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Abstract: We study a d-dimensional stochastic particle system in which the particles
travel deterministically in between stochastic collisions. The collisions are elastic and
occur with a probability of order εα when two particles are at a distance less than ε.
When the number of particlesN goes to infinity andNεd+α−1 goes to a nonzero constant,
we show that the particle density converges to a solution of the Boltzmann equation
provided that α ≥ d + 1.

1. Introduction

A long-standing open problem in statistical mechanics is the derivation of the Boltzmann-
equation from the hard sphere model. In the hard sphere model, one starts with N

spheres of diameter ε that travel according to their velocities and collide elastically. In a
Boltzmann-Grad limit, we sendN → ∞, ε → 0 in such a way thatNεd−1 → Z, where
Z is a positive finite number. If f (x, v, t) denotes the density of particles of velocity v,
then f satisfies the Boltzmann equation

ft + v · fx =
∫

Rd

∫
S

(n · (v − v∗))+[f (x, v′)f (x, v′
∗)− f (x, v)f (x, v∗)]dn dv∗,

(1.1)

where S denotes the unit sphere, dn denotes the d − 1-dimensional Hausdorff measure
on S, and

v′ = v − (n · (v − v∗))n,
v′
∗ = v∗ + (n · (v − v∗))n.

� Research supported in part by NSF Grant DMS-00-72666.
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The derivation of (1.1) from the hard sphere model was established by Lanford for short
times in [La]. Later Illner and Pulvirenti [IP, P] replaced the smallness on time with a
smallness on the initial density in a suitable norm.

The finiteness of the mean free path is the main property of the hard sphere model
that is responsible for its kinetic behavior. The condition N = O(ε1−d) implies that on
average a particle experiences finitely many collisions in one unit of time. This property
is still valid if we increase the number of particles to N = O(ε1−α−d) but reduce the
probability of a collision to O(εα). (Equivalently, we increase the range of interaction
fromO(N1/(1−d)) toO(N1/(1−α−d)).) In this way we obtain a family of models by vary-
ing α, and it turns out that for large α many probabilistic arguments become available.
To avoid some technical issues, we consider a suitable smoothing of the hard sphere.
More precisely, we take a nonnegative continuous function V of compact support V and
assume that a collision occurs with a stochastic rate equal toV ε(|xi−xj |)B(vi−vj , nij ),
where V ε(r) = εα−1V (r/ε), xi and xj are the positions of the colliding particles, vi
and vj are the velocities of the colliding particles, and nij = (xi − xj )/|xi − xj |. We
assume B(0, n) = 0 so that only particles of different velocities can collide. As a result,
only for a time of order O(ε) the rate V ε(|xi − xj |)B(vi − vj , nij ) is nonzero. This in
particular implies that the true rate of collision is of order O(ε) × O(εα−1) = O(εα).
Indeed we show that if V is chosen so that

∫
V (|x|)dx = 1 and α ≥ d + 1 then the

microscopic particle densities will converge to a solution of the Boltzmann equation

ft + v · fx =
∫

Rd

∫
S

B(v − v∗, n)[f (x, v′)f (x, v′
∗)− f (x, v)f (x, v∗)]dn dv∗ (1.2)

as ε → 0.
When d ≥ 2, the best existence result available for (1.1) is due to DiPerna and Lions

[DLi1]. This existence result is formulated for the so-called renormalized solution and
the uniqueness for such solutions is an open problem. Because of this what we show
in this article is that the limit points of the microscopic particle densities as ε → 0 are
all DiPerna-Lions solutions. Note however that if we already know a bounded strong
solution exists, then there exists a unique renormalized solution [Li].

In Rezakhanlou-Tarver [RT] and Rezakhanlou [R1] we established a Boltzmann-type
equation for stochastic models in dimension one. In these articles we considered discrete-
velocity models in which α = 1 and the velocities belong to a finite set. Note that when
d = 1, Eq. (1.2) is trivial because of the elastic collision. However, we may consider
more general collision rules for which the conservation of momentum is still valid but
the conservation of the kinetic energy is violated. For such one dimensional models, one
should be able to relax the finiteness assumption of [RT] and derive a Boltzmann-type
equation for the macroscopic particle densities provided that α ≥ 1.

A variation of our model has been studied in Rezakhanlou [R2] to derive an Enskog
type equation for the macroscopic particle densities. In [R2] we examined a system in
which particles collide elastically with probability O(N−1) when two particles are at
distance σ . The particle density now satisfies the Enskog equation that is similar to (1.1)
except that the expression in brackets is replaced with

σd−1[f (x, v′)f (x − σn, v′
∗)− f (x, v)f (x + σn, v∗)] .

The organization of the paper is as follows. In Sect. 2 the main result is stated. In Sect.
3 the proof of the main result is sketched. In Sect. 4 we establish the entropy and entropy
production bounds. In Sect. 5 the velocity averaging techniques are used to prove the
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compactness of the collision term. This will be used in Sect. 6 to establish a variant of
Stosszahlensatz (Boltzmann’s molecular chaos principle) for the microscopic loss term.
Sects. 7 and 8 are devoted to the Stosszahlensatz for the microscopic gain term. The
proof of the kinetic limit is carried out in Sects. 9 and 10. In Sect. 11 we address an
entropy production bound on the macroscopic densities.

2. Notation and Main Result

This section is devoted to the statement of the main result. We start with a description
of our stochastic models.

In our models we have N particles in the d-dimensional torus T
d . Define the state

space E = (Td × R
d)N ; q ∈ E is the N -tuple,

q = (x, v) = (q1, . . . , qN) , x = (x1, . . . , xN) , v = (v1, . . . , vN) ,

where qi = (xi, vi). The process q(t) is a Markov process with the infinitesimal gener-
ator A = A0 + Ac. We have that for any smooth g : E → R,

A0g(q) =
N∑
i=1

vi · ∂g
∂xi

(q) , (2.1)

Acg(q) = 1
2

N∑
i,j=1

V ε(|xi−xj |)B(vi − vj , nij )
(
g
(
Sijq

)
− g(q)

)
, (2.2)

where V ε(r) = εα−1V
(
r
ε

)
with V : R → [0,∞) a continuous function of compact

support such that
∫
Rd V (|x|)dx = 1; B : R

d × S → [0,∞) is a Lipschitz continu-
ous function such that B(v′ − v′∗, n) = B(v − v∗, n) and supn,v B(v, n)|v|−1 < ∞;

nij = xi−xj
|xi−xj | , and Sijq is the configuration obtained from q by replacing (vi, vj ) with

(v
j
i , v

i
j ), where

v
j
i = vi − ((vi − vj ) · nij )nij ,
vij = vj − ((vj − vi) · nij )nij = vj + ((vi − vj ) · nij )nij .

We also assume that the function

A(x, v) := V (|x|)B
(
v,

x

|x|
)

is twice differentiable in x and its second x–derivatives are Lipschitz continuous in both
x and v variables. Note that when B is not identically constant, even the continuity of
the function A implies that V vanishes in a neighborhood of 0.

