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1 Introduction

Hamilton–Jacobi equation (HJE) is one of the most popular and studied PDE which enjoys
vast applications in numerous areas of science. Originally HJEs were formulated in connec-
tion with the completely integrable Hamiltonian ODEs of celestial mechanics. They have
also been used to study the evolution of the value functions in control and differential game
theory. HJE associated with space-time stationary Hamiltonian functions are used to study
turbulence in hydrodynamics. Several growth models in physics and biology are described
by such HJEs and their viscous variants. In these models, a random interface separates re-
gions associated with different phases and the interface can be locally approximated by the
graph of a solution to a HJE. Naturally we would like to understand how the randomness
affects the solutions and how the statistics of solutions are propagated with time. Lagrangian
techniques in Aubry-Mather theory for action-minimizing trajectories, PDE techniques of
weak KAM theory, and probabilistic methods related to first/last passage percolation prob-
lems have been employed to study long-time behavior of solutions. Most notably, a unique
invariant measure has been constructed for any prescribed average velocity for some impor-
tant examples of Hamiltonian functions. In these lectures I will give an overview of some
of the existing results for the statistics of random solutions to HJEs. In particular, I will
discuss a systematic approach for constructing Gibbsian solutions to Hamilton- Jacobi PDEs
by exploring the Eularian description of the shock dynamics. Such Gibbsian solutions de-
pend on kernels satisfying kinetic-like equations reminiscent of the Smoluchowski model for
coagulating and fragmenting particles.

Given a C2 Hamiltonian function H : R× [0,∞)× R → R, we consider the HJE

(1.1) ut = H(x, t, ux), t ≥ s,

1



or the corresponding scalar conservation law

(1.2) ρt = H(x, t, ρ)x, t ≥ s.

We assume that the Hamiltonian function H(x, t, ρ) is convex in the momentum variable ρ.

Definition 1.1 Given z = (y, s) ∈ Rd+1, by a fundamental solution W (·; z) : R×(s,∞) → R
associated with z we mean

(1.3) W (x, t; z) = sup

{∫ t

s

L
(
ξ(θ), θ, ξ̇(θ)

)
dθ : ξ ∈ C1

(
[s, t];Rd

)
, ξ(s) = y, ξ(t) = x

}
,

where L is the Legendre transform of H in the p-variable:

L(x, t, v) = inf
p

(
p · v +H(x, t, p)

)
, H(x, t, p) = sup

v

(
L(x, t, v)− p · v

)
.

We also set M(x, t; z) = Wx(x, t; z) for the x-derivative of W . □

Under our conditions on H, the function W is a Lipschitz function of (x, t) for t > s,
and M(x, t) is well-defined a.e.. A representation of M is given as follows. For each (x, t),
we may find a maximizing C1 path ξ(θ) = ξ(θ;x, t; z). This maximizing path satisfies a
Newton’s like equation (

Lv(ξ(th), θ, ξ̇(θ))
)
θ
= Lx(ξ(th), θ, ξ̇(θ)).

If we set p(θ) = Lv(ξ(θ), θ, ξ̇(θ)), then the pair (ξ(θ), p(θ)) satisfies the Hamiltonian ODE

ξ̇(θ) = −Hp(ξ(θ), θ, p(θ)), ṗ(θ) = Hx(ξ(th), θ, p(θ)).

The function M is continuous at (x, t) if and only if the maximizing path is unique. When
this is the case, we simply have

(1.4) M(x, t) = Lv

(
ξ(t), t, ξ̇(t)

)
= Lv

(
x, t, ξ̇(t)

)
.

In general M(x, t) could be multi-valued; for each maximizing path, the right-hand side of
(1.4) offers a possible value forM(x, t). Under our assumptions on H, the set of discontinuity
points of M(·, t) is countable for each t.

The Cauchy problem associated with (1.1) has a representation of the form

(1.5) u(x, t) = sup
y

(
u0(y) +W (x, t; y, s)

)
.

In other words, u given by (1.5), satisfies (1.1) in viscosity sense for t > s, and u(x, s) = u0(x).
We also use the notation

T t
s (u

0)(x) = u(x, t),
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so that the family
{
T t
s : s ≤ t

}
is a semigroup. Let us observe that the nonlinear operator

T t
s has the following strong monotonicity property:

(1.6) T t
s

(
sup
α∈I

gα
)
= sup

α∈I
T t
s

(
gα
)
,

where
{
gα : α ∈ I

}
is a family of initial data.

Example 1.1(i) When H does not depend on (x, t), then

W (x, t; y, s) = (t− s)L

(
x− y

t− s

)
, M(x, t; y, s) = ∇L

(
x− y

t− s

)
.

This leads to the formula

(1.7) u(x, t) = sup
y

(
u0(y) + (t− s)L

(
x− y

t− s

))
.

Moreover, if we set s = 0, and write y(x, t) for a maximizing y in (1.7), then

ρ(x, t) = ∇L

(
x− y(x, t)

t

)
.

Also observe that for wp(x, t) = p · x + (t − s)H(p) − c is also solution for p ∈ Rd, c ∈ R.
From this and (1.6) we learn that for every function g∗, the function

(1.8) u(x, t) = sup
p

(
p · x+ (t− s)H(p)− g∗(p)

)
,

is a solution that is convex in (x, t), and has the initial data

u(x, s) = sup
p

(
p · x− g∗(p)

)
.

□

Example 1.2 Several examples of stochastic growth models and random fluids can be for-
mulated as HJE with H(x, t, ρ) = H0(ρ)−V (x, t), with H0 convex, and a potential V which
is stationary process in (x, t). Note that L takes the form L(x, t, v) = L0(v) + V (x, t), with
L0 a concave function given by

L0(v) = inf
p

(
p · v +H0(p)

)
.

(i) As our first example of a stationary potential, consider

V (x, t) =
∞∑
i=1

Vi(x)Ḃi(t),
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where (Vi : i ∈ N) is a collection of 1-periodic functions, and (Bi : i ∈ N) is a collection of
i.i.d standard Brownian motions. This model was studied in [EKMS].

(ii) As an example of a percolation-like model, we assume that the stationary potential V
is formally given by

(1.9) V (x, t) =
∑
i∈I

δsi(t)11(x = ai),

where ω =
{
(ai, si) : i ∈ I

}
, is a realization of a Poisson Point Process of intensity 1 in R2.

In practice, we may approximate V by

Vε(x, t) =
∑
i∈I

ε−1ζ

(
t− si
ε

)
η

(
x− ai
δ(ε)

)
,

where δ(ε) → 0, in small ε-limit, and η and ζ are two smooth functions of compact support
such that

∫
ζ(t) dt = 1, and η(x) = 1 in a neighborhood of the origin. Replacing V with

Vε yields a Hamiltonian function Hε for which the equation (1.1) is well-defined and its
solution uε has a limit u as ε → 0. A variational representation as in (1.5) for uε would yield
a variational representation for u as well. It is not hard to show that the minimizing path ξ
of the variational problem (1.3) is a concatenation of line segments between Poisson points
of ω. In other words,

(1.10) W (x, t; y, s) = W (x, t; y, s;ω) = sup

N(z) +

N(z)∑
i=1

(si+1 − si)L0

(
ai+1 − ai
si+1 − si

) ,

where the supremum is over sequences z =
(
(a0, s0), (a1, s1), . . . , (an, sn), (an+1, sn+1)

)
, such

that N(z) = n, and

s0 < s1 < · · · < sn+1, (a1, s1), . . . , (an, sn) ∈ ω,

(a0, s0) = (y, s), (an+1, sn+1) = (x, t).(1.11)

This model was defined and studied in Bakhtin [B] and Bakhtin et al. [BCK] when H0(p) =
p2/2 (which leads to L0(v) = −v2/2).

(iii) If H0(p) = |p| in part (ii), then L0(v) = −∞ 11(|v| > 1). In this case,

W (x, t; y, s) = W (x, t; y, s;ω) = supN(z),

where the supremum is over sequences z as in (1.1), with the additional requirement

|ai+1 − ai| ≤ si+1 − si.

Note that the fundamental solutions take value in N. Moreover, if the height function takes
value in Z initially, then the same is true at later times. The corresponding u(x, t) is a
stochastic growth model that is known as Polynuclear Growth (in short PNG). We refer to
[PS] for more details. □
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1.1 Discrete models

The HJE offers a growth model in the continuum i.e., x ∈ Rd, u ∈ R, and t ∈ R. There
are many interesting and well-studied growth models such that some of the parameters are
discrete. We already discussed PNG model in Example 1.2(iii) where the height function
takes value in Z. PNG model is an example of a completely integrable model because of
a determinantal description of its correlation function. We now discuss another family of
stochastic growth models where the time is discrete. This family includes an integrable
model that is known as semi-discrete polymer (SDP in short).

Ginzburg-Landau (GZ) model is a diffusion h(t) = (hi(t) : i ∈ Z) which satisfies the SDE

dhi

dt
=

(
σ +

γβ2

2

)
V ′(hi+1 − hi) +

(
σ − γβ2

2

)
V ′(hi − hi−1) + β

dBi

dt

= σ(V ′(hi+1 − hi)) + V ′(hi − hi−1))(1.12)

+
γβ2

2
(V ′(hi+1 − hi)− V ′(hi − hi−1)) + β

dBi

dt
.

where β, γ > 0 and Bi’s are independent Brownian motions. If we interpret hi as the height
at site i, and write ri = hi − hi−1, for the height difference, then

dri
dt

=

(
σ +

γβ2

2

)
V ′(ri+1) +

(
σ − γβ2

2

)
V ′(ri)−

(
σ +

γβ2

2

)
V ′(ri)

−
(
σ − γβ2

2

)
V ′(ri−1) + β

(
dBi

dt
− dBi−1

dt

)
.

Writing Di and Di,i+1 for ∂
∂ri

− ∂
∂ri+1

and ∂
∂ri

respectively, the generator of h can be written

as L = σA+ β2S, where

A =
∑
i

(V ′(ri+1) + V ′(ri))Di,i+1 =
∑
i

(V ′(ri+1)− V ′(ri−1))Di,

S =
1

2

∑
i

D2
i,i+1 − γ(V ′(ri)− V ′(ri+1))Di,i+1.(1.13)

We now argue that A is invariant with respect to

να(dr) =
∏
i

1

Z(α)
eαri−γV (ri),

with Z(α) =
∫
eαr−V (r)dr.∫

g Sf dνα =

∫
f Sg dνα = −1

2

∫
(Di,i+1f)(Di,i+1g)dνα,
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and
∫
Af dνα = 0, for every nice (local) function f and g. To see this, observe∫ ∑
i

(V ′(ri+1)− V ′(ri−1))
∂f

∂ri
dνα =

∫ ∑
i

(V ′(ri+1)− V ′(ri−1))(−α + γV ′(ri))dνα = 0.

As an example, choose σ = −1/2, and γ = β = 1 so that (1.12) simplifies to

dhi = −V ′(ri) dt+ dBi.

In particular, when V (r) = e−r + r/2, we arrive at

(1.14) dhi =

(
ehi−1−hi − 1

2

)
dt+ dBi.

This is closely related to the stochastic discrete heat equation of the form

(1.15) dZi = Zi−1 dt+ ZidBi.

One can show that Zi(t) > 0 for all i ∈ Z, and t > 0, if this is so initially i.e., Zi(0) > 0, for
all i ∈ Z. If we set hi = logZi, then h = (hi : i ∈ Z) satisfies

dhi =
dZi

Zi

− Z2
i

2Z2
i

dt =
Zi−1

Zi

dt− 1

2
dt+ dBi,

which is (1.14).

2 Homogeneous Hamiltonian

Even when H is deterministic and independent of (x, t), some interesting mathematics
emerges as we start from a random initial data. As a warm up, let us study the solution ρ
of (1.2) for a white noise initial data. Equivalently, the initial data for (1.1) is a two-sided
Brownian motion. In the case of Burgers Turbulence, we have d = 1, s = 0, H(p) = p2/2,
and the initial data is white noise. From (1.7) we learn

(2.1) u(x, t) = sup
y

(
σB(y)− (x− y)2

2t

)
,

where B is a standard two-sided Brownian motion. If we set

B̂(y) = λ−1B(λ2y),
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then B̂ has the same law as B, and û, given by

û(x, t) = sup
y

(
σB̂(y)− (x− y)2

2t

)
= sup

y

(
σλ−1B

(
λ2y
)
− (x− y)2

2t

)
= λ−1 sup

y

(
σB(y)− λ

(
x− λ−2y

)2
2t

)
= λ−1 sup

y

(
σB(y)−

(
λ2x− y

)2
2tλ3

)
= λ−1u

(
λ2x, λ3t

)
,

has the same law as u. By choosing λ = t−1/3, we learn that the process x 7→ u(x, t), and
x 7→ t1/3u

(
t−2/3x, 1) := t1/3u

(
t−2/3x) have the same law. Groenboom [G] discovered that

the process x 7→ ux(x, 1) =: ρ(x) is linear motion that interrupted by random jumps. More
specifically, it is a Markov process with a drift equals to −1, and a jump rate density of the
form

(2.2) f(ρ−, ρ+) =
J(ρ−)

J(ρ+)
K
(
ρ+ − ρ−

)
, ρ− < ρ+,

where J and K are explicitly known; when σ = 2−1/2, then their Laplace transforms

j(z) =

∫ ∞

−∞
e−zρJ(ρ) dρ, k(z) =

∫ ∞

0

e−zρK(ρ) dρ,

are given by

j(z) = Ai(z)−1, k(z) = −2
d2

dz2
logAi(z),

with Ai denoting the Airy function defined by

Ai(z) =
1

π

∫ ∞

0

cos

(
θ3

3
+ xθ

)
dθ.

Moreover the process u(x) is a stationary Markov process with an invariant measure that is
explicitly given by

(2.3) π(dρ) = J(ρ)J(−ρ) dρ.

One way to interpret the work of [G] is that if we regard the initial white noise data as a
(singular) Markov process, then this Markov property persists under the evolution of Burgers’
equation. In 2010, Menon and Srinivasan formulated a conjecture about the evolution of
Markovian solutions of (1.2) when the Hamiltonian is convex and independent of (x, t). This
conjecture was established in [KR1] and [KR2]. As was demonstrated in [OR], we may use
the work of [KR2] to give a new proof of (2.2). This is carried out in two steps.

7



(1) The jump rate f(t, ρ−, ρ+) = t−1/3f
(
t1/3ρ−, t

1/3ρ+
)
is compatible with the Burgers’

equation.

(2) The law of the process x 7→ u(x, t) (or equivalently the process x 7→ t1/3u
(
t−2/3x))

converges to the law of the Brownian motion 2−1/2B, in low t-limit.

In fact (2) is a central limit theorem (CLT) for the Markov process u(x): For ε = t−1/3,

(2.4) lim
ε→0

uε(x) := lim
ε→0

εu
(
ε−2x

)
= lim

ε→0
ε

∫ ε−2x

0

ρ(y) dy = 2−1/2B(x).

As we will see, if the generator of the Markov process ρ(x) is denoted by L, then we can
explicitly determine L−1. On the other hand, if V (ρ) = ρ, then V is of 0 average with
respect to the invariant measure, and we can explicitly calculate the diffusion coefficient as
we establish a central limit theorem for uε. Let us describe a general strategy for establishing
(2.4):

(i) First we find a function w so that −Lw = V. In principle such w exists because
∫
V dπ =

0. In terms of w, we can write

(2.5) ε

∫ ε−2x

0

V
(
ρ(y)

)
dy = Mε(x) + εw(ρ(0))− εw

(
ρ(ε−2x)

)
,

where Mε = M(ε−2x), with M(x) a martingale given by

M(x) = w(x)− w(0)−
∫ x

0

Lw
(
ρ(y)

)
dy.

For a reasonable solution w, we expect εw
(
ρ(ε−2x)

)
→ 0 in small ε limit. Hence the desired

CLT for the left-hand side of (2.5) would follow if we establish a CLT for M ε.

(ii) To establish a CLT for εM
(
ε−2x

)
, we need to control its variance. Using the martingale

N(x) := M(x)2 −
∫ x

0

(
Lw2 − 2wLw)(ρ(y)) dy,

we can assert

EMε(x)
2 = Eε2M(ε−2x)2 = E

∫ ε−2x

0

(
Lw2 − 2wLw

)
(ρ(y)) dy

= x

∫ (
Lw2 − 2wLw

)
dπ = −x

∫
2wLw dπ =: 2x∥w∥2H1 .

This allows us to evaluate the variance of the limit in (2.4). □
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Going back to the Markov process ρ(x), and the function V (ρ) = ρ, we have w =
(−L)−1V = −J ′/(2J), and

−2

∫
wLw dπ = −Z−1

∫
J ′(ρ)J(−ρ)ρ dρ

= −Z−1

∫
J(ρ)J ′(−ρ)ρ dρ+ Z−1

∫
J(ρ)J(−ρ) dρ

= Z−1

∫
J(ρ)J ′(−ρ)ρ dρ+ 1,

where we performed an integration by parts to deduce the second equality. This implies

Z−1

∫
J ′(ρ)J(−ρ)ρ dρ = 1/2.

Motivated with the Markovian description of Groeneboom in the case of quadratic Hamil-
tonian, we wish to find a general scheme for finding Markovian solutions of (1.2). Let us
first observe that in the case of Burgers’ equation, if we write I(t) for the smallest set for
which

(2.6) u(x, t) = max
y∈I(t)

(
σB(y)− (x− y)2

2t

)
,

holds, the I(t) is discrete set for every t > 0, and I(t) ⊆ I(s) whenever s ≤ t. This means that
as soon as t becomes positive, all but a discrete set of y are redundant in the maximization
problem (2.1). Moreover, as we increase time, more points become redundant in (2.1). From
this interpretation it is not hard to guess that the same phenomenon occurs even when H is a
general Hamiltonian function. In other words there would be a monotonically nonincreasing
family of discrete sets (I(t) : t > 0) such that

(2.7) u(x, t) = max
y∈I(t)

(
σB(y) + tL

(
x− y

t

))
= max

i∈Z

(
gi(t) + tL

(
x− yi(t)

t

))
,

where gi(t) = σB(yi(t)), and I(t) =
{
yi(t) : i ∈ Z

}
, with yi(t) < yi+1(t) for every i ∈ Z. As

a consequence, there exists a discrete set
{
xi(t) : i ∈ Z

}
such that xi ≤ xi+1 for each i, and

u(x, t) =
∑
i

(
σB(yi(t)) + tL

(
x− yi(t)

t

))
, 11
(
x ∈ [xi(t), xi+1(t))

)
.

As for our Markov process ρ, we have

(2.8) ρ(x, t) = M(x, t; y(x, t)) =
∑
i

M(x, t; yi(t))11
(
x ∈ [xi(t), xi+1(t))

)
,
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where M(x, t; y) = L′ (x−y
t

)
. The process x 7→ ρ(x, t), or equivalently the process x 7→ y(x, t)

is a Markov process for every t. Indeed the latter is simply a non-decreasing jump process
with jump rate density g(x, t, y−, y+). In this context we can formulate the following general
theorem that was established in [R2]:

Theorem 2.1 Assume that the kernel g(x, t, y−, y+) satisfies the following (kinetic) equa-
tion:

(2.9) gt − (v̂g)x = Q(g) = Q+(g)−Q−(g) = Q+(g)− gL(g),

where

v(x, t, y−, y+) =
H
(
M(x, t; y+)

)
−H

(
M(x, t; y−)

)
M(x, t; y+)−M(x, t; y−)

,

Q+(g)(y−, y+) =

∫ (
v(y∗, y+)− v(y−, y∗)

)
g(y−, y∗)g(y∗, y+) dy∗,

L(g)(y−, y+) =
(
A(vg)(y+)− A(vg)(y−)

)
− v(y−, y+)

(
A(g)(y+)− A(g)(y−)

)
.

Here we have not displayed the dependence of our functions on (x, t) for a compact notation,
and

A(h)(y) =

∫ ∞

y

h(y, y∗) dy∗.

If ρ(x, s) = M(x, t; y0(x), for some s > 0, ans for y0 a Markov jump process associated with
g(x, s, y−, y+), then foe t > s, we have ρ(x, t) = M(x, t; y(x, t)), where y(·, t) is a Markov
jump process associated with g(x, t, y−, y+).

We end this section with some open questions

Open Questions(i) Ouaki [O] in 2022 has found an explicit formula for the law of the
solution ρ(x, t) when ρ(x, 0) is white noise, and H(p) is an arbitrary C2 convex function. It
remains to be seen how Ouaki’s formula is compatible with the kinetic equation of [MS] and
[KR2].

(ii) Let B(x), x = (x1, . . . , xd) be a Brownian sheet. Consider the HJE wt = 2−1w2
x1

(or
more generally wt = H(wx1)), with the initial condition w(x, 0) = B(x). Determine the law
of the random field x 7→ w(x, t), for t > 0.

(iii) Let B(x), x = (x1, . . . , xd) be as in (ii). Consider the HJE ut = 2−1|ux|2 (or more
generally ut = H(ux)), with the initial condition u(x, 0) = B(x). Determine the law of the
random field x 7→ u(x, t), for t > 0. □

Note the questions (ii) and (iii) are closely related. For example, when d = 2, then

u(x1, x2, t) = sup
y1,y2

(
B(y1, y2)−

(x1 − y1)
2

2t
− (x1 − y1)

2

2t

)
= sup

y2

(
w(x1, y2, t)−

(x1 − y1)
2

2t

)
.
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3 Inhomogeneous Stationary Hamiltonian

We now assume that the Hamiltonian function is a random stationary process in (x, t).
Regarding u as a height function in a stochastic growth model, we wish to find the invariant
measures. By invariant measures we mean a family of solutions

{
uP : P ∈ Rd

}
, such that

the following conditions are met for ρP = uP
x :

� The process x 7→ ρ(x, t) is stationary and ergodic with respect to the spatial translation,
and Eρ(x, t) = P .

� The law of the process ρ(·, t) is independent of t.

Example 3.1 In the case of PNG model of Example 1.2(iii), let us assume that Poisson point
process ω is of intensity 2. For P = m−m−1, with m > 0, we have the following candidate
for ρP : Take two independent Poisson point processes

{
ai : i ∈ Z

}
and

{
bi : i ∈ Z

}
of

intensities m and m−1 respectively. Then an initial data

ρm(x, s) =
∑
i∈Z

(
δai − δbi

)
,

would yield a solution ρm(x, t), t > s, which is our candidate for ρP . □
Example 3.1 offers explicit invariant measures when H is as in Example 1.2, with H0(p) =

|p|. Bakhtin et al. [BCK] have constructed (non explicit) invariant measures when H0(p) =
p2/2. Even though their recipe for invariant measures is expected to work for general
Hamiltonian functions, their arguments use H0(p) = p2/2 in an essential way. The exis-
tence/construction of invariant measures for general Hamiltonian remains open. We now
briefly describe [BCK] recipe for ρP .

Definition 3.1(i) By a geodesic from (y, s) to (x, t), we mean a sequence z as in (??) which
maximizes in (??). Given such a sequence, we can also construct a piecewise function
x : [s, t] → R that passes through the points of the sequence z.

(ii) By a semi-infinite geodesic, we mean a path x : (−∞, t] → R such that the restriction
of x to any interval [s, t], s < t is a geodesic. □

The following theorem was established in [BCK] when H0(p) = p2/2.

Theorem 3.1 (i) If x(·) is a semi-infinite geodesic, then the asymptotic velocity

v = lim
t→−∞

t−1x(t) ∈ [−∞,∞],

exists.
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(ii) Given v, almost surely, for every (x, t), there exists at least one semi-infinite geodesic
ξ : (−∞, t] → R, such that ξ(t) = x.

(ii) Given (v, x), there exists a unique semi-infinite geodesic ξ : (−∞, 0] → R, such that
ξ(0) = x.

With the aid of semi-infinite geodesics, we can define a random function ρ(x; v) =
L′
0(ξ(0;x, v)), where ξ(·;x, v) : (−∞, 0] → R is a semi-infinite geodesic with asymptotic

velocity v such that ξ(0;x, v) = x. Except for countably many points, this semi-infinite
geodesic is unique i.e., ρ(x; v) is single-valued except for a discrete set of x′s. In the case of
H0(p) = p2/2, we have L′

0(a) = −a, and ρP (x) = ρ(x;P ). In the general case, the relation-
ship between P and P is more complicated. There would exist a homogenized Hamiltonian
H̄ such that v = H̄ ′(P ). What plays a role in [BCK] is that H̄ is C2 and uniformly convex.
This is not known in general. However, when H0(p) = p2/2, then H̄(p) = p2/2 + c for a
suitable constant c.

We can also construct Markovian solutions analogous to (3.1) when the Hamiltonian H
is as in Example 1.2(ii). To explain this, let us write M(x, t; y, s), t ≥ s for Wx(x, t; y, s),
where W is defined by (1.10). We are interested in Markov processes ρ of the form

(3.1) ρ(x, t) = M(x, t; y(x, t), t0) =
∑
i

M(x, t; yi(t), t0)11
(
x ∈ [xi(t), xi+1(t))

)
.

The process x 7→ y(x, t) a non-decreasing jump process with jump rate density g(x, t, y−, y+)
as before. We have the following general theorem that appears in [R2]:

Theorem 3.2 Assume that the kernel g(x, t, y−, y+) satisfies the kinetic equation (2.9) with

v(x, t, y−, y+) =
H
(
x, t,M(x, t; y+)

)
−H

(
x, t,M(x, t; y−)

)
M(x, t; y+)−M(x, t; y−)

.

If ρ(x, s) = M(x, t; y0(x), for some s > t0, and for y0 a Markov jump process associated with
g(x, s, y−, y+), then foe t > s, we have ρ(x, t) = M(x, t; y(x, t)), where y(·, t) is a Markov
jump process associated with g(x, t, y−, y+).
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