, un(EY) = % forallx € S.

Proof. By the definition of up, un(EF)’s are the same for all € S. By Proposi-
1

tion 2.2, we get limy oo N (EX) = 7. O
2.4. Potential Theory. In this subsection, we define the capacity for a Markov
process. Consider a Markov process on a state space U. Let L be the infinitesimal
generator of the Markov process. Refer to the Chapter 7 of [9] for the details.

Let A, B C U be two non-empty disjoint subset. Consider the following Dirichlet
problem

(=Lh)(z) =0, xzeU\(AUB),
h(x) =1, z€A,
h(x) =0, z€B.
The harmonic function solves the previous problem is denoted by h 4, g, which is

called the equilibrium potential.
Define
eap(z) = (—Lhap) (x), x € A.
This function is called the equilibrium measure on A.

Let v is the unique ergodic invariant measure. The capacity of the pair A, B is
defined by

cap(4, B) := Z v(z)ea p(z).
TEA
Consider the underlying random walk of the zero range process in this article.
Denote the capacity of the pair A,B C S for the underlying random walk by
capg (A, B). When A = {z}, B = {y}, denote capg (A4, B) by capg(x,y).

3. MAIN RESULT

3.1. Metastability of the Zero Range Process. For stating main result, We
define the trace process for the zero range process.

Define 7,;(n.) be the time spent by the zero range process {n™(t) : t > 0} on
the set A C Ex in the time interval [0, ¢];

¢
TA = / 1{n"(s) € A} ds.
0
Define S/ be as the generalized inverse of T,;

St = sup{s > 0: T (n.) < t}.
4



For a subset A of Ey, the trace process {n™>4(t) : t > 0} is defined by n™4(t) :=
n™(S#), which is a strong Markov process with the state space A.

Define 7~ (t) := ™€~ (t). Let a projection function ¥y : Ey — S, Un(n) =
Y ees T {n € &Y. Define XN 1= Uy (nfN(1)).

Let the speed-up constants Oy := N'T® N > 1. Let I, := fol u*(1 —u)*du .

Define a Markov process (Y; : t > 0) on S by the generator £ which is given by

£10) = Fr 3 canstens) (/) = o). for €5

Let P, be the probability measure on the path space D(R4,S) induced by £
starting at « € S. Similarly let ]ng be the probability measure on the path space
D(R,, Ey) induced by Ly starting at {n € En.

We impose a condition on ¢, which is

I4a(L-1)

. N _
(3.1) Jim A =0,

Then the following propositions hold.

Proposition 3.1. Fiz x € S. For any sequences {n € EX, N > 1, the sequence of
laws of stochastic processes (Xgy 1 t > 0) under P is tight.

The proof of the Proposition 3.1 is in the Section 6.

Theorem 3.2. The sequence of laws of stochastic processes (Xgyt : t > 0) in
Proposition 3.1 converges to P, as N — oo.

The proof of the Theorem 3.2 is in the Section 6.
Theorem 3.3. Let vy be a probability measure on Ey, absolutely continuous with

respect to . Denote vy = fyun. Assume (HfN”[ﬂ(lLN) N > 1) s bounded. Let

P be the measure on the path space D(R,, Ey) induced by Ly with the initial
distribution vy . Then for every T > 0,

. PN
lim E v~
N —o00

/T L{n™N (N'*s) € AN}ds] =0

The proof of the Theorem 3.3 is in the Section 6.
The Theorem 3.3 holds when vy = 6, , where ny € £F for fixed z € S. For
the proof of this general case, refer to [2, 3].

4. PROPERTIES OF THE SOLUTION OF POISSON EQUATION

We consider the solutions of the speeded-up Poisson equations.
The sequence of functions (F](\L,’b : N > 1) is defined by

(4.1) —ONLyFR"(n) = 1{n € £} — 1{n € &4} = h (n)

(42) F5(n) dp = 0.
EN,s
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Denote FI‘\Z,’b by Fxn or F and h?\}b by hn or h when there’s no confusion.
We state and prove the following proposition.

Proposition 4.1. The function FI‘\I[’b defined above satisfies the followings
(1) ming, Fﬁ,’b = mingzbv F]%’b and maxg, g Fﬁ,’b = maxgg F;f,’b.
(2) supy Oy Dy (F2?) < oo,
(3) Let w € S. For any Y, n’ € &%, |Fy"(nl) = F" ()| = 0
as N — oo.

Proof. Let £ET =&, &~ = &°.
(1) To see this, set
Mt ={n€Eng: F(n)=maxF}, M~ ={ij€ Eys: F(n) = min F}.
EN.,S EN,S
We wish to show M*NET # (). Suppose for example that M+ NET = (). For every
n € M*, we have —LyFx(n) > 0. From the right hand side of the equation (4.1),

we can see —Ly Fy(n) = 0 and n € (6TUE™)E. Since the maximum of F is attained
at n, we learn

neM', >0, r(r,y) >0 = o¥ne M™.

By irreducibility of 7, we can start from some 7 € M™ and reach a configuration
on the boundary of £1 by applying the operation n — 0%y finitely many times.
This contradicts M+ NET = (). The proof of M~ NE™ # ) is identical.

(2-1) First consider the case of reversible process.
Multiplying F' to the equation (4.1) and integrating in du on Ey, we get

oD (F) = [ Fayau— [ P
= > Fmum) - Y F)um).
nee+ nee-

It suffices to show that there exist a constant C' > 0 satisfying

2
OnDn(F) > C <Z F(n) p(n) — ZH??)#(U)) :
Et E-

By definition,

1+«
GNDN(FN)ZN2 Do Y un(m)r(zw) g(n) {F (0™ n) — F(n)}*.

z,2weSNeEEN

By the change of variable { =71 — 0.,

NS wes Someny A () 7(z,w) g(n.) {F(0™n) — F(n))

14+a e~

= N2 Zz,wes deEN—l Z]:[v,s % r(z,w) {F(E + Ow) - F(f + Dz)}Z

We can easily find a constant ¢; = ¢;(a,b) > 0 such that

%Zz,wesT(sz) {f(w) — f(2)}? > c1 (f(a) — f(b))? for every function f: S —

Fix a configuration £ € E_; and use the above inequality, then we get
Nl+a

3 wes Scebnr 2as atg M5 W) {F(E+0,) = F(€+10.))?
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Nlt+2a

> AN S s i LF(E+0) — F(E+ )2,

Let £ be the restriction of £ to sites z # a, b. the previous expression is equal or
larger than

ClN 1 9
I s ge%;_l Ié) {F(E+0,) = F(§+0)}

V4
DY S (F(E+00) — FlE+ )

" k=04 By, g\ (apy CatESN—1-Fk a(§)

Let n € £*. Define a map o on configurations that swaps 7, with 7,. Then
o(n) € €. Let 7 be the restriction of 7 to sites z # a,b. Let S = S\ {a,b}. Let
us write n = (7;7q,M). We can change n = (); N —k —4,4) € £T to o(n) =
(;4, N — k —14) € £ by operations that move a particle on the site a to the site b
, where |/)] = k. We will use the Cauchy-Schwarz inequalities.