Convention 2.1. The meaning of the expression V ε(|xi − xj |) is as follows. The points
xi and xj each have d coordinates in the circle T. The kth difference xki − xkj is defined

to be the signed distance between xki and xkj . Hence, we may regard xi − xj as a point

in R
d . Also, for x ∈ T

d , t ∈ R and v ∈ R
d , the point x + tv ∈ T

d is defined mod 1.
Interpretations of this sort will be assumed throughout the paper without mentioning.
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Let f 0 : T
d × R

d → [0,∞) be a measurable function such that∫
Td

∫
Rd

(f 0(x, v))p exp(α0|v|2) dxdv < +∞ (2.3)

for some p > 1 and α0 > 0. We then define

µ0(dq) := F 0(q)dq := 1

ZN

N∏
i=1

f 0(xi, vi)

with Z = ∫
f 0(x, v)dxdv. We also define the number ε by the relationship εd+α−1N =

Z.
Given a configuration q, define the empirical measure π by

π(t, dq; q) = π(t, dq) := εd+α−1
N∑
i=1

δ(xi (t),vi (t))(dq) .

The transformation q(·) �→ π induces a probability measure PN on the space D =
L∞([0, T ]; M), where M is the space of measures π(t, dq) with π(t,Td × R

d) = Z

and M is equipped with the weak topology. Observe that by the law of large numbers
for the independent random variables we have

lim
N→∞

∫ ∣∣∣∣
∫

J (x, v)π(t, dx, dv)−
∫

J (x, v)f 0(x, v)dxdv

∣∣∣∣ µ0(dq) = 0 .

Define

Q+(f, f )(v) =
∫

Rd

∫
S

B(v − v∗, n)f (v′)f (v′
∗)dn dv∗ , (2.4)

Q−(f, f )(v) =
∫

Rd

∫
S

B(v − v∗, n)f (v)f (v∗)dn dv∗ ,

and Q = Q+ −Q−. We say that f is a renormalized solution of (1.2) if

f ∈ L1(Td × R
d × [0, T ]), f ≥ 0 ,

Q±(f, f )
1 + f

∈ L1(Td × R
d × [0, T ]) ,

for every positive T and for every Lipschitz continuous β : [0,∞) → R that satisfies
supr (1 + r)|β ′(r)| < ∞, we have that

β(f )t + v · β(f )x = β ′(f )Q(f, f )

in weak sense.

Theorem 2.2. Assume that α ≥ d+1. Then the family {PN : N ∈ N} is tight. Moreover
every limit point of PN is concentrated on the set of renormalized solutions of (1.2) such
that f (x, v, 0) = f 0(x, t) and

sup
t

∫
f (1 + |x|2 + |v|2 + log+ f )dxdv < ∞ . (2.5)
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Ideally we would like to prove that any limit point of the sequence {PN : N ∈ N} is
concentrated on the space of functions f such that∫ ∞

0

∫∫ ∫∫
S

B(v − v∗, n)(f ′f ′
∗ − ff∗) log

(
f ′f ′∗
ff∗

)
dn dxdv dv∗dt < ∞ . (2.6)

Presumably the method of this article can be used to establish (2.6) by differentiating
the expression

EN

∫ ∫∫
f δ,ε(x, v, t) log+ f δ,ε(x, v, t) dxdv ,

where EN denotes the expectation with respect to the measure PN , δ = δ(ε) → 0
as ε → 0, and f δ,ε(x, v, t) := f δ,ε(x, v; q(t)) is a microscopic approximation of the
density and is defined by (4.4). Instead we would rather pursue a quicker approach and
only prove a consequence of (2.6) that is good enough for many known properties of the
solutions. See Sect. 11 for more details.

We only prove Theorem 2.2 when α = d + 1. The interested reader can check that
the proof also works when α > d + 1. Note that when α = d + 1, then N and ε are
related by ε2dN = Z and V ε(r) = εdV (r/ε).

3. Sketch of proofs

In this section, we sketch the proofs and explain some of the main ideas. The first general
global existence result for the Boltzmann equation was established by DiPerna and Lions
in the prominent article [DLi1]. An important aspect of the Boltzmann equation is the
smoothing effect of its flow term ∂t +v ·∂x . This is now known as the velocity averaging
lemma and was quantitatively formulated and studied by Glose et al. in [GLiPS]. The
velocity averaging lemma is recalled in Sect. 5 as Lemma 5.4 and has the following flavor:
If bothf and ∂f

∂t
+v· ∂f

∂x
belong to a weakly compact subset ofL1(Td×R

d×[0, T ]) andψ
is a bounded smooth function, then the velocity average

∫
f (x, v, t)ψ(v)dv =: ρ(x, t)

belongs to a strongly compact subset of L1(Td × R
d × [0, T ]). The velocity averaging

lemma and DiPerna-Lions approach play an essential role in the present article.
We used the empirical measure

πε(dq; q) = ε2d
N∑
i=1

δ(xi ,vi )(dq)

as a candidate for the microscopic density in Sect. 2. Because of the nonlinearity of
the collision term, it is necessary to replace πε(dq; q) with a smoother candidate. One
possibility is to take a smooth nonnegative function η : R

2d → R of compact support
and total integral 1, and consider

(πε ∗ ηδ)(x, v) = f δ,ε(x, v; q) = ε2d
N∑
i=1

ηδ (xi − x, vi − v) ,

where ηδ(z) = δ−2dη(z/δ) for a small positive δ. Needless to say that for a smooth test
function J , ∫

J dπε =
∫

J (πε ∗ ηδ) dxdv + Error(δ), (3.1)
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where Error(δ) → 0 as δ → 0. In other words, if we choose a sequence δ = δ(ε)

that goes to zero as ε → 0, then f δ(ε),ε behaves weakly like the empirical measure
π . If, however, we study f δ(ε),ε as a pointwise function, the behavior of f δ,ε depends
critically on the way δ(ε) goes to zero. For example, if δ(ε) = ε, then f ε(x, v; q) :=
f ε,ε(x, v; q) is a Poisson-like random variable, and is not expected to approximate the
macroscopic density for small ε. To see this, observe that whenever η

(
xi−x
ε

,
vi−v
ε

) �= 0,
then (xi, vi) belongs to a set of volume O(ε2d). If particles are scattered evenly in
space, only NO(ε2d) = O(1) particles are involved in the calculation of f ε(x, v; q).
As a result, we do not have enough particles to benefit from the expected ergodic prop-
erty of the model. Because of this, the random function f ε does not approximate the
macroscopic particle density in a strong sense. In the same way, we may argue that
the function f ε(x, v; q) is rather rough as a function of (x, v). In other words, no
(x, v)-regularity of the function f ε should be expected. In a crucial step, we show in
Sect. 5 that the velocity averages of f ε are regular in (x, t)-variable. More precisely, if
ρε(x, t) = ∫

f ε(x, v; q(t))ψ(v)dv for a smooth function ψ , then

EN sup
|h|<δ

∫ T

0

∫
|ρε(x + h, t + α)− ρε(x, t)| ≤ const.(log log | log δ|)−α0 , (3.2)

whereEN denotes the expected value and α0 = (2d+2)−1(d+3)−1. The proof of (3.2)
involves an entropy bound, an entropy production bound, and the aforementioned veloc-
ity averaging lemma. Section 4 is devoted to several entropy–like bounds, an entropy
production bound, and their consequences. For example we show in Lemma 4.5 that

sup
N

EN sup
t∈[0,T ]

∫
f ε(x, v; q(t)) log f ε(x, v; q(t))dxdv < ∞ . (3.3)

Also, a microscopic version of (2.6) is the content of Lemma 4.7.
A sketch of the proof of (3.2) is in order. We will see in Sect. 5 that weakly f ε satisfies

f ε
t + v · f ε

x = 3ε +Nε + eε, (3.4)

where 3ε is a collision-like term and Nε is a martingale. The term eε has bounded L1

norm and comes from replacing the differential operator vi · ∂x with v · ∂x whenever
ηδ(xi −x, vi −v) �= 0. As in (2.4), we write3ε = 3ε+ −3ε−, where3ε+ and3ε− represent
the microscopic loss and gain terms respectively. Since no bound on the L1-norm of 3ε±
is available, we switch to a renormalized version of f ε. The entropy bound (3.3) allows
us to replace f ε with gεn = f ε

1+n−1f ε for a large number n. It turns out that gε satisfies
an equation similar to (3.4):

gεt + v · gεx = 3̂ε + N̂ε + êε = 3̂ε
+ − 3̂ε

− + N̂ε + ê, (3.5)

where 3̂ε± is close to a term that looks like 3ε±
(
1 + n−1f ε

)−2
. It turns out that the

entropy bound (3.3) can be used to show that 3̂ε− belongs to a weakly compact subset
of L1. To treat 3̂ε+, we use our bound on 3̂ε− and the microscopic analog of the entropy
production bound (2.6). As a result, the renormalized collision terms 3̂ε+ and 3̂ε− belong
to a weakly compact subset of L1. In the same fashion, we treat the martingale term N̂ε.
We then directly apply the velocity averaging lemma (Lemma 5.4) to establish (3.2).
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It is for the derivation of (3.2) that the condition α = d + 1 (in general α ≥ d + 1)
plays a crucial role. To have 3̂ε± bounded in L1, we are forced to choose δ(ε) = ε in
our choice of the density f δ,ε. This is because we can find two positive constants c0
and c1 such that the term aij := V ε(|xi − xj |)ηε(xi − x, vi − v) is bounded above by
c1ε

d�(|xj − x| ≤ c0ε)η
ε(xi − x, vi − v). Such a bound would allow us to take advan-

tage of the renormalization because a double sum of aij is bounded above by a product
of density like quantities. Only if we assume α ≥ d + 1, then f ε is of order one and
a renormalization of f ε has a chance to work. Indeed for α < d + 1, the function f ε

is a large function of order O(εa−d−1) and has a small support of volume O(εd+1−α).
For such a function we do not expect to have (3.2), and in fact a compactness for its
renormalization gεn is not good enough to yield (3.2).

After our success in proving the regularity of ρε, it is tempting to derive the macro-
scopic equation (1.1) by passing to the limit in (3.4) or its renormalized variation (3.5).
Indeed the microscopic loss term can be expressed as

3ε
−(x, v) = 1

2

∑
i,j

V ε(|xi − xj |)η
(
xi − x

ε
,
vi − v

ε

)
B(vi − vj , nij )

= 1

2

∑
i

η

(
xi − x

ε
,
vi − v

ε

)
K(xi, vi) , (3.6)

where

K(x, v) =
∑
j

V ε(|x − xj |)B
(
v − vj ,

x − xj

|x − xj |
)

= : εd
∑
j

A

(
x − xj

ε
, v − vj

)
. (3.7)

An important assumption of Boltzmann, known as Stosszahlensatz, asserts that a pair of
particles before a collision behave like independent random variables. Such an assump-
tion allows us to replace the collision term 3ε− with something like the macroscopic
collision term Q−(f ε, f ε). For our rigorous derivation of the Boltzmann equation, we
need to establish a suitable variant of Stosszahlensatz. Indeed our variant can be simply
described in terms of the random function K . Roughly, if η

(
xi−x
ε

,
vi−v
ε

) �= 0 for some i
in (3.6), then |xi − x| and |vi − v| are of order O(ε). If K(x, v) is sufficiently regular in
(x, v)-variables, then we can replace K(xi, vi) with K(x, v). When such a replacement
is performed, we can replace 3ε−(x, v) with f ε(x, v)K(x, v). On the other hand, the
regularity bound (3.2) can be used to assert,

K(x, v) ≈ ε−2d
∫∫

V ε(|x − y|)B
(
v − w,

x − y

|x − y|
)
f ε(y,w)dydw

≈
∫∫

S

B(v − w, n)f ε(x,w)dwdn.

(See Sect. 6 for more details.) The above plausible argument explains the role of the
regularity estimate (3.2) in establishing the Stosszahlensatz for the loss term. Before we
move to the next step and discuss our variant of Stosszahlensatz for the gain term, let
us pause here to mention that in spite of the appeal of the above argument, the choice
of our microscopic density f ε for the derivation of the macroscopic equation is wrong.
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This is because f ε(x, v) is a Poisson-like random object and does not approximate the
macroscopic density. In fact what we obtained, namely Q−(f ε, f ε) does not approx-
imate the macroscopic loss term simply because Q−(f ε, f ε) is a nonlinear function
of a Poisson-like random variable f ε. This is also evident from (3.4) because a simple
calculation reveals that the martingale term Nε does not go away as ε → 0, i.e., f ε

remains random as ε → 0. However, if we consider f δ(ε),ε for a choice of δ(ε) that
satisfies limε→0 δ(ε) = 0 and limε→0 δ(ε)/ε = +∞, then f δ(ε) should approximate
the macroscopic density because now

f δ(ε),ε(x, v; q) =
(
δ(ε)

ε

)2d∑
i

η

(
xi − x

δ(ε)
,
vi − v

δ(ε)

)

involves N × δ(ε)2d = O

((
δ(ε)
ε

)2d
)

many particles, and since δ(ε)
ε

→ ∞, we are

dealing with a large number of particles. Hence we expect f δ(ε) to approximate the mac-
roscopic density for small ε by a law of large numbers. We can then derive an equation
similar to (3.4) for f δ(ε),ε =: f̃ ε;

f̃ ε
t + v · f̃ ε

x = 3̃ε + Ñε + ẽε,

where 3̃ε corresponds to the collision term, Ñε is the martingale term, and ẽε is a small
error that goes to zero as ε → 0. After a renormalization, we arrive at

g̃εt + v · g̃εx = 3̄ε + N̄ε + ēε,

where g̃ε = f̃ ε

1+n−1f̃ ε
. It turns out that N̄ε → 0 as ε → 0 because δ(ε)/ε → +∞. As

before, 3̄ε is more or less like 3̃ε
(

1 + n−1f̃ ε
)−2

. Also, 3̃ε = 3̃ε+ − 3̃ε− where, for

instance,

3̃ε
−(x, v) = 1

2
ε2d

∑
i,j

V ε(|xi − xj |)ηδ(ε)(xi − x, vi − v)B(vi − vj , nij )

= :
1

2
ε2d

∑
i

ηδ(ε)(xi − x, vi − v)K(xi, vi) .

As before, the Stosszahlensatz can be achieved for the loss term if we can replace
K(xi, vi) with K(x, v). Of course, we only need to make such a replacement for the

renormalized loss term 3̄ε− that is more or less of the form 3̃ε−
(

1 + n−1f̃ ε
)−2

. Some

care is needed to carry out the replacement of K(xi, vi) with K(x, v) because K is only
(x, v)-regular in L1-sense, i.e., (3.2) holds. The renormalization factor involves f̃ ε that
is not so compatible with the type of expression we have for K; the function K(x, v)

is a velocity average of a density-like function that resembles f ε and not f̃ ε = f δ(ε),ε.
This creates a rather delicate situation that is handled by choosing δ(ε) in such a way
that the smallness of K(xi, vi) − K(x, v) would compensate for the incompatibility of
f δ(ε),ε with f ε. The punchline is that we need to choose a sequence δ(ε) that satisfies

lim
ε→0

δ(ε)ε−1(log log log log | log ε|)− 1
2d = 0. (3.8)
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We will see in Theorem 6.1 that for a choice of

δ(ε) = ε(log log log log | log ε|) 1
2d+1 ,

the term K(xi, vi) can be replaced with K(x, v) in 3̄ε−. To give a partial justification for
(3.8), let us assume that something stronger than (3.2) holds for the function K , namely

sup
|a|,|w|≤δ

|K(x + a, v + w)−K(x, v)| ≤ const.(log log | log δ|)−α0 . (3.9)

As a consequence,

|K(xi, vi)−K(x, v)| ≤ const.(log log | log ε|)−α0 ,

whenever ηδ(ε)(xi − x, vi − v) �= 0. To avoid the incompatibility of f δ(ε) with f ε, we
apply the crude inequality

f δ(ε),ε ≥ const.

(
δ(ε)

ε

)−2d

f ε . (3.10)

To guarantee that the smallness of K(xi, vi)−K(x, v) is not fully annulled by the large
factor (δ(ε)/ε)2d , we may require

lim
ε→0

δ(ε)ε−1(log log | log ε|)− α0
2d = 0 . (3.11)

It turns out that since K satisfies something like (3.2) instead of (3.9), the requirement
on δ(ε) is (3.8) instead of (3.11).

As the reader will find out, the microscopic density we will use in Sects. 6-11 are of
the form

f̄ ε(x, v; q) =
(
δ1(ε)

ε

)d (
δ2(ε)

ε

)d∑
i

η

(
xi − x

δ1(ε)
,
vi − v

δ2(ε)

)
.

Clearly f̄ ε = f δ(ε),ε when δ1 = δ2 = δ. For the presentation of this section we decided
to use f δ(ε). However the density f̄ ε with δ1 and δ2 satisfying limε→0 δ2/δ1 = 0 will
simplify some arguments in Sects 9 and 10. See for example (9.24) and (9.25).

To this end, let us assume that the function η is of the form η(x, v) = ζ(x)ζ(v).

Again, the gain term is approximately equal to 3̃ε+
(

1 + n−1f̃ ε
)−2

, where

3̃ε
+(x, v) =

∑
i,j

V ε(|xi − xj |)ζ̃ ε(xi − x)ζ̃ ε(v
j
i − v)B(vi − vj , nij ) ,

with ζ̃ ε(a) =
(

ε
δ(ε)

)d
ζ
(

a
δ(ε)

)
. In fact the Stosszahlensatz for the gain term is achieved

in two steps. In our first step, which is carried out in Sect. 7, we establish a variant
of Stosszahlensatz that is useful only when we show that the macroscopic density is a
supersolution. This allows us to generously replace 3̄ε+ with a smaller quantity whenever
appropriate. For example, if we define

uε(x) = uε(x; q) :=
∑
j

V ε(|xj − x|))(|vj | + 1) ,



10 F. Rezakhanlou

and pick a smooth function J of the variable v, then we have that the expression∫
3̄ε

+(x, v)(1 + n−1f̃ ε(x, v; q))−2J (v)dv ,

is bounded above by∫
(1 + n−1f̃ ε(x, v; q))−2

∑
i,j

V ε(|xi − xj |)ζ̃ ε(xi − x)ζ̃ ε(v
j
i − v)

B(vi − vj , nij )(1 + <−1uε(xi; q))−1 J (v) dv , (3.12)

for every positive <. We then show that the omission of the term (1+n−1f̃ ε(x, v; q))−2

from the right-hand side causes an error that is small for large n. This turns out to be
useful because we would rather have a renormalization of the form (1+<−1uε(xi; q))−1

instead of (1 + n−1f̃ ε(x, v; q))2 when we are dealing with the gain term. This stems
from the fact that uε(x; q) is a velocity averaging for which the regularity (3.2) applies.
After dropping (1 + n−1f̃ ε(x, v; q))−2 from (3.12), we are left with

1

2
εd
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ζ̃
ε(xi − x)(1 + <−1uε(xi))

−1J ε(v
j
i ), (3.13)

where J ε(v) = ε−d
∫
ζ̃ ε(v − w)J (w)dw. We can now express (3.13) as∑
i

ζ̃ ε(xi − x)K̃(xi, vi)(1 + <−1uε(xi))
−1,

where

K̃(x, v) = 1

2

∑
j

V ε(|x − xj |)B
(
v − vj ,

x − xj

|x − xj |
)
J ε

(
v − (v − vj )

x − xj

|x − xj |
x − xj

|x − xj |
)
.

It turns out that now we are in a position to repeat our treatment for the loss term where
K̃(1 + <−1uε)−1 plays the role of K .

In Sect. 8 we establish a variant of Stosszahlensatz that is needed when we treat the
macroscopic densities as subsolutions. This time we study

(
1 + n−1ũε(x)

)−1
∫

3̄ε
+(x, v)J (v)dv,

where
ũε(x) = εd

∑
j

ζ̃ ε(xj − x)
(
|vj |3/2 + 1

)
.

Our Stosszahlensatz for the collision term allows us to replace the microscopic col-
lision terms with suitable nonlinear functionals of densities that enjoy some stabilities
with respect to the weak topology. This will be used in Sects. 9 and 10 to pass to the
limit and derive the macroscopic equation (1.2).
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4. Entropy and Entropy Production Bound

We start with the entropy bound. Define

νβ(dq) =
(
β

π

) d
2

exp(β
∑
i

|vi |2)dq .

Using the property B(v′ − v′∗, n) = B(v − v∗, n), it is not hard to deduce that the colli-
sion operator Ac is reversible with respect to the measure νβ . That is, for every bounded
continuous functions η1 and η2,∫

η2Acη1 dνβ =
∫

η1Acη2 dνβ .

From this we can readily deduce that νβ is an invariant measure and that the adjoint A∗
of A with respect to νβ equals to −A0 + Ac.

If q(0) is distributed according toµ0(dq) = F 0(q)dq =: G0(q)νβ(dq), then at later
times q(t) is distributed according to

µ(t, dq) = F(t,q)dq =: G(t,q)νβ(dq) , (4.1)

where G is a solution to the forward equation

Gt = A∗G . (4.2)

As in Lemma 2.2 of [RT] we can easily show

Lemma 4.1. Choose β = α0/(p − 1) for α0 and p as in (2.3). Then there exists a
constant c̄ such that

sup
t

∫
(G(t,q))p νβ(dq) ≤

∫ (
G0(q)

)p
νβ(dq) ≤ exp(c̄N) .

Regard T
d as the box [0, 1]d with opposite faces identified, and partition T

d × R
d

into sets of the form,
d∏

r=1

[ar , br )×
d∏

r=1

[a′
r , b

′
r ) ,

of side length δ. Let us write J δ for such a partition . We then define

N (q;K) = N (x1, v1, . . . , xN , vN ;K) =
N∑
i=1

11((xi, vi) ∈ K)

for every set K ⊆ T
d × R

d and

@ε(q) :=
∑
I∈J ε

φ(N (q; I )) ,

where φ(z) = z log z. Similarly, we partition T
d into sets of the form

d∏
r=1

[ar , br )
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of side length δ and write J̃ δ for the resulting partition. We then define

@̃ε(q) :=
∑

I∈J̃ ε2

φ(N (q; I × R
d)) ,

@̂ε(q) :=
∑
I∈J̃ ε

φ(εdN (q; I × R
d)).

Note that each I ∈ J̃ ε can be written as a union of O(ε−d) sets in J̃ ε2
. From this and

convexity of φ, it is not hard to show that there exists a constant c such that

@̂ε(q) ≤ c@̃ε(q) . (4.3)

Using Lemma 4.1, we can repeat the proof of Theorem 4.1 of [R2] to deduce

Proposition 4.2. There exists a constant C0(T ) such that

EN sup
0≤s≤T

exp

[
p − 1

2p

(
@ε(q(s))+ @̃ε(q(s))

)]
≤ exp(C0(T )N) .

Define

h(δ) =
{

|1 + log δ|−1 if δ < 1
1 otherwise.

Fix a continuous functionη : R
d×R

d → [0,∞)of compact support with
∫∫

ηdxdv = 1
and define

αε(x, v) =
∫

ηε(x−z, v−w)α(z,w)dz dw,

where ηε(x, v) = ε−2dη
(
x
ε
, v
ε

)
. As in [RT] and [R2], we have the following conse-

quences of Proposition 4.2:

Proposition 4.3. (i) There exists a constant C1(T , r) such that

EN sup
0≤s≤T

[
N−1@ε(q(s))+N−1@̃ε(q(s))

]r ≤ C1(T , r) ,

for every positive integer r .
(ii) There exists a constant C1(η) such that for every nonnegative α,

N∑
i=1

αε(xi, vi) ≤ C1(η)‖α‖L∞ h(‖α‖L1) (N +@ε(q)).

(iii) There exists a constant Ĉ1 such that for every measurable set K ⊆ T
d × R

d and
K̃ ⊆ T

d ,

N (q;K) ≤ Ĉ1h(|BεK|)(N +@ε(q)) ,

N (q; K̃ × R
d) ≤ Ĉ1h(|B̃εK̃|)(N + @̃ε(q)) ,

where BεK = K + ε[0, 1]2d and B̃εK̃ = K̃ + ε[0, 1]d .
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Let η : R
d × R

d → [0,∞) be a continuous function such that
∫
ηdxdv = 1, and

define ζ1, ζ2 : R
d → [0,∞) by ζ1(x) = ∫

η(x, v)dv and ζ2(v) = ∫
η(x, v)dx. Define

f δ,ε(x, v; q) =
(ε
δ

)2d N∑
i=1

η

(
xi − x

δ
,
vi − v

δ

)
, (4.4)

uεa(x; q) = εd
N∑
i=1

ζ1

(
xi − x

ε

)
(|vi |a + 1) . (4.5)

We simply write f ε for f δ,ε when δ = ε and uε for uεa when a = 1.

Lemma 4.4. There exist constants C2, C2(T ) and C2(T , a) such that if η satisfies
η(x, v) = 0 for (x, v) with |x| + |v| ≥ r , ‖η‖L∞ ≤ 1 and a ∈ [1, 2), then

EN sup
t

∫
(|v|2 + 1)f ε(x, v; q(t))dxdv ≤ C2(1 + ε2r2), (4.6)

EN sup
0≤t≤T

∫
f ε(x, v; q(t)) log+ f ε(x, v; q(t)) dxdv ≤ C2(T )(1 + r2d log r), (4.7)

EN sup
0≤t≤T

∫
uεa(x; q(t))

[
log+ uεa(x; q(t))

]1−a/2
dx

≤ C2(T , a)
(

1 + r2d log r + εar3
)
. (4.8)

Proof. The bound (4.6) is a consequence of the conservation of the kinetic energy; one
can readily show ∫ ∑

i

η

(
xi(t)− x

ε
,
vi(t)− v

ε

)
(|v|2 + 1)dvdx

= εd
∫ ∑

i

ζ2

(
vi(t)− v

ε

)
(|v|2 + 1)dv

= ε2d
∫ ∑

i

ζ2(v)(|vi(t)− εv|2 + 1)dv

≤ 2Zε2r2 + 2Zε2d
∑
i

|vi(t)|2 + Z

= 2Zε2r2 + 2Zε2d
∑
i

|vi(0)|2 + Z .

(Recall Z = ε2dN .)
The proof of (4.7) is an immediate consequence of Proposition 4.3(i) and the fact

that there exists a constant c0 such that,

f ε(x, v; q)≤c0N (q; Ic0εr (x, v)) ≤ c0

∑{N (q; I ) : I ∈ J ε, I ∩ Ic0εr (x, v) �= ∅} ,

where Iα(x, v) is a cube with center (x, v) and side length α.
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For (4.8), observe∫
f ε(x, v; q)(|v|a + 1)dv =

N∑
i=1

∫
η

(
xi − x

ε
,
vi − v

ε

)
(|v|a + 1)dv

=
N∑
i=1

εd
∫

η

(
xi − x

ε
, v

)
(|vi − εv|a + 1)dv

≥ εd
N∑
i=1

ζ1

(
xi − x

ε

)
(21−a|vi |a + 1)

−εarεd
N∑
i=1

ζ1

(
xi − x

ε

)
.

Since, ∫
f ε(x, v; q)dv =: ρε(x; q) = εd

N∑
i=1

ζ1

(
xi − x

ε

)
,

it suffices to bound,

sup
N

EN sup
0≤t≤T

∫
ũε(x; q(t)) log+ ũε(x; q(t))dx , (4.9)

where ũε(x; q) = ∫
(|v|a + 1)f ε(x, v; q)dv.

Observe that we may write

ũε(x; q) =
∫ |v|a + 1

γ (v)
γ (v)f ε(x, v; q)dv,

where γ (v) = (2π)−d/2 exp(−|v|2/2). If φ̃(z) = z(log+ z)1−a/2, then by Jensen’s
inequality and the elementary inequalities

log+ AB ≤ log+ A+ log+ B ,

(A+ B)1−a/2 ≤ A1−a/2 + B1−a/2 ,

AB1−a/2 ≤ a

2
A2/a +

(
1 − a

2

)
B ,

we deduce,

φ̃(ũε(x; q)) ≤
∫

φ̃

( |v|a + 1

γ (v)
f ε(x, v; q)

)
γ (v)dv

≤
∫
(|v|a + 1)f ε(x, v; q)[log+ f ε(x, v; q)]1−a/2 dv

+
∫
(|v|a + 1)

[
log(|v|a + 1)+ d

2
log 2π + 1

2
|v|2

]1−a/2

f ε(x, v; q)dv

≤
∫
(|v|a + 1)f ε(x, v; q)[log+ f ε(x, v; q)]1−a/2 dv

+c1

∫
(|v|2 + 1)f ε(x, v; q)dv

≤ c2

∫
(|v|2 + 1)f ε(x, v; q)dv + c2

∫
f ε(x, v; q) log+ f ε(x, v; q)dv ,

for some constants c1 and c2. This, (4.7) and (4.6) imply (4.8). ��
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For our purposes, we also need Lemma 4.4 for a function η that is not necessar-
ily of compact support. To this end, let us write L for the set of continuous functions
η : R

d × R
d → [0,∞) such that for some positive k, the function

Lk(η)(x, v) := sup
|z|,|w|≤k

η(x + z, v + w) , (4.10)

belongs to L1(R2d).

Lemma 4.5. Suppose that η ∈ L. Then there exist constants Ĉ2(T , η) and Ĉ2(T , η, a)

such that for every a ∈ [1, 2),

EN sup
0≤t≤T

∫
f ε(x, v; q(t)) log+ f ε(x, v; q(t)) dxdv ≤ Ĉ2(T , η) , (4.11)

EN sup
0≤t≤T

∫
uεa(x; q(t))

[
log+ uεa(x; q(t))

]1−a/2
dx ≤ Ĉ2(T , η, a) . (4.12)

Proof. Take a continuous function β : R
d ×R

d → [0,∞) such that
∫∫

βdxdv = 1 and
its support is contained in the ball with center at the origin and radius k. We certainly
have

f ε(x, v; q) =
∫∫ N∑

i=1

η

(
xi − x

ε
,
vi − v

ε

)
ε−2dβ

(
y − xi

ε
,
w − vi

ε

)
dydw (4.13)

≤
∫∫ N∑

i=1

Lk(η)

(
y − x

ε
,
w − v

ε

)
ε−2dβ

(
y − xi

ε
,
w − vi

ε

)
dydw .

Put

Lk(η)ε(x, v) = ε−2dLk(η)
(
−x

ε
,−v

ε

)
,

f̂ ε(x, v; q) =
N∑
i=1

β

(
x − xi

ε
,
v − vi

ε

)
.

We can now rewrite (4.13) as

f ε(x, v; q) ≤ (Lk(η)ε ∗ f̂ ε)(x, v) , (4.14)

where ∗ denotes the convolution. The bound (4.11) is now an immediate consequence
of (4.14), Jensen’s inequality and (4.7).

For the proof of (4.12), set

β1(x) =
∫

β(x, v)dv , γ (x) =
∫

Lk(x, v)dv , γε(x) = ε−dγ
(
−x

ε

)
.
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We then have

uεa(x; q) =
∫∫

εd
N∑
i=1

η

(
xi − x

ε
, v

)
ε−dβ1

(
y − xi

ε

)
(|vi |a + 1)dydv (4.15)

≤
∫∫ N∑

i=1

γ

(
y − x

ε

)
β1

(
y − xi

ε

)
(|vi |a + 1)dy

= γε ∗ ûε(x) , (4.16)

where

ûε(x) = εd
∑
i

β1

(
x − xi

ε

)
(|vi |a + 1) .

The bound (4.12) is now an immediate consequence of (4.15), Jensen’s inequality and
(4.8). ��

Using a similar idea, we can also allow a function η that merely belongs to L in
Proposition 4.3(ii). More precisely,

Lemma 4.6. There exists a constant C̃1(k) such that if η ∈ L with Lk(η) ∈ L1, then

N∑
i=1

αε(xi, vi) ≤ C̃1(k)‖Lk(η)‖L1‖α‖L∞ h(‖α‖L1) (N +@ε(q)),

where φ(z) = z log+ z and αε is as in Proposition 4.3.

Proof. Without loss of generality, we may assume that ‖Lk(η)‖L1 ≤ 1. Take a con-
tinuous function β : R

d × R
d → [0,∞) such that

∫∫
βdxdv = 1 and its support is

contained in the ball with center at the origin and radius k. We use Proposition 4.3(ii) to
assert that for some constant C̃1,

N∑
i=1

αε(xi, vi) =
∫∫ ∫∫ N∑

i=1

ηε(xi − z, vi − w)α(z,w)ε−2dβ

(
xi − y

ε
,
vi − v

ε

)
dzdwdydv

≤
∫∫ ∫∫ N∑

i=1

Lk(η)
ε(y − z, v − w)α(z,w)ε−2dβ

(
xi − y

ε
,
vi − v

ε

)
dzdwdydv

=
∫∫ N∑

i=1

(Lk(η)
ε ∗ α)(y, v)ε−2dβ

(
xi − y

ε
,
vi − v

ε

)
dydv

≤ C1(β)‖Lk(η)
ε ∗ α‖L∞ h

(‖Lk(η)
ε ∗ α‖L1

)
(N +@ε(q))

≤ C̃1(k)‖α‖L∞ h(‖α‖L1)(N +@ε(q)) ,

where
Lk(η)

ε(x, v) = ε−2dLk(η)
(x
ε
,
v

ε

)
.

This completes the proof of lemma. ��
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We now turn to the entropy production bound.

Lemma 4.7. There exists a constant C3 such that

∫ ∞

0

∑
i,j

V ε(|xi−xj |)B(vi − vj , nij )ψ

(
G(t, Sijq)
G(t,q)

)
G(t,q)νβ(dq) ≤ C3N ,

where ψ(z) = z log z − z + 1.

Proof. Recall that q(t) is distributed according to

µ(t, dq) = G(t,q)νβ(dq) ,

with G solving (4.2). Define

H(t) =
∫

logG(t,q)µ(t, dq) =
∫

G(t,q) logG(t,q)νβ(dq) ,

with β as in Lemma 4.1. Recall that νβ is invariant for both A0 and Ac.A straightforward
calculation yields

d

dt
H(t) =

∫
(A logG)(t,q)G(t,q)νβ(dq)

=
∫
(Ac logG)Gdνβ +

∫
A0G dνβ

=
∫
(Ac logG)Gdνβ +

∫
AcG dνβ .

We now use

∫
(Ac logG)Gdνβ =

∫ ∑
i,j

V ε(|xi − xj |)B(vi − vj , nij ) log
G(Sijq)
G(q)

G(q)νβ(dq)

=
∫ ∑

i,j

V ε(|xi−xj |)B(vi−vj , nij ) log
G(q)

G(Sijq)
G(Sijq)νβ(dq),

to deduce

d

dt
H(t) = −

∫ ∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ψ

(
G(t, Sijq)
G(t,q)

)
G(t,q)νβ(dq).

This completes the proof because H(0) ≤ const ·N . ��
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5. Compactness of Averaged Densities

Recall that the microscopic density f ε is defined by f ε(x, v; q) = ∑
i η
(
xi−x
ε
,
vi−v
ε

)
for a nonnegative continuous function η of compact support such that

∫
ηdxdv = 1. On

account of the collision term, we would like to study

Kε(x, v; q) =
∑
i

εdV

( |x − xi |
ε

)
B

(
v − vi,

x − xi

|x − xi |
)
.

More generally, we may take two continuous functions ξ : R
d ×R

d → R and ζ : R
d →

[0,∞), and define

f̂ ε(x, v,w; q) =
∑
i

ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
.

We assume
∫
ζdx = 1 and that ζ is of compact support. The function f̂ ε is a density-like

function and we would like to study its average

ρε(x, v, t) = εd
∑
i

ξ

(
x − xi(t)

ε
, v − vi(t)

)
.

The main objective of this section is a strong compactness result for the averaged den-
sity ρε. For this we will need some conditions on ξ . To state these conditions, we fix a
constant b ∈ [0, 1) and define several seminorms:

R0(ξ) = sup
x

|ξ(x, v)|(1 + |v|)−b−1,

R1(ξ) =
∫
(1 + |x|)|ξ(x, 0)|dx,

R2(ξ) =
∫
(1 + |x|) sup

v �=w

|ξ(x, v)− ξ(x,w)||v − w|−1(1 + |v| + |w|)−b dx, (5.1)

R3(ξ) = sup
v

sup
x �=y

|ξ(x, v)− ξ(y, v)||x − y|−1(1 + |v|)−b−1,

R4(ξ) = sup
v

sup
x �=y

|ξ(x, v)− ξ(y, v)||x − y|−1 .

Theorem 5.1. There exists a constant C4(T ) such that if

R(ξ) := R0(ξ)+ R1(ξ)+ R2(ξ)+ R3(ξ) ≤ 1, (5.2)

then

EN sup
|h|<δ

sup
α∈[0,δ]

∫ T

0

∫
|ρε(x + h, v, t + α)− ρε(x, v, t)|dxdt

≤ C4(T )(1 + |v|(b+3)/2)
[
(log log | log δ|)−αb + ε

]
.

for every v, where αb = (2d + b + 2)−1(d + 3)−1.
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To prepare for the proof of Theorem 5.1, let us define

ρ̂ε(x, v, t) =
∫

f̂ ε(x, v,w; q(t))dw .

We now state a lemma that is equivalent to Theorem 5.1.

Lemma 5.2. There exists a constant C̃4(T ) such that if ξ satisfies (5.2), then

EN sup
|h|<δ

sup
α∈[0,δ]

∫ T

0

∫
|ρ̂ε(x + h, v, t + α)− ρ̂ε(x, v, t)|dxdt

≤ C̃4(T )(1 + |v|(b+3)/2)(log log | log δ|)−αb ,

for every v.

We first demonstrate how Lemma 5.2 implies Theorem 5.1.

Proof of Theorem 5.1. Since ξ satisfies (5.2), there exists an integrable function γ such
that

|ξ(x, v)− ξ(x,w)| ≤ γ (x)(1 + |v| + |w|)b|v − w| ,
∫

γ (x)dx ≤ 1 . (5.3)

Note that we can find a constant c1 such that if ζ(z) �= 0, then |z| ≤ c1ε. From this and
(5.3) we deduce,

|ρε(x, v, t)− ρ̂ε(x, v, t)|
=
∣∣∣∣∣
∫ ∑

i

(
ξ

(
x − xi

ε
, v − vi

)
− ξ

(
x − xi

ε
, v − w

))
ζ

(
vi − w

ε

)
dw

∣∣∣∣∣
≤ c2ε

∫ ∑
i

γ

(
x − xi

ε

)
ζ

(
vi − w

ε

)
(1 + |v − vi |b)dw

for some constant c2. As a result of this, the elementary inequality |v − vi |b ≤ 2 +
2|v|b + 2|vi |2, and the conservation of the kinetic energy we have,∫ T

0

∫
|ρε(x, v, t)− ρ̂ε(x, v, t)|dxdt ≤ c3ε(1 + |v|b) ,

for a constant c3. This and Lemma 5.2 imply Theorem 5.1. ��

For the proof of Lemma 5.2, we first replace the density f̂ ε with the renormalized
density

gεn(x, v,w; q(t)) = nf̂ ε(x, v,w; q(t))

n+ f̂ ε(x, v,w; q(t))
,

where n is a positive integer. Define mε(x, v, t) = mε
n,<0

(x, v, t) = ∫
gεn(x, v,w; q(t))

χ<0(w)dw, where χ<0(w) = �(|w| ≤ <0). The next lemma is the main ingredient for
the proof of Lemma 5.2.

Let Cr denote the set of continuous ξ : R
d × R

d → [0,∞) such that ξ(x, v) = 0 for
|x| + |v| ≥ r and ‖ξ‖L∞ + R4(ξ) ≤ 1.
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Lemma 5.3. There exists a constant C5(T ) such that if ξ ∈ Cr and r ≥ 1, then

EN sup
|h|<δ

sup
α∈[0,δ]

∫ T

0

∫
|mε(x + h, v, t + α)−mε(x, v, t)|dxdt

≤ C5(T )r
2d log rn<d+1

0

(
log+(n<0)

)1/2
(log | log δ|)−1/2 ,

for every v.

An important tool to be used for the proof of Lemma 5.4 is the celebrated averaging
lemma:

Lemma 5.4. There exists a constant C6(T ) such that if m̂(x, t) = ∫
g0(x − wt,w)

χ<0(w)dw and m̃(x, t) = ∫
m(x,w, t)χ<0(w)dw with m(x,w, t) = ∫ t

0 γ (x − w(t −
s), w, s)ds, then

∫ T

0

∫ T

0

∫∫
(m̃(x, t)− m̃(y, s))2

|(x, t)− (y, s)|d+2 dxdydsdt ≤ C6(T )<
d
0‖γ ‖L2

<0
‖m‖L2

<0
,

∫ T

0

∫ T

0

∫∫
(m̂(x, t)− m̂(y, s))2

|(x, t)− (y, s)|d+2 dxdydsdt ≤ C6(T )<
d
0‖g0‖2

L2
<0

,

where

‖γ ‖2
L2
<0

=
∫ T

0

∫∫
γ 2(x,w, t)χ<0(w)dxdwdt,

‖g0‖L2
<0

=
∫∫

(g0)2(x,w)χ<0(w)dxdw .

See for example [GLiPS] for a proof.

Proof of Lemma 5.3. Step 1. First observe that it suffices to establish the lemma for a ξ
that is continuously differentiable. This is because if ξ is merely x-Lipschitz, then we
may approximate it by continuously differentiable functions and pass to the limit. From
now on we assume that ξ is continuously differentiable.

We define β(r) = nr
r+n

and F(x, v,w; q) = β(f̂ ε(x, v,w; q)) = gεn(x, v,w; q).
Write g(x, v,w, t) for gεn(x, v,w; q(t)), and set ĝ(x, v,w, t) := g(x + wt, v,w, t).
Evidently ĝ(x, v,w, t) = F(x + wt, v,w; q(t)). It is well known that the process

M(x, v,w, t) = F(x + wt, v,w; q(t))− F(x, v,w; q(0))

−
∫ t

0

(
∂

∂s
+ A

)
F(x + ws, v,w; q(s))ds ,

is a martingale and that its quadratic variation EN(M(x, v,w, t) − M(x, v,w, s))2 is
given by

EN

∫ t

s

(AF 2 − 2FAF)(x + wθ, v,w; q(θ))dθ (5.4)

= EN

∫ t

s

(AcF
2 − 2FAcF )(x + wθ, v,w; q(θ))dθ .
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As a result, we may write

ĝ(x, v,w, t) = ĝ(x, v,w, 0)+
∫ t

0
A(x + ws, v,w, s)ds

+
∫ t

0
D(x + ws, v,w, s)ds +M(x, v,w, t) ,

where

A(x, v,w, s) =
(
w · ∂

∂x
+ A0

)
F(x, v,w; q(s))

D(x, v,w, s) = AcF (x, v,w; q(s)) .

Hence

g(x, v,w, t) = g(x − wt, v,w, 0)+
∫ t

0
A(x − w(t − s), v, w, s)ds

+
∫ t

0
D(x − w(t − s), v, w, s)ds +M(x − wt, v,w, t) . (5.5)

Our goal is to show that the w-average of each term on the right-hand side of (5.5) is
strongly compact with respect to the L1 topology . In view of the averaging lemma, we
would like to show that the functions A and D are weakly compact in L1.

Step 2. We have that the expression
(
w · ∂

∂x
+ A0

)
F(x, v,w; q) equals to

β ′(f̂ ε(x, v,w; q))
∑
i

(
w − vi

ε

)
· ξ̂
(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
,

where ξ̂ (z, v) denotes the z-gradient of ξ(z, v). As a result,

|A(x, v,w, s)| ≤ β ′(f̂ ε(x, v,w; q))f̃ ε(x, v,w; q(s)) ,

where f̃ ε(x, v,w; q) = ∑
i η̃
(
xi−x
ε

,
vi−w
ε

, v − w
)

for η̃(z, v, w) = |v·ξ̂ (−z,w)|ζ(v).
Since β ′ is bounded by 1, we deduce

|A(x, v,w, s)| ≤ f̃ ε(x, v,w; q(s)) . (5.6)

This and (4.7) imply that there exists a constant c0 such that

sup
N

EN sup
s∈[0,T ]

∫∫
φ(|A(x, v,w, s)|)�(|w| ≤ <0)dxdw ≤ c0r

2d log r (5.7)

where φ(z) = z log+ z.
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Step 3. We now concentrate on the collision term. We have that 2AcF (x, v,w; q) equals
to ∑

i,j

V ε
(|xi−xj |

)
B(vi − vj , nij )

(
1 + n−1f̂ ε(x, v,w; q)

)−1

(
1 + n−1f̂ ε(x, v,w; Sijq)

)−1

[
ξ

(
x − xi

ε
, v − w

)
ζ

(
v
j
i − w

ε

)
+ ξ

(
x − xj

ε
, v − w

)
ζ

(
vij − w

ε

)

−ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
− ξ

(
x − xj

ε
, v − w

)
ζ

(
vj − w

ε

)]
= : K1 +K2 −K3 −K4,

where, for example, K1 = K1(x, v,w,q) equals to

εd
∑
i,j

V

( |xi−xj |
ε

)
B(vi − vj , nij )

(
1 + n−1f̂ ε(x, v,w; q)

)−1

(
1 + n−1f̂ ε(x, v,w; Sijq)

)−1
ξ

(
x − xi

ε
, v − w

)
ζ

(
v
j
i − w

ε

)
.

Using this decomposition we can write

D(x, v,w, s) = 1

2
D+(x, v,w, s)− 1

2
D−(x, v,w, s) ,

where

D+(x, v,w, s) = K1(x, v,w,q(s))+K2(x, v,w,q(s)) ,
D−(x, v,w, s) = K3(x, v,w,q(s))+K4(x, v,w,q(s)) .

The term K3 is bounded above by D̂− which is equal

εd
∑
i,j

V

( |xi−xj |
ε

)
B(vi − vj , nij ) ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
(

1 + n−1f̂ ε(x, v,w; q)
)−1

≤ c1ε
d
∑
i,j

�(|xj − x| ≤ c1rε)|vi − vj | ξ
(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
(

1 + n−1f̂ ε(x, v,w; q)
)−1

≤ c1ε
d
∑
i,j

�(|xj − x| ≤ c1rε)(|vj − w| + c2ε)ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
(

1 + n−1f̂ ε(x, v,w; q)
)−1

≤ c1nε
d
∑
j

�(|xj − x| ≤ c1rε)(|vj − w| + c2ε) ,
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for some constants c1 and c2. In the same fashion, we can treat K4. As a result

D−(x, v,w, s) ≤ 2D̂−(x, v,w, s) (5.8)

≤ 2c1nε
d
∑
j

11(|xj (s)− x| ≤ c1rε)(|vj (s)− w| + c2ε) .

From this and (4.8) we deduce that there exists a constant c3 such that,

EN sup
s∈[0,T ]

∫∫
φ̃(D−(x, v,w, s))�(|w| ≤ <0)dxdw ≤ c3φ̃(n<0)(r

2d log r + εr3) ,

(5.9)

where φ̃(z) = z
√

log+ z.

Step 4. In this step we study the function D+. From B(v
j
i − vij , nij ) = B(vi − vj , nij )

we deduce that

ENK1(x, v,w,q(s)) �(K1(x, v,w,q(s)) ≥ <)

=
∫

K1(x, v,w,q) �(K1(x, v,w,q) ≥ <)G(s,q) νβ(dq) ,

is bounded above by,∫ ∑
i,j

V ε(|xi − xj |)B(vi − vj , nij ) ξ

(
x − xi

ε
, v − w

)
ζ

(
v
j
i − w

ε

)

(
1 + n−1f̂ ε(x, v,w; Sijq)

)−1
�(K1(x, v,w,q) ≥ <)G(s,q)νβ(dq)

=
∫ ∑

i,j

V ε(|xi − xj |)B(vi − vj , nij ) ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
(

1 + n−1f̂ ε(x, v,w; q)
)−1

�(K1(x, v,w, S
ijq) ≥ <)G(s, Sijq)νβ(dq) .

Fix k > 1. We now use the elementary inequality

a = a

b
b = a

b
b�
(a
b

≤ k
)

+ a

b
b�
(a
b
> k

)
(5.10)

≤ kb +
[a
b

log
a

b
− a

b
+ 1

] b

log k − 1

to deduce that ENK1(x, v,w,q(s)) �(K1(x, v,w,q(s)) ≥ <) is bounded above by

k

∫ ∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
(

1 + n−1f̂ ε(x, v,w; q)
)−1

�(K1(x, v,w, S
ijq) ≥ <)G(s,q)νβ(dq)

+ 1

log k − 1

∫ ∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)

(
1 + n−1f̂ ε(x, v,w; q)

)−1
ψ

(
G(s, Sijq)
G(s,q)

)
G(s,q)νβ(dq)

= : K11 +K12 ,
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for every k > 1. We certainly have that the expression
∫ T

0

∫∫
K12dxdwds is bounded

above by

1

log k − 1

∫ T

0

∫∫ ∫ ∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )

�(|xi − x| ≤ rε)ζ

(
vi − w

ε

)
ψ

(
G(s, Sijq)
G(s,q)

)
νβ(dq)dxdwds (5.11)

= ε2drd
1

log k − 1

∫ T

0

∫ ∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )

ψ

(
G(s, Sijq)
G(s,q)

)
νβ(dq)ds ≤ C3r

d

log k − 1
,

where for the last inequality we have used Lemma 4.7.

Step 5. We now turn to K11. Fix p ≥ 1. We can certainly write

K11 = K111 +K112 ,

where K111 equals to

k

∫ ∑
i,j

V ε(|xi−xj |)B(vi−vj , nij )�(|vi−vj | ≤ p)ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
(

1 + n−1f̂ ε(x, v,w; q)
)−1

�(K1(x, v,w, S
ijq) ≥ <)G(s,q)νβ(dq) .

The termK112 is obtained fromK111 by replacing �(|vi−vj | ≤ p)with �(|vi−vj | > p).
One can readily show that for some constant c4,

K112 ≤ kc4

∫
εd
∑
i,j

�(|xj − x| ≤ c4rε, |vj − w| ≥ p − c4ε)(|vj − w| + ε)

ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)(
1 + n−1f̂ ε(x, v,w; q)

)−1
G(s,q)νβ(dq)

≤ c4nk

∫
εd
∑
j

�(|xj − x| ≤ c4rε, |vj − w|

≥ p − c4ε)(|vj − w| + ε)G(s,q)νβ(dq) .

From this we deduce that if p ≥ c4/2 and ε ≤ 1, then the expression

∫ T

0

∫∫
K112�(|w| ≤ <0)dxdwds ,
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is bounded above by

c5nkr
dEN

∫ T

0

∫
ε2d

∑
j

(|vj (s)− w| + 1)�(|w| ