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1 Introduction

Many questions in probability theory can be formulated as a law of large numbers (LLN).
Roughly a LLN describes the most frequently visited (or occurred) states in a large system.
To go beyond LLN, we either examine the states that deviate from the most visited states by
small amount, or those that deviate by large amount. The former is the subject of Central
Limit Theorem (CLT). The latter may lead to a Large Deviation Principle (LDP) if the
probability of visiting a non-typical state is exponentially small and we can come up with
a precise formula for the exponential rate of convergence as the size of the system goes to
infinity.

In this introduction we attempt to address four basic questions:

• 1. What does LDP mean?

• 2. What are some of our motivations to search for an LDP?

• 3. How ubiquitous is LDP?

• 4. What are the potential applications?

We use concrete examples to justify our answers to the above questions. To prepare
for answering the first two questions, let us describe a scenario that is often encountered in
equilibrium statistical mechanics: Imagine that we are studying a model of an evolving state
and we have a candidate for the energy of each occurring state. When the system reaches
equilibrium, states with lower energies are more likely to occur. A simple and natural model
for such a system at equilibrium is given by a Gibbs measure. If the space of states E is
finite, β > 0 and H : E → R is the energy function, then a measure of the form

(1.1) νβ(x) =
1

Zβ
e−βH(x) = e−βH(x)−logZβ =: e−βI(x),

assigns more weight to states of lower energy. (Here Zβ is the normalizing constant: Zβ =∑
x∈E e

−βH(x).) Note that the most probable state is the one at which H takes its small-
est value. Roughly, an LDP means that we are dealing with probability measures that are
approximately of the form (1.1) with a constant β that goes to ∞ as the size of the sys-
tem increases without bound. We explain this by two models: Bernoulli trials and their
continuum analog Brownian motion.

In a Bernoulli trial, experiments with exactly two possible outcomes, say 0 and 1 are
repeated independently from each other. Let p ∈ (0, 1) be the probability of the occurrence
of 1 in each trial. Writing Xn for the value of the n-th trial and Sn = X1 + · · · + Xn, we
certainly have that for x ∈ [0, 1]

P(Sn = [nx]) =

(
n

[nx]

)
p[nx](1− p)n−[nx],
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where [nx] denotes the integer part of nx. We write ` = [nx] and use Stirling’s formula to
assert that if x ∈ (0, 1), then P(Sn = [nx]) is approximately equal to√

n

2π`(n− `)
exp [n log n− ` log `− (n− `) log(n− `) + ` log p+ (n− `) log(1− p)]

=

√
n

2π`(n− `)
exp

{
n

[
`

n
log p+

(
1− `

n

)
log(1− p)− `

n
log

`

n
−
(

1− `

n

)
log

(
1− `

n

)]}
=

1√
2πnx(1− x)

exp (−nI(x) +O(log n)) = exp (−nI(x) +O(log n)) ,

where

I(x) = x log
x

p
+ (1− x) log

1− x
1− p

.

Note that I is a convex function with the following properties,

I(p) = I ′(p) = 0, I ′′(p) = (p(1− p))−1.

In particular, I ≥ 0 and takes its minimum value at a unique point x = p. This is consistent
with the fact that n−1Sn → p as n→∞. Moreover

(1.2) lim
n→∞

n−1 logP(Sn = [nx]) = −I(x),

for x ∈ [0, 1]. In the language of Large Deviation Theory, the sequence n−1Sn satisfies an LDP
with rate function I(x). When x 6= p, the set {Sn = [nx]} is regarded as an (exponentially)
rare event and the limit (1.2) offers a precise exponential rate of the convergence of its
probability to 0. Also note that if we consider a small deviation x = p + y/

√
n, then the

Taylor expansion

nI(x) =
1

2
I ′′(p)y2 +O(n−

1
2 ),

is compatible with the CLT

P(Sn = [nx]) ' 1√
2πp(1− p)

e−
1
2
I′′(p)y2

.

Indeed the rate function I in (1.2) has very much the same flavor as our I in (1.1) and
can be interpreted as the difference between an energy function and some kind of entropy.
By this we mean that we may write I = H − J where

H(x) = −x log p− (1− x) log(1− p), J(x) = −x log x− (1− x) log(1− x).

This is a typical phenomenon and can be explained heuristically in the following way: To
evaluate P(Sn = [nx]), we need to do two things;
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• Count those “micro-states” that correspond to the “macro-state” x. We have exactly(
n

[nx]

)
' exp(nJ(x)),

many such micro-states.

• Calculate the probability of such micro-states which is approximately exp(−nH(x)).

As we will see later on, most rate functions can be expressed as a difference of an energy
function and entropy function. Yet another useful interpretation is that the rate function
in many examples of interest (including the Bernoulli trial) can be written as some kind of
relative entropy.

As our second example, we would like to examine the Wiener measure from Large Devi-
ation point of view. We note that the standard d-dimensional Brownian measure may be re-
garded as a probability measure P (known as Wiener measure) on the space Ω = C([0, T ];Rd)
of continuous trajectories x : [0, T ] → Rd such that for t0 = 0 < t1 < · · · < tk−1 < tk = T
and y0 = 0, we have

(1.3) P(x(t1) ∈ dy1, . . . , x(tk) ∈ dyk) = Z−1
t1,...,tk

exp

{
−1

2

k∑
i=1

|yi − yi−1|2

ti − ti−1

}
dy1 . . . dyk,

where

Zt1,...,tk =
k∏
i=1

(2π(ti − ti−1))d/2.

Observe that the formula (1.3) resembles (1.1), and if we choose finer and finer grids
(t0, t1, . . . , tk) of the interval [0, T ], the energy function

1

2

k∑
i=1

|yi − yi−1|2

ti − ti−1

=
1

2

k∑
i=1

(ti − ti−1)

(
|yi − yi−1|
ti − ti−1

)2

,

approximates
1

2

∫ T

0

|ẋ(t)|2 dt.

We are tempted to say that the probability of observing a path x : [0, T ] → Rd can be
expressed as

(1.4)
1

Z(T )
exp

(
1

2

∫ T

0

|ẋ(t)|2 dt
)
.
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To be more realistic, we wish to say that the Wiener measure is absolutely continuous with
respect to a “Lebesgue-like” measure on Ω and its density is given by (1.4). To make sense of
this, we encounter various challenges. For one thing, the normalizing constant Zt1,...,tk does
not have a limit as we choose finer and finer grids for the interval [0, T ]. Moreover, we do not
have a good candidate for a “Lebesgue-like” (i.e. translation invariant) reference measure
to compare P with. Nonetheless, the formula (1.4) can be utilized to predict two important
properties of Brownian motion. For example we can use (1.4) to discover Cameron-Martin
Theorem and Girsanov’s formula. Here’s how it goes: take a function y ∈ Ω and consider
the translated Wiener measure Py := τyP that is defined by∫

F (x(·)) Py(dx(·)) =

∫
F (x(·) + y(·)) P(dx(·)),

for every bounded continuous test function F : Ω → R. A natural question is whether
Py � P and if this is the case what is dPy

dP ? We can easily guess the answer if we use the
formula (1.4). Indeed

Py(dx(·))“ = ”Z−1 e−
1
2

∫ T
0 |ẋ−ẏ|

2dt dx(·)

= Z−1 e−
1
2

∫ T
0 |ẋ|

2dt e−
1
2

∫ T
0 |ẏ|

2 dt e
∫ T
0 ẋ·y dt dx(·)

= e
∫ T
0 y·dx− 1

2

∫ T
0 |ẏ|

2dt P(dx(·)).

Since the last line in the above formal calculation is all well-defined, we guess that Py � P
if and only if

∫ T
0
|ẏ|2 dt <∞ (Cameron-Martin) and that

(1.5)
dPy
dP

= exp

(∫ T

0

y · dx− 1

2

∫ T

0

|ẏ|2 dt
)
, (Girsanov).

Large Deviation Theory allows us to formulate a variant of (1.4) that is well-defined
and can be established rigorously. The point is that if we take a small Brownian trajectory√
εx(·) and force it to be near a given y ∈ Ω, then for y 6= 0 this is a rare event and the

energy of such trajectory is so large that dominates the probability of its occurrence. That
is, the normalizing constant Z can be safely ignored to assert

(1.6) P(
√
εx(·) is near y(·)) ≈ exp

(
− 1

2ε

∫ T

0

|ẏ|2 dt
)
.

This is Schilder’s LDP and its generalization to general stochastic differential equations
(SDE) is the cornerstone of the Wentzell-Freidlin Theory. Roughly, if xε solves

dxε = b(xε, t) dt+
√
εσ(xε, t) dB,
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for a standard Brownian motion B and an invertible matrix σ, then

(1.7) P(xε(·) is near y(·)) ≈ exp

(
− 1

2ε

∫ T

0

∣∣σ(y, t)−1 (ẏ(t)− b(y(t), t))
∣∣2 dt

)
.

The LDP (1.7) provides us with a powerful tool for examining how a small random pertur-
bation of the ODE ẋ = b(x, t) can affect its trajectories.

Our LDP (1.2) for the Bernoulli trial is an instance of the Cramér/Sanov LDP. More
generally we may take a sequence of E-valued iid random variables X1, X2, . . . , Xk, . . . with

P(Xi ∈ A) = µ(A),

and examine large deviations of the empirical measure n−1(δX1 +· · ·+δXn) from µ, as n→∞.
According to Sanov’s theorem,

(1.8) P
(
n−1(δX1 + · · ·+ δXn) is near ν

)
≈ exp

(
−n−1H(ν|µ)

)
,

where H(ν|µ) is the entropy of ν relative to µ (aka KullbackLeibler divergence):

H(ν|µ) =

∫
log

dν

dµ
dν.

A sweeping generalization of Sanov’s theorem was achieved by Donsker and Varadhan. To
explain their result, let us set E = EZ to denote the space of sequences x = (xi : i ∈ Z) and
define T : E → E to be the shift operator:

(Tx)i = xi+1.

Given a probability measure µ on E, we write Pµ for the probability measure on Ω that
we obtain by taking the products of µ’s. Clearly the probability measure Pµ is an invariant
measure for the dynamical system associated with T . That is, for any bounded continuous
F : E → R, we have

∫
F dPµ =

∫
F ◦ T dPµ. Given x ∈ E , we may define an empirical

measure
νn(x) = n−1

(
δx + δT (x) + · · ·+ δTn−1(x)

)
.

Note that νn(x) is a probability measure on E and by the celebrated Birkhoff Ergodic The-
orem

Pµ
{

x : lim
n→∞

νn(x) = Pµ
}

= 1.

By Donsker-Varadhan Theory, there is an LDP for the deviations of γn(ω) from Pµ: Given
any T -invariant measure Q,

(1.9) Pµ (νn(x) is near Q) ≈ exp (−nHµ(Q)) ,
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where Hµ(Q) is closely related to Kolmogorov-Sinai entropy. This entropy is also known as
the metric entropy and is a fundamental quantity in the theory of Dynamical Systems.

We now give a precise definition for LDP. Throughout, all probability measures are on a
measure space (E,B), where E is a Polish (separable complete metric space) and B is the
corresponding σ-algebra of the Borel sets. To motivate the definition of LDP, let us recall
two facts:
1. By definition, a sequence of probability measures {Pn}n∈N converges weakly to a proba-
bility measure P if and only if for every bounded continuous F : E → R,

(1.10) lim
n→∞

∫
F dPn =

∫
F dP.

Equivalently,

For every open set U, lim inf
n→∞

Pn(U) ≥ P(U), or(1.11)

For every closed set C, lim sup
n→∞

Pn(C) ≤ P(C).(1.12)

2. If a1, . . . , ak ∈ R, then

(1.13) lim
n→∞

n−1 log

(
k∑
i=1

e−nai

)
= − inf

i
ai.

Definition 1.1 Let {Pn}n∈N be a family of probability measures on a Polish space E and
let I : E → [0,∞] be a function.
1.We then say that the family {Pn}n∈N satisfies a large deviation principle (in short LDP)
with rate function I, if the following conditions are satisfied:

(i) For every a ≥ 0, the set {x : I(x) ≤ a} is compact.

(ii) For every open set U

(1.14) lim inf
n→∞

n−1 logPn(U) ≥ − inf
x∈U

I(x).

(iii) For every closed set C

(1.15) lim sup
n→∞

n−1 logPn(C) ≤ − inf
x∈C

I(x).
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2. We say that the family {Pn}n∈N satisfies a weak large deviation principle (in short WLDP)
with rate function I, if I is lower-semi continuous, (1.14) is valid for open sets, and (1.15) is
true only for compact sets. �

Remark 1.1 The statements (1.14) and (1.15) together is equivalent to saying that for every
Borel set A,

− inf
Ao
I ≤ lim inf

n→∞
n−1 logPn(A) ≤ lim sup

n→∞
n−1 logPn(A) ≤ − inf

Ā
I.

In particular, if for a set A we have that infAo I = infĀ I, then

lim
n→∞

n−1 logPn(A) = − inf
A
I.

�
We note that our requirements (1.14) and (1.15) are modeled after (1.11) and (1.12).

Alternatively, we may establish an LDP by verifying this:

• For every bounded continuous F : E → R

(1.16) Λ(F ) := lim
n→∞

n−1 log

∫
enF dPn = sup

E
(F − I).

Intuitively (1.16) is true because LDP roughly means

Pn(y is near x) ≈ e−nI(x)

and a sum exponentials is dominated by the largest exponential (see (1.13)).

Theorem 1.1 (Varadhan) Given a rate function I that satisfies the condition (i) of Defini-
tion 1.1, the statements (1.14) and (1.15) are equivalent to the statement (1.16). Moreover
the following statements are true:

(i) If F is lower semi-continuous and (1.14) is true for every open set, then

(1.17) lim inf
n→∞

n−1 log

∫
enF dPn ≥ sup

E
(F − I).

(ii) If F is upper semi-continuous and bounded above, and (1.15) is true for every closed
set, then

(1.18) lim sup
n→∞

n−1 log

∫
enF dPn ≤ sup

E
(F − I).

(iii) If (1.17) is true for every bounded continuous F , then (1.14) is valid.

(iv) If (1.18) is true for every bounded continuous F , then (1.15) is valid.
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Proof (i) To prove (1.17) take any x ∈ E and ε > 0, and set Ux = {y : F (y) > F (x)− ε},
which is open by the lower semi-continuity assumption. We certainly have

lim inf
n→∞

n−1 log

∫
enF dPn ≥ lim inf

n→∞
n−1 log

∫
Ux

enF dPn

≥ F (x)− ε− inf
Ux
I ≥ F (x)− I(x)− ε.

We then send ε→ 0 to deduce (1.17).

(ii) Fix some `, ε > 0 and set

Wx = {y : F (y) < F (x) + ε, I(y) > I(x)− ε}, K` = {x : I(x) ≤ `}.
By upper semi-continuity of F , and (i) of Definition 1.1, the set Wx is open and the set K`

is compact. Choose an open set Ux such that

x ∈ Ux ⊆ Ūx ⊆ Wx.

By compactness of K`, there are x1, . . . , xk ∈ K` such that

K` ⊆ Ux1 ∪ · · · ∪ Uxk := V.

Evidently, ∫
enF dPn ≤

∫
E\V

enF dPn +
k∑
i=1

∫
Uxi

enF dPn.

From this and (1.13) we deduce

(1.19) lim sup
n→∞

n−1 log

∫
enF dPn ≤ max{a, a1, . . . , ak},

where

a = lim sup
n→∞

n−1 log

∫
E\V

enF dPn, and

ai = lim sup
n→∞

n−1 log

∫
Uxi

enF dPn,

for i = 1, . . . , k. Furthermore, by (1.15)

a ≤ sup
E
F + lim sup

n→∞
n−1 logPn(E \ V )

≤ sup
E
F − inf

E\V
I ≤ sup

E
F − inf

E\K`
I ≤ sup

E
F − `,

ai ≤ F (xi) + ε+ lim sup
n→∞

n−1 logPn(Uxi)

≤ F (xi) + ε+ lim sup
n→∞

n−1 logPn(Ūxi)

≤ F (xi) + ε− inf
Wxi

I ≤ F (xi) + 2ε− I(xi) ≤ sup
E

(F − I) + 2ε.
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From this and (1.19) we deduce

lim sup
n→∞

n−1 log

∫
enF dPn ≤ max

{
sup
E
F − `, sup

E
(F − I) + 2ε

}
.

We send ε→ 0 and `→∞ to deduce (1.18).

(iii) Take an open set U . Pick x ∈ U and δ > 0 such that B(x, δ) ⊆ U . Assume that
I(x) <∞, pick ` > 0, and set

F (y) = −` min
{
δ−1d(x, y), 1

}
.

By assumption

(1.20) lim inf
n→∞

n−1 log

∫
enF dPn ≥ sup

E
(F − I) ≥ F (x)− I(x) = −I(x).

On the other hand,

lim inf
n→∞

n−1 log

∫
enF dPn ≤ lim inf

n→∞
n−1 log

[
e−n` + Pn(B(x, δ))

]
≤ max

{
−` , lim inf

n→∞
n−1 logPn(B(x, δ))

}
.

From this and (1.20) we learn

−I(x) ≤ max
{
−` , lim inf

n→∞
n−1 logPn(B(x, δ))

}
.

This is true for every ` > 0. By sending `→∞ we deduce (1.14).

(iv) Note that Pn(C) =
∫
enχC dPn, where

χC(x) =

{
0 if x ∈ C,
−∞ if x /∈ C.

Given a closed set C, we approximate the upper semi-continuous function χC from above by
a sequence bounded continuous functions given by

F`(x) = −`min{d(x,C), 1}.

That is, F` ↓ χC as `→∞. By (1.18),

lim sup
n→∞

n−1 logPn(C) ≤ lim sup
n→∞

n−1 log

∫
enF` dPn ≤ sup(F` − I).
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We are done if we can show

(1.21) inf
`

sup
E

(F` − I) ≤ − inf
C
I.

We first show (1.21) assuming that infC I <∞. Suppose to the contrary (1.21) is not valid.
If this is the case, then we can find ε > 0 such that

inf
`

sup
E\C

(F` − I) ≥ − inf
C

+ε.

As a result, we can find a sequence x` such that

`min{d(x`, C), 1}+ I(x`) ≤ inf
C
I − ε.

From this we learn that `d(x`, C) is bounded, which in turn implies that d(x`, C) → 0 as
`→∞. We also know that I(x`) ≤ infC I − ε. The compactness of the set

{y : I(y) ≤ inf
C
I − ε},

allows us to take a subsequence of {x`}` that converges to a point y ∈ C. By the lower
semi-continuity of I we deduce that I(y) ≤ infC I− ε, which is absurd because y ∈ C. Thus,
(1.21) must be true.

Finally, if infC I =∞ and (1.21) is not valid, then

lim inf
`→∞

sup
E\C

(F` − I) ≥ −A,

for some finite A. As a result, for a sequence x`,

`min{d(x`, C), 1}+ I(x`) ≤ A.

Again d(x`, C) → 0 as ` → ∞ and I(x`) ≤ A. Hence we can take a subsequence of {x`}`
that converges to a point y ∈ C. By lower semi-continuity of I we deduce that I(y) ≤ A,
which is absurd because infC I =∞. This completes the proof. �

As we will see later on, we establish LDP by verifying (1.16) for a suitable family of func-
tions F . For this to work though, we need to learn how to recover I from Λ. Proposition 1.1
below gives a duality formula for expressing I in terms of Λ. Recall that Cb(E) denotes the
space of bounded continuous functions F : E → R.

Proposition 1.1 Let I be a lower semi-continuous function that is bounded below and define
Λ : Cb(E)→ R by

Λ(F ) = sup
E

(F − I).

Then
I(x) = sup

F∈Cb(E)

(F (x)− Λ(F )) = sup
F∈Cb(E)

inf
y∈E

(F (x)− F (y) + I(y)).
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Proof The inequality

sup
F∈Cb(E)

inf
y∈E

(F (x)− F (y) + I(y)) ≤ I(x),

is immediate because we can choose y = x. For the reverse inequality, it suffices to show
that if I(x) < ∞ and ε > 0, then there exists F̄ ∈ Cb(E) such that F̄ (x) = I(x) and for
every y ∈ E

F̄ (x)− F̄ (y) + I(y) ≥ I(x)− ε, or equivalently F̄ (y) ≤ I(y) + ε.

It is well-known that lower semi-continuous functions can be approximated from below by
functions in Cb(E). More precisely, we can find a sequence of functions Fk ∈ Cb(E) such
that Fk ↑ I. In fact the desired F̄ can be selected as F̄ = Fk−Fk(x) + I(x), where k is large
enough so that I(y)− Fk(y) ≤ ε. �

Once an LDP is available, we can formulate several other LDPs that can often be estab-
lished with ease. Two of such LDPs are stated in Theorem 1.2 below.

Theorem 1.2 Assume that the family {Pn} satisfies LDP with rate function I.

• (i) (Contraction Principle) If Φ : E → E ′ is a continuous function, then the family
{P′n}, defined by

P′n(A) := Pn
(
Φ−1(A)

)
,

satisfies an LDP with rate function I ′(x′) = inf{I(x) : Φ(x) = x′}.

• (ii) If G : E → R is a bounded continuous function, then the family

dPGn :=
1

Zn(G)
enGdPn, with Zn(G) =

∫
enG dPn,

satisfies an LDP with the rate function IG(x) = I(x)−G(x) + supE(G− I).

Proof (i) Given a bounded continuous function F ′ : E ′ → R, we use Theorem 1.1 to assert

lim
n→∞

n−1 log

∫
enF

′
dP′n = lim

n→∞
n−1 log

∫
enF

′◦Φ dPn

= sup
E

(F ′ ◦ Φ− I) = sup
x′∈E′

sup
x:Φ(x)=x′

(F ′ ◦ Φ(x)− I(x))

= sup
x′∈E′

(F ′(x′)− I ′(x′)).
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This and another application of Theorem 1.1 yields the desired result provided that we can
verify property (i) of Definition 1.1 for I ′. This is an immediate consequence of the identity

(1.22) {x′ ∈ E ′ : I ′(x′) ≤ `} = Φ ({x : I(x) ≤ `}) .

To see (1.22), observe that if I ′(x′) ≤ `, then we can find a sequence {xk} in E such that
Φ(xk) = x′ and I(xk) ≤ ` + k−1. Since such a sequence is precompact, it has a convergent
subsequence that converges to x with Φ(x) = x′ and I(x) ≤ `. This shows that the left-hand
side of (1.22) is a subset of the right-hand side. The other direction is obvious.

(ii) Again by Theorem 1.1,

lim
n→∞

n−1 log

∫
enF dPGn = lim

n→∞
n−1 log

∫
en(F+G) dPn − lim

n→∞
n−1 logZn(G)

= sup
E

(F +G− I)− sup
E

(G− I) = sup
E

(F − IG),

for every bounded continuous F . This and another application of Theorem 1.1 yields the
desired result provided that we can verify property (i) of Definition 1.1 for IG. Indeed since
I is lower semi-continuous and G is continuous, the function IG is lower semi-continuous. So
IG has closed level sets. On the other hand,

{x : IG(x) ≤ `} ⊆ {x : I(x) ≤ `′},

for `′ = `+ supE G+ supE(G− I). Since the set on the right-hand side is compact, the set
on the left-hand side is compact, completing the proof of part (ii). �

Remark 1.1 It is also of interest to establish LDP for the family

Px′,Φn := Pn( · |Φ = x′).

When the family {Px′,Φn } is sufficiently regular in x′ variable, we expect to have an LDP with
rate function

IΦ
x′(x) =

{
I(x)− I ′(x′), if Φ(x) = x′,

∞ otherwise .

(See for example [R].) This and Theorem 1.2(ii) may be applied to LDP (1.9) to obtain
LDP for (grand canonical and micro canonical) Gibbs measures. Remarkably such LDPs
have recently been used by Chaterjee [C] to study long time behavior of solutions of nonlinear
Schrödinger Equation. �

Exercise 1.1 Suppose that the sequence {Pn} satisfies an LDP with rate function I and let
U be an open neighborhood of the set C0 = {x : I(x) = 0}. Show

lim
n→∞

Pn(U c) = 0.

�
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2 A General Strategy

According to Theorem 1.1, an LDP is equivalent to (1.18) for every F ∈ Cb(E). Moreover,
Proposition 1.1 allows us to express I in terms of Λ. This suggests the following natural
strategy for tackling an LDP:

• (i) Find a family of functions V ⊆ Cb(E) such that we can show

(2.1) Λ(V ) := lim
n→∞

n−1 logZn(V ),

exists for every V ∈ V , where Zn(V ) =
∫
enV dPn.

• (ii) If the family V is rich enough, then we have LDP with a rate function of the form

(2.2) I(x) = sup
V ∈V

(V (x)− Λ(V )).

Here is how it works in practice:

Theorem 2.1 Let V ⊆ Cb(E) be a family of functions such that the limit (2.1) exists for
every V ∈ V. Then the following statements are true:

(i) For every compact set C,

(2.3) lim sup
n→∞

n−1 logPn(C) ≤ − inf
C
I,

where I is defined by (2.2).

(ii) For every open set U ,

(2.4) lim inf
n→∞

n−1 logPn(U) ≥ − inf
U∩ρ(V)

I,

where

(2.5) ρ(V) :=
{
x : lim

n→∞
PVn = δx for some V ∈ V

}
.

(Recall dPVn = Zn(V )−1 enV dPn.). Moreover if limn→∞ PVn = δx for some V ∈ V, then
I(x) = V (x)− Λ(V ).

(iii) If for every x ∈ E with I(x) <∞, we can find a sequence {xk} ⊆ ρ(V) such that

(2.6) lim
k→∞

xk = x, lim sup
k→∞

I(xk) ≥ I(x),

then {Pn} satisfies a weak LDP with rate function I.
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Remark 2.1 Theorem 2.1 suggests a precise strategy for establishing a weak LDP principle
that consists of two steps:

• A probabilistic step of finding a rich family V of functions F for which we can calculate
the limit in (2.1)

• An analytical step of establishing certain regularity of I as was formulated in (2.6).
�

For some examples, we can establish (2.1) for a family V that consists of continuous
but unbounded functions (like linear functions). For such examples, we state a variant of
Theorem 2.1.

Theorem 2.2 Let V be a family of continuous functions such that the limit (2.1) exists for
every V ∈ V. Assume further

(2.7) lim
`→∞

lim sup
n→∞

∫
|V ′|>`

V ′ dPVn = 0,

for every V, V ′ ∈ V. Then the statements (i)-(iii) of Theorem 2.1 are true.

The proofs of Theorems 2.1-2.2 will be given in Subsection 2.3. The main three steps of
the proofs are as follows:

• (i) Use Chebyshev-type inequalities to obtain upper bound LDP (in short ULDP) for
compact sets, namely (2.3) for a rate function Iu.

• (iii) Use entropy-type inequalities to establish lower bound LDP (in short LLDP) for
open sets, namely (1.14) for a rate function Il.

• (iv) Show that Iu(x) = Il(x) for x ∈ ρ(V).

We explain these three steps in Subsections 2.1-2.3. The ULDP for closed sets will be
achieved by showing that the family {Pn}n∈N is exponentially tight. That is, for an error that
is exponentially small, we can replace a closed set with a (possibly large) compact set. This
will be explained in Subsection 2.3.

2.1 Upper bound estimates

Note that if replace V with G = V − Λ(V ) in (2.1), then the right-hand side becomes 0.
Also, for ULDP, we only need an inequality of the form

(2.8) lim sup
n→∞

n−1 log

∫
enG dPn ≤ 0.

Theorems 2.1-2.2(i) are immediate consequences of the following more general fact:

16



Proposition 2.1 Let G be a family of lower semi-continuous functions such that (2.8) holds
for every G ∈ G. Then for every compact set C,

(2.9) lim sup
n→∞

n−1 logPn(C) ≤ − inf
C
Iu,

where Iu is defined by

(2.10) Iu(x) = sup
G∈G

G(x).

Proof Given any Borel set A, we clearly have

einfAG Pn(A) ≤
∫

enG dPn.

From this, and our assumption (2.8) we deduce

lim sup
n→∞

n−1 logPn(A) ≤ − inf
A
G,

for every G ∈ G. Optimizing this over G yields

(2.11) lim sup
n→∞

n−1 logPn(A) ≤ − sup
G∈G

inf
y∈A

G(y).

It remains to show that in the case of a compact set A, we can interchange sup with inf on
the right-hand side of (2.11). To achieve this, take a compact set C and set Î = infC Iu.
Given ε > 0, and x ∈ C, we can find Gx ∈ G such that

(2.12) Î − ε < Gx(x).

Since Gx is lower semi-continuous, we know that the set

Ux = {y : Gx(y) > Î − ε}

is open. Since C is compact and x ∈ Ux by (2.12), we can find x1, . . . , xk ∈ C such that

C ⊆ Ux1 ∪ · · · ∪ Uxk .

Now we use this and apply (2.11) to A = Uxi to assert

lim sup
n→∞

n−1 logPn(C) ≤ lim sup
n→∞

n−1 log [Pn(Ux1) + · · ·+ Pn(Uxk)]

≤ − min
i∈{1,...,k}

sup
G∈G

inf
y∈Uxi

G(y)

≤ − min
i∈{1,...,k}

inf
y∈Uxi

Gxi(y) ≤ −Î + ε,

17



where we used (2.12) for the last inequality. We finally send ε→ 0 to conclude (2.9). �

Remark 2.2 For several important examples (see Example 2.1 below or Sanov’s theorem
in Section 3) we can achieve this (even with equality in (2.8)) for linear continuous F and
the space of such F is rich enough to give us the best possible rate function. More precisely,
the space E is a closed subset of a separable Banach space X and Λ(L) exists for every
continuous linear L ∈ X∗. Using

G := {L(·)− Λ(L) : L ∈ X∗},

we deduce an ULDP with the rate function

Iu(x) = Λ∗(x) = sup
L∈X∗

(L(x)− Λ(L)),

which is the Legendre transform of Λ. We note that in this case Iu is convex and the family
G as above would give us the optimal rate function when the rate function is convex. �

Example 2.1 (Cramér’s theorem-Upper bound) Let X1, X2, . . . , Xn, . . . be a sequence of
iid Rd-valued random variables with distribution µ. Set

Pn(A) = P
(
n−1(X1 + · · ·+Xn) ∈ A

)
.

Then for every v ∈ Rd and n ≥ 1,

n−1 log

∫
env·x Pn(dx) = log

∫
ev·x µ(dx) =: λ(v)

and Theorem 2.1 yields an ULDP for Iu = λ∗. �

2.2 Lower bound estimates

On the account of Proposition 2.1, we search for a family of functions for which (2.8) holds.
The hope is that this family is rich enough so that our candidate Iu for the ULDP also
serves as a rate function for the lower bound. To understand how this can be achieved, let
us assume that for a given x̄ ∈ E, the supremum in (2.10) is achieved at a function Ḡ ∈ G.
For Ḡ, we better have equality in (2.10); otherwise by adding a small positive constant to
Ḡ, (2.10) is still true and such a modified Ḡ contradicts the optimality of Ḡ. Let us also
assume that in fact Ḡ is a bounded continuous function. Hence, if Iu = I is indeed the large
deviation rate function, by Theorem 1.1, we should have

lim sup
n→∞

n−1 log

∫
enḠ dPn = sup

E
(Ḡ− I) = 0.
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Now by applying Theorem 1.2(ii), we learn that the family {PḠn } satisfies an LDP with rate
function IḠ = I − Ḡ. Note that IḠ(x̄) = 0. If x̄ is the only point at which IḠ vanishes, then
by Exercise 1.1, we have a weak LLN for the family {PḠn } of the form

(2.13) PḠn ⇒ δx̄.

We may now recast Iu(x) as the entropy cost for producing a probability measure PḠn that
concentrates about x̄ because

(2.14) lim
n→∞

n−1H
(
PḠn |Pn

)
= lim

n→∞

[∫
Ḡ dPḠn − n−1 logZn(Ḡ)

]
= Ḡ(x̄) = Iu(x̄).

In summary a maximizer in the variational problem (2.10) is closely related to those measures
PḠn for which a LLN holds. We now design a strategy for lower bounds LDP that is based
on (2.13). Namely, we search for those G for which the corresponding PGn satisfies (2.8). Our
candidate for Il(x̄) is the smallest “entropy cost” that is needed to achieve (2.6). Motivated
by this strategy, let us make a definition.

Definition 2.1 Given x ∈ E, define C(x) to be the set of measurable functions G : E → R
such that supE G <∞, and PGn ⇒ δx as n→∞. �

Proposition 2.2 Let G ′ be a family of upper semi-continuous functions such that supE G <
∞, and

(2.15) lim inf
n→∞

n−1 log

∫
enG dPn ≥ 0,

holds for every G ∈ G ′. Then for every open set U ,

(2.16) lim inf
n→∞

n−1 logPn(U) ≥ − inf
U
Il,

where Il is defined by

(2.17) Il(x) = inf {G(x) : G ∈ G ′ ∩ C(x)} .

As a preparation for the proof of Proposition 2.2, we establish a useful inequality. Given
a probability measure P and a bounded measurable function G let us define

Φ(G) := log

∫
eG dP.

The function Φ is convex and its Gâteaux Derivative can be readily calculated. In fact the
subdifferential of Φ at a function G is a probability measure that is given by

dPG := eG−Φ(G) dP.
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More precisely, for any pair of bounded measurable functions F and G,

(2.18) Φ(F )− Φ(G) ≥
∫

(F −G) dPG.

This is an immediate consequence of the Jensen’s inequality:

e
∫

(F−G) dPG ≤
∫
eF−G dPG =

∫
eF−Φ(G) dP = eΦ(F )−Φ(G).

Proof of Proposition 2.2 The main ingredients for the proof are Theorem 1.2(iii) and the
inequality (2.18). If we set

Λn(G) := n−1 log

∫
enG dPn, dPGn := en(G−Λn(G)) dPn,

then (2.18) reads as

(2.19) Λn(F ) ≥ Λn(G) +

∫
(F −G) dPGn .

As a result,

lim inf
n→∞

Λn(F ) ≥ lim inf
n→∞

Λn(G) + lim inf
n→∞

∫
(F −G) dPGn

≥ F (x)−G(x),(2.20)

for every G ∈ G ′ ∩ C(x). Optimizing this over G yields

lim inf
n→∞

Λn(F ) ≥ F (x)− Il(x).

From this and Theorem 1.1(iii) we deduce (2.16). �
For Theorem 2.2, we need to prove a variant of Proposition 2.2 that works for unbounded

continuous functions:

Proposition 2.3 Let G ′ be as in Proposition 2.2 except that instead of the requirement
supE G <∞, we assume

(2.21) lim
`→∞

lim sup
n→∞

∫
|G|>`

G dPVn = 0,

for every G ∈ G ′. Then the conclusion Proposition 2.2 holds true.

The proof is almost identical to the proof of Proposition 2.2. The only place where
supE G <∞ was used was in the second inequality of (2.20). The condition (2.21) allows us
to replace G with G11(|G| ≤ `) that is upper semi-continuous and bounded for a small error.
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2.3 Proofs of Theorems 2.1 and 2.2

Part (i) is an immediate consequence of Proposition 2.1. As for part (ii), take an open set
U and pick x ∈ U ∩ ρ(V). By Propositions 2.2 and 2.3

lim inf
n→∞

n−1 logPn(U) ≤ −(V̄ (x)− Λ(V̄ )),

for a function V̄ ∈ V such that PV̄n ⇒ δx. To deduce (2.4), we need to show that I(x) =
V̄ (x)− Λ(V̄ ), or equivalently,

(2.22) V̄ (x)− Λ(V̄ ) ≥ V (x)− Λ(V ),

for every V ∈ V . By (2.19) and (2.1)

lim inf
n→∞

∫
(V − V̄ ) dPV̄n ≤ lim inf

n→∞
[Λn(V )− Λn(V̄ )] = Λ(V )− Λ(V̄ ).

This implies (2.22) when both V and V̄ are bounded because PV̄n ⇒ δx. In the case of
unbounded V and V̄ , use (2.7) to replace V − V̄ , with

(V − V̄ )11(|V |, |V̄ | ≤ `).

Then pass to the limit n→∞, to deduce (2.22).
Finally for part (iii), if (2.6) is true for a sequence {xk} in ρ(V), we also have

lim
k→∞

I(xk) = I(x),

because I is lower semi-continuous. Now if x ∈ U and (2.6) is true, then xk ∈ U for large k.
For such k, part (ii) implies

lim inf
n→∞

n−1 logPn(U) ≥ −I(xk).

We then use I(xk)→ I(x) to deduce

lim inf
n→∞

n−1 logPn(U) ≥ −I(x),

as desired. �

2.4 Exponential tightness

Recall that according Prohorov’s theorem, a sequence of probability measures Pn has a
convergent subsequence if it is tight. That is, for every ` > 0, we can find a compact set K`

such that
sup
n

Pn(E \K`) ≤ `−1.
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This condition would allow us to restrict Pn’s to a large compact set and use the fact that
the space of probability measures on a compact metric space is compact.

In the same manner, we define exponential tightness so that off of a large compact set,
probabilities are exponentially small.

Definition 2.1 We say that a sequence of probability measures Pn is exponentially tight, if
for every ` > 0, there exists a compact set K` such that

lim sup
n→∞

n−1 logPn(E \K`) ≤ −`.

�

Theorem 2.3 (i) Suppose that the sequence of probability measures {Pn} is exponentially
tight, and (2.3) is true for every compact set. Then (2.3) is also true for every closed set.

(ii) If (2.3) is true for every closed set for a function Iu with compact level sets, then the
sequence of probability measures {Pn} is exponentially tight.

(iii) If the sequence of probability measures {Pn} is exponentially tight, and (2.16) is true
for a lower semi-continuous function Il, then Il has compact level sets.

Proof (i) Let K` be as in Definition 2.1. Given a closed set C,

lim sup
n→∞

n−1 logPn(C) ≤ lim sup
n→∞

n−1 log [Pn(C ∩K`) + Pn(E \K`)]

≤ max

{
− inf

C∩K`
I,−`

}
≤ max

{
− inf

C
I,−`

}
.

We then send `→∞ to deduce (2.3) for C.

Proof (ii) Fix ` > 0. Set C` = {x : I(x) ≤ `+ 2} and

Uk = {x : d(x,C`) < k−1}.

By ULDP,
lim sup
n→∞

n−1Pn(U c
k) ≤ − inf

Uck

I ≤ − inf
Cc`

I ≤ −(`+ 2).

Hence, we can find nk such that for n > nk,

Pn(U c
k) ≤ e−n(`+1) = e−ne−n`.

Without loss of generality, we may assume that nk ≥ k, so that for n > nk ≥ k,

Pn(U c
k) ≤ e−ke−n`.
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To get rid of the restriction n > nk ≥ k, choose compact sets C1,k, C2,k, . . . , C1,nk such that

Pj
(
Cc
j,k

)
≤ e−ke−j`,

for j = 1, 2, . . . , nk. We now have

Pn
(
U c
k ∩ Cc

1,k ∩ Cc
2,k ∩ · · · ∩ Cc

1,nk

)
≤ e−ke−n`,

for every n. As a result,
Pn (Kc

` ) ≤ e−n`,

for the set
K` = ∩∞k=1 [Uk ∪ C1,k ∪ C2,k ∪ · · · ∪ C1,nk ] .

We are done if we can show that K` is compact. For this it suffices to show that K` is totally
bounded. This is obvious, because for each k, the set

Uk ∪ C1,k ∪ C2,k ∪ · · · ∪ C1,nk ,

can be covered by finitely many balls of radius 1/k.

Proof (iii) If we apply (2.16) to the open set U` = Kc
` with K` as in the Definition 2.1, we

learn
{x : I(x) ≤ `} ⊆ K`.

This implies the compactness of the level sets of I because by lower semi-continuity, these
level sets are closed. �

Next result gives us a practical way of verifying exponential tightness.

Lemma 2.1 The sequence {Pn} is exponentially tight if there exists a function F : E → R
such that the set {x : F (x) ≤ `} is compact for every `, and

a := lim sup
n→∞

n−1 log

∫
enF dPn <∞.

Proof By Chebyshev’s inequality,

Pn(F > `) ≤ e−n`
∫
enF dPn.

Hence
lim sup
n→∞

n−1 logPn(F > `) ≤ a− `.

This implies the desired result because the set {F ≤ `} is compact. �
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3 Cramér and Sanov Large Deviation Principles

3.1 Cramér’s theorem

In the case of Cramér’s LDP, we have a sequenceX1, X2, . . . of Rd-valued iid random variables
with distribution µ. Recall

(3.1) Pn(A) = P
(
n−1(X1 + · · ·+Xn) ∈ A

)
.

Theorem 3.1 Assume that
∫
ex·vµ(dx) < ∞, for every v ∈ Rd. Then the sequence {Pn}

(defined by (3.1)) satisfies LDP with the rate function

(3.2) I(x) = λ∗(x) = sup
v∈Rd

(x · v − λ(v)),

where λ(v) = log
∫
ex·vµ(dx).

Proof Step 1. To apply Theorem 2.2, we need to come up with a family V such that
Λ(V ) can be calculated for every V ∈ V . As we mentioned in Example 2.1, we choose
V = {Lv : v ∈ Rd} with Lv(x) = v · x. It is not hard to see that λ(v) := Λ(Lv) for every
v ∈ Rd. To complete the proof we need to verify three things: the exponential tightness,
(2.6), and (2.7). As a preparation, first observe that since

er|x| ≤
d∑
i=1

(
edrxi + e−drxi

)
,

we have

(3.3)

∫
er|x| dµ <∞,

for every r > 0. This in particular implies

n−1 log

∫
en|x| dPn ≤ log

∫
e|x| µ(dx) <∞.

We then use this to apply Lemma 2.1 in the case of F (x) = |x| to deduce exponential
tightness.

Step 2. We now turn to the proofs of (2.6) and (2.7). For this, we need to identify the
measures PLvn , v ∈ Rd, and the set ρ(V). Observe

PLvn (A) = Pv
(
n−1(X1 + · · ·+Xn) ∈ A

)
,
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where X1, X2, . . . are now iid with law

µv(dx) = ev·x−λ(v) µ(dx).

From this and (3.3), we can readily verify (2.7). As for (2.6), note that by the weak LLN,

PLvn ⇒ δm(v).

where m(v) =
∫
x µv(dx). Hence

ρ(V) = {m(v) : v ∈ Rd}.

Step 3.To establish (2.6), we need to understand the function λ better. For one thing, we
may use (3.3) to show that the function λ is smooth with ∇λ(v) = m(v). Now it is clear
that if for a given x, the supremum in (3.2) is achieved at some v, then x = ∇λ(v) and as a
result x ∈ ρ(V). Also, by Theorem 2.1(ii), we have

(3.4) I(m(v)) = v ·m(v)− λ(v).

As we will see in Exercise 3.1 below, in some cases the supremum is not achieved for a finite
v. To deal with such a possibility, let us consider a restricted supremum of the form

(3.5) Ik(x) = sup
|v|≤k

(x · v − λ(v)).

Fix x /∈ ρ(V) with I(x) <∞ and choose vk such that

Ik(x) = x · vk − λ(vk), |vk| ≤ k.

We then set xk = m(vk). We claim that the sequence {xk} satisfies the requirements stated
in (2.6). To see this, observe that since vk is a maximizer in the variational problem (3.4),
we must have |vk| = k for each k > 0; otherwise x = ∇λ(vk) which contradicts x /∈ ρ(V). as
a result, |vk| = k, and if w · vk ≥ 0, then (x−∇λ(vk)) · w ≥ 0. So, there exists some scalar
tk ≥ 0 such that

x−∇λ(vk) = tkvk.

So,

x = xk + tkvk, Ik(x) = (∇λ(vk) + tkvk) · vk − λ(vk) = I(m(vk)) + tk|vk|2 → I(x).

From this we learn that {tk|vk|2} is bounded because I(x) < ∞. This in turn implies
limk→∞ xk = x. This completes the proof of (2.6) because

I(m(vk)) ≤ Ik(x)→ I(x),
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as k →∞. �

Exercise 3.1

(i) Show that λ(v) grows at most linearly as |v| → ∞ if the support of µ is bounded.

(ii) Show

lim
|v|→∞

λ(v)

|v|
=∞,

if the support of µ is Rd (i.e. µ(U) > 0 for every nonempty open set U). (Hint: Use

λ(v) ≥ log

∫
AR

ex·vµ(dx),

where the set AR = {x : 2x · v ≥ |v||x|, |x| > R}.)
(iii) Show

D2λ(v) =

∫
(x−m(v))⊗ (x−m(v)) µv(dx).

Use this identity to show that λ is strictly convex unless the measure µ is concentrated on
a linear subset of Rd of codimension one. �

3.2 Sanov’s theorem

For our next LDP, let µ be a probability measure on a Polish space E and assume that
X1, X2, . . . is a sequence of E-values iid random variables with P(Xi ∈ A) = µ(A) for
every Borel set A. Write M = M(E) for the space of Radon probability measures on
E and ‖f‖ = supE |f | for the uniform norm. Equip the space M with the topology of
weak convergence. As it is well-known we may use Wasserstein distance D to metrize M.
Moreover the metric space (M,D) is a Polish space. We now define a family of probability
measures Pn on M by

(3.6) Pn(A) = P
(
n−1(δX1 + · · ·+ δXn) ∈ A

)
for every Borel set A ⊆M. Recall that the relative entropy is defined by

H(α|β) =

{∫
log dα

dβ
dα if α� β,

∞ otherwise,

for α and β ∈M. We are now ready to state and prove Sanov’s theorem.

Theorem 3.2 The family {Pn}, defined by (3.6) satisfies LDP with a rate function I(ν) =
H(ν|µ).
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As a preparation for the proof of Theorem 3.2, we establish the following variational
expression of Donsker and Varadhan that in essence identifies the Legendre transform of the
entropy.

Theorem 3.3 We have

(3.7) H(ν|µ) = sup
f∈Cb(E)

(∫
f dν − λ(f)

)
= sup

f∈Bb(E)

(∫
f dν − λ(f)

)
,

where Bb(E) denotes the space of bounded Borel-measuable functions f : E → R.

Proof Step 1. Let us write

(3.8) I(ν) = sup
f∈Cb(E)

(∫
f dν − λ(f)

)
, I ′(ν) = sup

f∈Bb(E)

(∫
f dν − λ(f)

)
.

We first to show that H(ν|µ) ≥ I ′(ν). Indeed, if H(ν|µ) <∞, then for some Borel function
h ≥ 0 we can write dν = h dµ, or in short ν = hµ. We then use Young’s inequality to assert
that for any f ∈ Bb(E),∫

f dν −H(ν|µ) =

∫
h(f − log h) dµ = log exp

[∫
h (f − 11(h > 0) log h) dµ

]
≤ log

[∫
h exp (f − 11(h > 0) log h) dµ

]
= log

∫
ef dµ,

as desired.

Step 2. We now turn to the proof of I = I ′. To prove this, assume that I(ν) <∞ and pick
any f ∈ Bb(E). We wish to show

(3.9)

∫
f dν ≤ λ(f) + I(ν).

Recall that by Lusin’s theorem, for any ε > 0, there exists a continuous function fε such
that

‖fε‖ ≤ ‖f‖, (µ+ ν)(Aε) := (µ+ ν) ({x : f(x) 6= fε(x)}) ≤ ε.

From this and ∫
fε dν ≤ λ(fε) + I(ν),

we deduce ∫
f dν − 2ε‖f‖ ≤ log

[∫
ef dµ+ 2εe‖f‖

]
+ I(ν),

27



for every ε > 0. We then send ε to 0 to deduce (3.9), which in turn implies I ′ ≤ I, and
hence I = I ′.

Step 3. We next turn to the proof of

(3.10) H(ν|µ) ≤ I ′(ν).

For this, we first show that if I ′(ν) <∞, then ν � µ. Indeed if µ(A) = 0 for a Borel set A,
then choose f(x) := `11(x ∈ A) in (3.9) to assert that `ν(A) ≤ I ′(ν). Since ` > 0 is arbitrary,
we deduce that ν(A) = 0.

We note that if the supremum in the definition of I ′(ν) is achieved for f̄ ∈ Bb(E), then
we must have ν = ef̄−λ(f̄)µ. Equivalently, if ν = hµ, then f̄ = log h. However, in general,
log h is not bounded. Because of this, let us pick some ` and ε with 0 < ε < ` and define
h` = min{h, `}, and

h`,ε =


h if h ∈ (ε, `),

` if h ≥ `,

ε if h ≤ ε.

We then choose f = log h`,ε in (3.9) to assert that for ν = hµ,

(3.11)

∫
(log h`,ε) dν ≤ I(ν) + log

∫
h`,ε dµ.

Since h`,ε ↓ h` and log h` ≤ log `, we may use Monotone Convergence Theorem to send ε→ 0
in (3.11) to deduce ∫

(log h`) dν ≤ I(ν) + log

∫
h` dµ ≤ I(ν).

we now send `→∞ to conclude (3.10). �

Exercise 3.2 Show

λ(f) = log

∫
ef dµ = sup

ν∈M

(∫
f dν −H(ν|µ)

)
.

�

Proof of Theorem 3.2 Given f ∈ Cb(E), define Lf (ν) =
∫
f dν and set V = {Lf : f ∈

Cb(E)}. We have

n−1 log

∫
enLf dPn = log

∫
ef dµ =: λ(f),

which implies that Λ(Lf ) = λ(f). Theorem 2.1 is applicable to the family V with the
associated rate function given by

(3.12) I(ν) = sup
f∈Cb(E)

(∫
f dν − λ(f)

)
.
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By Theorem 3.3, we know that I(ν) = H(ν|µ). We need to take care of three things: identify
ρ(V), verify (2.6), and the exponential tightness of the family {Pn}.
Step 1. As for ρ(V), let us write

νn := n−1(δX1 + · · ·+ δXn), Qf
n := PLfn , and dµf := ef−λ(f) dµ.

Observe that for any J ∈ Cb(M),∫
J dQf

n = E J(νn) ef(X1)+···+f(Xn)−nλ(f)

=

∫
J
(
n−1(δx1 + · · ·+ δxn)

)
µf (dx1) . . . µf (dxn),

which means that the probability measure Qf
n is the law of n−1(δXf

1
+ · · ·+ δXf

n
) where now

Xf
1 , X

f
2 , . . . are iid with P(Xf

i ∈ A) = µf (A). By LLN,

P
({
ω : lim

n→∞
n−1(δXf

1 (ω) + · · ·+ δXf
n(ω)) = µf

})
= 1.

From this we can readily deduce

lim
n→∞

∫
J dQf

n = J(µf ),

for every f ∈ Cb(M). Equivalently

lim
n→∞

Qf
n = δµf .

Hence

(3.13) ρ(V) =
{
µf : f ∈ Cb(E)

}
= {hµ ∈M : h, h−1 ∈ Cb(E)}.

Here by a measure ν = hµ ∈M, we really mean that the measure ν � µ and dν/dµ = h. So,
when ν = hµ ∈ ρ(V), in really means that h = ef for some f ∈ Cb(E). By Theorem 2.1(iii),

(3.14) I(hµ) =

∫
Llog h dQlog h − λ(log h) =

∫
h log h dµ = H(hµ|µ),

for every function h > 0 such that h, h−1 ∈ Cb(E).

Step 2. We now verify (2.6). First observe that if φ(h) = h log h − h + 1, then φ ≥ 0 and
H(hµ|µ) =

∫
φ(h) dµ. We now set h` = h11(`−1 ≤ h ≤ `) and observe

H(hµ|µ) = lim
`→∞

∫
φ(h`) dµ.
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We then pick ε > 0 and use Lusin’s theorem to find a continuous function hε,` such that
h`,ε : E → [`−1, `], and

µ
({
x : h`,ε 6= h`

})
≤ ε.

We now have

(3.15)

∣∣∣∣∫ φ
(
h`,ε
)
dµ−

∫
φ
(
h`
)
dµ

∣∣∣∣ ≤ ε` log `.

Note that the right-hand side is small for large ` if we choose ε = `−2. To turn h`,ε into a
probability density, set z`,ε =

∫
h`,ε dµ and ĥ`,ε = h`,ε/z`,ε. We note

(3.16)
∣∣z`,ε − 1

∣∣ ≤ ε log `+ ν
(
{x : h(x) /∈ (`−1, `)}

)
.

We also have∣∣∣∣∫ φ
(
ĥ`,ε
)
dµ−

∫
φ
(
h`,ε
)
dµ

∣∣∣∣ =

(
1− 1

z`,ε

)∫
φ
(
h`,ε
)
dµ+

1

z`,ε
+ log z`,ε − 1.

From this, (3.16) and (3.15), we can readily deduce that if h` = ĥ`,`
−2

, then

lim
`→∞

H(h`µ|µ) = H(hµ|µ).

Since h` is continuous and h` ∈ [`−1, `], we have established (2.6).

Step 3. For the exponential tightness, pick a sequence of compact sets K` ⊆ E such that

(3.17) µ(Kc
` ) ≤ e−`

2

,

for ` = 1, 2, . . . , and form K` = ∩∞k=`Kk, where

Kk := {ν ∈M : ν(Kk) ≥ 1− k−1}.

Evidently each Kk is closed and by Prohorov’s theorem, each K` is compact inM. We then
apply Chebyshev’s inequality to assert

Pn(Kc`) ≤
∞∑
k=`

Pn((Kk)c) =
∞∑
k=`

P(νn /∈ Kk) =
∞∑
k=`

P(νn(Kc
k) ≥ k−1)

=
∞∑
k=`

P(nk2νn(Kc
k) ≥ k) ≤

∞∑
k=`

e−kn
∫
enk

2νn(Kc
k) dP

=
∞∑
k=`

e−kn
(
µ(Kk) + ek

2

µ(Kc
k)
)n
≤ 2n

∞∑
k=`

e−kn ≤ 2n+1e−n`,
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where we used (3.17) for the second inequality. This readily implies the exponential tightness.
�

Remark 3.1 In view of Theorem 2.2, the exponential tightness and ULDP imply that the
large deviation rate function has compact level sets. This however can be readily verified for
H(ν|µ) because the function h 7→ h log h grows faster than linearly at infinity. Indeed the
set

K` = {h : H(hµ|µ) ≤ `} = {h :

∫
h log h dµ ≤ `},

is a weakly compact subset of L1(µ). This means that the family K is uniformly integrable.
This can be established directly and is an immediate consequence of the following bound:
For any Borel set A,

(3.18) ν(A) ≤ log 2

log
(

1
µ(A)

+ 1
) +

H(ν|µ)

log 1
µ(A)

.

Here how the proof goes; for k ≥ 1,∫
h>k

h dµ ≤ (log k)−1

∫
h log h dµ.

So, for any set Borel set A, and ν = hµ,

ν(A) ≤ (log k)−1

∫
h log h dµ+

∫
A

h11(h ≤ k) dµ ≤ (log k)−1H(ν|µ) + kµ(A).

This implies (3.18) by choosing

k =
log 2

µ(A) log
(

1
µ(A)

+ 1
) .

�

Exercise 3.3 Use (3.7) to deduce

(3.19) ν(A) ≤ H(ν|µ) + log 2

log
(

1
µ(A)

+ 1
) .

Exercise 3.4 (i) Given a Polish space E and µ ∈M(E), define Î :M([0, 1]×E)→ [0,∞]
by

Î(ν) = sup
f∈Cb([0,1]×E)

(∫
f dν − Λ̂(f)

)
,
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where

Λ̂(f) =

∫ 1

0

λ(f(θ, ·)) dθ =

∫ 1

0

log

[∫
ef(θ,x) µ(dx)

]
dθ.

Show that if Î(ν) < ∞, then ν � µ̂, where dµ̂ = dθ × dµ. Moreover, in the definition of Î,
we can take the supremum over Bb([0, 1]× E).

(ii) Show that if Î(ν) <∞, then we can write ν(dθ, dx) = h(θ, x) dθµ(dx) with
∫
h(θ, x)µ(dx) =

1 for every θ ∈ [0, 1] and that

Î(ν) =

∫
h log h dµ̂.

(iii) Given a sequence of E-valued iid random variables X = (X1, X2, . . . ) with the distri-
bution µ, define

ν̂n(dθ, dx;X) = n−1

n∑
i=1

δ(i/n,Xi).

The map X 7→ ν̂n(·;X) induces a probability measure P̂n on M̂ =M([0, 1]×E). Show that
the family {P̂n} satisfies LDP principle with the rate function Î. �

3.3 Sanov’s theorem implies Cramér’s theorem

We may apply Contraction Principle (Theorem 1.2(i)) to Sanov’s theorem to establish a
Cramér’s theorem. For simplicity, first we assume that measure µ has a bounded support
{x : |x| ≤ k}. To deduce Theorem 3.1 from Theorem 3.2 in this case, we choose E =
{x : |x| ≤ k} and consider Φ : M(E) → Rd, defined by Φ(ν) =

∫
x dν. Note that Φ is a

continuous function and that if Pn is defined as in Theorem 3.2, then

P′n(A) := Pn ({ν : Φ(ν) ∈ A}) = P
(
n−1(X1 + · · ·+Xn) ∈ A

)
.

As a result, we may apply Theorem 3.2 and Theorem 1.2(i) to assert that the family {P′n}
satisfies an LDP with the rate

(3.20) I ′(m) = inf
ν∈M
{H(ν|µ) : Φ(ν) = m}.

This does not immediately imply Cramér’s theorem for the sequence {P′n} because Theo-
rem 3.1 suggests a large deviation rate function of the form

(3.21) Î(m) = sup
v∈Rd

(m · v − λ̂(v)),

where λ̂(v) = log
∫
ex·v µ(dx). To prove Theorem 3.1 when the support of µ is bounded, we

need to show that I ′ = Î. We offer two different proofs for this.
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The first proof is based on Minimax Principle. Indeed

I ′(m) = inf
ν∈M
{H(ν|µ) : Φ(ν) = m}

= inf
ν∈M

sup
v∈Rd

{
H(ν|µ)− v ·

[∫
x ν(dx)−m

]}
= inf

ν∈M
sup
v∈Rd

{
H(ν|µ)−

∫
v · x ν(dx) + v ·m

}
,(3.22)

simply because if Φ(ν) − m 6= 0, then the supremum over v is +∞. Since E is compact
in our case, the space M = M(E) is also compact. As a result, the Minimax Principle is
applicable; the supremum and the infimum in (3.22) can be interchanged. This would yield
the equality of I ′ with Î:

I ′(m) = sup
v∈Rd

inf
ν∈M

{
H(ν|µ)−

∫
v · x ν(dx) + v ·m

}
= sup

v∈Rd

{
− log

∫
ev·x µ(dx) + v ·m

}
= Î(m),

where we used Exercise 3.2 for the second equality.
Our second proof is more direct, though we need to borrow Step 3 from the proof of

Theorem 3.1. First observe that the proof of I ′ ≥ Î is straight forward: for any measure
ν = hµ satisfying Φ(ν) =

∫
Ψ dν = m,

H(ν|µ) = sup
f∈Cb(E)

{∫
f dν − log

∫
ef dν

}
≥ sup

v∈Rd

{∫
v ·Ψ dν − log

∫
ev·Ψ dν

}
= sup

v∈Rd
(m · v − λ̂(v)) = Î(m).

This yields an ULDP with rate Î. (This not surprising, even in the Minimax Principle, the
inequality inf sup ≥ sup inf is trivial.) As for the reverse inequality, note that for I ′ we are
minimizing the entropy of ν (relative to µ) with the constraints∫

h dµ = 1,

∫
xh(x) ν(dx) = m.

Since ∂H(hµ|µ) = log h, we may use the method of Lagrange multipliers to assert that for
a minimizing h̄ of the optimization problem (3.20), we can find scalar λ̄ and vector v̄ such
that

(3.23) log h̄(x) = v̄ · x− λ̄ or h̄(x) = ev·x−λ̄.
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In fact since
∫
h̄ dµ = 1, we must have λ̄ = λ̂(v̄) = log

∫
ev̄·x µ(dx). This suggests that the

minimizing h̄ should be of the form (3.23). Though when such minimizing h̄ exists, we must
have

m =

∫
x ν(dx) =

∫
xev·x−λ̂(v) ν(dx) = ∇λ̂(v).

As a result,

I ′(∇λ̂(v)) ≤ H
(
ev·Ψ−λ̂(v)µ|µ

)
=

∫
[v ·Ψ− λ̂(v)] dµ = m · v − λ̂(v).

This means that I ′(m) ≤ Î(m) provided that m = ∇λ̂(v) for some v ∈ Rd. We may deduce
an LDP for {P′n} with rate function Î if we can show that whenever Î(m) <∞, we can find
a sequence of mk = ∇λ̂(vk) such that mk → m and λ̂(mk)→ λ̂(m) in large k limit. This is
exactly the property (2.6) and was discussed in Step 3 of the proof of Theorem 3.1.

Note that when the support of µ is unbounded, we cannot apply Contraction Principle
because when E = Rd, the transformation Φ : M → Rd, defined by Φ(µ) =

∫
x dν is not

continuous. Though this issue can be taken care of with some additional work. We leave the
details to Exercise 3.4 below.

Exercise 3.5 (i) Suppose that E and E ′ are two Polish spaces and Φ : E → E ′ is a Borel
function. Assume that there are compact subsets K` ⊂ E such that the restriction of Φ to
each K` is continuous. Let {Pn} be a sequence of probability measures on E that satisfies
LDP with rate function I. If

lim
`→∞

lim sup
n→∞

n−1 logPn(Kc
` ) = −∞,

then the sequence {Pn ◦ Φ−1} satisfies LDP with rate I ′(x′) = infΦ(x)=x′ I(x).

(ii) Show that if E = Rd, and µ satisfies
∫
ex·v dµ < ∞ for every v ∈ Rd, then there exists

an increasing function τ : [0,∞)→ [0,∞) such that τ(0) = 0, r−1τ(r)→∞ in large r limit,
and

∫
eτ(|x|) µ(dx) <∞.

(iii) Apply part (i) and (ii) when {Pn} is as in Theorem 3.2, E = Rd, µ satisfies
∫
ex·v dµ <

∞ for every v ∈ Rd, Φ(µ) =
∫
x dµ, and

K` =

{
ν ∈M(Rd) :

∫
τ(|x|) dν ≤ `

}
.

�
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4 Donsker-Varadhan Theory

Let X1, X2, . . . be a sequence of iid random variables. By Sanov’s theorem, we have an LDP
for the empirical measure νn associated with this sequence. As a consequence we have a LDP
for the law of the sequence n−1(Ψ(X1) + · · · + Ψ(Xn)) provided that Ψ ∈ Cb(E). However,
Sanov’s theorem is not strong enough to yield an LDP for the sequence

Zn(Ψ) := n−1 (Ψ(X1, X2) + Ψ(X2, X3) + · · ·+ Ψ(Xn, Xn+1)) ,

where now Ψ : E × E → R is a bounded continuous function. We note that by LLN

lim
n→∞

Zn =

∫
Ψ(x, y) µ(dx)µ(dy),

because if X ′i = (Xi, Xi+1), then X ′1, X
′
3, . . . and X ′2, X

′
4, . . . are two sequences of iid random

variables. In the same fashion we can show that for any bounded continuous Ψ : Ek → R,

(4.1) lim
n→∞

Zn(Ψ) =

∫
Ψ(x1, . . . , xk) µ(dx1) . . . µ(dxk),

where

Zn(Ψ) = n−1 (Ψ(X1, . . . , Xk) + Ψ(X2, . . . , Xk+1) + · · ·+ Ψ(Xn, . . . , Xn+k)) .

Equivalently

(4.2) lim
n→∞

n−1
(
δ(X1,...,Xk) + δ(X2,...,Xk+1) + · · ·+ δ(Xn,...,Xn+k)

)
=

k∏
i=1

µ,

in the weak topology. (Throughout this section all convergence of measures are in weak
topology.) It is the best to rephrase (4.2) as an Ergodic Theorem. More precisely, let us
consider

E := EZ = {x = (xn : n ∈ Z) : xn ∈ E for each n ∈ Z},

and define T (x)n = xn+1 to be the shift operator. We equip E with the product topology so
that E is again a Polish space and T is a continuous function. Writing Pµ for the product
measure

∏
n∈Z µ, we may apply LLN to assert that for any Ψ ∈ Cb(E),

(4.3) lim
n→∞

n−1
(
Ψ(x) + Ψ(T (x)) + · · ·+ Ψ(T n−1(x))

)
=

∫
Ψ dPµ.

This is exactly (4.1) if

Ψ ∈ C loc
b (E) := {Ψ ∈ Cb(E) : Ψ depends on finitely many coordinates}.
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The proof of (4.3) for general Ψ ∈ Cb(E) follows from the denseness of C loc
b (E) in Cb(E).

Furthermore, by taking a countable dense set of functions Ψ ∈ Cb(E), we learn

(4.4) Pµ
{

x ∈ E : lim
n→∞

νn(x) = Pµ
}

= 1,

where
νn(x) = n−1

(
δx + δT (x) + · · ·+ δTn−1(x)

)
.

The statement (4.4) is an instance of an Ergodic Theorem for the dynamical system
(E , T ). More generally, we may set

MS =MS(E) :=

{
Q ∈M(E) :

∫
F ◦ T dQ =

∫
F dQ, for every F ∈ Cb(E)

}
.

In the theory of Dynamical Systems, the set MS(E) consists of invariant measures of the
dynamical system (E , T ). In probabilistic language, MS consists of the laws of E-valued
stationary processes. We can readily show thatMS(E) is a closed convex subspace ofM(E).
Hence MS(E) is a Polish space. Here are some examples of stationary processes.

Example 4.1
(i) (iid sequences) The product measure Pν ∈M(E), for every ν ∈M(E).

(ii) (Markovian sequences) Consider a measurable family {p(x, ·) : x ∈ E} of probability
measures on E and regard p(x, dy) as a Markov kernel. Suppose that π ∈ M(E) is an
invariant measure for p. That is, ∫

p(x,A) π(dx) = π(A),

for every A ∈ B. We now build a stationary process Q that is the law of a Markov process
with marginal π and kernel p. The measure Q is uniquely determined by identifying its finite
dimensional marginals; the law of (xk, xk+1, . . . , xk+`−1, xk+`) is given by

π(dxk)p(xk, dxk+1) . . . p(xk+`−1, dxk+`).

(iii) (Periodic sequences) Given x ∈ E , define an n-periodic sequence Πn(x) = (xni : i ∈ Z)
such that xni+kn = xi for i ∈ {1, 2 . . . , n} and k ∈ Z. We then define a modified empirical
measure as follows:

(4.5) ν̂n(x) = n−1
(
δΠn(x) + δT◦Πn(x) + · · ·+ δTn−1◦Πn(x)

)
.

Evidently ν̂n(x) ∈MS(E). �
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According to the Birkhoff Ergodic Theorem,

(4.6) Q
({

x ∈ E : lim
n→∞

νn(x) = QT
x

})
= 1,

where QT
x (dy) is a conditional measure of Q with respect to the σ-algebra IT of T -invariant

Borel sets:
F = {A : A is a Borel set and T (A) = A}.

We also writeMer for the space of ergodic invariant measures. More precisely,Mer consists
of those invariant measures Q such that for every A ∈ IT , we have that either Q(A) = 1 or
0. In particular if Q ∈Mer, then

(4.7) Q
({

x ∈ E : lim
n→∞

νn(x) = Q
})

= 1.

Donsker-Varadhan Theory establishes an LDP for the LLN stated in (4.4). To describe
this LDP let us recall that any limit point of the empirical measure νn(x) is necessarily in
MS(E) even though νn(x) /∈MS(E) in general (except when x is n-periodic). This suggests
to formulate an LDP for probability measures defined on MS(E). To achieve this goal, let
us modify our LLN slightly to assert that in fact for Q ∈Mer(E),

(4.8) Q
({

x ∈ E : lim
n→∞

ν̂n(x) = Q
})

= 1,

where ν̂n was defined in (4.5). This is because for a local function Ψ = Ψk, with Ψk ∈ Cb(Ek),

(4.9)

∣∣∣∣∫ Ψ dνn(x)−
∫

Ψ dν̂n(x)

∣∣∣∣ ≤ 2kn−1‖Ψ‖.

Since ν̂n ∈MS(E), let us define a sequence of probability measures {Pµn} on MS(E) by

Pµn (A) = Pµ ({x : ν̂n(x) ∈ A}) .

Donsker-Varadhan [DV] establishes an LDP for the family {Pµn}. To facilitate the statement
of this LDP and its proof, let us make some useful conventions.

Definition 4.1 (i) Given a σ-algebra F , we abuse the notation and write F for the space of
F -measurable functions. We also write bF for the space of bounded F -measurable functions.

(ii) Define

E i = {xi = (xj : j ≤ i) : xj ∈ E for j ≤ i}, Ei = {xi = (xj : j ≥ i) : xj ∈ E for j ≤ i},

so that E = E i × Ei+1 and any x ∈ E can be written as x = (xi,xi+1).
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(iii) The σ-algebra of Borel sets depending on coordinates (xj : j ≤ i) (resp. (xj : j ≥ i))
is denoted by Bi (resp. Bi). The σ-algebra of Borel sets depending on coordinates (xj : i ≤
j ≤ k)) is denoted by Bki ).

(iv) Given Q ∈M(E), we write Q′i(dx
i) for the restriction of Q to the σ-algebra Bi. Further,

the Q-conditional measure with respect to Bi is denoted by Qi(x
i, dy). This measure is sup-

ported on the set {xi}×Ei+1. Identifying this support with Ei+1, we also write Qi(x
i, dyi+1)

for the Q-conditional measure but now as a probability measure on Ei+1. Given k > 0, we
also write Qi(x

i, dyi+1, . . . , dyi+k) for the restriction of Qi(x
i, dyi+1) to the σ-algebra Bi+ki+1 .

Hence for Ψ ∈ bBi+k,∫
Ψ dQ =

∫ [∫
Ψ(xi, yi+1, . . . , yi+k) Qi(x

i, dyi+1)

]
Q′i(dx

i).

(v) We write µ⊗k ∈M(Ek) for the product of k copies of µ. When Q ∈M and

Q(xi, dyi+1, . . . , dyi+k)� µ⊗k,

the corresponding Radon-Nikodym derivative is denoted by qi(yi+1, . . . , yi+k|xi).
(vi) Set

W i =

{
G ∈ Bi+1 :

∫
eG(xi,xi+1) µ(dxi+1) = 1 for every xi ∈ E i

}
.

We also write
W i

b =W i ∩ bBi+1, Ŵ i =W i ∩ C loc
b (E).

Note that for any F ∈ Bi+1, the function

F̂ (xi, xi+1) = F (xi, xi+1)− log

∫
eF (xi,yi+1) µ(dyi+1),

belongs toW i. Also, if Qi(x
i, ·)� µ for Q-almost all xi, then G(xi, xi+1) = log qi(xi+1|xi) ∈

W i after a modification on a Q-null set. �
We are now ready to state Donsker-Varadhan LDP. Recall that H(α|β) denotes the

relative entropy and was defined write after (3.6).

Theorem 4.1 The family {Pµn} satisfies an LDP with rate function Hµ :MS(E)→ [0,∞],
that is defined by

(4.10) Hµ(Q) =

∫
H(Q̂1

x|µ) Q(dx),

where Q̂1
x(dy1) = Q(x0, dy1) is the Q-conditional measure of x1 given B0.
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As a preparation for the proof Theorem 4.1, we find alternative formulas for the rate
Hµ(Q).

Theorem 4.2 (i) We have

Hµ(Q) = sup
F∈bBi+1

∫ [
F (xi, xi+1)− log

∫
eF (xi,yi+1) µ(dyi+1)

]
dQ

= sup
G∈Wi

b

∫
G dQ = sup

G∈Ŵi
b

∫
G dQ = H(Q′i+1|Q′i × µ).(4.11)

(ii) For every Q ∈MS(E), write Q̂k
x for Q0(x0, dy1, . . . , dyk). Then

Hµ(Q) = k−1

∫
H(Q̂k

x0|µ⊗k) Q′0(dx0).

(iii) Let Q ∈Mer(E) with Hµ(Q) <∞. Then

(4.12) Q

({
x : lim

n→∞
n−1

n∑
i=1

log qi(xi|xi−1) = Hµ(Q)

})
= 1.

(iv) There exists a set Ē ∈ B0 ∩ IT and a measurable map R : Ē → M(E) such that the
following properties are true for every Q ∈MS(E):

• Q(Ē) = 1.

•

(4.13) Q(dx) =

∫
Ē
R(y)(dx) Q(dy),

• If we write R̂(x)(dy1) for the law of the coordinate y1 with respect to R(x), then

(4.14) Hµ(Q) =

∫
H
(
R̂(x)|µ

)
Q(dx).

In particular, Hµ is an affine function.

Proof (i) The proof of the second equality in (4.11) is obvious because

G(xi, xi+1) = F (xi, xi+1)− log

∫
eF (xi,yi+1) µ(dyi+1),
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is always in W i. On the other hand,∫ [
F (xi, xi+1)− log

∫
eF (xi,yi+1) µ(dyi+1)

]
dQ,

equals ∫ [∫
F (xi, xi+1) Qi(x

i, dyi+1)− log

∫
eF (xi,yi+1) µ(dyi+1)

]
Q′i(dx

i),

and this is bounded above by∫
H
(
Qi(x

i, ·)|µ
)
Q′i(dx

i) = Hµ(Q),

by Theorem 3.3. For the reverse inequality, use the concavity of the log-function to assert
that (4.11) is bounded below by

sup
F∈bBi+1

∫ [∫
F (xi, xi+1) Qi(x

i, dyi+1)Q′i(dx
i)− log

∫
eF (xi,yi+1) µ(dyi+1)Q′i(dx

i)

]
= sup

F∈bBi+1

∫ [∫
F (xi, xi+1) Q′i+1(dxi+1)− log

∫
eF (xi,yi+1) µ(dyi+1)Q′i(dx

i)

]
= H(Q′i+1|Q′i × µ),

where we used Theorem 3.3 for the second equality. We now argue that H(Q′i+1|Q′i × µ) ≥
Hµ(Q). To prove this, we may assume that the left-hand side is finite which in turn implies
that Q′i+1 � Q′i × µ, or there exists a Borel function h(xi, xi+1) ≥ 0 such that

Q′i+1(dxi, dxi+1) = Qi(x
i, dxi+1)Q′i(dx

i) = h(xi, xi+1)Q′i(dx
i)µ(dxi+1).

Using this, we assert that indeed h(xi, ·) may be regarded as dQi(x
i, ·)/dµ. Hence

H(Q′i+1|Q′i × µ) =

∫
log h(xi, xi+1)Q′i(dx

i)µ(dxi+1) =

∫
H(Qi(x

i, ·)|µ) Q′i(dx
i) = Hµ(Q),

as desired.
It remains to check that the G-supremum in (4.11) can be restricted to Ŵ i

b. We first
show that we may restrict the supremum to Cb(E). As in the proof of Theorem 3.3, pick
ε > 0 and G ∈ W i

b, and use Lusin’s theorem to find a function F ∈ Bi+1 ∩Cb(E) such that if

A =
{
xi+1 : G(xi+1) 6= F (xi+1)

}
,

then (
Q′i+1 +Q′i × µ

)
(A) ≤ ε.
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We can readily show the expression

(4.15)

∣∣∣∣∫ G dQ−
∫ [

F (xi, xi+1)− log

∫
eF (xi,yi+1) µ(dyi+1)

]
Q′i(dx

i)

∣∣∣∣ ,
is bounded above by

c1ε+

∫
log
(
1 + c1µ(A(xi)

)
Q′i(dx

i),

where A(xi) = {xi+1 : (xi, xi+1) ∈ A}, and c1 > 0 is a constant that depends on ‖G‖+ ‖F‖
only. Using the elementary bound log(1 + a) ≤ a, we deduce that the expression (4.11) is
bounded by

c1ε+

∫
c1µ(A(xi)Q′i(dx

i) ≤ 2c1ε,

as desired.
We can readily restrict the F ∈ Cb(E)-supremum in (4.11) to F ∈ C loc

b (E) by approxima-
tion in uniform norm.

(ii) Assume thatHµ(Q) <∞. ThenQ0(x0, dx1)� µ(dx1) andQ0(x0, dx1) = q0(x1|x0)µ(dy1).
Let us write

f(x) := q0(x1|x0),

and regard it as a function in B1. By stationarity of Q, we have that Qi(x
i, dxi+1)� µ(dxi+1)

and
Qi(x

i, dxi+1) = qi(xi+1|xi) µ(dxi+1) = (f ◦ T i)(x),

for every positive integer i. By the definition of the conditional measure,

Q′k(dx
k) = Q′0(dx0)Q0(x0, dx1) . . . Qk−1(xk−1, dxk)

= q0(x1|x0) . . . qk−1(xk|xk−1) Q′0(dx0)µ(dx1) . . . µ(dxk)

=
k∏
i=1

f ◦ T i(x) Q′0(dx0)µ(dx1) . . . µ(dxk).

Hence Q̂k
x0 � µ⊗k for Q-almost all x, and∫

H
(
Q̂k

x0|µ⊗k
)
Q′0(dx0) = k

∫
log f(x) µ(dx1)Q′0(dx0) = kHµ(Q),

as desired.

(iii) Let f be as in part (ii) and set g = log f . If Hµ(Q) <∞, then∫
|g| dQ =

∫
|g(x)|Q(x0, dx1)Q′0(dx0) =

∫
f(x)| log f(x)| µ(dx1)Q′0(dx0) ≤ 1+Hµ(Q) <∞.
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Hence, we may apply Ergodic Theorem to assert

Q

({
x : lim

n→∞
n−1

n∑
i=1

g(T i(x)) = Hµ(Q)

})
= 1,

proving (4.12).

(iv) Step 1 By Theorem C.2 of the Appendix, we can find a set E0 ∈ IT such that the map

RT (x) := lim
n→∞

νn(x),

exists, belongs toMer(E), and RT (x) = Q for Q-almost all x whenever Q ∈Mer(E). In fact
we may use (4.9) to replace νn with ν̂n in the definition of QT . Moreover, (4.9) allows us to
replace νn with ν̂n in the definition of E0 that appears in the proof of Theorem C.2. (The
set E0 is defined to be the set of x for which the limits in (C.6) and (C.9) below exist for a
countable dense set of functions in Ub(E), that can be chosen to consist of local functions.)
Since ν̂(x) depends on x1 only, the set E1 ∈ B1. We now replace T with T−1 and denote the
corresponding E0 by Ē that now belongs to IT and B0.

Step 2 We may define a measurable map F :M(E)×E →M(E) such that F(Q,x) = Qx

is the Q-conditional measure, given B0. We then define R by

R(x) = F
(
RT (x),x

)
.

Now if Q ∈Mer(E), then using the fact that Q
({
RT (x) = Q

})
= 1, we can assert∫

Ē

R(y)(dx) Q(dy) =

∫
Ē
F
(
RT (y),y

)
(dx) Q(dy) =

∫
Ē
F (Q,y) (dx) Q(dy)

=

∫
Qy(dx) Q(dy) = Q(dx).

Hence (4.15) is true for every ergodic Q. Since R is independent of Q, both sides of (4.15)
are linear in Q. Since any Q ∈ MS(E) can be expressed as convex combination of ergodic
measures, we have (4.15) for every Q ∈MS(E).

Step 3 By the definition of R, we know that R(x) is B0 measurable. From this and (4.15)
we learn that R(x) = Qx is the Q-conditional measure with respect to B0 for Q-almost all
x. This immediately implies (4.14) by the very definition of Hµ. �

Proof of Theorem 4.1 Step 1 (Upper Bound) Given G ∈ Cb(E), define LG : M → R by
LG(Q) =

∫
G dQ. The restriction of LG to the set MS is also denoted by LG. We now

set V = {LG : G ∈ Ŵ1}, where Ŵ1 was defined in Definition 4.1. We now argue that
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indeed Λ(LG) = 0 for every G ∈ Ŵ1. To see this, first observe that if G ∈ W1, then write
G(x) = G(x1), and ∫

en
∫
G dνn dPµ =

∫
eG(x0,x1)+···+G(xn−1,xn) dPµ = 1,

because G ∈ W . From this and (4.9) we deduce that if G ∈ Ŵ1 and depends on k many
coordinates xr, . . . , xr+k−1, then

e−2k‖G‖ ≤
∫
en

∫
G dν̂n dPn ≤ e2k‖G‖.

From this, we can readily deduce that

Λ̄(G) := Λ(LG) = 0,

for every G ∈ Ŵ1. In view of Theorem 2.1 and 4.1(i), we have an ULDP for compact sets
with the rate function

Iu(Q) = sup
G∈Ŵ1

∫
G dQ = Hµ(Q).

Step 2 (Exponential Tightness) Let us write

αn(x) = n−1 (δx1 + · · ·+ δxn) .

We note that αn(x) is simply the one-dimensional marginal of ν̂n(x); for any f ∈ Cb(E),∫
f(y1) ν̂n(x)(dy) =

∫
f dαn(x).

The idea is that we already have exponential tightness for the marginals of ν̂n by Sanov’s
theorem. This and stationarity would yield exponential tightness for ν̂n. To see this, we use
the proof of the exponential tightness of the sequence {Pn} of Sanov’s theorem (see Step 3
of the proof of Theorem 3.2) to find compact subsets Ak of E such that

Pµ
({

x : αn(x)(Ack) > k−1 for some k ≥ `
})
≤ e−`n.

Let us write Q̃ for the one dimensional marginal of a stationary measure Q. If we set

A` =
{
Q ∈MS(E) : Q̃(Ack) ≤ k−1 for all k ≥ `

}
,

then
Pn(Ac`) = Pµ

({
x : αn(x)(Ack) > k−1 for some k ≥ `

})
≤ e−`n.
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We are done if we can show that A` is a tight subset of MS(E). Note that if we set

B` =
∏
i∈Z

A`2|i| ,

then by Tychonoff’s theorem, each B` is compact in E . Moreover, if we set

A′` =
{
Q ∈MS(E) : Q(Bc

`) ≤ 3`−1 for all ` ∈ N
}
,

then by Prohorov’s theorem the set A′` is tight. We are done if we can show that A` ⊆ A′`.
This is straightforward because if Q ∈ A`, then

Q(Bc
`) = Q ({x : xi /∈ A`2|i| for some i ∈ Z})

≤
∑
i∈Z

Q ({x : xi /∈ A`2|i|}) ≤ `−1
∑
i∈Z

2−|i| = 3`−1.

Step 3 (Lower Bound for Ergodic Measures) We wish to show that if U is an open set in
MS(E) and Q ∈ U with Hµ(Q) <∞, then

(4.16) lim inf
n→∞

n−1 logPµn (U) ≥ −Hµ(Q).

We first use (4.12) to establish (4.16) for Q ∈ Mer(E). Note that ν̂n(x) depends on xn1 =
(x1, . . . , xn) only. As a result, for any δ > 0,

Pµn (U) = Pµn ({x : ν̂n(x) ∈ U})

=

∫
11 (ν̂n(x) ∈ U) µ⊗n(dx1, . . . , dxn) Q′0(dx0)

≥
∫

11
(
ν̂n(x) ∈ U, q0(x1, . . . , xn|x0) > 0

)
µ⊗n(dx1, . . . , dxn) Q′0(dx0)

=

∫
11
(
ν̂n(x) ∈ U, q0(x1, . . . , xn|x0) > 0

)
e− log q0(x1,...,xn|x0) Q0(dx1, . . . , dxn|x0) Q′0(dx0)

=

∫
11
(
ν̂n(x) ∈ U, q0(x1, . . . , xn|x0) > 0

)
e− log q0(x1,...,xn|x0) Q(dx)

≥ e−nHµ(Q)−nδ
∫

11
(
ν̂n(x) ∈ U, q0(x1, . . . , xn|x0) > 0

)
11
(
n−1 log q0(x1, . . . , xn|x0) ≤ Hµ(Q) + δ

)
Q(dx).

From this, (4.12), and (4.10) we deduce that for every δ > 0,

lim inf
n→∞

n−1 logPµn (U) ≥ −Hµ(Q)− δ.
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This immediately implies (4.16) when Q ∈Mer(E).

Step 3 (Lower Bound for General Stationary Measures) We now establish (4.16) for a measure
Q that can be expressed as

(4.17) Q =
r∑
i=1

αiQi,

with αi ≥ 0 and Qi ∈ Mer(E) for i ∈ {1, . . . , r}, and
∑

i αi = 1. We first try to replace ν̂n
with an expression that is similar to (4.17). Let us examine this issue before periodization;
observe that if we set ni = [nαi], then

νn(x) = α1ν̂n1(x) + α2ν̂n2(T n1(x)) + · · ·+ αrν̂nr(T
n1+···+nr−1(x)) +O(2rn−1).

Motivated by this, let us define

ν̄n(x) = α1ν̂n1(x) + α2ν̂n2(T n1(x)) + · · ·+ αrν̂nr(T
n1+···+nr−1(x)).

Choose a countable dense set {Ψm m ∈ N} of uniformly continuous local functions, and
define the metric

D(Q,Q′) =
∞∑
m=1

2−m min

{∫
Ψm dQ−

∫
Ψm dQ′, 1

}
,

on M(E) that induces the weak topology. If the local function Ψm depends on k(m) many
consecutive coordinates, then

Err(n) := sup
x
D(ν̂n(x), ν̄n(x)) ≤

∞∑
m=1

2−m min
{

2rk(m)‖Ψm‖n−1, 1
}
,

which goes to 0 as n→∞. Since Q ∈ U , we may find δ > 0 such that

Bδ(Q) = {Q′ ∈MS(E) : D(Q′, Q) < δ}.

We then set U ′ = Bδ/2(Q) and assert

(4.18) Pµ ({x : ν̂n(x) ∈ U}) ≥ Pµ ({x : ν̄n(x) ∈ U ′}) ,

for sufficiently large n (i.e. those with Err(n) < δ/2). We now find open sets Ui ⊆MS(E),
such that Qi ∈ Ui for i = 1, . . . , r, and if we choose any Q′i ∈ Ui for i = 1, . . . , r, then we
always have

r∑
i=1

αiQ
′
i ∈ U ′.
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From this and (4.18) we learn that for large n,

Pµn (U) ≥ Pµ ({x : ν̄n(x) ∈ U ′})
≥ Pµ ({x : ν̂n1(x) ∈ U1}) · · ·Pµ

({
x : ν̂nr

(
T n1+···+nr−1(x)

)
∈ Ur

})
= Pµ ({x : ν̂n1(x) ∈ U1}) · · ·Pµ ({x : ν̂nr(x) ∈ Ur}) .

From this, Step 2, and linearity of Hµ, we deduce

lim inf
n→∞

n−1 logPµn (U) ≥
r∑
i=1

lim inf
n→∞

n−1 logPµ ({x : ν̂ni(x) ∈ Ui})

≥ − [α1Hµ(Q1) + · · ·+ αrHµ(Qr)] = −Hµ(Q).

This completes the proof of (4.16) for Q of the form (4.17).

Final Step It remains to prove that if Hµ(Q) <∞, then we can find a sequence of stationary
measures {Qn} such that

(i) limn→∞Q
n = Q;

(ii) For each Qn there exist αn1 , . . . , α
n
r(n) ≥ 0 and Qn

1 , . . . , Q
n
r(n) ∈ Mer(E) such that∑

i α
n
i = 1, and Qn =

∑
i α

n
i Q

n
i .

(iii) limn→∞Hµ(Qn) = Hµ(Q).

This is left as an exercise. �

Exercise 4.1 (i) Construct the sequence {Qn} as in the Final Step of the proof of Theo-
rem 4.1.

(ii) Use Contraction Principle to show that Theorem 4.1 implies Sanov’s theorem. �
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5 Large Deviation Principles for Markov Chains

We learned from Exercise 4.1(i) that the Donsker-Varadhan LDP implies Sanov’s LDP.
Needless to say that the latter is a much stronger LDP. To put Theorem 4.1 to a good
use, let us utilize Theorem 1.2 to establish two new LDPs. Perhaps the most celebrated
consequence of Theorem 4.1 is an LDP for the empirical measure of a Markov chain. This
is an immediate consequence of Theorem 4.1 and Theorem 1.2(i)-(ii).

Definition 5.1 (i) By a regular kernel we mean a uniformly positive bounded local contin-
uous function π(x1) = π(x1|x0) ∈ B1 such that

∫
π(x1|x0) µ(dx1) = 1 for every x0 ∈ E0.

(ii) Given a regular kernel π, we write Px0
= Px0

π,µ for the probability measure on E1 for
which the law of (x1, . . . , xk) is given by

k∏
i=1

π(xi|xi−1)µ(dxi).

Note that if π(x1|x0) = π(x1|x0) depends only on (x0, x1), then Px0 = Px0
π,µ := Px0

π,µ is the law
of a Markov chain that starts from x0 and has a Markov kernel π(x1|x0) µ(dx1).

(iii) Given a regular kernel π, we define Px0

n = Px0;π,µ
n ∈M(MS(E)) by

Px0

n (A) = Px0

π,µ ({x1 : ν̂n(x1) ∈ A}) .

Here we are simply writing ν̂n(x1) for ν̂n(x0,x1) because ν̂n(x) depends only on (x1, . . . , xn).

(iv) We write
αn(x1) = n−1 (δx1 + · · ·+ δxn) ,

for the empirical measures associated with x1. The law of αn(x1) with respect to Px0
= Px0

π,µ

is denoted by Px0

n = Px0;π,µ
n ∈M(M(E)):

Px0

n (A) = Px0

π,µ ({x1 : αn(x1) ∈ A}) .

�
Our goal is to use Theorem 4.1 to establish LDP for both {Px0;π,µ

n } and {Px0;π,µ
n }.

Theorem 5.1 (i) The sequence {Px0;π,µ
n } satisfies an LDP with rate function

Hµ,π(Q) =

∫
H
(
Q̂x|π̂x

)
Q(dx),

where Q̂x(dy1) = Q(x0, dy1) is as in Theorem 4.1, and π̂x(dy1) = π(y1|x0) µ(dy1). This LDP
is uniform in x0. Moreover,

(5.1) Hµ,π(Q) = sup
F∈B1

∫ [
F (x0, x1)− log

∫
eF (x0,y1)π(y1|x0) µ(dy1)

]
Q(dx).
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(ii) The sequence {Px0;π,µ
n } satisfies an LDP with rate function

(5.2) I(α) = inf {Hµ,π(Q) : τ(Q) = α} ,

where τ :MS(E)→M(E) and τ(Q) denotes the one-dimensional marginal of Q. This LDP
is uniform in x0.

Proof (i) Set G(x) = log π(x1|x0) and observe that G ∈ C loc
b (E). Note that for any F ∈

Cb(MS(E)),

e−2k‖G‖
∫
enF (ν̂n(x1))+

∫
G dν̂n(x1) Pµ(dx) ≤

∫
enF dPx0

n =

∫
enF (ν̂n(x1))+

∫
G dνn(x1) Pµ(dx)

≤ e2k‖G‖
∫
enF (ν̂n(x1))+

∫
G dν̂n(x1) Pµ(dx),

where k is chosen so that G(x) depends on (x−k+1, . . . , x−1, x0) only. From this it is clear
that

lim
n→∞

n−1 log

∫
enF dPx0

n = lim
n→∞

n−1 log

∫
enF+nLG dPµn ,

where LG(Q) =
∫
G dQ. From this, Theorem 4.1 and Theorem 1.1 we deduce that the

sequence {Px0;π,µ
n } satisfies an LDP with the rate function

Hµ(Q)−
∫
G dQ = Hµ(Q)−

∫ [∫
log π(y1|x0) Q̂x(dy1)

]
Q(dx) = Hµ,π(Q).

As for (5.1), choose F (x0, x1) = F ′(x0, x1)− log π(x1|x0) in (4.11) to assert

Hµ,π(Q) = sup
F ′∈bB1(E)

∫ [
F ′(x0, x1)− log

∫
eF
′(x0,x1)π(x1|x0) α(dx1)

]
dQ.

(ii) Since τ(ν̂n(x1)) = αn(x1), we learn

Px0;π,µ
n (A) = Px0;π,µ

n (τ−1(A)).

This, Part (i) and Theorem 1.2(ii) imply Part (ii). �
We now try to find a simpler expression for the rate function I when Px0

= Px0 is
Markovian. Recall that by (5.1) we can express Hµ as a supremum. Using this and the form
of I, we can think of two possible expressions for the rate function. In the first expression,
we try to find out what type of stationary measures could serve as minimizers in (5.2). Since
Px0 is a Markov chain, we guess that the minimizer is a stationary Markov chain. Such a
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Markov chain is completely determined by its one-dimensional marginal α and its Markovian
kernel q(dx1|x0) = q(x0, dx1). Based on this, we guess that I is equal to

(5.3) I1(α) := inf

{∫
H
(
q(·|x0)|π(·|x0)µ(·)

)
α(dx0) : α ∈ Iq

}
,

where Iq denotes the space of invariant measures for the Markovian kernel q:∫
q(dx1|x0) α(dx0) = α(dx1).

Alternatively, we may try to find out what type of functions F (x0, x1) in expression (5.1)
would be a maximizer for a Markovian Q. As we will see below, such F would be a function
of x1 only. Motivated by this, we define

(5.4) I2(α) := sup
f∈bB(E)

∫
(f − λ(f)) dα,

where

(5.5) λ(f)(x0) = log

∫
ef(x1)π(x1|x0) µ(dx1).

Theorem 5.2 If π(x1|x0) = π(x1|x0) is Markovian, then I = I1 = I2, where I1 and I2 are
defined by (5.3) and (5.4).

Proof Step 1 By restricting the supremum in (5.1) to functions of the form F (x0, x1) = f(x1),
we learn that if τ1(Q) = α, then

(5.6) I(α) ≥ I2(α).

We certainly have I ≤ I3, where

I3(α) = inf {Hµ,π(Q) : τ1(Q) = α, Q ∈MS(E) is Markovian} .

We can easily verify that I3 = I1. In view of (5.6), it remains to show that I1 ≤ I2.
Observe that if I1(α) <∞, then q(dx1|x0)� µ(dx1) for µ-almost all x0. If we write

q(dx1|x0) = q(x1|x0) µ(dx1),

then∫
H
(
q(·|x0)|π(·|x0)µ(·)

)
α(dx0) =

∫
q(x1|x0) log

q(x1|x0)

π(x1|x0)
µ(dx1)α(dx0) = H(γ|pα),
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where

γ(dx0, dx1) = q(dx1|x0)α(dx0) = q(x1|x0)µ(dx1)α(dx0),

pα(dx0, dx1) = π(x1|x0)µ(dx1)α(dx0).

Here γ is the 2-dimensional marginal of a Markov Q ∈MS(E) and could be any probability
measure on E2 = E×E with identical marginals. Writing τ1(γ) and τ2(γ), for the marginals
of γ, we may use Donsker-Varadhan variational formula (3.7) for the entropy, to assert

I1(α) = inf
{
H(γ|pα) : γ ∈M(E × E), τ1(γ) = τ2(γ) = α

}
= inf

γ∈Γ(α)
sup

g∈bB(E2)

[∫
g dγ − log

∫
eg dpα

]
,(5.7)

where
Γ(α) :=

{
γ ∈M(E × E) : τ1(γ) = τ2(γ) = α

}
.

Step 2 It remains to show that I1 ≤ I2 with I1 and I2 given by (5.7) and (5.4). We wish to
interchange the supremum with infimum in (5.7) with the aid of the Minimax Theorem D.1.
We note that if

J(g, γ) =

∫
g dγ − log

∫
eg dpα,

then J is linear in γ and concave in g. Moreover the set Γ(α) is convex and compact. The
latter is an immediate consequence of the bound

γ ((K ×K)c) ≤ 2α(Kc),

for γ ∈ Γ(α). From this and Minimax Theorem we deduce

I1(α) = sup
g∈bB(E2)

inf
γ∈Γ(α)

[∫
g dγ − log

∫
eg dpα

]
= sup

g∈bB(E2)

[
inf

γ∈Γ(α)

∫
g dγ − log

∫
eg dpα

]
.(5.8)

By Kantorovich’s duality formula (see Theorem E.1 below), we have

inf
γ∈Γ(α)

∫
g dγ = sup

(f,h)∈Γ′(g)

∫
(f + h) dα,

where Γ′(g) denotes the set of pairs (f, h) ∈ Cb(E)2 such that

f(x1) + h(x0) ≤ g(x0, x1),
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for all x0, x1 ∈ E. From this and (5.8) we deduce

I1(α) = sup
g∈bB(E2)

sup
(f,h)∈Γ′(g)

[∫
(f + h) dα− log

∫
eg dpα

]
≤ sup

g∈bB(E2)

sup
(f,h)∈Γ′(g)

[∫
(f + h) dα− log

∫
ef(x1)+h(x0) pα(dx0, dx1)

]
= sup

f,h∈Cb(E)

[∫
(f + h) dα− log

∫
ef(x1)+h(x0) pα(dx0, dx1)

]
=: I4(α).

We are done if we can show that I4 = I2.

Final Step To verify the equality of I4 and I2, let us define

η(f) = log

∫
E2

ef(x1) pα(dx0, dx1),

β(dx0) = e−η(f)

∫
E

ef(x1) pα(dx0, dx1) = eλ(f)(x0)−η(f) α(dx0),

so that β ∈M(E). We can now write,

I4(α) = sup
f∈Cb(E)

{∫
f dα + sup

h∈Cb(E)

[∫
h dα− log

∫
ef(x1)+h(x0) pα(dx0, dx1)

]}

= sup
f∈Cb(E)

{∫
f dα− η(f) + sup

h∈Cb(E)

[∫
h dα− log

∫
eh dβ

]}

= sup
f∈Cb(E)

{∫
f dα− η(f) +H(α|β)

}
= sup

f∈Cb(E)

{∫
f dα− η(f)−

∫ (
λ(f)− η(f)

)
dα

}
= sup

f∈Cb(E)

{∫
f dα−

∫
λ(f) dα

}
= I2(α).

We are done. �

Remark 5.1 The expression I1 in (5.3) was formulated based on our correct prediction
that when π is Markovian, the minimizing Q in (5.1) should also be Markovian. This and
τ(Q) = α does not determine Q uniquely. To figure out what the exact form of the minimizer
Q is, let us first find out what the maximizing f in (5.4) is. Indeed, if the maximizing f
is denoted by f̄ , then we would have ∂K(f̄) = 0, where K(f) =

∫
(f − λ(f)) dα and ∂K

denotes the (Gâteau) derivative of K. More precisely,

0 = ∂K(f̄)h =
d

dε
K(f̄ + εh)|ε=0 =

∫
h dα−

∫
ef̄(x1)−λ(f̄)(x0)h(x1)π(x1|x0) µ(dx1)α(dx0),
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for every h ∈ Cb(E). This means that if

πf̄ (dx1|x0) = ef̄(x1)−λ(f̄)(x0)π(x1|x0) µ(dx1),

then πf̄ is a Markovian kernel for which α is an invariant measure. In fact it is straightforward
to show if Qf̄ denotes the stationary Markov chain with τ(Q) = α and Markov kernel πf̄ ,
then

Hµ,π(Qf̄ ) = K(f̄) = I(α).

�

Exercise 5.1 Define T :M(E)→M(E) by

Tα(dx1) =

[∫
π(x1|x0) α(dx0)

]
µ(dx1).

Show
‖T (α)− α‖ ≤ R(I(α)),

where

R(a) = inf
b>0

[
a+ b− log(b+ 1)

b

]
, ‖ν‖ = sup

A∈B(E)

|ν(A)|.

Hint: Use I(α) ≥
∫

(f − λ(f)) dα for f = log(b+ 1)11A. �
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6 Wentzell-Freidlin Problem

Throughout this section, E denotes the space of continuous functions x : [0, T ] → Rd with
x(0) = 0, and ‖x‖ = supt |x(t)| denotes the uniform norm. We also write P ∈ M(E)
for the Wiener measure. More precisely, the process x(·) is a Standard Brownian motion
with respect to P. Moreover the law of the process n−1/2x(·) is denoted by Pn: For every
f ∈ Cb(E), ∫

f dPn =

∫
f
(
n−1/2x

)
P(dx).

Theorem 6.1 (Schilder) The family {Pn : ε > 0} satisfies an LDP with the rate function

I(x) =

{
1
2

∫ T
0
|ẋ(t)|2 dt x ∈ H1,

∞ otherwise,

where H1 denotes the space of weakly differentiable continuous functions.

Proof Step 1 (weak ULDP) Write BVT for the space of vector-valued left-continuous func-
tions F = (F1, . . . , Fd) : [0, T ] → Rd such that each Fi is of bounded variation. We then
set

V = {LF : F ∈ BVT},

where LF (x) =
∫
F · dx. This integral may be understood in the Riemann-Steiltjes sense

after an integration by parts:

LF (x) =

∫ T

0

F · dx = F (T ) · x(T )−
∫ T

0

x · dF.

Alternatively ,

LF (x) =

∫ T

0

F · dx = lim
k→∞

k∑
j=1

F (tj−1) · (x(tj)− x(tj−1)),

where tj = Tj/k. From this we can readily deduce that the random variable LF (x) is a

normal random variable with mean 0 and variance 1
2

∫ T
0
|F |2 dt: Indeed∫

eiLF (x) P(dx) = lim
k→∞

∫
ei

∑k
j=1 F (tj−1)·(x(tj)−x(tj−1)) P(dx)

= lim
k→∞

e2−1
∑k
j=1 |F (tj−1)|2(tj−tj−1) = e

1
2

∫ T
0 |F |

2 dt,
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for every F ∈ BVT .
To apply Theorem 2.1, we wish to evaluate Λ(LF ) for every F ∈ BVT . Clearly∫

enLF dPn =

∫
en

1/2LF dP = e
n
2

∫ T
0 |F |

2 dt.

As a result,

Λ(LF ) =
1

2

∫ T

0

|F |2 dt.

From this and Theorem 2.1(i) we deduce an ULDP for compact sets for the rate function

Iu(x) = sup
F∈BVT

[∫
F · dx− 1

2

∫ T

0

|F |2 dt
]
.

Step 2 (I = Iu) We now verify I = Iu. The proof of Iu ≤ I is straightforward because if
F ∈ BVT and x is absolutely continuous with ẋ ∈ L2([0, T ]), then∫

F · dx =

∫
F · ẋ dt ≤ 1

2

∫ T

0

|F |2 dt+
1

2

∫ T

0

|ẋ|2 dt.

We first note that for a smooth x, we can readily establish the reverse inequality by
selecting F (t) = ẋ(t). Motivated by this, we set tj = tkj = Tj/k, xj = x(tj), and choose

F =
k

T

k∑
j=1

(xj − xj−1)11[tj−1,tj).

We certaily have,∫
F · dx− 1

2

∫ T

0

|F |2 dt =
k

T

k∑
j=1

|xj − xj−1|2 −
k

2T

k∑
j=1

|xj − xj−1|2 =
k

2T

k∑
j=1

|xj − xj−1|2.

From this we deduce

(6.1) Iu(x) ≥ sup
k∈N

k

2T

k∑
j=1

∣∣x(tkj )− x(tkj )
∣∣2 .

Note that if xk ∈ E denotes the linear interpolation of x between (tkj : j = 0, . . . , k), then
xk ∈ H1 and

1

2

∫ T

0

∣∣ẋk∣∣2 dt =
k

2T

k∑
j=1

∣∣x(tkj )− x(tkj )
∣∣2 .
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Now if Iu(x) < ∞, then by (6.1), the sequence {ẋk : k ∈ N} is bounded in L2. Hence this
sequence has a subsequence that converges weakly to y ∈ L2([0, T ]) with

(6.2)
1

2

∫ T

0

|ẏ|2 dt ≤ Iu(x).

Since xk → x pointwise in large k limit, we have∫
ζ̇ · x dt = lim

k→∞

∫
ζ̇ · xk dt = − lim

k→∞

∫
ζ · ẋk dt =

∫
ζ · y dt,

for every smooth ζ with support in the interval (0, T ). Hence x is weakly differentiable with
ẋ = y. This and (6.2) imply that I(x) ≤ Iu(x), as desired.

Step 3 (Exponential Tightness) Pick α ∈ (0, 1/2), set δk = T/k, and define

G(x) = sup
k∈N

sup
|t−s|≤δk
s,t∈[0,T ]

|x(t)− x(s)|δ−αk .

For the exponential tightness, it suffices to show

(6.3) lim
`→∞

lim sup
n→∞

n−1 logPn(G ≥ `) =∞.

Writing tki = iTk−1,

G(x) ≤ 3 sup
k∈N

sup
1≤i≤k

sup
t∈[tki−1,t

k
i ]

∣∣x(t)− x(tki−1)
∣∣ δ−αk .

As a result,

Pn(G ≥ `) ≤
∞∑
k=1

kPn

(
sup
t∈[0,δk]

|x(t)| ≥ 3−1δαk `

)
≤

∞∑
k=1

kP

(
sup
t∈[0,δk]

|x(t)| ≥ 3−1δαk `n
1
2

)

≤
∞∑
k=1

2kP
(
|x(δk)| ≥ 3−1δαk `n

1
2

)
≤

∞∑
k=1

2kP
(
|x(1)| ≥ 3−1δ

α− 1
2

k `n
1
2

)
≤ c0

∞∑
k=1

ke−c1k
2α−1`2n ≤ c0

∞∑
k=1

ke−c2k
2α−1

e−`
2n ≤ c3e

−`2n.

This certainly implies (6.3).

Step 4 (LLDP) To apply Theorem 2.1, we need to determine ρ(V) of (2.5). Note that if

dPFn := dPLFn = en
∫ T
0 F ·dx−n

2

∫ T
0 |F |

2 dt dPn,
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then for any g ∈ Cb(E),∫
g dPFn =

∫
g
(
n−1/2x

)
en

1/2
∫ T
0 F ·dx−n

2

∫ T
0 |F |

2 dt P(dx)

=

∫
g
(
n−1/2(x+ n1/2f

)
P(dx) =

∫
g
(
n−1/2x+ f

)
P(dx),

where f(t) =
∫ t

0
F (s) ds, and we used Cameron-Martin’s formula (Theorem 6.2 below) for

the second equality. In other words, PFn is the law of n−1/2x+F with x a standard Brownian
motion. From this it is clear that PFn → δf in large n limit. Hence

ρ(V) =

{
f(t) =

∫ t

0

F (s) ds : F ∈ BV
}
.

To complete the proof of lower bound, we still need to verify (2.6), namely if I(x) <∞,
then we can find Xn ∈ ρ(V) such that I(xn)→ I(x) in large n limit. This is straightforward
and follows from the fact that the space of smooth (hence BV) is dense in L2([0, T ]). �

As our next model, we consider a dynamical system that is perturbed by a small white
noise. Given a bounded continuous vector field b, consider the equation

(6.4) dyn = b(yn, t)dt+ n−1/2dB, yn(0) = 0,

where B is a standard Brownian motion. By this we mean that yn ∈ E satisfies implicitly
Ψ(yn) = n−1/2B, where Ψ : E → E is defined by

Ψ(y)(t) = y(t)−
∫ t

0

b(y(s), s) ds.

Evidently the map Ψ is a continuous function.

Lemma 6.1 The map Ψ is a homeomorphism.

This lemma allows us to apply Contraction Principle (Theorem 1.2(i)) to the LDP of
Theorem 6.1 with Φ = Ψ−1. Recall that Pn is the law of n−1/2B with B a standard Brownian
motion. Let us write Qn for the law of the process yn of (6.4).

Corollary 6.1 The sequence {Qn : n ∈ N} satisfies LDP with the rate function

I ′(y) =

{
1
2

∫
|ẏ(t)− b(y(t), t)|2 dt if y weakly differentiable;

∞ otherwise.
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More generally, we may consider the stochastic differential equation

(6.5) dyn = b(yn, t)dt+ n−1/2σ(yn, t)dB, yn(0) = 0,

where both b and σ are Lipschitz continuous in x, uniformly in t ∈ [0, T ], and σ is a d× d-
invertible matrix for each (x, t). Let us continuous to write Qn for the law of the process yn

that satisfies (6.5). We are tempted to define Φ(x) = y implicitly by the equation

y(t) =

∫ t

0

b(y(s), s) ds+

∫ t

0

σ(y(s), s) dx(s),

and use
Qn(A) = Pn

(
Φ−1(A)

)
,

to assert the following generalization of Corollary 5.1:

Theorem 6.2 The sequence {Qn : n ∈ N} satisfies LDP with the rate function

I ′′(y) =

{
1
2

∫
|σ(y(t), t)−1 (ẏ(t)− b(y(t), t))|2 dt if y weakly differentiable;

∞ otherwise.

The difficulty is that the transformation Φ is no longer continuous and we need to show
that Φ can be approximated by continuous functions for a price that is super exponentially
small.

57



7 Stochastic Calculus and Martingale Problem

Let E be a Polish space and write C0(E) for the space of continuous functions f : E → R
that vanish at infinity. As before the space Cb(E) is equipped with the uniform norm ‖ · ‖.
Also C0(E) is a closed subset of Cb(E). A Feller Markov process in E is specified with its
transition probabilities {pt(x, ·) : t ≥ 0, x ∈ E} ⊆ M(E): If

Ttf(x) =

∫
f(y) pt(x, dy),

then T : C0(E) → C0(E), T0(f) = f , Tt ◦ Ts = Tt+s for every s, t ≥ 0, and for every
f ∈ C0(E), we have that Ttf → f as t → 0. We note that ‖Ttf‖ ≤ ‖f‖, and the map
t 7→ Ttf is continuous for every f ∈ C0(E).

The family {Tt : t ≥ 0} is an example of a strongly continuous semigroup and its
infinitesimal generator is defined by

Af = lim
t→∞

t−1(Ttf − f).

The set of functions f ∈ C0(E) for which this limit exits is denoted by Dom(A).
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8 Miscellaneous

8.1 Random matrices and Erdős-Rényi graphs

We begin with formulating some natural combinatorial questions about graphs. As we will
see in this section, we will be able to answer these questions with the aid of LD techniques
and some sophisticated combinatorial and analytical tools. To begin, let us write Gn for
the space of simple unordered graphs with n vertices and G = ∪∞n=1Gn for the space of
all such graphs. More precisely, Gn is simply the space of edge sets G of unordered pairs
e = {a, b} ⊆ {1, . . . , n} with a 6= b. Since there are n(n − 1)/2 many unordered edges,
we have ]Gn = 2n(n−1)/2. We define two functions v, e : G → N to represent the number
of vertices and edges of a graph: v(G) = n for G ∈ Gn, and e(G) = ]G. We may ask
the following combinatorial question: How many graphs G ∈ Gn has exactly tn3 many
triangles? By a triangle in a graph G, we mean an unordered triplet {a, b, c} such that
{a, b}, {a, c}, {c, b} ∈ G. Note that generically we would have O(n3) many triangles in a
graph of n vertices and since there are 2n(n−1)/2 such graphs, we may wonder whether or not
we can calculate

(8.1) T0 := lim
n→∞

n−2 log ]{G ∈ Gn : τττ(G) ≥ tn3},

where τττ(G) is the total number of triangles in G. To give a probabilistic flavor to this
problem, we may use the uniform probability measure Un on Gn and wonder what would
be the probability of having at least tn3 many triangles in a randomly sampled graph of n
vertices:

T := lim
n→∞

n−2 logUn

(
{G ∈ Gn : τττ(G) ≥ tn3}

)
.

This is clearly equivalent to (8.1) and T = T0 − log 2/2. More generally, we may pick
p ∈ (0, 1) and select edges independently with probability p. The outcome is known as the
Erdős-Rényi G(n, p) model and is a probability measure Up

n on Gn so that any graph G ∈ Gn
with m edges occurs with probability

pm(1− p)
n(n−1)

2
−m.

Evidently U1/2
n = Un. We are now interested in

(8.2) T (p) := lim
n→∞

n−2 logUp
n

(
{G ∈ Gn : τττ(G) ≥ tn3}

)
.

To turn (8.2) to a more familiar LD problem, observe that we may regard a graph G ∈ Gn
as a symmetric n× n matrix Xn(G) = [xij(G)]ni,j=1 such that

xij(G) = 11({i, j} ∈ G).
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With this notation, (xij(G) : i > j) is a collection of n(n−1)/2 iid Bernoulli random variables
under Up

n with Up
n(xij = 1) = p for every i > j. More generally, we may pick a probability

measure µ ∈ M(R), and let Xn(ω) = [xij]
n
i,j=1 be a random symmetric n× n matrix where

the entries for i > j are iid with law µ ∈M(R), and either assume that xii = 0 for each i, or
choose diagonal entries iid with law µ and independently from the off-diagonal entries. The
law of such a matrix is denoted by Uµ

n. Writing (λi(Xn) : i = 1, . . . , n) for the eigenvalues of
the random matrix Xn, we may wonder whether or not we have a LDP for empirical measure
of these eigenvalues. As it turns out, the random variable

1

6

n∑
i=1

λi(Xn)3,

is indeed the total number of triangles in a graph G, when Xn = Xn(G).
The primary purpose of this section is the statement and proof of a LDP for the family

{Xn} that has recently been obtained by Chaterjee and Varadhan [CV]. This LDP allows us
to evaluate T (p) and analogous quantities for large symmetric random matrices.

Before stating the main result of this section, let us go back to our Cramér-Sanov LDP
and discuss some possible refinements. We then use these refinements to motivate Chaterjee-
Varadhan’s work.

Given a sequence x = (x1, x2, . . . ) ∈ RN, define

(8.3) γn(θ; x) =
n∑
i=1

xi 11[(i−1)/n,i/n](θ), γ′n(dθ; x) = n−1

n∑
i=1

xi δi(dθ).

Writing E = L1([0, 1]) for the space of Lebesgue integrable functions and E ′ =Msn([0, 1]) for
the space of signed measures of finite variation on [0, 1], we certainly have that γn(·; x) ∈ E
and γ′n(·; x) ∈ E ′. We equip E ′ with the topology of weak convergence and regard E as the
set of signed measures that are absolutely continuous with respect to the Lebesgue measure.
If x is a sequence of iid random variables with law µ ∈ M(R), then the transformations
x 7→ γn(·; x) dθ and x 7→ γ′n(·; x) induce two probability measures Pn and P′n on E and E ′

respectively. We wish to establish a LDP for the families {Pn} and {P′n}. It is not hard to
see that the families {Pn} and {P′n} satisfy the same LDP. Moreover, either by modifying the
proof of Theorem 3.1, or by applying the contraction principle to the LDP of Exercise 3.4 we
can show that the family {Pn} satisfies LDP with a rate function I : E → [0,∞] such that
if I(γ) <∞, then γ is absolutely continuous with respect to the Lebesgue measure, and

I(γ) =

∫ 1

0

h

(
dγ

dθ

)
dθ,

with

(8.4) h(ρ) = sup
v∈R

(ρv − λ(v)),
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where λ as before is given by λ(v) = log
∫
exv µ(dx).

We now take a matrix Xn that is distributed according to Uµ
n. To preserve the matrix

structure, and in analogy with (8.3), define

kn(θ1, θ2;Xn) =
n∑

i,j=1

xij 11((θ1, θ2) ∈ Ji × Jj),

k′n(dθ1, dθ2;Xn) = n−2

n∑
i,j=1

xij δ(i/n,j/n)(dθ1, dθ2),

where Ji = [(i − 1)/n, i/n]. The transformation Xn 7→ kn(·, ·;Xn) dθ1dθ2 and Xn 7→
k′n(·, ·;Xn) push forward the probability measure Uµ

n to the probability measures Qn and
Q′n on E = Msn

(
[0, 1]2)

)
. As before, we equip E with the weak topology and examine

the question of LDP for the families {Qn} and {Q′n}. Again these two families enjoy the
same LDP and in just the same way we treated the families {Pn} or {P′n}, we can show the
following LDP for the family {Qn}. (See also Theorem 8.2 below.)

Theorem 8.1 The family {Qn} satisfies LDP with the rate function I : E → [0,∞] such
that if I(γ) <∞, then γ is absolutely continuous with respect to the Lebesgue measure with
a symmetric Radon-Nikodym derivative, and when dγ = g dθ1dθ2,

(8.5) I(γ) =
1

2

∫ 1

0

∫ 1

0

h(g(θ1, θ2)) dθ1dθ2,

with h as in (8.4).

To explain the appearance of 1/2 in (8.5), write Csym for the symmetric continuous
functions on [0, 1]2. Observe that if f ∈ Csym, and ∆ = {(s, t) ∈ [0, 1]2 : s ≤ t}, then

lim
n→∞

n−2 log

∫
en

2
∫
fdγ Qn(dγ) = lim

n→∞
n−2 log

∫
e2n2

∫
∆ f dγ Qn(dγ)

= lim
n→∞

n−2

n∑
i,j=1

λ

(
2n2

∫
Ji×Jj

f dθ1dθ2

)
11(j ≥ i)

=
1

2

∫ 1

0

∫ 1

0

λ(2f) dθ1dθ2 =: Λ(f).(8.6)

On the other hand, the LD rate function is given by the Legendre transform of Λ:

I(γ) = sup
f∈Csym

(∫
f dγ − 1

2

∫ 1

0

∫ 1

0

λ(2f) dθ1dθ2

)
=

1

2
sup

f∈Csym

(∫
f dγ −

∫ 1

0

∫ 1

0

λ(f) dθ1dθ2

)
.
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This equals the right-hand side of (8.5) when γ � dθ1dθ2.
To avoid some technical issues and simplify our presentation, let us assume that the

measure µ is concentrated on the set [−`, `]. This in particular implies that |kn| is bounded
by `. As a result, we may switch to the smaller state space K` that consists of bounded
measurable functions k with |k| ≤ `. Note that K` may be identified with a closed subset
of E and is a compact metric space with respect to the weak topology. In the case of an
Erdős-Rényi graph, we can even choose the space K1 of bounded measurable functions k,
taking values in the interval [0, 1] for the state space. With a slight abuse of notation, let us
regard Qn as a probability measure on K` (K1 in the case of Erdős-Rényi graph), and write
I : K` → [0,∞) for the rate function:

I(k) =
1

2

∫ 1

0

∫ 1

0

h(k(θ1, θ2)) dθ1dθ2.

Unfortunately the LDP of Theorem 8.1 is not strong enough to allow us to evaluate T (p)
of (8.2). This is because, if we attempt to express τττ(G) in terms of k̂n = kn(·, ·;Xn(G)), we
learn that for G ∈ Gn, τττ(G) = τ̂ττ(k̂n), where

τ̂ττ(k) =
1

6

∫
[0,1]3

k(θ1, θ2)k(θ2, θ3)k(θ3, θ1) dθ1dθ2dθ3,

and the function τ̂ττ : K → R is not continuous with respect to the weak topology. Certainly τ̂ττ
is continuous with respect to the topology of (strong) L1 convergence, but this is too strong
for establishing an LDP. A natural question is whether or not we can strengthen the weak
topology to guarantee the continuity of τ̂ττ without spoiling our LDP.

As it turns out, the cut metric d� of Frieze and Kannan would do the job as the LDP
result of Chaterjee and Varadhan demonstrate. This metric comes from the cut norm

‖k‖� := sup

{∫ 1

0

∫ 1

0

k(θ1, θ2)f(θ1)g(θ2) dθ1dθ2 : f, g ∈ B([0, 1]), |f |, |g| ≤ 1

}
.

We note that for k ∈ K`,∫
[0,1]2

k(θ1, θ2)k(θ2, θ3)k(θ3, θ1) dθ1dθ2 ≤ `2‖k‖�,

for each θ3. This can be readily used to show the continuity of τ̂ττ with respect to the cut
metric.

More generally we can take any finite simple graph H ∈ Gm and define τττH : K` → R by

τττH(k) =

∫
[0,1]#H

∏
{i,j}∈H

k(θi, θj)
m∏
r=1

dθr.
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Again τττH is continuous with respect to the cut metric. For example, if we take the cyclic
graph

Cm =
{
{1, 2}, {2, 3}, . . . , {m− 1,m}, {m, 1}

}
,

then

τττCm(k) =

∫
[0,1]m

k(θ1, θ2)k(θ2, θ3) . . . k(θm−1, θm)k(θm, θ1)
m∏
r=1

dθr =
∑
λ∈σ(k)

λm,

where σ(k) denotes the spectrum of the Hilbert-Schmidt operator

k̄(f)(θ) =

∫ 1

0

k(θ, θ′)f(θ′) dθ′.

Note that in the case of the Erdős-Rényi graph, the expression(
n
m

)
τττH
(
kn(·, ·;Xn(G))

)
, G ∈ Gn,

counts the number of subgraphs of G that are isomorphic to H.
On account of the continuity of the function τττH , it is desirable to establish a LDP for the

sequence {Qn} of probability measures that are now defined on the metric space (K`, d�).

Theorem 8.2 The family {Qn} satisfies a weak LDP with the rate function I : K` → [0,∞].

Proof Let us write Bsym for the space of bounded Borel symmetric functions f : [0, 1]2 → R.
For each f ∈ Bsym, define Lf (k) =

∫
[0,1]2

fk dθ, where dθ = dθ1dθ2. Note that Lf is bounded

and continuous with respect to the metric d�. (In fact Lf is even weakly continuous.) Set
V = {Lf : f ∈ Bsym}. By (8.6),

Λ(f) = lim
n→∞

n−2 log

∫
en

2Lf (k) Qn(dk) =
1

2

∫
[0,1]2

λ(2f) dθ,

which implies the ULDP for compact sets by Theorem 2.1(i).
In view of Theorem 2.1(ii)-(iii), we would like to establish a LLN for the measures

dQf
n = eLf−Λ(f) dQn.

Write Sm for the set of functions that are constants on each interval of the form

Jmij := [(i− 1)/m, i/m)× [(j − 1)/m, j/m),
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for i, j = 1, . . . ,m. For lower bounds, it suffices to verify

(8.7) lim
n→∞

Qf
n = δλ′(f),

for every f ∈ Sm and m ∈ N. This is because for an arbitrary f , we may take a finite
partition of boxes and replace the value of f by its average on each box and get a sequence
of simple {fn} such that

lim
n→∞

fn = f, lim sup
n→∞

I(fn) ≥ I(f).

This would allow us complete the proof of LLDP by applying Theorem 2.1(iii).
It remains to verify (8.7). Note that we are using the d� topology in (8.7); for the weak

topology (8.7) is an immediate consequence of Theorem 8.1. Let us write B�
r (g) for the set

of k such that d�(k, g) ≤ r. For (8.7), we need to show

(8.8) lim
n→∞

Qf
n

({
k : k /∈ B�

r (λ′(f))
})

= 0,

for every f ∈ Sm. If we write DJ for the restriction of the metric d� to the space of functions
that are defined on J , we have the inequality

d�(k, g) ≤
m∑

i,j=1

DJmij

(
kJmij , gJmij

)
,

where kJ denotes the restriction of k to J . As a result, d�(k, g) ≥ r implies that for some
J = Jmij , we have DJ(kJ , gJ) ≥ rm−2. From this we learn that practically we may assume
that m = 1 and f is constant in (8.8). From now on, we assume that f is constant that can
be assume to be 0 without loss of generality. In summary, it suffices to establish a LLD for
the sequence {Qn} with respect the cut metric.

Let us write m =
∫
x µ(dx). We wish to show

(8.9) lim
n→∞

Uµ
n

({
X : kn(X) /∈ B�

r (m)
})

= 0,

Note that we always have

(8.10) d�(k, k′) ≤ 4 sup
A,B∈B

∣∣∣∣∫
A×B

(k − k′) dθ
∣∣∣∣ ,

where B denotes the set of Borel subsets of [0, 1]. On the other hand, if both k and k′

are constants, the supremum in (8.9) can be restricted to sets A,B ∈ Bn, where Bn is
the σ-algebra generated by the of intervals [(i − 1)/n, i/n], i = 1, . . . , n, with i < j and
i, j ∈ {0, 1, . . . , n}. As a result,

Uµ
n

({
X : kn(X) /∈ B�

r (m)
})
≤ 22n sup

A,B∈Bn
Uµ
n

({
X :

∣∣∣∣∫
A×B

(kn(X)−m) dθ

∣∣∣∣ ≥ 4r

})
.
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From this we learn that for (8.9), we only need to show

(8.11) lim sup
n→∞

n−2 log sup
A,B∈Bn

Uµ
n

({
X :

∣∣∣∣∫
A×B

(kn(X)−m) dθ

∣∣∣∣ ≥ 4r

})
< 0.

This is a ULDP with the weak topology that is uniform on the sets A × B ∈ Bn. We can
readily verify (8.11) by Chebyshev’s inequality, in just the same way we prove Cramér’s
ULDP. �

In the case of the weak topology, a weak LDP implies a strong LDP because K` is compact
with respect to the weak topology. This is no longer the case if we use the cut metric d� (see
Exercise 8.1 below). We now employ a trick that would allow us to regain the compactness
that in turn would facilitate a LDP for a suitable quotient of the metric space (K`, d�).

Even though the labeling of vertices plays no role in our combinatorial questions, it does
play a role in the very definition of kn. For this reason, we only need a LDP that is insensitive
to a relabeling of vertices. In large n limit, a relabeling becomes a measure preserving change
of coordinates. More precisely, if γ : [0, 1]→ [0, 1] is a Lebesgue measure preserving bijection,
then we want to identify k with kγ that is defined by

kγ(θ1, θ2) = k(γ(θ1), γ(θ2)).

Let us write Γ for the set of such η and define equivalence classes

[k] :=
{
kγ : γ ∈ Γ

}
, k ∈ K`.

The set of all equivalence classes is denoted by K̃`. Naturally the cut norm d� induces a
(pseudo)metric

δ�([k], [k′]) = inf
γ∈Γ

d�(kγ, k′),

on K̃`. Since ‖k‖� = ‖kγ‖�, this metric is well defined. According to a fundamental theorem

of Lovász and Szegedy [LS], the metric space (K̃`, δ�) is compact. This compactness is a
consequence of a deep regularity lemma of Szemerédi that practically allows us to verify
total boundedness of this metric space. Before stating this lemma, let us make a couple
more comments so that we can state the LDP of [CV].

We note that the LD rate function I can be easily defined on K̃` because I(k) = I(kγ)

for every γ ∈ Γ. We abuse the notation and write I for the resulting function on K̃`. Also,
the map k 7→ [k] pushes forward Qn into a probability measure Q̃n on the space K̃`. We are
now ready to state our LDP:

Theorem 8.3 The family {Q̃n} satisfies a LDP with the rate function I : K̃` → [0,∞].
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The idea behind the LDP of Theorem 8.3 is that if C̃ is a closed set in K̃`, then it
is compact. If we lift C̃ to a closed subset C of K`, even though C is not necessarily
compact, it has a compact nucleus that produces other members of C by measure preserving
transformations. These transformations are simply permutations at the n-th level. Since
there are n! many such transformations, and n−2 log n!→ 0 in large n-limit, the set C is as
good as a compact set for which we already have LDP.

As we mentioned earlier, the main ingredient for the proof of Theorem 8.3 is a powerful
regularity lemma of Szemerédi. For our purposes we state a variant of this lemma that would
give us a practical way of proving the total boundedness of K̃`. As a preparation, let us recall
that Bn is the σ-algebra generated by the intervals Jni : i = 1, . . . , n. We also write B2

n for
the σ-algebra generated by the boxes Jnij : i, j = 1, . . . , n. The space of permutations π of
{1, . . . , n} is denoted by Π(n). Given k =

∑
i,j xij11Jnij ∈ B

2
n, we write kπ for

∑
i,j xπ(i)π(j)11Jnij .

We are now ready to state our main lemma.

Lemma 8.1 For each ε > 0, there exists a compact subset Kε` of K` and n0 = n0(ε) such
that if n ≥ n0, then

Kn,` := K` ∩ B2
n ⊆

⋃
π∈Π(n)

{
k ∈ B2

n : δ� (kπ,Kε`) ≤ ε
}

=:
⋃

π∈Π(n)

Kε,πn,` .

Armed with this lemma, we can readily prove Theorem 8.3.

Proof of Theorem 8.3 The lower bound LDP follows from the lower bound of Theorem 8.2.
As for the upper bound, let C̃ be a closed subset of K̃` and set

C = ∪{[k] : [k] ∈ C̃}, Cn = C ∩ B2
n ⊆ Kn,`.

To bound
Q̃n(C̃) = Qn(Cn),

pick ε > 0 and use Lemma 8.1 to assert

Cn ⊆ ∪π∈Π(n)

(
Kε,πn,` ∩ Cn

)
.

Since Kε,πn,` is the ε-neighborhood of the compact set Kε` , we can find a finite subset A ⊆ Kε`
such that

Kε` ⊆
⋃
f∈A

B�
ε (f).

Note that the set A is independent of n. As a result, we can find a subset A′ ⊂ Cn such that
#A = #A′ and

Cn ⊆
⋃

π∈Π(n)

(
Kε,πn,` ∩ Cn

)
⊆

⋃
π∈Π(n)

⋃
f∈A′

B�
2ε(f

π).
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In fact A′ = {f ′ : f ∈ A}, where f ′ is chosen so that f ′ ∈ Cn ∩ B�
ε (f), whenever this

intersection is nonempty. Hence

(8.12) Q̃n(C̃) = Qn(Cn) ≤ n!(]A) sup
π∈Π(n)

sup
f∈A′

Qn

(
B�
ε (fπ)

)
= n!(]A) sup

f∈A′
Qn

(
B�
ε (f)

)
.

On the other hand, since the set B�
ε (f) is weakly closed, we may apply Theorem 8.1 to assert

lim
ε→∞

lim sup
n→∞

n−2 logQn(B�
ε (f)) ≤ −I(f).

From this and (8.12) we learn

lim
ε→∞

lim sup
n→∞

n−2 logQn(Cn) ≤ − inf
f∈A′
I(f) ≤ − inf

C
I.

This completes the proof of the upper bound. �

Exercise 8.1
(i) Let kn(θ1, θ2) = kn(θ) =

∑
m∈Z2 an(m)eiθ·m be the Fourier expansion of kn. Show that

kn → k weakly if and only if
lim an→∞(m) = a(m),

exists for each m ∈ Z2. However, if ‖kn − k‖� → 0, then

lim
n→∞

sup
m∈Z2

|an(m)− a(m)| = 0.

(ii) When k(θ1, θ2) = k̄(θ1− θ2) for an even function k̄, find an expression for τ̂ττ(k). Use this
expression to show that τ̂ττ is not continuous in the weak topology.

(iii) Show that if k(θ1, θ2) = A(θ1)A(θ2), then

‖k‖� =

(∫ 1

0

|A(θ1)| dθ1

)2

.

Show that the sequence kn(θ1, θ2) = cos(2πnθ1) cos(2πnθ2) converges to 0 weakly, but has
no d�-convergent subsequence.

(iv) Verify (8.10) and (8.11). �
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A Probability Measures on Polish Spaces

By a Polish space (E, d), we mean that d is a metric on E and E is separable and complete
with respect to d. The corresponding σ-algebra of the Borel subsets of E is denoted by
B(E) or simply B. We write Br(x) for the open ball of center x and radius r in E. The
space of bounded continuous functions f : E → R is denoted by Cb(E). This space is
equipped with the norm ‖f‖ = supx∈E |f(x)|. We also write Ub(E) for the space of bounded
uniformly continuous functions. The space of Radon probability measures on E is denoted
byM =M(E). Given a sequence of probability measures, we say µn converges (weakly) to
µ, or simply µn ⇒ µ if

(A.1) lim
n→∞

∫
f dµn =

∫
f dµ,

for every f ∈ Cb(E). Here are some equivalent definitions for weak convergences of measures:

Theorem A.1 Let {µn} be a sequence in M(E) with E a Polish space. Then the following
statements are equivalent:

(i) µn ⇒ µ.

(ii) (A.1) holds for every f ∈ Ub(E).

(iii) lim supn→∞ µn(C) ≤ µ(C) for every closed set C.

(iv) lim infn→∞ µn(U) ≥ µ(U) for every open set U .

(v) limn→∞ µn(A) = µ(A) for every set A ∈ B such that µ(∂A) = 0.

Proof The only non-trivial parts to show are that (ii) implies (iii) and that (v) implies (i).
For the former observe that if d(x,C) = inf{d(x, y) : y ∈ C}, then

fk(x) = (1 + d(x,C))−k,

is a sequence of uniformly (even Lipschitz) bounded continuous functions such that fk ↓ 11C .
Hence

µ(C) = lim
k→∞

∫
fk dµ = lim

k→∞
lim
n→∞

∫
fk dµn ≥ lim sup

n→∞
µn(C).

To deduce (i) from (v), approximate f ∈ Cb(E) with

sk =
∞∑

i=−∞

ai 11 (f ∈ [ai−1, ai)) ,
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where (ai : i ∈ Z) are selected so that 0 < ai − ai−1 ≤ k−1, and µ({f = ai}) = 0 for every
i ∈ Z. From (v), we know that limn→∞

∫
sk dµn =

∫
sk dµ. This implies (i) because∫

|sk − f | dµn,
∫
|sk − f | dµ ≤ k−1.

�

Theorem A.2 If (E, d) is a Polish space, then there exists a metric d′ on E that induces the
same topology on E as the metric d, and the completion of E with respect to d′ is compact.
In particular, the space Ub(E) for the metric d′ is separable.

Proof First assume that E is compact and choose a countable dense subset {xn} of E. Then
choose a continuous function gn,m that has support in B2/m(xn) and is 1 in B1/m(xn) for each
n,m ∈ N. Let A = {gn,m : n,m ∈ N} and write A′ for the set of polynomials of rational
coefficients and variables in A. Then apply Stone-Weierstrass Theorem to show that A′ is
dense in C(E).

When E is a Polish space, by Urysohn-Tychonov type embeddings, we can embed E into
E ′ = [0, 1]N, where E ′ is equipped with the product topology. More precisely, since E is a
separable metric space, we may choose a countable base of open sets {Un : n ∈ N} and
continuous functions fn : E → [0, 1], n ∈ N such that U c

n = {x : fn(x) = 0}, for every
n ∈ N. Then Φ : E → [0, 1]N, defined by Φ(x) = (fn(x) : n ∈ N) is the desired embedding.
Clearly Φ is an injective continuous function. On the other hand, for any open set U ⊆ E,
the set Φ(U) is open in E ′: If ȳ ∈ Φ(U), choose x̄ and n ∈ N such that Φ(x̄) = ȳ, and
x̄ ∈ Un ⊆ U , so that ȳ ∈ V ∩ Φ(E) ⊆ Φ(U) for open set V = {y = (yi : i ∈ N) : yn > 0}.

From the embedding Φ, we learn that E is homeomorphic to a subspace E ′′ = Φ(E) of
the compact space E ′. Since the space E ′ is metrizable and compact; the closure Ê = Ē ′′ of
E ′′ in E ′ is a compact metric space. In other words, equip E ′ with the product metric d̄ so
that (E ′, d′) is a compact metric space. We then take the completion of E ′′ with respect to d̄
to obtain the compact metric space (Ê, d̄). Clearly Ub(Ê) is homeomorphic to Cb(Ê) = C(Ê)
because each f ∈ Ub(E) has a continuous extension to Ê. Since C(Ê) is separable, we deduce
that Ub(E) is separable. �

We learn from the proof of Theorem A.2 that any Polish space E is homeomorphic with
a subset of the compact metric space [0, 1]N. On the other hand, the measure space (E,B)
is homeomorphic to a subspace of {0, 1}N.

Theorem A.3 Equip Ē = {0, 1}N with the product topology and write B̄ for its Borel σ–
algebra. Let F = σ

(
{An : n ∈ N}

)
be a countably generated σ-algebra.

(i) The map
F (x) := (11An : n ∈ N),
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satisfies F−1
(
B̄
)

= F .

(ii) We have AF(x) = A′F(x) ∈ F , where

AF(x) = ∩{A : x ∈ A ∈ F}, A′F(x) = ∩∞n=1{An : x ∈ An}.

Moreover
{AF(x) : x ∈ E} =

{
F−1(x̄) : x̄ ∈ F (E)

}
.

(iii) In the case F = B = B(E), the map F is injective.

Proof (i) Write Dn ⊂ Ē, for the set of (xn : n ∈ N) ∈ Ē such that xm = 1. We can readily
show that B̄ = σ

(
{Dn : n ∈ N}

)
. Since F−1(Dn) = An, we deduce that F−1

(
B̄
)

= F .

(ii) By definition A′F(x) ∈ F , and

F (x) = F (y)⇔ A′F(x) = A′F(y).

On the other hand, if x ∈ A ∈ F , then A = F−1(Ā) for some Ā ∈ E by Part (i). As a result,
F (x) ∈ Ā and F−1

(
{F (x)}

)
⊆ A. This completes the proof of AF(x) = A′F(x) ∈ F .

(iii) In the case of F = B, choose a countable dense set {xn : n ∈ N} and select {An : n ∈
N} = {B1/m(1/n) : m,n ∈ N}. Since whenever x 6= y, we can find n 6= m such that

x ∈ An \ Am, y ∈ Am \ Am,

we learn that the corresponding F is injective. �

Remark A.1 We note that in general the map F is not surjective. In fact the set F (E)
may not be a Borel set. Nonetheless, it is true that the measure space (E,B) is isomorphic
to (Ē, B̄). See for example [P]. �

Definition A.1 The sets
(
AF(x) : x ∈ E) of Theorem A.3 are called the atoms of F . Note

that the atoms are the “smallest” sets in F . �

Example A.1 (i) When F = B, we have AF(x) = {x}.
(ii) Let E = EZ = {x = (xi : i ∈ Z) : xi ∈ E for i ∈ Z}, and write Bj for the σ-algebra
generated by (xi : i ≤ j). In other words, a Borel function F is Bj-measurable iff it depends
on coordinates (xi : i ≤ j) only. Then

ABj(x) = {y = (yi : i ∈ Z) ∈ E : yi = xi for i ≤ j}.

�
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B Conditional Measures

Let (E,B) be a Polish measure space i.e. E is a Polish space and B its Borel σ-field. Given
Q ∈ M(E) and p ≥ 1, we write Lp(Q) for the space of B-measurable functions f : E → R
such that

∫
|f |p dQ < ∞. The space of Q-essentially bounded functions is denoted by

L∞(Q). Given F a sub σ-algebra of B, and p ∈ [1,∞], we write Lp(Q;F) for the set of
f ∈ Lp(Q) such that f is also F -measurable. The conditional expectation of f ∈ L1(Q) with
respect to F is denoted by g = EQ(f |F) and is the unique g ∈ L1(Q;F) such that for any
h ∈ L∞(Q;F), ∫

hf dQ =

∫
hg dQ.

When f = 11A, we simply write Q(A|F) for EQ(f |F).
There are two ways to prove the existence of a conditional expectation. For example, for

square integrable functions, we may regard L2(Q;F) as a closed linear subspace of L2(Q)
and EQ(f |F), is simply the orthogonal projection of f onto L2(Q;F). For f ∈ L1(Q), set
Q′ = fQ and regard Q′ as a probability measure on F . Since Q′ � Q, by Radon-Nikodym
Theorem we can find g ∈ L1(Q;F) such that for every A ∈ F , we have Q′(A) =

∫
g dQ.

It is straightforward to show that EQ(f + f ′|F) = EQ(f |F) +EQ(f ′|F), Q-almost surely.
Equivalently, if A and A′ ∈ B are disjoint,

Q(A ∪ A′|F) = Q(A|F) +Q(A′|F),

Q-almost surely. This suggests that perhaps we can construct a nice version of {Q(A|F) :
A ∈ B)} such that Q(·|F)(x) is a probability measure for Q-almost all x ∈ E. If such a
version can be constructed, will be called a conditional probability measure. We state and
prove a theorem that would guarantee the existence of such conditional measures.

Theorem B.1 Let (E,B) be a Polish measure space, F ⊆ B is a σ-algebra, and Q ∈M(E).

(i) Then there exists a family {Qx : x ∈ E} ⊆ M(E) such that

• For every A ∈ B, the function x 7→ Qx(A) is F-measurable;

• For every A ∈ B and B ∈ F , we have Q(A ∩B) =
∫
B
Qx(A) Q(dx).

In other words, Qx(A) = Q(A|F)(x) for Q-almost all x.

(ii) If we write QF for Q|F , then

Q(dy) =

∫
Qx(dy) QF(dx).

(iii) If F is countably generated, then Q
(
x,AF(x)) = 1, where (AF(x) : x ∈ E) are the

atoms of F (see Definition A.1).
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Proof (ii) For any A ∈ F , we know that Q(x,A) = Q(A|F)(x) = 11A(x), Q-almost surely.
Now if F = σ

({
An : n ∈ N

})
, then from Q-almost sure equality Q(x,An) = 11An(x), for

each n ∈ N we deduce
Q (x,A′F(x)) = 1,

where A′F(x) = ∩∞n=1{An : x ∈ An}. From this and Theorem A.3(ii) we conclude that
Q
(
x,AF(x)) = 1.

Example B.1 (i) If B = F , then we may choose Qx = δx.

(ii) If Q(A) = 0 or 1 for every A ∈ F , then Qx = Q.

(iii) Let E = EZ, and write Bj for the σ-algebra generated by (xi : i ≤ j). Since E is a Polish
space, the σ-algebra F is coubtably generated. Then by Example A.1 and Theorem B.1(ii),
Qj(x, Ej(x)) = 1, where (Qj(x, ·) : x ∈ E) denote the conditional measures with respect to
Bj, and

Ej(x) := {y = (yi : i ∈ Z) ∈ E : yi = xi for i ≤ j}.
Let us write E j := {xj = (xi : i ≤ j) : xi ∈ E for i ≤ j}, and for xj ∈ E j, we set

E j(xj) := {(xj,xj) : xj = (xi : i > j) : xi ∈ E for i > j} = {xj} × E j.

Since x 7→ Qx is Bj-measurable, we may regard it as a kernel of the form Q(xj, dxj) that
is defined on Borel σ-algebra of the Polish space E j(xj). Moreover, for any Borel F (x) =
F (xj,xj), we have ∫

F dQ =

∫ [∫
Ej
F (xj,xj) Q(xj, dxj)

]
Qj(dxj),

where Qj(dxj) denotes the the restriction of Q to the σ-algebra generated by (xi : i > j).
�

C Ergodic Theorem

Let E be a Polish space and T : E → E a homeomorphism. The pair (E , T ) is an example
of a discrete dynamical system. A central question for the system (E , T ) is the long term
behavior of the orbits (T n(x) : n ∈ N) for x ∈ E .

We write MS =MT
S (E) for the space of invariant measure of the system (E , T ) :

(C.1) MS =MS(E) :=

{
Q ∈M(E) :

∫
F ◦ T dQ =

∫
F dQ, for every F ∈ Cb(E)

}
.

We can readily show that MS = MT
S (E) is a convex closed subset of M(E). Hence, the

space MS is also a Polish space.
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As before, the σ-algebra of Borel subsets of E is denoted by B. the σ-algebra of T -invariant
Borel sets is denoted by IT :

IT = {A ∈ B : A is a Borel set and T (A) = A}.

We also write Mer for the space of ergodic invariant measures. That is, Q ∈ Mer if Q ∈
MS, and if A ∈ IT , then Q(A) = 1 or 0. One can show that Mer is exactly the set of
extreme points of the convex set MS. That is, if Q ∈ M, then Q ∈ Mer iff whenever
Q = tQ1 + (1− t)Q2 for some Q1, Q2 ∈MS, then Q = Q1 = Q2.

According to the Boltzmann Ergodic Hypothesis, the time average of an observable over
an orbit is approximately equal to its ensemble average. A rigorous formulation of the
Boltzmann Hypothesis is given by the Birkhoff Ergodic Theorem. By time averages, we are
referring to the integration with respect to the empirical measures

νn(x) = n−1
(
δx + δT (x) + · · ·+ δTn−1(x)

)
.

For a compact notation we also regard νn(x) as an operator that is acting on Cb(E):

νn(x)(F ) =

∫
F dνn(x) = n−1

(
F (x) + F (T (x)) + · · ·+ F (T n−1(x))

)
.

It is straightforward to show that any limit point of {νn(x)} belong to MS.

Theorem C.1 (Birkhoff) For any F ∈ Cb(E), and Q ∈MS,

(C.2) Q
({

x : lim
n→∞

νn(x)(F ) = PTF
})

,

where PTF = EQ(F |IT ) is the conditional expectation of F , given the σ-algebra IT . Moreover
if F ∈ Lq(Q) for some q ∈ [1,∞), then

(C.3) lim
n→∞

∫
|νn(x)(F )− PTF |q dQ = 0.

Using a countable dense set of bounded uniformly continuous functions, we use Ergodic
Theorem to assert that for any Q ∈MS,

(C.4) Q
({

x ∈ E : lim
n→∞

νn(x) = QT
x

})
= 1,

where QT
x (dy) is a conditional measure of Q with respect to the σ-algebra IT . In particular

if Q ∈Mer, then

(C.5) Q
({

x ∈ E : lim
n→∞

νn(x) = Q
})

= 1,

As the following result of Oxtoby [Ox] indicates, we can construct a universal set on which
the limit of the empirical measures exists.
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Theorem C.2 There exists a Borel set E0 ∈ IT such that Q(E0) = 1 for every Q ∈ MS,
and if x ∈ E0, then

(C.6) RT (x) := lim
n→∞

νn(x) exists and is ergodic.

Moreover, for Q ∈Mer,

(C.7) Q
({

x ∈ E0 : RT (x) = QT
x

})
= 1,

where QT
x is the Q-conditional measure, given IT . In particular, for Q ∈Mer,

(C.8) Q
({

x ∈ E0 : RT (x) = Q
})

= 1.

Proof Set E1 to be the set of x ∈ E for which that the limit in (C.6) exists. Since each νn
is a continuous function, the set E1 is a Borel (even Fσδ) set and belongs to IT . We then
define RT : E1 →MS as in (C.6). Evidently the map RT is measurable. By (C.4), we have
Q(E1) = 1 for every Q ∈ MS. To figure out how to define E0, let us examine the ergodicity
of RT (x). Define PTF : E1 → R by PTF (x) =

∫
F dRT (x). We now take countable dense

set C of functions F ∈ Ub(E) and define E0 to be the set of x ∈ E1 such that

RT (F )(x) :=

∫
E1

[PTF (y)− PTF (x)]2 RT (x)(dy) = 0,

for every F ∈ C. We claim that if x ∈ E1, then (C.6) holds true. This is because

RT (x) ({y : PTF (y) = PTF (x)}) = 1,

for x ∈ E0 and F ∈ C. This means that in the support of RT (x), the function PTF is
constant for each F ∈ C; so the measure RT (x) is ergodic.

We now check that E1 ∈ IT , and Q(E1) = 1 for every Q ∈ MS(E). For this it suffices to
show

R̄(F ) :=

∫
RT (F )(x) Q(dx) = 0,
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for every F ∈ Cb(E) and Q ∈MS(E). Indeed

R̄(F ) =

∫
lim
m→∞

[∫
E1

[∫
F dνm(y)− PTF (x)

]2

RT (x)(dy)

]
Q(dx)

=

∫
lim
m→∞

lim
n→∞

n−1

n−1∑
i=0

(∫
F dνm(T i(x))− PTF (x)

)2

Q(dx)

=

∫
lim
m→∞

lim
n→∞

n−1

n−1∑
i=0

(∫
F dνm − PTF

)2

◦ T i(x) Q(dx)

=

∫
lim
m→∞

PT

(∫
F dνm − PTF

)2

Q(dx)

= lim
m→∞

∫
PT

(∫
F dνm − PTF

)2

Q(dx)

= lim
m→∞

∫ (∫
F dνm − PTF

)2

Q(dx)

=

∫
lim
m→∞

(∫
F dνm − PTF

)2

Q(dx) = 0,

completing the proof of (C.9). Here, we used

(i) the Bounded Convergence Theorem, for the first, fifth and seventh equalities;

(ii) the fact that
∫
F dνm → PTF on E1 as m→∞, for the first equality;

(iii) the definition of RT (x) for the second equality;

(iv) the invariance RT (x) = QT (T (x)) for the third equality;

(v) Ergodic Theorem (C.2) for the forth and last equalities.
Finally (C.7) is an immediate consequence of (C.5) and the definition QT . �

Corollary C.1 (Choquet Theorem) For every Q ∈ MS(E), we can find Θ ∈ M
(
Mer(E)

)
such that

(C.9) Q =

∫
M(Mer(E))

α Θ(dα).

Proof By the definition of conditional measure, we always have

Q =

∫
QT

x Q(dx).
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From (C.7),

Q =

∫
E0
RT (x) Q(dx).

We are done because RT (x) ∈Mer(E). �

D Minimax Principle

In many examples of interest, we use the Contraction Principle (Theorem 1.2(i)) to obtain
new LDP. In view of (2.2), the expression we get for the rate function I ′ involves a supremum
and an infimum. Sometimes we can simplify this expression by interchanging the infimum
with the supremum. In this Appendix we state and prove a minimax principle (known as
Sion’s minimax theorem) that provides us with sufficient conditions under which we can
perform such an interchange.

Let X and Y be a two topological vector spaces and J : X ′×Y ′ → R with X ′ ⊆ X, Y ′ ⊆
Y .

Definition D.1 We say J satisfies the minimax conditions if the following statements are
true:

(i) The set Xy(a) = {x : J(x, y) ≤ a} is closed and convex for each y ∈ Y and a ∈ R.

(ii) The set Yx(a) = {y : J(x, y) ≥ a} is closed and convex for each x ∈ X and a ∈ R. In
other words, the function J is quasi-convex and lower semi-continuous (resp. concave and
upper semi-continuous) in x-variable (resp. y-variable). The former means for t ∈ [0, 1],

J(tx1 + (1− t)x2, y) ≤ max{J(x1, y), J(x2, y)},
(resp. J(x, ty1 + (1− t)y2) ≥ min{J(x, y1), J(x, y2)}.)(D.1)

�
Theorem D.1 below is due to Sion. Its proof is adopted from [K].

Theorem D.1 Assume that X ′ is compact and convex, Y ′ is convex and that J : X ′×Y ′ →
R satisfies the minimax conditions. Then

(D.2) inf
x∈X′

sup
y∈Y ′

J(x, y) = sup
y∈Y ′

inf
x∈X′

J(x, y).

Proof The proof of inf sup ≥ sup inf is trivial. As for the reverse inequality, let a be any
number with

a < inf
x∈X′

sup
y∈Y ′

J(x, y).
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This means that ∩y∈Y ′Xy(a) = ∅. From this and the compactness of the sets {Xy : y ∈ Y ′},
we learn that there are finitely many y1, . . . , yk ∈ Y ′ such that ∩ki=1Xyi(a) = ∅. Hence

(D.3) a < inf
x∈X′

sup
1≤i≤k

J(x, yi).

It remains to show that (D.3) implies that for some ȳ ∈ Y ′, we have

(D.4) a < inf
x∈X′

J(x, ȳ).

We prove this by induction on k. It is obvious when k = 1. We now verify this for k = 2.
We hope to find ȳ ∈ [y1, y2] := {ty1 + (1− t)y2 : t ∈ [0, 1]} such that (D.4) is true. Suppose
to the contrary (D.4) fails to be true for all ȳ ∈ [y1, y2] and we would like to arrive at a
contradiction. To achieve this, pick a number b such that

(D.5) a < b < inf
x∈X′

max{J(x, y1), J(x, y2)},

so that we have

(D.6) Xy1(b) ∩Xy2(b) = ∅.

On the other hand, by (D.1),

(D.7) Xȳ(b) ⊆ Xy1(b) ∪Xy2(b),

for every ȳ ∈ [y1, y2]. Since we are assuming for now that infx∈X′ J(x, ȳ) ≤ a for all ȳ ∈
[y1, y2], we know that the closed sets Xȳ(b), Xy1(b) and Xy2(b) are nonempty. So (D.7) and
convexity (or even connectedness) of Xȳ(b) implies

(D.8) Xȳ(a) ⊆ Xȳ(b) ⊆ Xy1(b), or Xȳ(a) ⊆ Xȳ(b) ⊆ Xy2(b).

Define
Ti = {z ∈ [y1, y2] : Xz(a) ⊆ Xyi(b)},

for i = 1, 2. Certainly y1 ∈ T1, y2 ∈ T2, T1 ∩T2 = ∅ by (D.6), and T1 ∪T2 = [y1, y2] by (D.8).
We get a contradiction if we can show that both T1 and T2 are closed. For this, fix i ∈ {1, 2}
and take a sequence {zk} in Ti with zk → z in large k limit. By definition,

Xzk(a) ⊆ Xyi(b),

for every k. We wish to show that Xz(a) ⊆ Xyi(b). Pick x0 ∈ Xz(a), so that J(x0, z) ≤
a < b. By upper semi-continuity of J(·, yi), we also have J(x0, zk) < b for large k. That
is, x0 ∈ Xzk(a) ⊆ Xyi(b), as desired. This implies the closeness of both T1 and T2, and the
contradiction we were seeking for. In summary when k = 2, the inequality (D.3) implies the
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existence of ȳ ∈ Y ′ for which (D.4). For larger k, we argue by induction. If we already know
how to deduce (D.4) from (D.3) for some k ≥ 2, then in the case of k + 1, set

X ′′ = {x : J(x, yk+1) ≤ a}.

and restrict J to X ′′ × Y . If

(D.9) a < inf
x∈X′

sup
1≤i≤k+1

J(x, yi).

and X ′′ = ∅, then (D.4) is true for ȳ = yk+1 and we are done. Otherwise, apply the induction
hypothesis to the function J , restricted to X ′′ × Y : Since

a < inf
x∈X′′

sup
1≤i≤k

J(x, yi),

by (D.9), we can find y′ such that

a < inf
x∈X′′

J(x, y′).

This means
a < inf

x∈X′
max{J(x, y′), J(x, yk+1)}.

We finally use our result for the case k = 2 to deduce (D.4) for some ȳ ∈ Y ′. �

E Optimal Transport Problem

In the Monge transport problem, we search for a plan that minimizes the cost of transporting
mass from a set of locations to another set of locations. In a general setting, we have two
Polish spaces E0 and E1, and a Borel cost function g : E0 × E1 → R. Given α0 ∈ M(E0)
and α1 ∈M(E1), we wish to minimize the total cost

(E.1)

∫
g(x0, T (x0)) α0(dx0),

over Borel functions T : E0 → E1 such that T ]α0 = α1. Here T ] : M(E0) → M(E1) is
defined by

T ]α0(A1) = α0

(
T−1(A1)

)
,

for every A1 ∈ B(E1). We may rewrite (E.1) as

(E.2) C(γ) :=

∫
g(x0, x1) γ(dx0, dx1),

where γ(dx0, dx1) = δT (x0)(dx1)α0(dx0). The type of measures that appear in the Monge
optimization problem are characterize by two properties:
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• If we write τ0(γ) and τ1(γ) for x0 and x1 marginals of γ respectively, we have that
τ0(γ) = α0 and τ1(γ) = α1.

• The measure γ is supported on the graph of some Borel function T : E0 → E1.

If we relax this optimization problem by dropping the second requirement, we obtain the
Monge-Kantorovich transport problem:

(E.3) D(α0, α1) := inf {C(γ) : γ ∈ Γ(α0, α1)} .

where
Γ(α0, α1) := {M(E0 × E1) : τ0(g) = α0, τ1(γ) = α1} .

To guarantee that D(α0, α1) > −∞, we assume that there are functions a0 ∈ L1(α0) and
a1 ∈ L1(α1) such that

(E.4) g(x0, x1) ≥ a0(x0) + a1(x1).

According to Kantorovich, the variational problem (E.3) has dual formulations of the
forms

D∗(α0, α1) : = sup

{∫
f0 dα0 +

∫
f1 dα1 : (f0, f1) ∈ A∗(α0, α1)

}
D′(α0, α1) : = sup

{∫
f0 dα0 +

∫
f1 dα1 : (f0, f1) ∈ A′(α0, α1)

}
,(E.5)

where

A∗(α0, α1) =
{

(f0, f1) ∈ Cb(E0)× Cb(E1) : g(x0, x1) ≥ f0(x0) + f1(x1),

for all (x0, x1) ∈ E0 × E1

}
,

A′(α0, α1) =
{

(f0, f1) ∈ L1(α0)× L1(α1) : g(x0, x1) ≥ f0(x0) + f1(x1),

for α0 × α1 − almost all (x0, x1)
}
.

Theorem E.1 Assume that (E.4) is true. Then D(α0, α1) = D′(α0, α1) = D∗(α0, α1).

Proof Step 1 We first assume that E0 and E1 are compact. We use Lagrange multipliers to
drop the condition γ ∈ Γ(α0, α1); we may write

D(α0, α1) = inf
γ∈M(E0×E1)

sup
f0∈Cb(E0)

sup
f1∈Cb(E1)

[
Λ(γ, f0, f1) +

∫
f0 dα0 +

∫
f1 dα1

]
,
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where

Λ(γ, f0, f1) =

∫ (
g(x0, x1)− f0(x0)− f1(x1)

)
γ(dx0, dx1).

Since E0×E1 is compact, the spaceM(E0×E1) is compact. This allows us to apply Minimax
Theorem to assert

D(α0, α1) = sup
f0∈C(E0)

sup
f1∈C(E1)

inf
γ∈M(E0×E1)

[
Λ(γ, f0, f1) +

∫
f0 dα0 +

∫
f1 dα1

]
= sup

f0∈C(E0)

sup
f1∈C(E1)

[
inf

γ∈M(E0×E1)
Λ(γ, f0, f1) +

∫
f0 dα0 +

∫
f1 dα1

]
= sup

f0∈C(E0)

sup
f1∈C(E1)

[
R(γ, f0, f1) +

∫
f0 dα0 +

∫
f1 dα1

]
,

where
R(γ, f0, f1) = inf

(x0,x1)∈E0×E1

(
g(x0, x1)− f0(x0)− f1(x1)

)
.

Note that if a = R(γ, f0, f1), then

g(x0, x1) ≥ f0(x0) + f1(x1) + a,

a+

∫
f0 dα0 +

∫
f1 dα1 =

∫
f0 dα0 +

∫
(f1 + a) dα1.

Hence we can drop the R-term by modifying (for example) f1. This implies that D(α0, α1) =
D∗(α0, α1). Slight modifications of the above argument would yield D(α0, α1) = D′(α0, α1).

Step 2 We now drop the compactness assumption and instead we assume that g ∈ Cb(E0 ×
E1). Note that the space Γ(α0, α1) is tight because for any pair of compact sets K0 ⊆ E0,
K1 ⊆ E1, we have

γ
(
(K0 ×K1)c

)
≤ α0(Kc

0) + α1(Kc
1).

Since the function γ 7→
∫
g dγ is continuous, we know that there exists γ̄ ∈ Γ(α0, α1) such

that

D(α0, α1) =

∫
g dγ̄.

Given δ > 0, choose compact sets K0 ⊆ E0 and K1 ⊆ E1 such that

α0(Kc
0) + α1(Kc

1) ≤ δ.

This implies that γ̄(Kc) ≤ δ for K = K0 ×K1. We then define γ̂ by

γ̂ = γ̄(K)−111K γ̄,
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so that γ̂ ∈ M(K). We denote the marginals of γ̄ by α̂0 and ᾱ1. We also find γ̃ ∈ M(K)
such that

D(α̂0, α̂1) =

∫
g dγ̃.

Given δ ∈ (0, 1), use Step 1 to find f̂i ∈ C(Ki), for i = 0, 1 such that for every (x0, x1) ∈ K,

f̂0(x0) + f̂1(x1) ≤ g(x0, x1),

and

(E.6) D(α̂0, α̂1) =

∫
g dγ̃ ≤

∫
f̂0 dα̂0 +

∫
f̂1 dα̂1 + δ.

We are hoping to use the pair (f̂0, f̂1) to build a pair (f0, f1) so that
∫
g dγ̄ ≤

∫
f0 dα1 +∫

f1 dα1 + ε, for some small ε. Note that fi is only defined on Ki. Let us set

f0(x0) = inf
y1∈K1

(g(x0, y1)− f̂1(y1)), f1(x1) = inf
y0∈E0

(g(y0, x1)− f0(y0)).

Evidently f0(x0) + f1(x1) ≤ g(x0, x1) for all (x0, x1) ∈ E0 × E1, and f̂i ≤ fi on Ki. As a
result, ∫

g dγ̃ ≤
∫
f̂0 dα̂0 +

∫
f̂1 dα̂1 + δ ≤

∫
f0 dα̂0 +

∫
f1 dα̂1 + δ

=:

∫
f0 dα0 +

∫
f1 dα1 + δ′ + δ,(E.7)

where δ′ = δ(f0, f1) represents the error term we get as we by replace α̂i with αi for i = 0, 1.
To show that δ′ is small, we need some bounds on f0 and f1.

Step 3 To have pointwise bounds on f0 and f1, we first find such bounds for f̂0 and f̂1. We
have an obvious upper bound

f̂0(x0) + f̂1(x1) ≤ g(x0, x1) ≤ ‖g‖,

on the set K. As for the lower bound, observe that we almost have equality of g with
f̂0(x0) + f̂1(x1) on the support of γ̃. This is because by (E.6),∫

[g(x0, x1)− f̂0(x0)− f̂1(x1)] γ̃(dx0, dx1) ≤ δ.

This in particular implies that for some point (x̄0, x̄1) ∈ K,

(E.8) f̂0(x0) + f̂1(x1) ≥ g(x0, x1)− δ ≥ −‖g‖ − δ ≥ ‖g‖ − 1 =: −2a0
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Note that if we replace (f̂0(x0), f̂1(x1)) with (f̂0(x0)−c0, f̂1(x1)+c0) for a constant c0, nothing
in the above argument would change. We may choose c0 so that f̂0(x̄0) = f̂1(x̄1). Assuming
this, we may use (E.8) to assert

f̂0(x̄0) = f̂1(x̄1) ≥ −a0.

This in turn implies that for (x0, x1) ∈ K,

f̂0(x0) ≤ g(x0, x̄1)− f̂1(x̄1) ≤ ‖g‖+ a0, f̂1(x1) ≤ g(x̄0, x1)− f̂0(x̄0) ≤ ‖g‖+ a0.

Using these lower bounds we use the definition of f0 and f1 to deduce that for x0 ∈ E0 and
x1 ∈ E1,

−2‖g‖ − a0 ≤ f0(x0) = inf
K1

[g(x0, ·)− f̂1] ≤ g(x0, x̄1)− f̂1(x̄1) ≤ ‖g‖+ a0,

−2‖g‖ − a0 ≤ f1(x1) = inf
E0

[g(·, x1)− f0] ≤ 3‖g‖+ a0.

To summarize, we set a1 = 3‖g‖+ a0, so that

(E.9) |f0|, |f1| ≤ a1.

We are now ready to bound the error δ′ that appeared in (E.7). We can use (E.9) to show∣∣∣∣∫ fi dα̂i −
∫
Ki

fi dαi

∣∣∣∣ =

∣∣∣∣γ̄(K)−1

∫
K

fi(xi) γ̄(dx0, dx1)−
∫
fi dαi

∣∣∣∣ ≤ 2δa1

1− δ
.

From this and (E.7) we deduce

(E.10)

∫
g dγ̃ ≤

∫
f0 dα0 +

∫
f1 dα1 + 4δa1 + δ,

for every δ ∈ (0, 1/2]. We are almost done except that γ̃ does not α0 and α1 for its marginals.

Step 4 The support of γ̃ is contained in the set K. To extend it to the whole E0 × E1, we
define

γ∗ = γ̄(K)γ̃ + 11Kc γ̄.

We have

γ∗(A× E1) = γ̄(K) γ̃(A× E1) + γ̄
(
Kc ∩ (A× E1)

)
= γ̄(K) α̂(A) + γ̄

(
Kc ∩ (A× E1)

)
= γ̄

(
K ∩ (A× E1)

)
+ γ̄
(
Kc ∩ (A× E1)

)
= α0(A).
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In the same we show that x1-marginal of γ∗ is α1. On the other hand,∣∣∣∣∫ g dγ̃ −
∫
g dγ∗

∣∣∣∣ ≤ ‖g‖ (1− γ̄(K) + γ̄(Kc)) ≤ 2δ‖g‖.

From this and (E.10) we deduce∫
g dγ∗ ≤

∫
f0 dα0 +

∫
f1 dα1 + 4δa1 + δ + 2δ‖g‖.

This completes the proof assuming that g ∈ Cb(E0 × E1).

Final Step For the general case, choose a sequence {gn : n ∈ N} ⊆ Cb(E0 × E1) such that
gn ≤ gn+1 for every n ∈ N and supn gn = g. All we need to show is

(E.11) D(α0, α1) ≤ sup
n

inf
γ∈Γ(α0,α1)

∫
gn dγ.

Indeed once (E.11) is established, then we can choose a large n such that

D(α0, α1)− δ ≤ inf
γ∈Γ(α0,α1)

∫
gn dγ,

for a given δ > 0, and choose bounded continuous functions f0 and f1 such that

f0(x1) + f1(x1) ≤ gn(x0, x1) ≤ g(x0, x1),

inf
γ∈Γ(α0,α1)

∫
gn dγ − δ ≤

∫
f0 dα0 +

∫
f1 dα1,

by what we established in Step 3.
To establish (E.11), choose γn ∈ Γ(α0, α1) such that

inf
γ∈Γ(α0,α1)

∫
gn dγ =

∫
gn dγn,

and let γ̄ be any limit point of the sequence {γn}. We have

D(α0, α1) ≤
∫
g dγ̄ = lim

m→∞

∫
gm dγ̄ = lim

m→∞
lim
n→∞

∫
gm dγn

≤ lim
m→∞

lim
n→∞

∫
gn dγn = lim

n→∞

∫
gn dγn = sup

n
inf

γ∈Γ(α0,α1)

∫
gn dγ,

as desired. �
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