The previous expression equals

4 N—-k—1
S Y b X (F@N—k—1—j,j+1) = F(#;N —k—j, j)?
P k=07€E, 4 j=0
N L 1 N—k—1 ) o . oy
22N Y wm » FN—-k—=1-j,j+1)—F@;N—k—j,j))
k:OnEEkYS 7=0
L
c1 1 1
> > - — >N X
Y k=009€E, 5 W (igoa(ln>
S N N 2 ) A o
. (Z%a(z)> (BN —-k—1-j,j+1) = F(i; N —k—j, j))
= \=2
Nl-1 flok 2 ) ) o
+ Ek( Oa(z)> (BN —k—=1-j4,j+1)=F(is N —k—j, j))*+
J:* 1=

l—k—1 7
( _ (Z L) (FN =k —j, j) = F(i; N =k —=1—j, j))
+

j

L= 2 ) o R o

_ <Zoa()> (PN —-k—1-4,j) - F(i;N—k—1-74,j))+

5 2
N_k-1 (N-ko1-j A o A o

%3 ( 20 a()> (F(iy N —k—1-3,j) = F(i; N =k —1—j, j))
by Cauchy-Schwarz inequality.

4 —k 2
= oI 2 2 ,13,7)(2 a(li)(F(ﬁ;N—k—i,i)—F(ﬁ;i,N—k—i))>

k=07EE, & i=0
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>

C1
—_ F(a)2 ZN,S

1
>IN
P atm

2

¢ —k

ST (S N ki) - P N - k- 0)
k=0 ﬁEEk,S\{a,b} 1=0

by Cauchy-Schwarz inequality.

c 1
2 T(a)? Zn s T(@) P2 X

(i > lika(ﬁ)z(i)<F<ﬁ;N—k—i,z’)—F(ﬁ;i,N—k—m) .

k=07¢CE, g i=0

o

1 —
Zn,s a(f)a(i)a(N—k—i) —

For n = (3N —k —i,i) € €7, pln) = plo(n) =
1 1 N 2” 1
Zn.s a(fa(i) a(N—k—i) = Zn.s a(h)a(i)’
So the previous expression is equal or larger than
¢ =k
a1 Z ~ .. ~ .o
M(Z > X (FsN =k —i, i) u(is N —k — i, i)~
k=07€E, g i=0

2

= ol (Ser (F) (o)~ Flo() (o))

2
ca1Z
= 2Es (Speer FO)un) = X ce- Fn) u(m))
Since Zy,s is uniformly bounded in N by the Proposition 2.1, this proves (2) for
the non-reversible case.

(2-2) Assume that the process is non-reversible. We write Sy = (Lx + LY)/2
for the symmetric part of Ly. Note the jump rates of underlying random walks for
Ly, L%, and Sy are respectively r(z,y), r(y, z) and #(x,y) = (r(z,y) +r(y,x))/2.
We have Oy Dy (G) = N'* [, G(=LnG) dp = N'** [, G(=SnG) dp. Recall
h(n) = h*’(n) = 1{n € £*} — 1{n € £} as the equation (4.1). We note that if

2
o ) . S, Gl ]
CN_C_mgx{ o Gh dﬂ—QQNDN(G)}_ngX W ’

then
1 (- 1 _

with F solving —0xSyF = h. Since we have the uniform bound on 5Dy (F) for
the reversible case, we know supy ¢y < 0.
Note that if we choose F' = Fy for G, we get

1 1
§9NDN(F) = /Fh d/.L— §9NDN(F) < C.

This gives a uniform bound on 65Dy (F') for the non-reversible case.



(3) Since we have a uniform bound on 5Dy (F),

Nta ST, xy% F(C+0.) ~ F(C o) <@

(EEN_1 2w
for some constant c.
¢
For n = (+0, € &% we know that (C) (Tfl
0. Hence

)*Q(Lfl)

SN [FCH) - FCH) <oyt TN
(EEN_1 2z,wES
r(z,w);é()

for some constant cg.
It takes O(€ N) jumps to go from any configuration to any other configuration in
E%. So for nl,n? € £%

[F') = FP))* < ext "IN = et TN,

. . PO 4t ) .
which converges to 0 since we have the condition ~3=zx— — 0 as N — oo, which

s (3.1). O
5. ESTIMATE ON MEAN JUMP RATES

In this section, we prove the Proposition 5.1.
Define the function f,,: S = R for a #b € S by

(5.1) —Lfop(z) =1z =a} -1{z =0}, forallzes
and
(5.2) > fanlx) =

z€S

Proposition 5.1. Fiz z € S. For any sequence (n™ € €4 : N > 1),
lim FEP(N) = fas(a).
Jim F ) = fusle)

We prove this proposition in the following subsections. To prove this proposition,
we will define a function Hy on En and multiply Hy to the equation (4.1). Then
we get

/ *GNLNFNHNd,UN:/ hnHpy duy.
EN EN

From this equation, we will get the estimate.

5.1. Proof of Proposition 5.1 for The Reversible Case. First consider the
reversible case.

We define the function H,(n) = Hy(n) = H(n) on Ey.

Fix small 0 < e < 5. Let 2 == {u € R} : > _quy, =1} . Let 0 < < 1 and
zeS. Let?f = {ueP:u,>1-46} and &Y = {ue P :u,+u, >1-5}.

Define ! = 7,7 (e) := LY\ D5, y # x.

There exists a smooth partition of unity

0r: 90,1, yes\{z},

9

N~ and min,(; )20 7(2,w) >



such that 3 ¢\, Oy(u) =1 for all uin 2, and ©(u) = 1 for all u in J£" and
ye S\ {z}.
Let H : [0,1] — [0, 1] be the smooth function given by

—/ (1 —u)*du,

where I, is the constant defined above and ¢ : [0,1] — [0,1] is a piecewise linear
function whose graph connects (0,0), (3¢,0), (1 — 3¢, 1), (1,1).

Let L be the infinitesimal generator of the underlylng random walk.

Fix ¢ € S. For y # z, define H,,(n) = H("““ +m1n{M €}), n€En,

Ll (2) =0, z#mzy

where J,, : S — [0,1] solves ¢ J,,(z) =1 and J-n =73 J.n.,
the dot product where J, = J(z) for z € S.

Let H = H, : Ex — R be given by Hy(n) := >, c g\ (2} Oy (7)) Hay ().

We can see that

(5.3) Hy(n) = 1if n, > (1— 3N

(5.4) H,(n) = 0 if 7, < 2€N.

Since H and ©y’s are Lipschitz continuous, there exist a constant C. which
depends on ¢, not N such that

(5.5) max |H(o™"n) — Hin)| < S

z,weS

forall n € En .

We will define some sets in En g. Let a sequence (€~N : N > 1) be such that
~ j1+H(L—2)a ~
In < fN, mpy o0 ZNT —0and 1 << /fny << N.

Define TyY :== {n € En : 0y + 1y > N — Iy} and T := Uyes\{m}fﬁy
By multiplying H to the equation (4.1) we get

(5.6) / —GNLNFNHdu:/ hH dy.
ENS EN,S

Let us consider the left hand side of this equation.

(LHS)

/ —ONLn FY () H dps
En

= NUSTST g (n:)r(z,w) (F(o™n) — F()) H(n)

nebn z JZWES

= NS S wmaner(ew) (Flo™n) — Fn) (™) — Hn)

neEN z,weS

since the process is reversible.
10



For functions F,G : Eny — R and a subset A of Ey, define

NPGA) = 5 30 3wl w) (F(r™n) = Fn))(Glo™n) = Gl
WGAszS
Then,
(LHS) = 6OnDn(F,H;EN)
(5.7) = OnDn(F, H; (T3)%) + On D (F, H; T)
= ONDN(FH (TR + Y OnDy(F H;T™),
YyES, y#x

for sufficiently large N because of (5.3), (5.4).

Consider the first term 0y Dy (F, H; (T%)®).
We use the following lemma.

Lemma 5.2. For sufficiently large N,

N1+a o Ce
o> u r(z,w) (H(o n)—H(n))QSﬁ,
nE(TT)G z,weS (6 N)
where C¢ is a constant only depends on €.
Proof. See the proof of Lemma 5.2 in [4]. O
The first term in (5.7) is
On D (F, H; (T5)°)
= A Y et s wes MM g(n:)r(z,w) (F(0™n) — F(n)) (H(on) — H(n))

N1+u

< (857 ez Sewes Hg(:)r(z,w) (Fla™n) = Fm)?) * x

(A5 5 )0 Sees HONg ()1 (2, w) (H(0™n) — H(y

< ¢—Y%__ by the previous lemma and Proposition 4.1 (2).
(6[1\]) 2

Thus limy s Oy D (F, Hy; (T%)8) = 0.

~
~—
[
N———
—
~
[ V)

Consider the second term 3 OnDn(F, H; T*) in (5.7).

yES, y#£x

= N1+a «@ 1 B
OnDn(F,H;T) = 5 Z%gﬁgw 7 (C)( w) (F(C+0y) — F(C+0.))
x (H(¢+0w) — H(C+0.))
N1+a a q

=5 X ZE@T(sz)(F(CJr%)fF(CJrOZ))

(5.8) X (H(C+0y) — H(C+02)) + A

Lemma 5.3. [AY/| < e where C is a constant only depends on e.

11



Proof. Write n = ¢ +0,. If g, 41, > N—{then (,+¢, > N—0. If n,+n, = N7,
then ( +(y > N —fonlyif z =z, w#yorz=y, w# .

So
Axy N1+Ot F zZw H zZw H
=T S o e [Pl - F)l H () - HO)
neszszS
1/2
N1+a
< > X ) [Fo - FO)f
'r]ET“’ZWES
1/2
N1+a
X

> Y G W) 1H ) - HO)P

77€T““J z,weS

The first term is bounded by the Proposition 4.1 (2).
Consider the second term. 7 is the restriction of n to sites z # x, y.

= Z Z Z N© g(nZ)T(Z’w) |H(0'2w17) —H(U)|2 by 5.3, 5.4

AEE; [2eN]<ne<N—|[3eN] z,wES Zy a(n)
77y=N—€—77m
From now C' is a constant which can vary line by line and C. is a constant
depending only on € which can vary line by line too. We have that g(,) is bounded
and |H(C +0y) — H(C+0.)] < § by (5.5). Also Y. r(z,w) is bounded.

z,WES
D S e N
AEE; 2N | <1y <N—|3eN] Zn a(n) AEE; [2eN]<n. <N—|3eN] 2 ati)a(nz)a(ny)
Ny=N—{—ny Ny=N—L—n

N« 1 1
:EZW;) Z - -

[2eN]<ne <N—[3eN]| a(nz)a(1y)

nEE;
ny:N*Z*nz
sps 1 _ J—a
By the Proposition 2.1, ZﬁeEg = O(0—).
S R > R W
26N <na SN (3en] U)oy < D ey 1 (V)
nz;:N—Z—Wm
Let N' = N — /. Since { << N, > —Ll
[2¢N | <na<N—|3eN| ng (N—l=n:)
_ Z - all,,, al,Nll 2c
[2eN |<ne<N—|3eN| (%) (7NN’T) N
1—3e¢

= Jae u"‘(llfu)"‘ duO(N"'72%) = C.O(N'~2)
Summarizing these,

1/2
(W Y Y R w He )—H(n)l2> — C.0(~/?)

neTyy zweS
12



C.
Thus [AY| < 75 O

Consider the first term of the equation (5.8).
Define

S]m\fy:{CEEN—l:Cz+CyZN*E}~
Also define

Szxvy(aab):{C€EN712Cz+CyZN—Z,a§($§b},

Then the first term of the equation (5.8) is

DY > N2 ) (F(C+0y) — F(C+02)) (H(C +04) — H(C +02))
CES;]y zZ,w

14+ o
== X Y Fraty r(zw) (F(C+04) = F(C+02))
CeSTY(|4eN], N—|4eN]) z,wES
x (H(C+0w) = H(+02)
> S 2L (e w) (F(C +04) — F(C+2.))
CESTY (1, [4eN|—1) Z,wES
X (H(C+04) —H(C+02)
+ 55 > Y Featg Mz w) (F(C+0,) = F(C+02))
CESTY(N—|4eN|+1, N) zweS
X (H(C+aw)_H(§+az))'
Let the first term, second term, and last term in the previous expression be
9179215922'

Lemma 5.4. If N is sufficiently large so that eN >> ly >> 1, then |Q01]| <
C’eQTH, |Qaa| < Ce*S where C is a constant independent of N, e.

Proof. In this proof, a constant C' can vary line by line.
Consider Q9. Assume ( € En_1, (g +(y > N — 4, (; < [4eN| — 1.

L pe(Lse)
H(C+00) — H(C+0.) = — / (1 — w)® du.
¢

I, (L4822)

JCt+Jw  JC+JTx
N N

By the fundamental theorem of calculus, there exists ugbetween
such that

H(C+0,) - H(C+0.) = % (¢ (W) —¢ <JCN+J>) ug (1 — up)®.

)

Here uy < Lj\l}u_l < 5eN and [¢/(vo)| < 1=

1—6€"
So
1 |Jy—=J.] 1 €&
’ w) ) S = X O0—
(5.9) |H(C+0w) — H(C+0.)] TR — (59" <O
for some constant C. We used the condition e < %
N1+2a 1
Q = L P g
o 27N > > o0 r(z,w) (F(C+0y) — F(C+12.))

CESTY (1, |4eN | —1) Z,wES

X (H(C+0y) — H(C+02)).



By the Cauchy-Schwartz inequity,

1420\ 2
0 < (]VQZ*N ) S X e (FCan) — FC+.)

CESTY (1, |4eN|—1) Z,wES

x XX e ()~ HC )

CeSF¥(1, [4eN|—1) #wES
By the Proposition 4.1 (2),
1 - @
2 D o e ) (FCH+0) = F(C+2.))" = OV (2,
CEBTY(1, [4eN |—1) ZWES

and

XX e (o)~ HC+ )

CESTY(1, [4eN|—1) Z,wWES

= 3 rw) 3 % (H(C +00) — H(C+2.))? by 5.4
z,wes ST (|2eN], |4eN]—1)
N E204 1
R WP PN

CESTY(|2eN], [4eN|-1)
The term inside the parentheses is
l
1 1 1
< _ -
2 TSI IR VT NP DR T

- a
CeSTV(|2eN], |4eN]-1) By s\ {25} Peﬁjiﬁég‘fgﬂ

where ¢ is the restriction of ¢ to S\ {z,y}

. 1 1
NG, w) U BN
F=00eBk s\ (2.1) 2

< OT(a)l72e' 7@ N2> where C is a constant.

So 2 > atgrlzw) (HC+0y) — H(C+ 0.))? < CeltaN—1-2o,
¢eSTY(1, |4eN|—1) 2wES
a1

Thus |Q91] < Ce™5* for some constant C. Similarly we can get [Q92] < Ce 2 .
O

Consider the term ;. }
Assume [4eN| < (, < N —[4eN |, (€ Ey_1, and {; +(y > N — (. Also assume

N is sufficiently large so that eN >> fy >> 1.
Consider

o254
H(C—i—bw)—H(g—&—bZ):l/(b u®(1 —u)® du.

1, (J'C]j]ﬂ]z)

. J- Jw J- Jz J- Jw\ _ J- Ja\
Since 3e < 78‘\”; and 7%:}' <1-3eN, ¢/( C; )= ¢'( CJ;’[‘ ) =
14



By the fundamental theorem of calculus, there exists ugbetween “%‘]“’, %

such that

H(C+0,) - H((+0.) = i (¢ (“;Jw) —¢ (JCNTJ)) ud (1 — up)®.

Write ug = # where vg is a real number between J,, and .J,.
 Gatd o, J2Catvo Co 41
Then ug = 25— < ¢ + 5.

Since ¢, > 3eN, § <uo < % (14 5) = % (1+0(5)).

Thus ug = % (1+O(%)>. We get 1 —ug = w By chang-
ing the role of (J.:z€ S) and ¢, to (1—J.:2€S) and (,, we get 1 —up =
& (1+o&).

So
H(C"’Dw)_H(g"_DZ)
S A e i W\ (¢ 7\’
e (5 (o) ($ (o)
_ 1 Jw_Jz Cﬂc ¢ C “ g
T I,(1-66) N (N) (]\?) <1+O(ezv)>
N—1—2oz . g
_W( J.) G5 ¢y <1+O(d\,)>
N7172o¢ o R
= m (Jw — J2) G gy + R(¢, w, 2),
where
5 ‘
(5.10) |R(Gw,2)| < O NI
Define
O := 5% (|4eN |, N — |4eN|)
{geEN LG G > N0, |4eN] < ¢ < N — L4ENJ}.
Let
N1+a
Q1 = Z Z Z—a—rzw)(F(C+Dw)fF(C+DZ))
CEC”’ZWES N
1 o 2a
X g e TGN
and
N1+a R
Q5 = >y 27 ") (FIC+00) = FCH0)R(C w.2),
Cecﬂ”lszS N

Then Ql = Qll + ng.
Consider €41, which is
15



Oy = F(C+0y,) = F(C+0.))(Jw — J2),

1
T 2 a0 2,

where f is the restriction of  to sites z # a, b.

Fix ¢. Then,
3 Zes r(z,w) (F(C+0y) = F(C+0.))(Jw — J2)
=3 ZGS r(z,w) (F(C+0w) = F(C+0.))(Juw — J) 1L

Recall that L is the infinitesimal generator of the underlying random walk and
Lf(z) =Y pesr(z,w) (f(w) — f(z)) for the function f on S.

Then the previous expression is

= es Dowes T(zw) F(C+02))(Jw — J2)+ L since the underlying random

walk is reversible with the uniform measure

=2 .es F(C+0.)LJ(2) 1L

=—LJ(z)F({+ ;) — LJ(y)F(¢ +,) by the definition of J.

— Leapy (z,9) (F(C +2.) — F(C +,)).

Write n = (%; 9z, ny) where ) is the restriction of n to sites without z,y. We have

(5.11)
_ Leapg(z,y) 1
= L0 2 arg T )
CeCy
LcapL x y 1
- ] (F(C+02) = F(C+72y))
 TaZn(1-66) I;JCGEkXS\:{I v} al¢) L4€NJ<C;NL46NJ y

Cy=N—-k—Cq

where / = |4eN]|.
Denote by nc¢™¢™€” for z € S the configuration where every particles are on

the site z. Then pcentem€" = (0; N,0). Let n»* = (O;N —0+1,0— 1), n?* =
(O;N—£+1,f—1) and 3% = (6;N—é+1,f—k—1).

From now, C'is a constant which can vary line by line.

As in the proof of Proposition 4.1 (3), we can see for the configuration n',n% €

EN,SJ
|F(771) - F(nz)‘2 < C (Number of jumps to go from n* to 7?)
X ( max a(()) N2

¢ in the path from n' to n?

where ( =71 — 0, when we move a particle at z to w in the configuration of 7.
16



Consider a path from nc™t™¢" = (0; N,0) to n"* = (O; N—0+1,0— 1). We
move a particle at z to y one by one. We can make f = 0 in this path. Number of
length of the path is O(¢) and a(¢) = a(¢)a((z)a((y) < N*¢e.

So |F(ncenter,£m) o F(nl,w)} <C | it

NTTa -
Consider a path from n® = (O; N—0+1,0— 1) ton?® = (O;N — 0+ 1,2— 1).
We move a particle at = to y one bAy one. We can make (f = 0 in this path.
Number of length of the path is O(¢) and a(¢) = a(¢)a((z)a(¢y) < N*4*. So

F nl,w _ F(n2,x < C Nta
(n-*) )

N1+o¢ -

Also consider a path from 7?* = (0; N-—{+ 1,@— 1) to

3t = (é;N — i+ 10— k- 1). Move a particle at y to a site in S\ {z,y} one
by one. Number of length of the path is O(f) and a(¢) = a({)a(C)a((,) <

CZ(L—Q)aNaéa_ So ’F(?’]Z’x) _ F(n3,x)| <C /EIJFE\?;?():!ZQ-

Then

’F(ncenter,g’”) -~ F(é;é,N ke g)) _ ’F(ncenter,gw) — ()

< ’F(ncenter,f)z) _ F(nl,w)
4 ’F 1,z _ 2,1 ‘ + |F Z,I) _F(WB,I)|

el—}—a €1+a gl+(L—2)o¢£o¢
N1+a N1+oc N1+a :

Similarly consider a path from 5¢¢"*¢"€" = (0,0, N) to n"¥ = (O (,N — €>

have |F(neenter€”y — F(plv)| < C % By considering a path from n'¥ =
2y o (e i) g g e <o

N1+a

considering a path from n?¥ = (O;&N - 2) to n3Y = (é;E,N - k), we have

|F(n?¥) — F(n®¥)| < Cy) et
So
Y A . flto fl+a P+ (L—2)a fo
center,& .
‘F(U )—F(Q,E,N—E—k)‘SC\/N1+Q+C\/N1+Q+C\/ Nita -
Thus

LcapL x,y) 1 « y
Q _ (F center, €T\ F center,& .
1 = InZn(1—60) E E a(0) (n ) (n )
= 0(€Ek 5\ (w4}

gl+a £1+a 1+ (L—2)o fo
+O( N1+a N1+a Nlta )

. . ‘ _ .
Since Imy 00 Y5y EéEEk,S\{m,y} ﬁ = T(a)"2, limy o0 Zy = Zs,

17




. Leapp(z,y) 1/ -2
liminf Q; = r
Nbeo T T Z(1— 6e) (@)

« lim inf (FN(ncenter,ff\/) — Fy (ncenter,g%)) + O( o )
N—o00

. Leapy (,y) L—2
limsupQy; = ————T'(«
e = 770 6
% lim sup (FN(ncenter,Sf{,) _ FN(ncenter,E}’\,)) + O(GQTH)
N—oo
Define gy (x fgl N(n)duy for s € S.

By the Prop051t10n 4.1 (3),

o _ Leapp(@,y) o \poon.
(5.12) lg% 1}\I[Ii>lglof Q1 = Wf(a) l}ﬂlgof (gn(z) —gn(y)),
L —
(5.13) lim limsup Q11 = MF(Q)L_Z limsup (gn () — gn(y)) -
=0 N0 IaZS N—oo

Consider €215, which is

0, =0 5 Y ML (o) - PR 2),

CGC‘;‘," z,WEeS ZN a(C)

Because of (5.10),

1
|912|_2]ZN(1—66< ) Z Z )| (C+0w) = F(C+0.)]

CEC“’ z,weS

By Cauchy-Schwarz inequality,
S % r(ew) 75 [P+ 0u) — F(C+02)

Ceéﬁfy z,weSs

1/2
<< > r(zw) a“;igf”)

CGéEy zZ,WES

1/2
><< Y X r(zw) g (F (<+bw)—F(<+bz))2> :

Ceé}f,y zZ,WES
By the Proposition 4.1 (2),

1/2
(E > r(zw) g (F(C+0y) - (C+02))2> =O(N~

CEC';:,y zZ,WES

142
2

18



Also

Z Z a(a)@y) < r(z,w) Z a(Ce)a(Cy)

CEC” z,weS g z,weS CEC"”’ a(C)
Ceé;’y CL(C)

<2y Y a(lé) S alGalG)

46N |<C, <N—|4eN |
Cy:ka*Cz

The last summation in the last line of the previous equation equals

N1+2a Z (%)Q(N—]If[_gz)a;r

[4eN | <C, <N—|4eN ]

By sending N to the infinity,

| G\ (N k-G 1
Jm ) <N)( N )NIO"

4N | ¢ <N—[4eN |

So ) a(Ca)a(Cy) = O(N~7%).

[4eN | <¢a SN—|4eN]

y= x

£ . L—2
And Zk:o ZCEEk,S\{a,b} a($) < F( ) :
So

1/2
(5.14) (Z > {“)(Cy)) —O(N—1E2),

ceC¥ z,weS a C

Thus ‘912| = ( N) and th_mo ng = 0.
putting together estimates for 21, 212,21, Q22, we have
(5.15)

L i Leapy (,y) L 2
151(1) l}wglof(LHS of 5.6) = WI‘ lﬂlglof E (gn(z ),
(5.16)
Leapr,(z,y) L2
lim limsup(LH S of 5.6 — =T lim su .
Jim Tin sup )= 1.7, '@ N%OPE (gn(2) = gn (v)))

yeS
Consider (RHS) of (5.6), which is
(RHS) = /E (1{ € £} — 1{n € £"}) H(n) dn (1)

N
= un(E7)(1{z = a} — Ha =b}), since uy(E?) = pn(E”)
By sending N to infinity,

(5.17) lim (RHS) = Ho = a}z Lir = b}

By (5.15), (5.16), (5.17) we have
19



R @ i 3 (o)) = S,

Substituting LT'(«)L = for Zs,

Am w yze;g (gn(z) — gn(y) = 1{z = a} — 1{z = b}.

That is

lim —Lgn(z) = 1{x =a} — 1{z = b}.
N—00

Also gy satisfies imy o0 Y, cg 9N (2) = 0 by Proposition 2.3 and 2.2.

Since S is a finite set, we can think £ as a matrix and gy, f,, are vectors. The
function f,p is defined by (5.1), (5.2). As a matrix, £ has a rank L — 1. Also we
know that > ¢ fap(2) = 0and limy o0 Y cq9n (z) = 0. So we can think f, 5 as
a solution for a system of linear equations and gy as an approximate solution, where
the matrix for the system has full rank. This implies that imy_,00 gy (z) = fop(2)
for all x € S.

By the Proposition 4.1 (3),

lim FJL\L/b(nN) = lim gy (z) = fap().

N—oc0 N—o0

This proves the proposition.

5.2. Proof of Proposition 5.1 for The Non-reversible Case. Definition of H
is same to the reversible case except the definition of J.
Let L* be the adjoint of the infinitesimal generator of the underlying random
walk.
L*Jpy(z) =0, z#uz,y
In the definition of H, J,, : S — [0,1] solves < J,,(z) =1 and

Ty (y) =0
J-n=73%",J.n., the dot product where J, = J(z) for z € S.
As in the reversible case, multiply H to the equation (4.1). We get

En,s

En, s

Consider the left hand side of the previous equation. Denote by L3}, the ad-
joint operator of Ly and by r* the jump rate for the adjoint underlying random
walk. Since the uniform measure is invarint measure of underlying random walk,
" (a,y) = r(y, ).

20



(LHS) = —fx / LyFg* () H dp
En

— x| FY) LigH du
En

(5.19) = NN (z,w) F(n) (H(o**n) — H(n))
neEN z,weS
14+« N> 1 *
= —N' CEEZNAE@MZGST (z,w) F(¢+0.)

X (H(C+0y) — H(C+0,))

Define F(¢) = £+ 3 ,cs F(C+04).
Since the uniform measure is an invariant measure for the underlying random

walk,
> ri(zw) (H(o™n) — H(n)) = 0.

z,wES

So the expression of the equation (5.19) equals

vy oy

CGEN 12, 'LUES

*

( (C+22) = F(¢)) (H(C +0dw) — H(¢ +22))

- F - Vz f z
Define F,(n) = (n=22) ifn. >0

0 ifn, =0
Then the previous expression is
DD D (z,w) (F) = Fx(m)) (H(o™"n) — H(n)).
neEN z,weS

For functions F,G on Ey g, and a set B C En g, define
AN(FGB) =3 37 u( (2, w) (F(n) = F(n)) (H(o™"n) — H()
neEB z,weS

Then the equation (5.19) is
OnAn(F,H; Ex.s) = On An(F, H; (T})%) + On An (F, H T

(5.20) =OnAN(F, H;( Njf;)c) + Z OnAn(F, H; T"‘y),
yES, y#x

for sufficiently large N because of (5.3), (5.4).
We will use the following lemma.

Lemma 5.5. For any function F' on Ey s, there is a constant C which doesn’t
depend on N such that

> > u (z,w) (F(n) - Fz(n))2 < CDy(F).

HEEN s z,weS
21



Proof. The idea of this proof is in the proof of Lemma 4.2 in [18].

> X (=) (FOm) ~ Bx(m))

neEEN. s z,weS

(5.21) -y EL) S (mw) (F(O) = F(C+0.))°

ZN a
CEEN_1 N (C zZ,WES
The last summation in z,w in the previous expression is

2
(5.22) >z w) (Z %F(C +0u) = F(C+ az)>

z,weS uesS

2
Y e <Z F(C+%);F(<+bz)>

z,weS uesS

Define P = {(z,w) € S x S : r*(z,w) > 0}. Let

Cy = min r*(z,w) and Ci= max r*(z,w).
(z,w)EP (z,w)eEP

For u,v € S,consider a canonical path
u = Zl(u,’U), ZQ(U, ’U), Tty zk(u,v) =",
where (z;(u,v), zi41(u,v)) € P for 1 <4 < k(u,v) — 1 and z;(u,v)’s are different.
There exists a canonical path since the underlying random walk is irreducible. We

can see k(u,v) < L.
The equation (5 22) is bounded above by

Z LZ (C4+0,) — F(¢+10.))° by Cauchy-Schwarz inequality
z€S ues
k(u,z)—1
Cyo(L —1
< 2(L DS LY (R - FCH,))
u,zES i=1
<C(L-1L* Y (F((+0w) = F((+2.))°
(z,w)eP
Co(L — 1)L
< GEZDE 5 ) (R +00) — FIG+0.))°
(z,w)€eS
=C Y r(ew) (FC+H) — F(C+0.)).
(z,w)eS

So the equation (5 21) is bounded above by

Z C Y (zw) (FC+04) = F(C+3.))2 = C Dy (F).

CeEEN z,weS

Consider the first term Oy Ay (F, H; (Tj{",)c) in the equation (5.20).

As in the reversible case,

b An(F,H; (T5)")

= <N e (0 Sees g :)r () (FOn) = F(n)) (H(o™n) = H(n))
22



1/2

< (V5 S g Sewes st o) (FO) =) ) x

1/2
(V94 S ey e s ngn)r(z,w) (H(o™n) — Hn))?)
The first summation is bounded above by a constant because of the Proposi-
tion 4.1 ( ) and the Lemma 5.5. The second summation is bounded above by
as in the reversible case.

So thﬁoo QNAN(FN,HN;(TKI)B) =0. _
Consider the second term Y ONAN(F, H;T™) in the equation (5.20).

YyES, y#£x

OnAn(F, H;T70) = —N1Fe 3 % gﬁr*(z w) (F(C +0.) — F(O))
ZWES (4o, GT“’ N

X (H(C+0w) - (C+a )
=Nt 3 Z 1 ™ (z,w) (F(¢+0.) = F(Q))

(EEN_1 szS
Cot+Cy=N— l

(5.23) X (H(C+0w) — H(C+02)) + AY

The proof for the Lemma 5.3 for the non-reversible case, which states that

AV < gsza is similar. The proof is the following.

As in the proof for the reversible case,

PR DI D= ) [F) — B 1H (™)~ Hn)
nebEN z,weS
Na+1ny=N— l
1/2

S D S S ZNG r(z,w) [F) = Fo(n)

nebEnN ERNISH

Natny=N—1{
1/2
a zw 2
e S I (o) - H)
neEN z,weS N
Nat+ny=N—1

The first term is bounded above by a constant by the Proposition 4.1 (2) and the
Lemma 5.5. The second term is bounded above by CEO(Z*aﬂ) as in the reversible
case. This proves the lemma 5.3 for the non-reversible case.

Consider the first term of the equation (5.23).

As the reversible case, define

:{CEEN—1:<z+CyZN—E}~
Also define

S;Vy(a,b):{geEN,l;gz+gy2N—z7,aggng}.
23



Then
Nt YN ZN al “) (F(C+0.) - F(Q))

Ceszyzwes
X (H(C+dy) — H(C+22))
— _Nlte Z Z %%r (z,w) (F({+0.) - F(())

CESTY (|4eN], N—[4eN]) #wES

X (H(C+0y) — H(C+02))

N 1
:_N1+a Z Z Em

CeSTY (1, |4eN|—1) ZwES
X (H(<+aw)_H(<+0z))
1

= _Nite Z Z N& ( ) *( ) (F(C+Dz)—F(C))
CESTY(N—|4eN]+1, N) z,wes
X (H(C+0,)—H(C+0.))

Let the first term, second term, and last term be 1, Q91,99 as the reversible

" (z,w) (F(C+0:) = F(Q))

case.
The Lemma 5.4 holds for the non-reversible case, which states that |Qg9;| <

Ce*s |Qa2| < Ce“s" . The proof is the following.
N1+2a 1 . B
Qo1 = ——,— > > g @ (F(¢C+0.) = F(Q) (H(C+0y) — H(C+0.)).
CESTY(1, |4eN]—1) ZwES
By the Cauchy-Schwartz inequity,

9 N1+2a\ 2 1, _ 2
% < (Y5 ) (CESW(Z > i) <F<<+az>—F<<>))

N -
(1, [4eN|-1) ZwES

y ( 3 > %r*(z,w) (H(C+ ) — H(<+az))2) :

CESTY (1, |4eN|—1) Z,wES
The first summation in the previous expression is

D %r*(zaw) (F(C+0.) - F(Q))?

CESTY(1, [4eN|—1) zwES

<D - *r (z,w) (F(¢+0.) - F(Q))”

CEEN 12, wES

( oY arw) (FC+0) - <<+oz>>2)

CeEEN— 1zw€S
:ON(N 1-— 204)’

by the Proposition 4.1 (2) and the Lemma 5.5.
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As we show in the reversible case,

Z Z % r*(z,w) (H(C+00) — H(¢+.))* = e T*On(N7172).

. a
CESTY (1, |4eN|—1) Z,wWES

This proves [Qg1] < C'e™2* for some constant C'. We can get [Qao| < Ce* s similarly.

Next we consider the term €.

Since the definition of H is same as the one except the function J, as in the
reversible case

H((+0y) — H(C+0.)

N7172a o R
= T.(1—60) (Juw = J2) (¢ + R(Cw, 2),
where
. 1
(5.24) [R(Gw,2)| < O NI
Define
o8 =53 (|4eN], N — |4eN])
—{CeBN 1.+ > N1 |4eN| < <N — \_4€NJ}.
Let
Qu=-N"2 30 Y o) (FE+) = FO)
cecy = weS
1 aran—1-2a
X (1 _ 66)],1 (Jw - JZ)Ca: Cy N
and
«@ ¢l * I >
Oy = —N'F Z Z E@T (z,w) (F(C+0.) = F(Q)R(C,w, 2).

Then Ql = Qll + ng.
Consider Q71. The computation is almost same as one of the reversible case.

U=ty o om |- X ) (P~ FQ) - 1)

IO‘ZN(]' — 6e CEC’?J a(C) zZ,WEeS

where é is the restriction of ( to sites z # a, b.
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Fix . Then
-y F(C+0.) = F(O)(Jw = J2)

z,weS

- (‘ Y ri(zw) (F(C-i-bz)—l:“(g“))(Jw—Jz)i) I

zZ,WEeS

= (— Z r*(z,w) F(¢C+0.)(Jyw — Jz)i) L since ZE*J(Z)l =

z,weS z€S

- <Z ~F(¢+ az)L*J(z)2> L

z€S
= —L*J(z)F({+0,) — L*J(y)F (¢ +0,) by the definition of J
= Leapg.-(x,y) (F((+0z) — F(C+0y))
= Leapg(z,y) (F(¢ +0;) — F((+0y))

By writing n = (7); 15, 1,) where 7 is the restriction of 1 to sites without x, y,

Qu:[fczéf(Ll(ang) > a(lé) (F(C+2.) = F(C+y))

cecyy
which is same to the equation (5.11) in the reversible case. So we can get the
following equations which is same as (5.12), (5.13).

TR . Leapg (z,y) L—27: -

lim lim inf €y, = ﬁF(a) liminf (g (z) = gn(y)) ,

lim lim sup Q17 = wF(a)L_Q limsup (gn (2) — gn(v)) ,

=0 N 00 IaZS N—oo

where gy () = [, FN(n)duxy for s € S.
Consider ng,whlch is
1 _ .
D DD P 0w FC+) = FOIRE v, 2)
CEC”" z,weS N
By (5.24),
1 _
|Q12IZ(1—66< ) Z Z (CA) (¢ +2.) = F(Q)|
CECM z,weS

By Cauchy-Schwarz inequality, B
XX w5 [FC+:) = F(O)

Ceéf\fy z,weS

1/2
<< >y rf(zw) a(czzg)(gy)>

Ceé}’i{y z,weS

1/2
><<Z > r(zw) o (FC+2.) - F<<>>2) :

CEC'JJ\;J z,weS
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By the Lemma 5.5 and Proposition 4.1 (2),

1/2

>N rw) g (FCe) - PO =0,

Ceczy z,weS C)

For the reversible case, we showed the equation (5.14). By changing r(z,w) to
r*(z,w) in the derivation of this equation, we can get

1/2

SO sza)(éy) )

(ECTU z,WES a C

Thus ‘912| = ( N) and th—>oo 912 =0.

So we have the same estimates for 211,212,221, Q22 as ones of the reversible
case.

By applying arguments of the end of the previous subsection, we can conclude

lim F"(n") = Jm gy (@) = fup(o).

N—oc0

This proves the proposition for the non-reversible case.

6. TIGHTNESS AND CONVERGENCE OF PROCESSES

In this section, we prove Proposition 3.1 and Theorem 3.2.
Recall the definitions of 7,5, SV, which are

t
TEN ::/ 1{n, € Entds, t >0
0

and SV as the generalized inverse of TV,
Sth = sup{s > 0: Ts(n.) < t}.

We use shorthands 7, for 7,°¥ and S, for SV,

Then 7 = n%. Define S; = ngt, which satisfies 779Nt Define

77795

T = TGN S is a stopping time with respect to (7]9 it > O) (For proof, refer
to Lemma 8 1. in [15].)

Proof of Proposition 3.1. To prove tightness, we use the Aldous criterion(see The-
orem 16.10 in [6]).
Let € > 0 and T > 0. Let Tp be the set of all stopping times bounded by T
We need to prove

lim i py HXN —xN | }zo.
510 Noroo ag remy &N |70 (rtn) T Ronr| = €
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The expression inside brackets is

N N N N
XE’N(TJrv) - X9NT >€ = XGN(TJr'y) 7é XONT

= > inf {t >0: \PN(Wg;\,V(T-;-t)) #* ‘IfN(ngﬁf)}

. £
= > inf {t >0: ngg(Tﬂ) c g‘I’N(%ﬁT)} )
For ¢ € £y, denote the hitting time inf {t >0: nggt € £V where Y = C}
by o¢.

If v <9d,theny>0 ¢y implies § >0 ¢y -
Mopn+ Mo+
So

N N N
sup sup P HX oy — Xgor
S<6 reTy EN On(T+7) On

-

< sup ng [5 > ,En ]

TEST ONT

< sup IP’éV [0 >o¢].
CEEN

We can estimate Pév [0 > o¢] as the following,.

Fix x € §. We can choose functions h, f : S — R such that h(z) =1, f(2) =0
for z#x,2€ S, f(x) >0 and —£f = h in the following way. Define f; : S — R
by fi(z) =1, fi(z) =0for z # x, z € S. Let f = —£f1(x). Define f = £ and

_ - f
h = —£f. Then h, f satisfies the conditions.

Define hy : Exy — Rby hy = > g h(z) 1gz. We can choose a sequence of

functions (Fy : Ey — R, N > 1) such that
—ONLnFy = hy
and for z € S and a sequence (nV € £ : N > 1),
Jim En(n™) = 7(2)
h(z) = 0, h can be written as

h = Z Cap ({z=0a} —1{z =b})
a,besS

as follows. Since > g

for some coefficients ¢, € R. Define Gy : Ex — Rby Gy = ), bes ca_be]‘\l,’b

where Fie® is defined by (4.1) and (4.2). Define f = f(z). Define Fy = Gy + L.
Then Fy satisfies the conditions because of Proposition 5.1 and linearity.
Since (né\;t it > 0) is a Markov process,

t
NN = Fx(n.,) — Fx(ndY) - / O Ly Fyy (), ) ds
0

is a martingale.
Consider a sequence (CN €&y N> 1). Let a hitting time
Gen =inf {¢t > 0:n) , € £ where nl = ¢V},
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We use the optional sampling theorem for 0 and the G~ /\S,;. We use shorthand
E for E.~ and IP for Pe~.

Since v A St/ is an unbounded stopping time, we need to check the following
conditions(See Theorem 3.97 in [9].)

(i) aen A S, is finite a.s.,

(mE[MN

6’<N/\S;

} < 00,
(i) limr oo B [M'1,  5r57] = 0.
The condition (i) is true, since o~ is a hitting time for a recurrent Markov
process.
Consider the condition (ii). The term inside the brackets is
TN N
‘MOCN/\S; +‘FN(770 )“_

ECN/\S:’ N
/ ONLNFN(Ngys)ds|.
0

N
< ’FN(UO'CN/\S;)

Before the time ¢,
1 ,nn~ € EX
(6.1) —ONLNEn(ngl,) = Yons "
0 , otherwise.

So

’

5<N/\S; S,
/ _GNLNFN(né\J{Vs) ds < / _QNLNFN(Ué\;Vs) ds
0 0

’

Sy
S /(; 1néVNS€gN ds

=1t.

Since || Fn || < 00, is bounded. So the condition (ii) holds.

’

AS,

MY
E'CN

If oo A S; > T, then

T 5'41\7 /\S;
/ —ONLNEn(nd,,)ds S/ —ONLnFn (11, s) ds
0 0
<t,
the first inequality is because of the equation (6.1) and the we showed the second
inequality in showing condition (ii).
So [MY| < 2||Fy|lpe +tif Gev AS; > T. Since || Fy| . is uniformly bounded
in N, | M

M| is uniformly bounded.
The Markov process nng is recurrent. So limp_, . P {Stl > T] = 0. This implies

limy_ oo P |:5cN A S; > T} = 0. We get

Jim. ‘]E [M%Vlf;ws;ﬁ” < Jim (2]| Pyl + P [aCN NS, > T} ~0.
So the condition (iii) holds.
Thus we get
N _m N —
Epgwwjﬁu%]o
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That is

a'cN/\S;
k |:FN(7)<]7\£N/\S£) —Fy (77(])\]):| =E [/0 QNLNFN(né\zfvs)ds]

<t

)

as we did in showing the condition (ii).
The left hand side of the previous equation is

E [FN(UZNAS;) — Fy (név)] >E [FN(néiN) |Gen < St’} +on(1)
since Fy > on(1)
= (F+on(1) Py <] +on(1)
— P {QN < St} + on(1).

Thus P [QN < 5;} <t toy(1).
Since f depends on x € S by the definition and S is finite, for ¢ € Ex

P {64 < S;} < Ct+ on(1) for some constant C.

Also by the definitions of o¢, ¢, and S, P[5 < ;| = Ploc <1].
In conclusion,

lim lim sup sup PY [| XY — XN| > €] <lim lim sup PY[§ >0
510 NAOO,YSI;TGTPT e [1 X7 | >el < 510 N=voo CGSIJ)V ¢l 3

JE
<tim lim_(C0+ox(1))

=1limCé
510

207

this proves tightness.

We showed the tightness of the sequence of laws, which is Proposition 3.1. We
need to show the uniqueness of limit points. Let Qn be the law of (Xg,::t > 0)
under PévN. Without loss of generality, assume that Qp converges to Q. By the
property of the martingale problem, it’s enough to show the following lemma for
the uniqueness of the limit points.

Lemma. Under Q, Xg = =z,

t
My = F(X0) - f(X0) ~ [ £7(X.)ds

0

is a martingale for every function f from S to R.

Proof of the Lemma. It’s enough to prove this lemma for f satisfying

—Lfz)={r=a}—1{z=0b}fora#be S

> fla)=o.

zesS

and
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This is because the following set spans the vector space of all functions from S
to R, which is

{f:S =R —&f(z) =1{x =a} — 1{z =b}for some a £ b€ Sand Y _ f(z) =0}
€S
U{f:S—R]|fisa constant function}.

Assume that f satisfies —Lf(z) = 1{z = a} — 1{x = b} for a # b € S and

Y wes f(x) =0.
We need to show that

EQ [guxu 0 U -5 - [ Sf(Xu)dU)] —0,

for all 0 < s < t and all bounded, continuous functions g : D([0, s], S) — R.
The left hand side of the previous equation is

B [g((Xu 0 < u < 9))(f(Xe) = F(X,) = [ £F(X,) du)]
= lim B9 [g((X, 10 < u < ))(F(X0) — F(X,) = [} Sf(X,) du)|

N—o00
= Tim B [g((W0EY,) 0 < u < s)((R0E) — FVES,))
— [l eFgy,) du))
= lim By [g((W0rfy,) 0 < u < 9)(F2,) — FOEY,)

NU

- f: ONLNF(ngN ) du )}, F' is the function defined by the equa-
tion (4.1) and we use (3) in Proposition 4.1.

. N
= lim BN [g((W(noys;) 0 < w < 8)) (Flg ) = Fllgys)

- fst ONLNF (19, s )du )}, ]F’gv is the law of n!V starting at &y .
The last expression above is

SI ! . ,
fst QNLNF(n(,NS;) du = fs;t ONLNF(Moyo) %dv, since 7?5, = u.
Sl ’
= fS;t GNLNF(’IMNU) dd%d’u

! 1, eé&
Since “Te = { Monv & EN

and ONLnF(ngyv) = 01if noye ¢ En,

v O ’ TIBNU ¢ gN
S, AT’ s,
/ OnLnF (o) 2o = | OnLyF(nyo) do.
s! v S!

We apply the optional sampling theorem to the martingale
t
31 = B~ Fw(a) = [ OnLnFu (i) ds
0

and stopping times S; > S;. Since S; is unbounded, we need to show the following
conditions like we did in the proof for tightness. We use shorthands E for E.~ and
P for Pe~.

(i) S, is finite a.s.,
(i) E || ]

(i) limp—y o0 E [M;V 1

< o0,

S;>T} =0.
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Since the process (1}, : ¢ > 0) is irreducible and recurrent, a stopping time S,
is finite a.s. So the condition (i) is true.
Let us check the condition (ii). The term inside the brackets is

_ s
‘M‘é\{ / GNLNFN(né\IZ\,S)dS
¢ 0

N)’+

< [Pvd)

By the definition of Fly,

1,y e uel

N
{GNLNFN(WHNS)‘ = {0 otherwise.

So

’

St
/ GNLNFN(né\]I\,S) ds
0

’

St
S/ WNLNFN(UQLSH ds
0

N'1is bounded . So the condition (ii) holds.

’

Since || Fn || < 00, _s
t

If S; > T, then

T S,
< [ lowEnPn@i )] ds < [ oxLa )] ds
0 0

’

T
/ GNLNFN(Ué\Ier) ds
0

/

Si
S /0 1”§st€5N ds = 7;; = t.

So [MN| < 2||Fy| e +tif S > T. Since || Fy/| ;. is uniformly bounded in N,
| M| is uniformly bounded.

Since the Markov process 7°¥ is irreducible and recurrent, Tlim P [S; > T} =0.
— 00

So limy e ‘IE [M§V13£>T} ‘ < M7 o0 (2 | Fiv oo + )P [st’ > T} —0.
Thus the condition (iii) holds.
Let’s get back to the original equation,

. N
1\;E>HOO]EP5N {g((\l}(né\l’vs;) 0<u< 8))(F(77é\;3f{) - F(né\jvgg)
—J ONINF( (T, s, }
. DN
lim E7en [g((‘lf(név s) 0 < u <)) (Fng o) = Flng o)

N —o0
_fS QNLNF nGNU dU:|
= 0 by the optional sampling theorem. Here the function g(( ‘I’(%Ns ) 0<u<

5)) is measurable by .7, ¢ the filtration at time Ox.S, for ™.
So we proved the lemma.

O O

This proves the Theorem 3.2.

Next we prove Theorem 3.3.
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Proof of Theorem 3.3. Denote the sample space for IPJVVN as Qu. Then,

. T
Efvn l/ 1 {nN (N1+O‘s) € AN} ds
0

T
:/ / l{nN (N'tes) € AN}dsdIP’,I,VN
on Jo

T
= / / L{n™N (N'F%s) € Ay} dPY) ds by Fubini’s theorem
0 Qn

T
:/ Z 1{ne An} vn(n, N'"Ts)ds
0

neEN
, where vy (n, N'T%s) is the distribution of 7™V (-) at time N'*°s

N /o > 1{ne Ax} fn(n, Ns) un(n) ds

nekEn

N1+a
, where fy(n, N*T%s) = N (i N77%5)
N (1)

The square of the summation in the last equation is equal or less than

S @{mean)? uvm) | | Yo R Ns) v (n)

nekEn ne€EN

= un(An) Z SR, N %s) un ()
nekEn

By differentiating the summation in the previous equation in s,

d

| 22 AN ()

VIS

= Nlt+e Z 2fn(n, N'"s) L fn(n, N'T%s) v (n)

neEn
— _2N1+aDN(fN)
<0.

So

S RN ) un(m) < D0 fi(n,0) pn(n) < M

nekbEn neky

for some M, since }_, 5. 1% (n,0) un(n) is uniformly bounded in N by the as-
sumption of the theorem.
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(1]

Thus

Py T N (arl+
E*N / 1{n™ (N'*2s) € Ay} ds
0

< /0 Vi (An) VM ds
=TV un(AN) VM

By the Theorem 2.2, which is limy_o pn(An) =0, we get

T
lim EFn / 1{n™ (N'**s) € Ay} ds| = 0.
0

N —o0
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