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Abstract. We prove the metastability of zero range processes on a �nite set
with an approach using the Poisson equation. Certain zero range processes on
a �nite set exhibit condensation. Most of the time, nearly all particles of the
zero range process are at one single site. The site of condensate asymptotically
behaves as a Markov chain. This is proven in [4] for the reversible case, [14]
for the totally asymmetric case, and [18] for the non-reversible case. In these
articles, the martingale approach is used and precise estimates of capacities
are needed. We take an approach using solutions of Poisson equations. We
circumvent precise estimates of capacities and prove the metastability for both
reversible and non-reversible cases.

1. Introduction

Metastability is a dynamical phenomenon of some non-linear system with tempo-
ral random forces (noises). Metastability can be seen as �rst-order phase transition.
We refer to monographs [9, 17] for an overview on metastability.

Some zero range processes exhibit condensation in the physics literature, which
means above the critical density, as the number of particles increases to the in�nity,
a �nite fraction of particles gather at a single site in the steady state. We refer to
[11] for the review of condensation.

The site of condensate of the zero range process follows a Markov chain asymp-
totically after suitable time rescaling. This phenomenon is proved in [4, 14, 18] by
Beltran, Landim and Seo, using the martingale approach. We refer to [5] for review
of the martingale approach and di�erences between this approach, the pathwise
approach [10], and the potential theoretic approach [7, 8]. Also we refer to [15] for
some review and recent progress.

We prove metastabilty of condensed zero range processes on a �nite set with an
approach using solutions of Poisson equations. The model is the same as one in
[4, 14, 18]. We assume that the invariant measure of underlying random walk is
the uniform measure for simpli�cation. We anticipate that our approach can be
applied for the case of the general invariant measure with little modi�cation. We
refer to the Section 8 of [15] for introduction to this approach.

First we get an estimate on the solutions of Poisson equations and obtain as-
ymptotic mean jump rates from the estimate. At the beginning, we investigate the
properties of solutions of speeded-up Poisson equations −θNLNFN (η) = hN (η) in
the Section 4. Then we get asymptotic mean jump rates of the zero range process
in the Section 5 in the following way. We multiply an auxiliary function to the
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Poisson equation and integrate the equation with respect to the unique invariant
measure of the zero range process. Using several estimates, approximation and
manipulation, we get asymptotics for the solutions of the Poisson equations. From
asymptotic values of the solutions, we obtain the asymptotic mean jump rates.

Second we prove that the site of condensate follows a Markov chain asymptot-
ically in Section 6. The asymptotic mean jump rates of the zero range process
become the jump rates of the asymptotic Markov chain. We show tightness and
convergence of stochastic processes using properties and estimate of the solutions
of the Poisson equations in the Sections 4, 5 and martingale problems for Markov
processes.

The �rst advantage of our method is that we circumvent sharp estimates of ca-
pacities. The martingale approach needs precise estimates of capacities. Getting
sharp estimates are challenging, especially for the non-reversible case. It requires
delicate construction of approximating objects. We use an auxiliary function, which
is similar to the approximating function for the reversible case in [4]. The auxiliary
function is simpler than approximating objects for the non-reversible case. Han-
dling the auxiliary function and the solution of the Poisson equation is easier than
handling approximating objects for the non-reversible case.

Also getting asymptotic mean jump rates is direct in this article, and not from
capacities of the zero range process. For the reversible case, mean jump rates can be
expressed in terms of capacities(Lemma 6.8 in [2]). But for non-reversible case, we
don't have direct relation between mean jump rates and capacities. The collapsed
chain is introduced in [3] as a tool for getting asymptotic mean jump rates. Also a
general method is established in [18].

The method of using the Poisson equations have been applied for other models,
but not for interacting particle systems such as the condensing zero range process
in this article. This method is applied for elliptic operators on Rd of the form
LNf = eNV∇·

(
e−NV a∇f

)
in [12, 19], and one-dimensional di�usions with periodic

boundary conditions in [16]. We refer to the Section 8 of [15].
We expect that this method can be applied for the case of the zero range process

when the numbers of sites and particles of zero range process increases to in�nity
with a �xed ratio of numbers of sites and particles. The metastability of this model
is proven in [1] for a parameter α > 20. We hope to be able to use this method for
small α.

Organization of the article. In Section 2, we introduce de�nitions, notations,
and statements that we use in this article. In Section 3, we states main result of
this article. In Section 4, we state and prove the properties of the solution of the
Poisson equation. In Section 5, we estimate asymptotic mean jump rate for the
zero range process. In Section 6, we prove main result using outcomes in previous
sections.

2. Zero range processes

De�nitions and notations in this section are similar to [4]. We assumed that the
uniform measure is an invariant measure for the underlying random walk of the
zero range process for making calculation simpler.

2.1. Underlying Random Walk. De�ne S := {1, 2, ..., L}, where L is a �xed
natural number larger than 1. For x, y ∈ S, let r(x, y) be the jump rate for a

2



random walk on S. Assume that this random walk is irreducible and has the
uniform invariant measure on S.

2.2. De�nition of Zero Range Process. For S0 ⊂ S, an integer N ≥ 1, de�ne

EN,S0
:=

{
η ∈ NS0

0 :
∑
x∈S0

ηx = N

}
.

Let EN = EN,S . Let α be a real number larger than 1.
De�ne a function g : N0 → R by

g(0) = 0, g(1) = 1, and g(n) =
a(n)

a(n− 1)
for n ≥ 2, where a(n) = nα.

For x, y ∈ S, we de�ne a function σxy : EN → EN by the following way. For
x 6= y, η ∈ EN with ηx ≥ 1, de�ne σxyη ∈ EN by

(σxyη)z =

 ηx − 1 for z = x
ηy + 1 for z = y
ηz otherwise .

If ηx = 0 or x = y, then de�ne σxyη := η. σxyη is the con�guration obtained
from η by moving a particle from x to y.

The zero range process is a jump-type Markov process on EN,S , whose in�nites-
imal generator is given by

(LNF ) (η) :=
∑
z,w∈S

g(ηz)r(z, w) (F (σzwη)− F (η)) ,

where F is a function from EN to R.
The interpretation for the zero range process is that we have N many particles

that are scattered on a periodic lattice with L sites. Each particle performs a
random walk with jump rate r, and the jump probabilities are adjusted by certain
rules that depend on the number of particles of the departing site. To experience
a condensation phenomenon, we choose g(n) to be a decreasing function of n ≥ 2
so that the particles tend to pile up at a site.

For a function F from EN to R, de�ne the Dirichlet form associated the generator
LN by

DN (F ) := −
∑
η∈EN

F (η) (LNF ) (η)µ(η).

2.3. The Invariant Measure for the Zero Range Process. This zero range
process de�ned in the previous section has a unique invariant measure µN given by

µN (η) =
Nα

ZN,S

∏
x∈S

1

a(ηx)
=

Nα

ZN,S

1

a(η)
, η ∈ EN ,

where a(η) =
∏
x∈S a(ηx) and ZN,S is the normalizing constant. Also de�ne Γ(α) :=∑∞

i=0
1
a(i) and ZS := LΓ(α)L−1

Fix a sequence of integers (`N : N ≥ 1) with 1 << `N << N . For x ∈ S, de�ne
ExN := {η ∈ EN : ηx ≥ N − `N} .

Let EN :=
⋃
x∈S ExN and ∆N := EN \

(⋃
x∈S ExN

)
.
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We omit the subscript N when there's no confusion.
The following propositions hold.

Proposition 2.1. For every L ≥ 2,
limN→∞ ZN,S = ZS .

Proof. See the proof of Proposition 2.1 in Section 3 of [4]. �

Proposition 2.2. limN→∞ µN (∆N ) = 0.

Proof. See the derivation of the equation (3.2) in [4] �

Proposition 2.3. limN→∞ µN (ExN ) = 1
L for all x ∈ S.

Proof. By the de�nition of µN , µN (ExN )'s are the same for all x ∈ S. By Proposi-
tion 2.2, we get limN→∞ µN (ExN ) = 1

L . �

2.4. Potential Theory. In this subsection, we de�ne the capacity for a Markov
process. Consider a Markov process on a state space U . Let L be the in�nitesimal
generator of the Markov process. Refer to the Chapter 7 of [9] for the details.

Let A,B ⊂ U be two non-empty disjoint subset. Consider the following Dirichlet
problem 

(−Lh) (x) = 0, x ∈ U\ (A ∪B) ,

h(x) = 1, x ∈ A,
h(x) = 0, x ∈ B.

The harmonic function solves the previous problem is denoted by hA,B , which is
called the equilibrium potential.

De�ne
eA,B(x) := (−LhA,B) (x), x ∈ A.

This function is called the equilibrium measure on A.
Let ν is the unique ergodic invariant measure. The capacity of the pair A,B is

de�ned by

cap(A,B) :=
∑
x∈A

ν(x)eA,B(x).

Consider the underlying random walk of the zero range process in this article.
Denote the capacity of the pair A,B ⊂ S for the underlying random walk by
capS (A,B) . When A = {x} , B = {y}, denote capS (A,B) by capS(x, y).

3. Main result

3.1. Metastability of the Zero Range Process. For stating main result, We
de�ne the trace process for the zero range process.

De�ne T At (η·) be the time spent by the zero range process {ηN (t) : t ≥ 0} on
the set A ⊂ EN in the time interval [0, t];

T At :=

∫ t

0

1{ηN (s) ∈ A} ds.

De�ne SAt be as the generalized inverse of T At ;

SAt := sup{s ≥ 0 : T As (η·) ≤ t}.
4



For a subset A of EN , the trace process {ηN,A(t) : t ≥ 0} is de�ned by ηN,A(t) :=
ηN (SAt ), which is a strong Markov process with the state space A.

De�ne ηEN (t) := ηN,EN (t). Let a projection function ΨN : EN → S, ΨN (η) :=∑
x∈S x1{η ∈ ExN}. De�ne XN

t := ΨN (ηEN (t)).

Let the speed-up constants θN := N1+α, N ≥ 1. Let Iα :=
∫ 1

0
uα(1− u)α du .

De�ne a Markov process (Yt : t ≥ 0) on S by the generator L which is given by

Lf(x) =
L

Γ(α)Iα

∑
y∈S

capS(x, y) (f(y)− f(x)) , for x ∈ S.

Let Px be the probability measure on the path space D(R+, S) induced by L
starting at x ∈ S. Similarly let PNξN be the probability measure on the path space

D(R+, EN ) induced by LN starting at ξN ∈ EN .
We impose a condition on `N , which is

(3.1) lim
N→∞

`
1+α(L−1)
N

N1+α
= 0.

Then the following propositions hold.

Proposition 3.1. Fix x ∈ S. For any sequences ξN ∈ ExN , N ≥ 1, the sequence of
laws of stochastic processes (XθN t : t ≥ 0) under PNξN is tight.

The proof of the Proposition 3.1 is in the Section 6.

Theorem 3.2. The sequence of laws of stochastic processes (XθN t : t ≥ 0) in
Proposition 3.1 converges to Px as N →∞.

The proof of the Theorem 3.2 is in the Section 6.

Theorem 3.3. Let νN be a probability measure on EN , absolutely continuous with

respect to µN . Denote νN = fNµN . Assume
(
‖fN‖L2(µN ) : N ≥ 1

)
is bounded. Let

PNνN be the measure on the path space D(R+, EN ) induced by LN with the initial
distribution νN . Then for every T > 0,

lim
N→∞

EPNνN

[∫ T

0

1
{
ηN
(
N1+αs

)
∈ ∆N

}
ds

]
= 0

The proof of the Theorem 3.3 is in the Section 6.
The Theorem 3.3 holds when νN = δηN , where ηN ∈ ExN for �xed x ∈ S. For

the proof of this general case, refer to [2, 3].

4. Properties of the solution of Poisson equation

We consider the solutions of the speeded-up Poisson equations.

The sequence of functions (F a,bN : N ≥ 1) is de�ned by

(4.1) −θNLNF a,bN (η) = 1{η ∈ EaN} − 1{η ∈ EbN} = ha,bN (η)

(4.2)

∫
EN,S

F a,bN (η) dµ = 0.
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Denote F a,bN by FN or F and ha,bN by hN or h when there's no confusion.
We state and prove the following proposition.

Proposition 4.1. The function F a,bN de�ned above satis�es the followings

(1) minEN,S F
a,b
N = minEbN F

a,b
N and maxEN,S F

a,b
N = maxEaN F

a,b
N .

(2) supN θNDN (F a,bN ) <∞.

(3) Let x ∈ S. For any ηN1 , η
N
2 ∈ ExN , |F

a,b
N (ηN1 )− F a,bN (ηN2 )| → 0

as N →∞.

Proof. Let E+ = Ea, E− = Eb.
(1) To see this, set

M+ =
{
η̄ ∈ EN,S : F (η) = max

EN,S
F
}
, M− =

{
η̄ ∈ EN,S : F (η) = min

EN,S
F
}
.

We wish to showM±∩E± 6= ∅. Suppose for example thatM+∩E+ = ∅. For every
η ∈M+, we have −LNFN (η) ≥ 0. From the right hand side of the equation (4.1),

we can see −LNFN (η) = 0 and η ∈ (E+∪E−){. Since the maximum of F is attained
at η, we learn

η ∈M+, ηx > 0, r(x, y) > 0 =⇒ σxyη ∈M+.

By irreducibility of r, we can start from some η̂ ∈ M+ and reach a con�guration
on the boundary of E+ by applying the operation η → σxyη �nitely many times.
This contradicts M+ ∩ E+ = ∅. The proof of M− ∩ E− 6= ∅ is identical.
(2-1) First consider the case of reversible process.
Multiplying F to the equation (4.1) and integrating in dµ on EN , we get

θNDN (F ) =

∫
E+
F (η) dµ−

∫
E−
F (η) dµ

=
∑
η∈E+

F (η)µ(η)−
∑
η∈E−

F (η)µ(η) .

It su�ces to show that there exist a constant C > 0 satisfying

θNDN (F ) ≥ C

(∑
E+

F (η)µ(η)−
∑
E−

F (η)µ(η)

)2

.

By de�nition,

θNDN (FN ) =
N1+α

2

∑
z,w∈S

∑
η∈EN

µN (η) r(z, w) g(ηz) {F (σzwη)− F (η)}2 .

By the change of variable ξ = η − dz,
N1+α

2

∑
z,w∈S

∑
η∈EN µN (η) r(z, w) g(ηz) {F (σzwη)− F (η)}2

= N1+α

2

∑
z,w∈S

∑
ξ∈EN−1

Nα

ZN,S
1
a(ξ) r(z, w) {F (ξ + dw)− F (ξ + dz)}2

We can easily �nd a constant c1 = c1(a, b) > 0 such that
1
2

∑
z,w∈S r(z, w) {f(w)− f(z)}2 ≥ c1 (f(a)− f(b)) 2 for every function f : S →

R.
Fix a con�guration ξ ∈ EN−1 and use the above inequality, then we get
N1+α

2

∑
z,w∈S

∑
ξ∈EN−1

Nα

ZN,S
1
a(ξ) r(z, w) {F (ξ + dw)− F (ξ + dz)}2

6



≥ c1N
1+2α

ZN,S

∑
ξ∈EN−1

1
a(ξ) {F (ξ + da)− F (ξ + db)}2.

Let ξ̂ be the restriction of ξ to sites z 6= a, b. the previous expression is equal or
larger than

c1N

ZN,S

∑
ξ∈EN−1

1

a(ξ̂)
{F (ξ + da)− F (ξ + db)}2

≥ c1N

ZN,S

∑̀
k=0

∑
ξ̂∈Ek,S\{a,b}

∑
ξa+ξb≤N−1−k

1

a(ξ̂)
{F (ξ + da)− F (ξ + db)}2

Let η ∈ E+. De�ne a map σ on con�gurations that swaps ηa with ηb. Then
σ(η) ∈ E−. Let η̂ be the restriction of η to sites z 6= a, b. Let Ŝ = S\ {a, b}. Let
us write η = (η̂; ηa, ηb). We can change η = (η̂;N − k − i, i) ∈ E+ to σ(η) =
(η̂; i, N − k− i) ∈ E− by operations that move a particle on the site a to the site b
, where |η̂| = k. We will use the Cauchy-Schwarz inequalities.

The previous expression equals

c1N
ZN,S

∑̀
k=0

∑
η̂∈Ek,Ŝ

1
a(η̂)

N−k−1∑
j=0

(F (η̂;N − k − 1− j, j + 1)− F (η̂;N − k − j, j)) 2

≥ c1N
ZN,S

∑̀
k=0

∑
η̂∈Ek,Ŝ

1
a(η̂)

N−k−1∑
j=0

(F (η̂;N − k − 1− j, j + 1)− F (η̂;N − k − j, j)) 2

≥ c1
ZN,S

∑̀
k=0

∑
η̂∈Ek,Ŝ

1
a(η̂)

1( ∞∑
i=0

1
a(i)

)2N×(
`−k−1∑
j=0

(
j∑
i=0

1
a(i)

)2

(F (η̂;N − k − 1− j, j + 1)− F (η̂;N − k − j, j)) 2

+
N−`−1∑
j=`−k

(
`−k∑
i=0

1
a(i)

)2

(F (η̂;N − k − 1− j, j + 1)− F (η̂;N − k − j, j)) 2+

N−k−1∑
j=N−`

(
N−k−1−j∑

i=0

1
a(i)

)2

(F (η̂;N − k − 1− j, j + 1)− F (η̂;N − k − j, j)) 2


≥ c1

Γ(α)2 ZN,S

∑̀
k=0

∑
η̂∈Ek,Ŝ

1
a(η̂)×(

`−k−1∑
j=0

(
j∑
i=0

1
a(i)

)
(F (η̂;N − k − j, j)− F (η̂;N − k − 1− j, j))

+
N−`−1∑
j=`−k

(
`−k∑
i=0

1
a(i)

)2

(F (η̂;N − k − 1− j, j)− F (η̂;N − k − 1− j, j)) +

N−k−1∑
j=N−`

(
N−k−1−j∑

i=0

1
a(i)

)2

(F (η̂;N − k − 1− j, j)− F (η̂;N − k − 1− j, j))

2

by Cauchy-Schwarz inequality.

= c1
Γ(α)2 ZN,S

∑̀
k=0

∑
η̂∈Ek,Ŝ

1
a(η̂)

(
`−k∑
i=0

1
a(i) (F (η̂;N − k − i, i)− F (η̂; i, N − k − i))

)2
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≥ c1
Γ(α)2 ZN,S

1∑̀
k=0

∑
η̂∈E

k,Ŝ

1
a(η̂)

×

( ∑̀
k=0

∑
η̂∈Ek,S\{a,b}

1
a(η̂)

(
`−k∑
i=0

1
a(i) (F (η̂;N − k − i, i)− F (η̂; i, N − k − i))

))2

by Cauchy-Schwarz inequality.
≥ c1

Γ(α)2 ZN,S
1

Γ(α)L−2×( ∑̀
k=0

∑
η̂∈Ek,Ŝ

`−k∑
i=0

1
a(η̂)a(i) (F (η̂;N − k − i, i)− F (η̂; i, N − k − i))

)2

.

For η = (η̂;N − k − i, i) ∈ E+, µ(η) = µ(σ(η)) = Nα

ZN,S
1

a(η̂)a(i)a(N−k−i) =
1

ZN,S
1

a(η̂)a(i)
Nα

a(N−k−i) ≤
2α

ZN,S
1

a(η̂)a(i) .

So the previous expression is equal or larger than

c1ZN,S
4αΓ(α)L

( ∑̀
k=0

∑
η̂∈Ek,Ŝ

`−k∑
i=0

(F (η̂;N − k − i, i)µ(η̂;N − k − i, i)−

F (η̂; i, N − k − i)µ(η̂; i, N − k − i))

)2

=
c1ZN,S

4αΓ(α)L

(∑
η∈E+ (F (η)µ(η)− F (σ(η))µ(σ(η)))

)2

=
c1ZN,S

4αΓ(α)L

(∑
η∈E+ F (η)µ(η)−

∑
η∈E− F (η)µ(η)

)2

.

Since ZN,S is uniformly bounded in N by the Proposition 2.1, this proves (2) for
the non-reversible case.

(2-2) Assume that the process is non-reversible. We write SN = (LN + L∗N )/2
for the symmetric part of LN . Note the jump rates of underlying random walks for
LN , L

∗
N , and SN are respectively r(x, y), r(y, x) and r̄(x, y) = (r(x, y) + r(y, x))/2.

We have θNDN (G) = N1+α
∫
EN

G(−LNG) dµ = N1+α
∫
EN

G(−SNG) dµ. Recall

h(η) = ha,b(η) = 1{η ∈ Ea} − 1{η ∈ Eb} as the equation (4.1). We note that if

ĉN = ĉ = max
G

{∫
EN

Gh dµ− 1

2
θNDN (G)

}
=

1

2
max
G


[∫
EN

Gh dµ
]2

θNDN (G)

 ,

then

ĉ =
1

2

∫
F̄ h dµ =

1

2
θNDN (F̄ )

with F̄ solving −θNSN F̄ = h. Since we have the uniform bound on θNDN (F ) for
the reversible case, we know supN ĉN <∞.

Note that if we choose F = FN for G, we get

1

2
θNDN (F ) =

∫
Fh dµ− 1

2
θNDN (F ) ≤ ĉ.

This gives a uniform bound on θNDN (F ) for the non-reversible case.
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(3) Since we have a uniform bound on θNDN (F ),

N1+2α
∑

ζ∈EN−1

∑
z,w

r(x, y)
1

a(ζ)

[
F (ζ + dz)− F (ζ + dw)]2 ≤ c̄

for some constant c̄.

For η = ζ+dz ∈ ExN we know that 1
a(ζ) ≥

(
`N
L−1

)−α(L−1)

N−α and minr(z,w)6=0 r(z, w) >

0. Hence ∑
ζ∈EN−1

∑
z,w∈S
r(z,w) 6=0

[
F (ζ + dz)− F (ζ + dw)]2 ≤ c0`α(L−1)

N N−α−1

for some constant c0.
It takes O(`N ) jumps to go from any con�guration to any other con�guration in

ExN . So for η1, η2 ∈ ExN[
F (η1)− F (η2)

]2 ≤ c1`N`α(L−1)
N N−α−1 = c1`

1+α(L−1)
N N−α−1,

which converges to 0 since we have the condition
`
1+α(L−1)
N

Nα+1 → 0 as N →∞, which
is (3.1). �

5. Estimate on mean jump rates

In this section, we prove the Proposition 5.1.
De�ne the function fa,b : S → R for a 6= b ∈ S by

(5.1) −Lfa,b(x) = 1{x = a} − 1{x = b}, for all x ∈ S

and

(5.2)
∑
x∈S

fa,b(x) = 0.

Proposition 5.1. Fix x ∈ S. For any sequence (ηN ∈ ExN : N ≥ 1),

lim
N→∞

F a,bN (ηN ) = fa,b(x).

We prove this proposition in the following subsections. To prove this proposition,
we will de�ne a function HN on EN and multiply HN to the equation (4.1). Then
we get ∫

EN

−θNLNFN HN dµN =

∫
EN

hNHN dµN .

From this equation, we will get the estimate.

5.1. Proof of Proposition 5.1 for The Reversible Case. First consider the
reversible case.

We de�ne the function Hε
N (η) = HN (η) = H(η) on EN .

Fix small 0 < ε < 1
12 . Let D := {u ∈ RS+ :

∑
x∈S ux = 1} . Let 0 < δ < 1 and

x ∈ S. LetDx
δ := {u ∈ D : ux > 1−δ} and L xy

δ := {u ∈ D : ux+uy ≥ 1−δ}.
De�neK x

y = K x
y (ε) := L xy

ε \Dx
3ε, y 6= x.

There exists a smooth partition of unity

Θx
y : D → [0, 1] , y ∈ S \ {x} ,

9



such that
∑
y∈S\{x}Θx

y(u) = 1 for all u in D , and Θx
y(u) = 1 for all u in K x

y and

y ∈ S \ {x}.
Let Ĥ : [0, 1]→ [0, 1] be the smooth function given by

Ĥ(t) :=
1

Iα

∫ φ(t)

0

uα(1− u)α du ,

where Iα is the constant de�ned above and φ : [0, 1] → [0, 1] is a piecewise linear
function whose graph connects (0, 0), (3ε, 0), (1− 3ε, 1), (1, 1).

Let L̄ be the in�nitesimal generator of the underlying random walk.

Fix x ∈ S. For y 6= x, de�ne Hxy(η) = Ĥ(ηxN + min{Jxy·η−ηxN , ε}), η ∈ EN ,

where Jxy : S → [0, 1] solves


L̄Jxy(z) = 0, z 6= x, y

Jxy(x) = 1

Jxy(y) = 0

and J · η =
∑
z Jzηz,

the dot product where Jz = J(z) for z ∈ S.
Let H = Hx : EN → R be given by Hx(η) :=

∑
y∈S\{x}Θx

y( ηN )Hxy(η).

We can see that

Hx(η) = 1 if ηx ≥ (1− 3ε)N,(5.3)

(5.4) Hx(η) = 0 if ηx ≤ 2εN.

Since Ĥ and Θx
y 's are Lipschitz continuous, there exist a constant Cε which

depends on ε, not N such that

(5.5) max
z,w∈S

|H(σzwη)−H(η)| < Cε
N

for all η ∈ EN,S .
We will de�ne some sets in EN,S . Let a sequence (˜̀

N : N ≥ 1) be such that

˜̀
N ≤ `N , limN→∞

˜̀1+(L−2)α
N

N → 0 and 1 << ˜̀
N << N .

De�ne T̃ xyN := {η ∈ EN : ηx + ηy ≥ N − ˜̀
N} and T̃ xN := ∪y∈S\{x}T̃ xyN .

By multiplying H to the equation (4.1) we get

(5.6)

∫
EN,S

−θNLNFN H dµ =

∫
EN,S

hH dµ.

Let us consider the left hand side of this equation.

(LHS) =

∫
EN

−θNLNF a,bN (η)H dµ

= N1+α
∑
η∈EN

∑
z,w∈S

−µ(η)g(ηz)r(z, w) (F (σzwη)− F (η))H(η)

=
N1+α

2

∑
η∈EN

∑
z,w∈S

µ(η)g(ηz)r(z, w) (F (σzwη)− F (η)) (H(σzwη)−H(η))

since the process is reversible.
10



For functions F,G : EN → R and a subset A of EN , de�ne

DN (F,G;A) =
1

2

∑
η∈A

∑
z,w∈S

µ(η)g(ηz)r(z, w)(F (σzwη)− F (η))(G(σzwη)−G(η)).

Then,

(LHS) = θNDN (F,H;EN )

= θNDN (F,H; (T̃ xN ){) + θNDN (F,H; T̃ xN )(5.7)

= θNDN (F,H; (T̃ xN ){) +
∑

y∈S, y 6=x

θNDN (F,H; T̃ xy),

for su�ciently large N because of (5.3), (5.4).

Consider the �rst term θNDN (F,H; (T̃ xN ){).
We use the following lemma.

Lemma 5.2. For su�ciently large N ,

N1+α

2

∑
η∈(T̃xN ){

∑
z,w∈S

µ(η)g(ηz)r(z, w) (H(σzwη)−H(η))2 ≤ Cε

(ε˜̀N )α−1
,

where Cε is a constant only depends on ε.

Proof. See the proof of Lemma 5.2 in [4]. �

The �rst term in (5.7) is

θNDN (F,H; (T̃ xN ){)

= N1+α

2

∑
η∈(T̃xN ){

∑
z,w∈S µ(η)g(ηz)r(z, w) (F (σzwη)−F (η)) (H(σzwη)−H(η))

≤
(
N1+α

2

∑
η∈(T̃xN ){

∑
z,w∈S µ(η)g(ηz)r(z, w) (F (σzwη)− F (η))2

)1/2

×(
N1+α

2

∑
η∈(T̃xN ){

∑
z,w∈S µ(η)g(ηz)r(z, w) (H(σzwη)−H(η))2

)1/2

≤ c̄ Cε

(ε˜̀N )
α−1
2

by the previous lemma and Proposition 4.1 (2).

Thus limN→∞ θNDN (FN , HN ; (T̃ xN ){) = 0.

Consider the second term
∑
y∈S, y 6=x θNDN (F,H; T̃ xy) in (5.7).

θNDN (F,H; T̃ xy) =
N1+α

2

∑
z,w∈S

∑
ζ+dz∈T̃xyN

Nα

ZN

1

a(ζ)
r(z, w) (F (ζ + dw)− F (ζ + dz))

× (H(ζ + dw)−H(ζ + dz))

=
N1+α

2

∑
ζ∈EN−1

ζx+ζy≥N−˜̀

∑
z,w∈S

Nα

ZN

1

a(ζ)
r(z, w) (F (ζ + dw)− F (ζ + dz))

× (H(ζ + dw)−H(ζ + dz)) + ΛxyN(5.8)

Lemma 5.3. |ΛxyN | ≤
Cε

˜̀α/2 where Cε is a constant only depends on ε.
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Proof. Write η = ζ+dz. If ηx+ηy > N− ˜̀,then ζx+ζy ≥ N− ˜̀. If ηx+ηy = N− ˜̀,

then ζx + ζy ≥ N − ˜̀ only if z = x, w 6= y or z = y, w 6= x.
So

|ΛxyN | ≤
N1+α

2

∑
η∈T̃xyN

∑
z,w∈S

Nα

ZN

g(ηz)

a(η)
r(z, w) |F (σzwη)− F (η)| |H(σzwη)−H(η)|

≤

N1+α

2

∑
η∈T̃xyN

∑
z,w∈S

Nα

ZN

g(ηz)

a(η)
r(z, w) |F (σzwη)− F (η)|2

1/2

×

N1+α

2

∑
η∈T̃xyN

∑
z,w∈S

Nα

ZN

g(ηz)

a(η)
r(z, w) |H(σzwη)−H(η)|2

1/2

The �rst term is bounded by the Proposition 4.1 (2).
Consider the second term. η̂ is the restriction of η to sites z 6= x, y.

∑
η∈T̃xyN

∑
z,w∈S

Nα

ZN

g(ηz)

a(η)
r(z, w) |H(σzwη)−H(η)|2

=
∑
η̂∈E˜̀

∑
b2εNc≤ηx≤N−b3εNc

ηy=N−˜̀−ηx

∑
z,w∈S

Nα

ZN

g(ηz)

a(η)
r(z, w) |H(σzwη)−H(η)|2 by 5.3, 5.4

From now C is a constant which can vary line by line and Cε is a constant
depending only on ε which can vary line by line too. We have that g(ηz) is bounded
and |H(ζ + dw)−H(ζ + dz)| ≤ Cε

N by (5.5). Also
∑

z,w∈S
r(z, w) is bounded.

∑
η̂∈E˜̀

∑
b2εNc≤ηx≤N−b3εNc

ηy=N−˜̀−ηx

Nα

ZN

1

a(η)
=
∑
η̂∈E˜̀

∑
b2εNc≤ηx≤N−b3εNc

ηy=N−˜̀−ηx

Nα

ZN

1

a(η̂)a(ηx)a(ηy)

=
Nα

ZN

∑
η̂∈E˜̀

1

a(η̂)

∑
b2εNc≤ηx≤N−b3εNc

ηy=N−˜̀−ηx

1

a(ηx)a(ηy)
.

By the Proposition 2.1,
∑
η̂∈E˜̀

1
a(η̂) = O(˜̀−α).∑

b2εNc≤ηx≤N−b3εNc
ηy=N−˜̀−ηx

1
a(ηx)a(ηy) =

∑
b2εNc≤ηx≤N−b3εNc

1

ηαx (N−˜̀−ηx)
α

Let N ′ = N − ˜̀. Since ˜̀<< N ,
∑

b2εNc≤ηx≤N−b3εNc

1

ηαx (N−˜̀−ηx)
α

=
∑

b2εNc≤ηx≤N−b3εNc

1

( ηxN′ )
α
(
N′−ηx
N′

)α 1
N ′N

′1−2α

=
∫ 1−3ε

2ε
1

uα(1−u)α duO(N ′1−2α) = CεO(N1−2α)

Summarizing these,(
N1+α

2

∑
η∈T̃xyN

∑
z,w∈S

Nα

ZN

g(ηz)
a(η) r(z, w) |H(σzwη)−H(η)|2

)1/2

= CεO(˜̀−α/2)
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Thus |ΛxyN | ≤
Cε

˜̀α/2 . �

Consider the �rst term of the equation (5.8).
De�ne

S̃xyN =
{
ζ ∈ EN−1 : ζz + ζy ≥ N − ˜̀

}
.

Also de�ne

S̃xyN (a, b) =
{
ζ ∈ EN−1 : ζz + ζy ≥ N − ˜̀, a ≤ ζx ≤ b

}
.

Then the �rst term of the equation (5.8) is
N1+α

2

∑
ζ∈S̃xyN

∑
z,w∈S

Nα

ZN

r(z,w)
a(ζ) (F (ζ + dw)− F (ζ + dz)) (H(ζ + dw)−H(ζ + dz))

= N1+α

2

∑
ζ∈S̃xyN (b4εNc, N−b4εNc)

∑
z,w∈S

Nα

ZN
1

a(ζ) r(z, w) (F (ζ + dw)− F (ζ + dz))

× (H(ζ + dw)−H(ζ + dz))

+ N1+α

2

∑
ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

Nα

ZN
1

a(ζ) r(z, w) (F (ζ + dw)− F (ζ + dz))

× (H(ζ + dw)−H(ζ + dz))

+ N1+α

2

∑
ζ∈S̃xyN (N−b4εNc+1, N)

∑
z,w∈S

Nα

ZN
1

a(ζ) r(z, w) (F (ζ + dw)− F (ζ + dz))

× (H(ζ + dw)−H(ζ + dz)).
Let the �rst term, second term, and last term in the previous expression be

Ω1,Ω21,Ω22.

Lemma 5.4. If N is su�ciently large so that εN >> ˜̀
N >> 1, then |Ω21| ≤

Cε
α+1
2 , |Ω22| ≤ Cε

α+1
2 where C is a constant independent of N, ε.

Proof. In this proof, a constant C can vary line by line.
Consider Ω21. Assume ζ ∈ EN−1, ζx + ζy ≥ N − ˜̀, ζx ≤ b4εNc − 1.

H(ζ + dw)−H(ζ + dz) =
1

Iα

∫ φ( J·ζ+JwN )

φ( J·ζ+JzN )
uα(1− u)α du.

By the fundamental theorem of calculus, there exists u0between
J·ζ+Jw
N , J·ζ+JzN

such that

H(ζ + dw)−H(ζ + dz) =
1

Iα

(
φ

(
J · ζ + Jw

N

)
− φ

(
J · ζ + Jz

N

))
uα0 (1− u0)α.

Here u0 ≤ ζx+˜̀+1
N ≤ 5εN and |φ′(v0)| ≤ 1

1−6ε .
So

(5.9) |H(ζ + dw)−H(ζ + dz)| ≤
1

Iα

|Jw − Jz|
N

1

1− 6ε
(5ε)α ≤ C ε

α

N

for some constant C. We used the condition ε < 1
12 .

Ω21 =
N1+2α

2ZN

∑
ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

1

a(ζ)
r(z, w) (F (ζ + dw)− F (ζ + dz))

× (H(ζ + dw)−H(ζ + dz)) .
13



By the Cauchy-Schwartz inequity,

Ω2
21 ≤

(
N1+2α

2ZN

)2
 ∑
ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

1

a(ζ)
r(z, w) (F (ζ + dw)− F (ζ + dz))

2


×

 ∑
ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

1

a(ζ)
r(z, w) (H(ζ + dw)−H(ζ + dz))

2

 .

By the Proposition 4.1 (2),∑
ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

1

a(ζ)
r(z, w) (F (ζ + dw)− F (ζ + dz))

2
= O(N−(1+2α)),

and ∑
ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

1

a(ζ)
r(z, w) (H(ζ + dw)−H(ζ + dz))

2

=
∑
z,w∈S

r(z, w)
∑

S̃xyN (b2εNc, b4εNc−1)

1

a(ζ)
(H(ζ + dw)−H(ζ + dz))

2
by 5.4

≤ L2C
ε2α

N2

 ∑
ζ∈S̃xyN (b2εNc, b4εNc−1)

1

a(ζ)

 .

The term inside the parentheses is

∑
ζ∈S̃xyN (b2εNc, b4εNc−1)

1

a(ζ)
≤

˜̀∑
k=0

∑
ζ̂∈Ek,S\{x,y}

1

a(ζ̂)

∑
b2εNc≤ζx≤b4εNc−1

ζy=N−k−ζx

1

a(ζx)a(ζy)

where ζ̂ is the restriction of ζ to S\ {x, y}

≤

 ∞∑
k=0

∑
ζ̂∈Ek,S\{x,y}

1

a(ζ̂)

 (b4εNc − b2εNc) 1

b2εNcα
(
N
2

)α
≤ CΓ(α)L−2ε1−αN1−2α where C is a constant.

So
∑

ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

1
a(ζ) r(z, w) (H(ζ + dw)−H(ζ + dz))

2 ≤ Cε1+αN−1−2α.

Thus |Ω21| ≤ Cε
1+α
2 for some constant C. Similarly we can get |Ω22| ≤ Cε

α+1
2 .
�

Consider the term Ω1.
Assume b4εNc ≤ ζx ≤ N −b4εNc, ζ ∈ EN−1, and ζx + ζy ≥ N − ˜̀. Also assume

N is su�ciently large so that εN >> ˜̀
N >> 1.

Consider

H(ζ + dw)−H(ζ + dz) =
1

Iα

∫ φ( J·ζ+JwN )

φ( J·ζ+JzN )
uα(1− u)α du.

Since 3ε ≤ J·ζ+Jw
N and J·ζ+Jz

N ≤ 1− 3εN , φ′(J·ζ+JwN ) = φ′(J·ζ+JzN ) = 1
1−6ε .
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By the fundamental theorem of calculus, there exists u0between
J·ζ+Jw
N , J·ζ+JzN

such that

H(ζ + dw)−H(ζ + dz) =
1

Iα

(
φ

(
J · ζ + Jw

N

)
− φ

(
J · ζ + Jz

N

))
uα0 (1− u0)α.

Write u0 = J·ζ+v0
N where v0 is a real number between Jw and Jz.

Then u0 =
ζx+

∑
z 6=x Jzζz+v0

N ≤ ζx
N +

˜̀+1
N .

Since ζx > 3εN , ζxN ≤ u0 ≤ ζx
N

(
1 +

˜̀+1
N

)
= ζx

N

(
1 +O(

˜̀

εN )
)
.

Thus u0 = ζx
N

(
1 +O(

˜̀

εN )
)
. We get 1 − u0 =

∑
z(1−Jz)ζz+1−c0

N . By chang-

ing the role of (Jz : z ∈ S) and ζx to (1− Jz : z ∈ S) and ζy, we get 1 − u0 =
ζy
N

(
1 +O(

˜̀

εN )
)
.

So

H(ζ + dw)−H(ζ + dz)

=
1

Iα(1− 6ε)

Jw − Jz
N

(
ζx
N

(
1 +O(

˜̀

εN
)

))α(
ζy
N

(
1 +O(

˜̀

εN
)

))α

=
1

Iα(1− 6ε)

Jw − Jz
N

(
ζx
N

)α(
ζy
N

)α(
1 +O(

˜̀

εN
)

)

=
N−1−2α

Iα(1− 6ε)
(Jw − Jz) ζαx ζαy

(
1 +O(

˜̀

εN
)

)

=
N−1−2α

Iα(1− 6ε)
(Jw − Jz) ζαx ζαy + R̂(ζ, w, z),

where

(5.10)
∣∣∣R̂(ζ, w, z)

∣∣∣ ≤ C ˜̀

εN
N−1−2αζαx ζ

α
y .

De�ne

C̃xyN := S̃xyN (b4εNc , N − b4εNc)

=
{
ζ ∈ EN−1 : ζz + ζy ≥ N − ˜̀, b4εNc ≤ ζx ≤ N − b4εNc

}
.

Let

Ω11 =
N1+α

2

∑
ζ∈C̃xyN

∑
z,w∈S

Nα

ZN

1

a(ζ)
r(z, w) (F (ζ + dw)− F (ζ + dz))

× 1

(1− 6ε)Iα
(Jw − Jz)ζαx ζαyN−1−2α

and

Ω12 =
N1+α

2

∑
ζ∈C̃xyN

∑
z,w∈S

Nα

ZN

1

a(ζ)
r(z, w) (F (ζ + dw)− F (ζ + dz))R̂(ζ, w, z).

Then Ω1 = Ω11 + Ω12.
Consider Ω11, which is
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Ω11 =
1

2IαZN (1− 6ε)

∑
ζ∈C̃xyN

1

a(ζ̂)

∑
z,w∈S

r(z, w)(F (ζ + dw)− F (ζ + dz))(Jw − Jz),

where ζ̂ is the restriction of ζ to sites z 6= a, b.
Fix ζ. Then,
1
2

∑
z,w∈S

r(z, w) (F (ζ + dw)− F (ζ + dz))(Jw − Jz)

= 1
2

∑
z,w∈S

r(z, w) (F (ζ + dw)− F (ζ + dz))(Jw − Jz) 1
LL

Recall that L̄ is the in�nitesimal generator of the underlying random walk and
L̄f(z) =

∑
w∈S r(z, w) (f(w)− f(z)) for the function f on S.

Then the previous expression is
−
∑
z∈S

∑
w∈S r(z, w)F (ζ + dz))(Jw − Jz)

1
LL since the underlying random

walk is reversible with the uniform measure
= −

∑
z∈S F (ζ + dz)L̄J(z) 1

LL

= −L̄J(x)F (ζ + dx)− L̄J(y)F (ζ + dy) by the de�nition of J .
= LcapL̄(x, y) (F (ζ + dx)− F (ζ + dy)).
Write η = (η̂; ηx, ηy) where η̂ is the restriction of η to sites without x, y. We have

Ω11 =
LcapL̄(x, y)

IαZN (1− 6ε)

∑
ζ∈C̃xyN

1

a(ζ̂)
(F (ζ + dx)− F (ζ + dy))

(5.11)

=
LcapL̄(x, y)

IαZN (1− 6ε)

˜̀∑
k=0

∑
ζ̂∈Ek,S\{x,y}

1

a(ζ̂)

∑
b4εNc≤ζx≤N−b4εNc

ζy=N−k−ζx

(F (ζ + dx)− F (ζ + dy))

=
LcapL̄(x, y)

IαZN (1− 6ε)

˜̀∑
k=0

∑
ζ̂∈Ek,S\{x,y}

1

a(ζ̂)

×
(
F (ζ;N − ˆ̀+ 1, ˆ̀− k − 1)− F (ζ̂; ˆ̀, N − k − ˆ̀)

)
,

where ˆ̀= b4εNc.
Denote by ηcenter,E

z

for z ∈ S the con�guration where every particles are on

the site z. Then ηcenter,E
x

= (0;N, 0). Let η1,x =
(

0;N − ˜̀+ 1, ˜̀− 1
)
, η2,x =(

0;N − ˆ̀+ 1, ˆ̀− 1
)
and η3,x =

(
ζ̂;N − ˆ̀+ 1, ˆ̀− k − 1

)
.

From now, C is a constant which can vary line by line.
As in the proof of Proposition 4.1 (3), we can see for the con�guration η1, η2 ∈

EN,S , ∣∣F (η1)− F (η2)
∣∣2 ≤ C (Number of jumps to go from η1 to η2)

×
(

max
ζ in the path from η1 to η2

a(ζ)

)
N−1−2α

where ζ = η − dz when we move a particle at z to w in the con�guration of η.
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Consider a path from ηcenter,E
x

= (0;N, 0) to η1,x =
(

0;N − ˜̀+ 1, ˜̀− 1
)
. We

move a particle at x to y one by one. We can make ζ̂ = 0 in this path. Number of

length of the path is O(˜̀) and a(ζ) = a(ζ̂)a(ζx)a(ζy) ≤ Nα ˜̀α.

So
∣∣F (ηcenter,E

x

)− F (η1,x)
∣∣ ≤ C√ ˜̀1+α

N1+α .

Consider a path from η1,x =
(

0;N − ˜̀+ 1, ˜̀− 1
)
to η2,x =

(
0;N − ˆ̀+ 1, ˆ̀− 1

)
.

We move a particle at x to y one by one. We can make ζ̂ = 0 in this path.

Number of length of the path is O(ˆ̀) and a(ζ) = a(ζ̂)a(ζx)a(ζy) ≤ Nα ˆ̀α. So∣∣F (η1,x)− F (η2,x)
∣∣ ≤ C√ ˆ̀1+α

N1+α .

Also consider a path from η2,x =
(

0;N − ˆ̀+ 1, ˆ̀− 1
)
to

η3,x =
(
ζ̂;N − ˆ̀+ 1, ˆ̀− k − 1

)
. Move a particle at y to a site in S\ {x, y} one

by one. Number of length of the path is O(˜̀) and a(ζ) = a(ζ̂)a(ζx)a(ζy) ≤

C ˜̀(L−2)αNα ˆ̀α. So
∣∣F (η2,x)− F (η3,x)

∣∣ ≤ C√ ˜̀1+(L−2)α ˆ̀α

N1+α .

Then∣∣∣F (ηcenter,E
x

)− F (ζ̂; ˆ̀, N − k − ˆ̀)
∣∣∣ =

∣∣∣F (ηcenter,E
x

)− F (η3,x)
∣∣∣

≤
∣∣∣F (ηcenter,E

x

)− F (η1,x)
∣∣∣

+
∣∣F (η1,x)− F (η2,x)

∣∣+
∣∣F (η2,x)− F (η3,x)

∣∣
≤ C

√
˜̀1+α

N1+α
+ C

√
ˆ̀1+α

N1+α
+ C

√
˜̀1+(L−2)α ˆ̀α

N1+α
.

Similarly consider a path from ηcenter,E
y

= (0; 0, N) to η1,y =
(

0; ˜̀, N − ˜̀
)
. We

have
∣∣F (ηcenter,E

y

)− F (η1,y)
∣∣ ≤ C

√
˜̀1+α

N1+α . By considering a path from η1,y =(
0; ˜̀, N − ˜̀

)
to η2,y =

(
0; ˆ̀, N − ˆ̀

)
, we get

∣∣F (η1,y)− F (η2,y)
∣∣ ≤ C

√
ˆ̀1+α

N1+α . By

considering a path from η2,y =
(

0; ˆ̀, N − ˆ̀
)
to η3,y =

(
ζ̂; ˆ̀, N − ˆ̀− k

)
, we have∣∣F (η2,y)− F (η3,y)

∣∣ ≤ C√ ˜̀1+(L−2)α ˆ̀α

N1+α .

So∣∣∣F (ηcenter,E
y

)− F
(
ζ̂; ˆ̀, N − ˆ̀− k

)∣∣∣ ≤ C
√

˜̀1+α

N1+α
+C

√
ˆ̀1+α

N1+α
+C

√
˜̀1+(L−2)α ˆ̀α

N1+α
.

Thus

Ω11 =
LcapL̄(x, y)

IαZN (1− 6ε)

˜̀∑
k=0

∑
ζ̂∈Ek,S\{x,y}

1

a(ζ̂)

(
F (ηcenter,E

x

)− F (ηcenter,E
y

) .

+O(

√
˜̀1+α

N1+α
) +O(

√
ˆ̀1+α

N1+α
) +O(

√
˜̀1+(L−2)α ˆ̀α

N1+α
)


Since limN→∞

∑˜̀

k=0

∑
ζ̂∈Ek,S\{x,y}

1
a(ζ̂)

= Γ(α)L−2, limN→∞ ZN = ZS ,
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lim inf
N→∞

Ω11 =
LcapL̄(x, y)

IαZ(1− 6ε)
Γ(α)L−2

× lim inf
N→∞

(
FN (ηcenter,E

x
N )− FN (ηcenter,E

y
N )
)

+O(ε
α+1
2 ),

lim sup
N→∞

Ω11 =
LcapL̄(x, y)

IαZ(1− 6ε)
Γ(α)L−2

× lim sup
N→∞

(
FN (ηcenter,E

x
N )− FN (ηcenter,E

y
N )
)

+O(ε
α+1
2 ).

De�ne gN (x) =
∫
ExN
FN (η) dµN for s ∈ S.

By the Proposition 4.1 (3),

(5.12) lim
ε→0

lim inf
N→∞

Ω11 =
LcapL̄(x, y)

IαZS
Γ(α)L−2 lim inf

N→∞
(gN (x)− gN (y)) ,

(5.13) lim
ε→0

lim sup
N→∞

Ω11 =
LcapL̄(x, y)

IαZS
Γ(α)L−2 lim sup

N→∞
(gN (x)− gN (y)) .

Consider Ω12, which is

Ω12 =
N1+α

2

∑
ζ∈C̃xyN

∑
z,w∈S

Nα

ZN

1

a(ζ)
r(z, w) (F (ζ + dw)− F (ζ + dz))R̂(ζ, w, z).

Because of (5.10),

|Ω12| ≤
1

2IαZN (1− 6ε)

(
C

˜̀

εN

) ∑
ζ∈C̃xyN

∑
z,w∈S

r(z, w)
1

a(ζ̂)
|F (ζ + dw)− F (ζ + dz)|

By Cauchy-Schwarz inequality,∑
ζ∈C̃xyN

∑
z,w∈S

r(z, w) 1
a(ζ̂)
|F (ζ + dw)− F (ζ + dz)|

≤

( ∑
ζ∈C̃xyN

∑
z,w∈S

r(z, w)
a(ζx)a(ζy)

a(ζ̂)

)1/2

×

( ∑
ζ∈C̃xyN

∑
z,w∈S

r(z, w) 1
a(ζ) (F (ζ + dw)− F (ζ + dz))

2

)1/2

.

By the Proposition 4.1 (2),( ∑
ζ∈C̃xyN

∑
z,w∈S

r(z, w) 1
a(ζ) (F (ζ + dw)− F (ζ + dz))

2

)1/2

= O(N−
1+2α

2 ).
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Also∑
ζ∈C̃xyN

∑
z,w∈S

r(z, w)
a(ζx)a(ζy)

a(ζ̂)
≤
∑
z,w∈S

r(z, w)
∑
ζ∈C̃xyN

a(ζx)a(ζy)

a(ζ̂)

≤ L2
∑
ζ∈C̃xyN

a(ζx)a(ζy)

a(ζ̂)

≤ L2

˜̀∑
k=0

∑
ζ̂∈Ek,S\{a,b}

1

a(ζ̂)

∑
b4εNc≤ζx≤N−b4εNc

ζy=N−k−ζx

a(ζx)a(ζy)

The last summation in the last line of the previous equation equals

N1+2α
∑

b4εNc≤ζx≤N−b4εNc

(
ζx
N

)α(
N − k − ζx

N

)α
1

N
.

By sending N to the in�nity,

lim
N→∞

∑
b4εNc≤ζx≤N−b4εNc

(
ζx
N

)α(
N − k − ζx

N

)α
1

N
= Iα.

So
∑

b4εNc≤ζx≤N−b4εNc
ζy=N−k−ζx

a(ζx)a(ζy) = O(N−
1+2α

2 ).

And
∑˜̀

k=0

∑
ζ̂∈Ek,S\{a,b}

1
a(ζ̂)
≤ Γ(α)L−2.

So

(5.14)

 ∑
ζ∈C̃xyN

∑
z,w∈S

r(z, w)
a(ζx)a(ζy)

a(ζ̂)

1/2

= O(N−
1+2α

2 ).

Thus |Ω12| = O(
˜̀

εN ) and limN→∞ Ω12 = 0.
putting together estimates for Ω11,Ω12,Ω21,Ω22, we have

(5.15)

lim
ε→0

lim inf
N→∞

(LHS of 5.6) =
LcapL̄(x, y)

IαZS
Γ(α)L−2 lim inf

N→∞

∑
y∈S

(gN (x)− gN (y))),

(5.16)

lim
ε→0

lim sup
N→∞

(LHS of 5.6) =
LcapL̄(x, y)

IαZS
Γ(α)L−2 lim sup

N→∞

∑
y∈S

(gN (x)− gN (y))).

Consider (RHS) of (5.6), which is

(RHS) =

∫
EN

(
1{η ∈ Ea} − 1{η ∈ Eb}

)
H(η) dµN (η)

= µN (Ea)(1{x = a} − 1{x = b}), since µN (Ea) = µN (Eb)
By sending N to in�nity,

(5.17) lim
N→∞

(RHS) =
1{x = a} − 1{x = b}

L
.

By (5.15), (5.16), (5.17) we have
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LcapL̄(x, y)

IαZS
Γ(α)L−2 lim

N→∞

∑
y∈S

(gN (x)− gN (y))) =
1{x = a} − 1{x = b}

L
.

Substituting LΓ(α)L−1 for ZS ,

lim
N→∞

LcapL̄(x, y)

IαΓ(α)

∑
y∈S

(gN (x)− gN (y)) = 1{x = a} − 1{x = b}.

That is

lim
N→∞

−LgN (x) = 1{x = a} − 1{x = b}.

Also gN satis�es limN→∞
∑
x∈S gN (x) = 0 by Proposition 2.3 and 2.2.

Since S is a �nite set, we can think L as a matrix and gN , fa,b are vectors. The
function fa,b is de�ned by (5.1), (5.2). As a matrix, L has a rank L − 1. Also we
know that

∑
x∈S fa,b(x) = 0 and limN→∞

∑
x∈S gN (x) = 0. So we can think fa,b as

a solution for a system of linear equations and gN as an approximate solution, where
the matrix for the system has full rank. This implies that limN→∞ gN (x) = fa,b(x)
for all x ∈ S.

By the Proposition 4.1 (3),

lim
N→∞

F a,bN (ηN ) = lim
N→∞

gN (x) = fa,b(x).

This proves the proposition.

5.2. Proof of Proposition 5.1 for The Non-reversible Case. De�nition of H
is same to the reversible case except the de�nition of J .

Let L̄∗ be the adjoint of the in�nitesimal generator of the underlying random
walk.

In the de�nition of H, Jxy : S → [0, 1] solves


L̄∗Jxy(z) = 0, z 6= x, y

Jxy(x) = 1

Jxy(y) = 0

and

J · η =
∑
z Jzηz, the dot product where Jz = J(z) for z ∈ S.

As in the reversible case, multiply H to the equation (4.1). We get

(5.18)

∫
EN,S

−θNLNFN H dµ =

∫
EN,S

hH dµ.

Consider the left hand side of the previous equation. Denote by L∗N the ad-
joint operator of LN and by r∗ the jump rate for the adjoint underlying random
walk. Since the uniform measure is invarint measure of underlying random walk,
r∗(x, y) = r(y, x).
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(LHS) = −θN
∫
EN

LNF
a,b
N (η)H dµ

= −θN
∫
EN

F a,bN (η)L∗NH dµ

= −N1+α
∑
η∈EN

∑
z,w∈S

µ(η)g(ηz)r
∗(z, w)F (η) (H(σzwη)−H(η))(5.19)

= −N1+α
∑

ζ∈EN−1

Nα

ZN

1

a(ζ)

∑
z,w∈S

r∗(z, w)F (ζ + dz)

× (H(ζ + dw)−H(ζ + dz))

De�ne F̄ (ζ) = 1
L

∑
u∈S F (ζ + du).

Since the uniform measure is an invariant measure for the underlying random
walk, ∑

z,w∈S
r∗(z, w) (H(σzwη)−H(η)) = 0.

So the expression of the equation (5.19) equals

−N1+α
∑

ζ∈EN−1

∑
z,w∈S

Nα

ZN

r∗(z, w)

a(ζ)

(
F (ζ + dz)− F̄ (ζ)

)
(H(ζ + dw)−H(ζ + dz))

De�ne F̂z(η) =

{
F̄ (η − dz) if ηz > 0

0 if ηz = 0
.

Then the previous expression is

−N1+α
∑
η∈EN

∑
z,w∈S

µ(η)g(ηz)r
∗(z, w)

(
F (η)− F̂z(η)

)
(H(σzwη)−H(η)) .

For functions F,G on EN,S , and a set B ⊂ EN,S , de�ne

AN (F,G;B) = −
∑
η∈B

∑
z,w∈S

µ(η)g(ηz)r
∗(z, w)

(
F (η)− F̂z(η)

)
(H(σzwη)−H(η))

Then the equation (5.19) is

θNAN (F,H;EN,S) = θNAN (F,H; (T̃ xN ){) + θNAN (F,H; T̃ xN )

= θNAN (F,H; (T̃ xN ){) +
∑

y∈S, y 6=x

θNAN (F,H; T̃ xy),(5.20)

for su�ciently large N because of (5.3), (5.4).
We will use the following lemma.

Lemma 5.5. For any function F on EN,S, there is a constant C which doesn't
depend on N such that∑

η∈EN,S

∑
z,w∈S

µ(η)g(ηz)r
∗(z, w)

(
F (η)− F̂z(η)

)2

≤ C DN (F ).
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Proof. The idea of this proof is in the proof of Lemma 4.2 in [18].∑
η∈EN,S

∑
z,w∈S

µ(η)g(ηz)r
∗(z, w)

(
F (η)− F̂z(η)

)2

=
∑

ζ∈EN−1

Nα

ZN

1

a(ζ)

∑
z,w∈S

r∗(z, w)
(
F̄ (ζ)− F (ζ + dz)

)2
(5.21)

The last summation in z, w in the previous expression is∑
z,w∈S

r∗(z, w)

(∑
u∈S

1

L
F (ζ + du)− F (ζ + dz)

)2

(5.22)

=
∑
z,w∈S

r∗(z, w)

(∑
u∈S

F (ζ + du)− F (ζ + dz)

L

)2

De�ne P = {(z, w) ∈ S × S : r∗(z, w) > 0} . Let
C1 = min

(z,w)∈P
r∗(z, w) and C2 = max

(z,w)∈P
r∗(z, w).

For u, v ∈ S,consider a canonical path

u = z1(u, v), z2(u, v), · · · , zk(u,v) = v,

where (zi(u, v), zi+1(u, v)) ∈ P for 1 ≤ i ≤ k(u, v) − 1 and zi(u, v)'s are di�erent.
There exists a canonical path since the underlying random walk is irreducible. We
can see k(u, v) ≤ L.

The equation (5.22) is bounded above by∑
z∈S

C2(L− 1)

L2
L
∑
u∈S

(F (ζ + du)− F (ζ + dz))
2
by Cauchy-Schwarz inequality

≤ C2(L− 1)

L

∑
u,z∈S

L

k(u,z)−1∑
i=1

(
F (ζ + dzi)− F (ζ + dzi+1)

)2
≤ C2(L− 1)L2

∑
(z,w)∈P

(F (ζ + dw)− F (ζ + dz))
2

≤ C2(L− 1)L2

C1

∑
(z,w)∈S

r∗(z, w) (F (ζ + dw)− F (ζ + dz))
2

= C
∑

(z,w)∈S

r∗(z, w) (F (ζ + dw)− F (ζ + dz))
2
.

So the equation (5.21) is bounded above by∑
ζ∈EN−1

Nα

ZN

1

a(ζ)
C
∑
z,w∈S

r∗(z, w) (F (ζ + dw)− F (ζ + dz))
2

= C DN (F ).

�

Consider the �rst term θNAN (F,H; (T̃ xN ){) in the equation (5.20).
As in the reversible case,
θNAN (F,H; (T̃ xN ){)

= −θN
∑
η∈(T̃xN ){

∑
z,w∈S µ(η)g(ηz)r

∗(z, w)
(
F (η)− F̂z(η)

)
(H(σzwη)−H(η))
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≤
(
N1+α

∑
η∈(T̃xN ){

∑
z,w∈S µ(η)g(ηz)r(z, w)

(
F (η)− F̂z(η)

)2
)1/2

×(
N1+α

∑
η∈(T̃xN ){

∑
z,w∈S µ(η)g(ηz)r(z, w) (H(σzwη)−H(η))

2
)1/2

The �rst summation is bounded above by a constant because of the Proposi-
tion 4.1 (2) and the Lemma 5.5. The second summation is bounded above by

Cε

(ε˜̀N )
α−1
2

as in the reversible case.

So limN→∞ θNAN (FN , HN ; (T̃ xN ){) = 0.

Consider the second term
∑
y∈S, y 6=x θNAN (F,H; T̃ xy) in the equation (5.20).

θNAN (F,H; T̃ xy) = −N1+α
∑
z,w∈S

∑
ζ+dz∈T̃xyN

Nα

ZN

1

a(ζ)
r∗(z, w)

(
F (ζ + dz)− F̄ (ζ)

)
× (H(ζ + dw)−H(ζ + dz))

= −N1+α
∑

ζ∈EN−1

ζx+ζy≥N−˜̀

∑
z,w∈S

Nα

ZN

1

a(ζ)
r∗(z, w)

(
F (ζ + dz)− F̄ (ζ)

)
× (H(ζ + dw)−H(ζ + dz)) + ΛxyN(5.23)

The proof for the Lemma 5.3 for the non-reversible case, which states that
|ΛxyN | ≤

Cε
˜̀α/2 , is similar. The proof is the following.

As in the proof for the reversible case,

|ΛxyN | ≤ N
1+α

∑
η∈EN

ηx+ηy=N−˜̀

∑
z,w∈S

Nα

ZN

g(ηz)

a(η)
r∗(z, w)

∣∣∣F (η)− F̂z(η)
∣∣∣ |H(σzwη)−H(η)|

≤

N1+α
∑
η∈EN

ηx+ηy=N−˜̀

∑
z,w∈S

Nα

ZN

g(ηz)

a(η)
r(z, w)

∣∣∣F (η)− F̂z(η)
∣∣∣2


1/2

×

N1+α
∑
η∈EN

ηx+ηy=N−˜̀

∑
z,w∈S

Nα

ZN

g(ηz)

a(η)
r(z, w) |H(σzwη)−H(η)|2


1/2

The �rst term is bounded above by a constant by the Proposition 4.1 (2) and the

Lemma 5.5. The second term is bounded above by CεO(˜̀−α/2) as in the reversible
case. This proves the lemma 5.3 for the non-reversible case.

Consider the �rst term of the equation (5.23).
As the reversible case, de�ne

S̃xyN =
{
ζ ∈ EN−1 : ζz + ζy ≥ N − ˜̀

}
.

Also de�ne

S̃xyN (a, b) =
{
ζ ∈ EN−1 : ζz + ζy ≥ N − ˜̀, a ≤ ζx ≤ b

}
.
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Then

−N1+α
∑
ζ∈S̃xyN

∑
z,w∈S

Nα

ZN

r∗(z, w)

a(ζ)

(
F (ζ + dz)− F̄ (ζ)

)
× (H(ζ + dw)−H(ζ + dz))

= −N1+α
∑

ζ∈S̃xyN (b4εNc, N−b4εNc)

∑
z,w∈S

Nα

ZN

1

a(ζ)
r∗(z, w)

(
F (ζ + dz)− F̄ (ζ)

)
× (H(ζ + dw)−H(ζ + dz))

= −N1+α
∑

ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

Nα

ZN

1

a(ζ)
r∗(z, w)

(
F (ζ + dz)− F̄ (ζ)

)
× (H(ζ + dw)−H(ζ + dz))

= −N1+α
∑

ζ∈S̃xyN (N−b4εNc+1, N)

∑
z,w∈S

Nα

ZN

1

a(ζ)
r∗(z, w)

(
F (ζ + dz)− F̄ (ζ)

)
× (H(ζ + dw)−H(ζ + dz))

Let the �rst term, second term, and last term be Ω1,Ω21,Ω22 as the reversible
case.

The Lemma 5.4 holds for the non-reversible case, which states that |Ω21| ≤
Cε

α+1
2 , |Ω22| ≤ Cε

α+1
2 . The proof is the following.

Ω21 = −N
1+2α

ZN

∑
ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

1

a(ζ)
r∗(z, w)

(
F (ζ + dz)− F̄ (ζ)

)
(H(ζ + dw)−H(ζ + dz)) .

By the Cauchy-Schwartz inequity,

Ω2
21 ≤

(
N1+2α

ZN

)2
 ∑
ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

1

a(ζ)
r∗(z, w)

(
F (ζ + dz)− F̄ (ζ)

)2
×

 ∑
ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

1

a(ζ)
r∗(z, w) (H(ζ + dw)−H(ζ + dz))

2

 .

The �rst summation in the previous expression is∑
ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

1

a(ζ)
r∗(z, w)

(
F (ζ + dz)− F̄ (ζ)

)2
≤

∑
ζ∈EN−1

∑
z,w∈S

1

a(ζ)
r∗(z, w)

(
F (ζ + dz)− F̄ (ζ)

)2
≤ C

 ∑
ζ∈EN−1

∑
z,w∈S

1

a(ζ)
r∗(z, w) (F (ζ + dw)− F (ζ + dz))

2


= ON (N−1−2α),

by the Proposition 4.1 (2) and the Lemma 5.5.
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As we show in the reversible case,

∑
ζ∈S̃xyN (1, b4εNc−1)

∑
z,w∈S

1

a(ζ)
r∗(z, w) (H(ζ + dw)−H(ζ + dz))

2
= ε1+αON (N−1−2α).

This proves |Ω21| ≤ Cε
1+α
2 for some constant C. We can get |Ω22| ≤ Cε

α+1
2 similarly.

Next we consider the term Ω1.
Since the de�nition of H is same as the one except the function J , as in the

reversible case

H(ζ + dw)−H(ζ + dz)

=
N−1−2α

Iα(1− 6ε)
(Jw − Jz) ζαx ζαy + R̂(ζ, w, z),

where

(5.24)
∣∣∣R̂(ζ, w, z)

∣∣∣ ≤ C ˜̀

εN
N−1−2αζαx ζ

α
y .

De�ne

C̃xyN := S̃xyN (b4εNc , N − b4εNc)

=
{
ζ ∈ EN−1 : ζz + ζy ≥ N − ˜̀, b4εNc ≤ ζx ≤ N − b4εNc

}
.

Let

Ω11 = −N1+α
∑
ζ∈C̃xyN

∑
z,w∈S

Nα

ZN

1

a(ζ)
r∗(z, w) (F (ζ + dz)− F̄ (ζ))

× 1

(1− 6ε)Iα
(Jw − Jz)ζαx ζαyN−1−2α

and

Ω12 = −N1+α
∑
ζ∈C̃xyN

∑
z,w∈S

Nα

ZN

1

a(ζ)
r∗(z, w) (F (ζ + dz)− F̄ (ζ))R̂(ζ, w, z).

Then Ω1 = Ω11 + Ω12.
Consider Ω11. The computation is almost same as one of the reversible case.

Ω11 =
1

IαZN (1− 6ε)

∑
ζ∈C̃xyN

1

a(ζ̂)

− ∑
z,w∈S

r∗(z, w) (F (ζ + dz)− F̄ (ζ))(Jw − Jz)


where ζ̂ is the restriction of ζ to sites z 6= a, b.
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Fix ζ̂. Then

−
∑
z,w∈S

r∗(z, w) (F (ζ + dz)− F̄ (ζ))(Jw − Jz)

=

− ∑
z,w∈S

r∗(z, w) (F (ζ + dz)− F̄ (ζ))(Jw − Jz)
1

L

L

=

− ∑
z,w∈S

r∗(z, w)F (ζ + dz)(Jw − Jz)
1

L

L since
∑
z∈S

L̄∗J(z)
1

L
= 0

=

(∑
z∈S
−F (ζ + dz)L̄

∗J(z)
1

L

)
L

= −L̄∗J(x)F (ζ + dx)− L̄∗J(y)F (ζ + dy) by the de�nition of J

= LcapL̄∗(x, y) (F (ζ + dx)− F (ζ + dy))

= LcapL̄(x, y) (F (ζ + dx)− F (ζ + dy))

By writing η = (η̂; ηx, ηy) where η̂ is the restriction of η to sites without x, y,

Ω11 =
LcapL̄(x, y)

IαZN (1− 6ε)

∑
ζ∈C̃xyN

1

a(ζ̂)
(F (ζ + dx)− F (ζ + dy))

which is same to the equation (5.11) in the reversible case. So we can get the
following equations which is same as (5.12), (5.13).

lim
ε→0

lim inf
N→∞

Ω11 =
LcapL̄(x, y)

IαZS
Γ(α)L−2 lim inf

N→∞
(gN (x)− gN (y)) ,

lim
ε→0

lim sup
N→∞

Ω11 =
LcapL̄(x, y)

IαZS
Γ(α)L−2 lim sup

N→∞
(gN (x)− gN (y)) ,

where gN (x) =
∫
ExN
FN (η) dµN for s ∈ S.

Consider Ω12,which is

Ω12 = −N1+α
∑
ζ∈C̃xyN

∑
z,w∈S

Nα

ZN

1

a(ζ)
r∗(z, w) (F (ζ + dz)− F̄ (ζ))R̂(ζ, w, z).

By (5.24),

|Ω12| ≤
1

IαZN (1− 6ε)

(
C

˜̀

εN

) ∑
ζ∈C̃xyN

∑
z,w∈S

r∗(z, w)
1

a(ζ̂)

∣∣F (ζ + dz)− F̄ (ζ)
∣∣

By Cauchy-Schwarz inequality,∑
ζ∈C̃xyN

∑
z,w∈S

r∗(z, w) 1
a(ζ̂)

∣∣F (ζ + dz)− F̄ (ζ)
∣∣

≤

( ∑
ζ∈C̃xyN

∑
z,w∈S

r∗(z, w)
a(ζx)a(ζy)

a(ζ̂)

)1/2

×

( ∑
ζ∈C̃xyN

∑
z,w∈S

r∗(z, w) 1
a(ζ)

(
F (ζ + dz)− F̄ (ζ)

)2)1/2

.
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By the Lemma 5.5 and Proposition 4.1 (2), ∑
ζ∈C̃xyN

∑
z,w∈S

r∗(z, w)
1

a(ζ)

(
F (ζ + dz)− F̄ (ζ)

)21/2

= O(N−
1+2α

2 ).

For the reversible case, we showed the equation (5.14). By changing r(z, w) to
r∗(z, w) in the derivation of this equation, we can get ∑

ζ∈C̃xyN

∑
z,w∈S

r∗(z, w)
a(ζx)a(ζy)

a(ζ̂)

1/2

= O(N−
1+2α

2 ).

Thus |Ω12| = O(
˜̀

εN ) and limN→∞ Ω12 = 0.
So we have the same estimates for Ω11,Ω12,Ω21,Ω22 as ones of the reversible

case.
By applying arguments of the end of the previous subsection, we can conclude

lim
N→∞

F a,bN (ηN ) = lim
N→∞

gN (x) = fa,b(x).

This proves the proposition for the non-reversible case.

6. Tightness and convergence of processes

In this section, we prove Proposition 3.1 and Theorem 3.2.
Recall the de�nitions of T ENt , SENt , which are

T ENt :=

∫ t

0

1{ηs ∈ EN} ds, t ≥ 0

and SENt as the generalized inverse of T ENt ;

SENt := sup{s ≥ 0 : Ts(η·) ≤ t}.

We use shorthands Tt for T
EN
t and St for S

EN
t .

Then ηENt = ηNSt . De�ne S ′t :=
SθNt
θN

, which satis�es ηENθN t = ηN
θNS

′
t

. De�ne

T ′t =
TθNt
θN

. S ′t is a stopping time with respect to
(
ηNθN t : t ≥ 0

)
. (For proof, refer

to Lemma 8.1. in [15].)

Proof of Proposition 3.1. To prove tightness, we use the Aldous criterion(see The-
orem 16.10 in [6]).

Let ε > 0 and T > 0. Let TT be the set of all stopping times bounded by T .
We need to prove

lim
δ↓0

lim
N→∞

sup
γ≤δ

sup
τ∈TT

PNξN
[∣∣∣XN

θN (τ+γ) −X
N
θNτ

∣∣∣ > ε
]

= 0.
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The expression inside brackets is∣∣∣XN
θN (τ+γ) −X

N
θNτ

∣∣∣ > ε ⇒ XN
θN (τ+γ) 6= XN

θNτ

⇒ γ ≥ inf
{
t ≥ 0 : XN

θN (τ+t) 6= XN
θNτ

}
⇒ γ ≥ inf

{
t ≥ 0 : ΨN (ηENθN (τ+t)) 6= ΨN (ηENθNτ )

}
⇒ γ ≥ inf

{
t ≥ 0 : ηENθN (τ+t) ∈ Ě

ΨN (η
EN
θNτ

)

}
.

For ζ ∈ EN , denote the hitting time inf
{
t ≥ 0 : ηENθN t ∈ Ě

ΨN (ζ) where ηEN0 = ζ
}

by σζ .
If γ ≤ δ, then γ ≥ σ

η
EN
θNτ

implies δ ≥ σ
η
EN
θNτ

.

So

sup
γ≤δ

sup
τ∈TT

PNξN
[∣∣∣XN

θN (τ+γ) −X
N
θNτ

∣∣∣ > ε
]

≤ sup
τ∈TT

PNξN

[
δ ≥ σ

η
EN
θNτ

]
≤ sup
ζ∈EN

PNζ [δ ≥ σζ ] .

We can estimate PNζ [δ ≥ σζ ] as the following.
Fix x ∈ S. We can choose functions h̄, f : S → R such that h̄(x) = 1, f(z) = 0

for z 6= x, z ∈ S, f(x) > 0 and −Lf = h̄ in the following way. De�ne f1 : S → R
by f1(x) = 1, f1(z) = 0 for z 6= x, z ∈ S. Let f̃ = −Lf1(x). De�ne f = f1

f̃
and

h̄ = −Lf . Then h̄, f satis�es the conditions.
De�ne hN : EN → R by hN =

∑
z∈S h̄(z)1EzN . We can choose a sequence of

functions (FN : EN → R, N ≥ 1) such that

−θNLNFN = hN

and for z ∈ S and a sequence (ηN ∈ EzN : N ≥ 1),

lim
N→∞

FN (ηN ) = f(z)

as follows. Since
∑
x∈S h̄(x) = 0, h̄ can be written as

h̄ =
∑
a,b∈S

ca,b (1{z = a} − 1{z = b})

for some coe�cients ca,b ∈ R. De�ne GN : EN → R by GN =
∑
a,b∈S ca,bF

a,b
N

where F a,bN is de�ned by (4.1) and (4.2). De�ne f̄ = f(x). De�ne FN = GN + f̄
L .

Then FN satis�es the conditions because of Proposition 5.1 and linearity.
Since

(
ηNθN t : t ≥ 0

)
is a Markov process,

M̄N
t = FN (ηNθN t)− FN (ηN0 )−

∫ t

0

θNLNFN (ηNθNs) ds

is a martingale.
Consider a sequence

(
ζN ∈ ExN : N ≥ 1

)
. Let a hitting time

σ̄ζN = inf
{
t ≥ 0 : ηNθN t ∈ Ě

x
N where ηN0 = ζN

}
.
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We use the optional sampling theorem for 0 and the σ̄ζN ∧S
′

t . We use shorthand
E for EζN and P for PζN .

Since σ̄ζN ∧ S
′

t is an unbounded stopping time, we need to check the following
conditions(See Theorem 3.97 in [9].)

(i) σ̄ζN ∧ S
′

t is �nite a.s.,

(ii) E
[∣∣∣∣M̄N

σ̄ζN∧S
′
t

∣∣∣∣] <∞,

(iii) limT→∞ E
[
M̄N
T 1σ̄ζN∧S

′
t>T

]
= 0.

The condition (i) is true, since σ̄ζN is a hitting time for a recurrent Markov
process.

Consider the condition (ii). The term inside the brackets is∣∣∣∣M̄N
σ̄ζN∧S

′
t

∣∣∣∣ ≤ ∣∣∣∣FN (ηN
σ̄ζN∧S

′
t
)

∣∣∣∣+
∣∣FN (ηN0 )

∣∣+

∣∣∣∣∣
∫ σ̄ζN∧S

′
t

0

θNLNFN (ηNθNs) ds

∣∣∣∣∣ .
Before the time σ̄ζ ,

(6.1) −θNLNFN (ηNθNs) =

{
1 , ηηNθNs

∈ ExN
0 , otherwise.

So ∫ σ̄ζN∧S
′
t

0

−θNLNFN (ηNθNs) ds ≤
∫ S′t

0

−θNLNFN (ηNθNs) ds

≤
∫ S′t

0

1ηNθNs∈EN
ds

= t.

Since ‖FN‖L∞ <∞,

∣∣∣∣M̄N
σ̄ζN∧S

′
t

∣∣∣∣ is bounded. So the condition (ii) holds.

If σ̄ζN ∧ S
′

t > T , then∫ T

0

−θNLNFN (ηNθNs) ds ≤
∫ σ̄ζN∧S

′
t

0

−θNLNFN (ηNθNs) ds

≤ t ,

the �rst inequality is because of the equation (6.1) and the we showed the second
inequality in showing condition (ii).

So
∣∣M̄N

T

∣∣ ≤ 2 ‖FN‖L∞ + t if σ̄ζN ∧ S
′

t > T . Since ‖FN‖L∞ is uniformly bounded

in N ,
∣∣M̄N

T

∣∣ is uniformly bounded.

The Markov process ηEN· is recurrent. So limT→∞ P
[
S ′t > T

]
= 0. This implies

limT→∞ P
[
σ̄ζN ∧ S

′

t > T
]

= 0. We get

lim
T→∞

∣∣∣E [M̄N
T 1σ̄ζN∧S

′
t>T

]∣∣∣ ≤ lim
T→∞

(2 ‖FN‖L∞ + t)P
[
σ̄ζN ∧ S

′

t > T
]

= 0.

So the condition (iii) holds.
Thus we get

E
[
M̄N
σ̄ζN∧S

′
t

]
= E

[
M̄N

0

]
= 0.
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That is

E
[
FN
(
ηN
σ̄ζN∧S

′
t

)
− FN

(
ηN0
)]

= E

[∫ σ̄ζN∧S
′
t

0

θNLNFN (ηNθNs) ds

]
≤ t,

as we did in showing the condition (ii).
The left hand side of the previous equation is

E
[
FN
(
ηN
σ̄ζN∧S

′
t

)
− FN

(
ηN0
)]
≥ E

[
FN
(
ηNσ̄ζN

)
| σ̄ζN ≤ S

′

t

]
+ oN (1)

since FN ≥ oN (1)

=
(
f̄ + oN (1)

)
P
[
σ̄ζN ≤ S

′

t

]
+ oN (1)

= f̄P
[
σ̄ζN ≤ S

′

t

]
+ oN (1).

Thus P
[
σ̄ζN ≤ S

′

t

]
≤ t

f̄
+ oN (1).

Since f̄ depends on x ∈ S by the de�nition and S is �nite, for ζ ∈ EN

P
[
σ̄ζ ≤ S

′

t

]
≤ Ct+ oN (1) for some constant C.

Also by the de�nitions of σζ , σ̄ζ , and S
′

t , P
[
σ̄ζ ≤ S

′

t

]
= P [σζ ≤ t] .

In conclusion,

lim
δ↓0

lim
N→∞

sup
γ≤δ

sup
τ∈TT

PNξN
[∣∣XN

τ+γ −XN
τ

∣∣ > ε
]
≤ lim

δ↓0
lim
N→∞

sup
ζ∈EN

PNζ [δ ≥ σζ ]

≤ lim
δ↓0

lim
N→∞

(Cδ + oN (1))

= lim
δ↓0

Cδ

= 0,

this proves tightness.
We showed the tightness of the sequence of laws, which is Proposition 3.1. We

need to show the uniqueness of limit points. Let QN be the law of (XθN t : t ≥ 0)
under PNξN . Without loss of generality, assume that QN converges to Q. By the
property of the martingale problem, it's enough to show the following lemma for
the uniqueness of the limit points.

Lemma. Under Q, X0 = x,

Mt = f(Xt)− f(X0)−
∫ t

0

Lf(Xs) ds

is a martingale for every function f from S to R.

Proof of the Lemma. It's enough to prove this lemma for f satisfying

−Lf(x) = 1{x = a} − 1{x = b} for a 6= b ∈ S

and ∑
x∈S

f(x) = 0.
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This is because the following set spans the vector space of all functions from S
to R, which is

{f : S → R| − Lf(x) = 1{x = a} − 1{x = b} for some a 6= b ∈ S and
∑
x∈S

f(x) = 0}

∪ {f : S → R | f is a constant function}.

Assume that f satis�es −Lf(x) = 1{x = a} − 1{x = b} for a 6= b ∈ S and∑
x∈S f(x) = 0.
We need to show that

EQ
[
g((Xu : 0 ≤ u ≤ s))(f(Xt)− f(Xs)−

∫ t

s

Lf(Xu) du)

]
= 0,

for all 0 ≤ s < t and all bounded, continuous functions g : D([0, s], S)→ R.
The left hand side of the previous equation is

EQ
[
g((Xu : 0 ≤ u ≤ s))(f(Xt)− f(Xs)−

∫ t
s
Lf(Xu) du)

]
= lim
N→∞

EQN
[
g((Xu : 0 ≤ u ≤ s))(f(Xt)− f(Xs)−

∫ t
s
Lf(Xu) du )

]
= lim
N→∞

EPNξN
[
g(( Ψ(ηENθNu) : 0 ≤ u ≤ s))(f(Ψ(ηENθN t))− f(Ψ(ηENθNs))

−
∫ t
s
Lf(Ψ(ηENθNu)) du )

]
= lim
N→∞

EPNξN
[
g(( Ψ(ηENθNu) : 0 ≤ u ≤ s))(F (ηENθN t)− F (ηENθNs)

−
∫ t
s
θNLNF (ηENθNu) du )

]
, F is the function de�ned by the equa-

tion (4.1) and we use (3) in Proposition 4.1.

= lim
N→∞

EP̄NξN
[
g(( Ψ(ηθNS′u) : 0 ≤ u ≤ s)) (F (ηθNS′t

)− F (ηθNS′s)

−
∫ t
s
θNLNF (ηθNS′u) du )

]
, P̄NξN is the law of ηN· starting at ξN .

The last expression above is∫ t
s
θNLNF (ηθNS′u) du =

∫ S′t
S′s
θNLNF (ηθNv)

dT
′
v

dv dv, since T
′

S′u
= u.

=
∫ S′t
S′s
θNLNF (ηθNv)

dT
′
v

dv dv

Since
dT
′
v

dv =

{
1 , ηθNv ∈ EN
0 , ηθNv /∈ EN

and θNLNF (ηθNv) = 0 if ηθNv /∈ EN ,

∫ S′t
S′s

θNLNF (ηθNv)
dT ′v
dv

dv =

∫ S′t
S′s

θNLNF (ηθNv) dv.

We apply the optional sampling theorem to the martingale

M̄N
t = FN (ηNθN t)− FN (ηN0 )−

∫ t

0

θNLNFN (ηNθNs) ds

and stopping times S ′t ≥ S
′

s. Since S
′

t is unbounded, we need to show the following
conditions like we did in the proof for tightness. We use shorthands E for EζN and
P for PζN .

(i) S ′t is �nite a.s.,
(ii) E

[∣∣∣M̄N
S′t

∣∣∣] <∞,

(iii) limT→∞ E
[
M̄N
T 1S′t>T

]
= 0.
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Since the process
(
ηNθN t : t ≥ 0

)
is irreducible and recurrent, a stopping time S ′t

is �nite a.s. So the condition (i) is true.
Let us check the condition (ii). The term inside the brackets is∣∣∣M̄N

S′t

∣∣∣ ≤ ∣∣∣FN (ηNS′t
)
∣∣∣+
∣∣FN (ηN0 )

∣∣+

∣∣∣∣∣
∫ S′t

0

θNLNFN (ηNθNs) ds

∣∣∣∣∣ .
By the de�nition of FN ,∣∣θNLNFN (ηNθNs)

∣∣ =

{
1 , ηNθNs ∈ E

a ∪ Eb

0 , otherwise.

So ∣∣∣∣∣
∫ S′t

0

θNLNFN (ηNθNs) ds

∣∣∣∣∣ ≤
∫ S′t

0

∣∣θNLNFN (ηNθNs)
∣∣ ds

≤
∫ S′t

0

1ηNθNs∈EN
ds

= T
′

S′t
= t.

Since ‖FN‖L∞ <∞,
∣∣∣M̄N
S′t

∣∣∣ is bounded . So the condition (ii) holds.

If S ′t > T , then∣∣∣∣∣
∫ T

0

θNLNFN (ηNθNs) ds

∣∣∣∣∣ ≤
∫ T

0

∣∣θNLNFN (ηNθNs)
∣∣ ds ≤ ∫ S′t

0

∣∣θNLNFN (ηNθNs)
∣∣ ds

≤
∫ S′t

0

1ηNθNs∈EN
ds = T

′

S′t
= t.

So
∣∣M̄N

T

∣∣ ≤ 2 ‖FN‖L∞ + t if S ′t > T . Since ‖FN‖L∞ is uniformly bounded in N ,∣∣M̄N
T

∣∣ is uniformly bounded.

Since the Markov process ηEN· is irreducible and recurrent, lim
T→∞

P
[
S ′t > T

]
= 0.

So limT→∞

∣∣∣E [M̄N
T 1S′t>T

]∣∣∣ ≤ limT→∞(2 ‖FN‖L∞ + t)P
[
S ′t > T

]
= 0.

Thus the condition (iii) holds.
Let's get back to the original equation,

lim
N→∞

EP̄NξN
[
g(( Ψ(ηN

θNS′u
) : 0 ≤ u ≤ s))(F (ηN

θNS
′
t

)− F (ηN
θNS′s

)

−
∫ t
s
θNLNF (ηN

θNS′u
) du)

]
= lim
N→∞

EP̄NξN
[
g(( Ψ(ηN

θNS′u
) : 0 ≤ u ≤ s))(F (ηN

θNS
′
t

)− F (ηN
θNS′s

)

−
∫ S′t
S′s
θNLNF (ηNθNv) dv)

]
= 0 by the optional sampling theorem. Here the function g(( Ψ(ηθNS′u) : 0 ≤ u ≤

s)) is measurable by FθNS′s
,the �ltration at time θNS

′

s for η
N
· .

So we proved the lemma. �

This proves the Theorem 3.2. �

Next we prove Theorem 3.3.
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Proof of Theorem 3.3. Denote the sample space for PNνN as ΩN . Then,

EPNνN

[∫ T

0

1
{
ηN
(
N1+αs

)
∈ ∆N

}
ds

]

=

∫
ΩN

∫ T

0

1
{
ηN
(
N1+αs

)
∈ ∆N

}
ds dPNνN

=

∫ T

0

∫
ΩN

1
{
ηN
(
N1+αs

)
∈ ∆N

}
dPNνN ds by Fubini's theorem

=

∫ T

0

∑
η∈EN

1 {η ∈ ∆N} νN (η,N1+αs) ds

, where νN (η,N1+αs) is the distribution of ηN (·) at time N1+αs

=

∫ T

0

∑
η∈EN

1 {η ∈ ∆N} fN (η,N1+αs)µN (η) ds

, where fN (η,N1+αs) =
νN (η,N1+αs)

µN (η)
.

The square of the summation in the last equation is equal or less than ∑
η∈EN

(1 {η ∈ ∆N})2
µN (η)

 ∑
η∈EN

f2
N (η,N1+αs)µN (η)


= µN (∆N )

 ∑
η∈EN

f2
N (η,N1+αs)µN (η)

 .

By di�erentiating the summation in the previous equation in s,

d

ds

 ∑
η∈EN

f2
N (η,N1+αs)µN (η)


= N1+α

∑
η∈EN

2fN (η,N1+αs)LNfN (η,N1+αs)µN (η)

= −2N1+αDN (fN )

≤ 0.

So ∑
η∈EN

f2
N (η,N1+αs)µN (η) ≤

∑
η∈EN

f2
N (η, 0)µN (η) ≤M

for some M , since
∑
η∈EN f

2
N (η, 0)µN (η) is uniformly bounded in N by the as-

sumption of the theorem.
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Thus

EPNνN

[∫ T

0

1
{
ηN
(
N1+αs

)
∈ ∆N

}
ds

]

≤
∫ T

0

√
µN (∆N )

√
M ds

= T
√
µN (∆N )

√
M

By the Theorem 2.2, which is limN→∞ µN (∆N ) = 0, we get

lim
N→∞

EPNνN

[∫ T

0

1
{
ηN
(
N1+αs

)
∈ ∆N

}
ds

]
= 0.

�
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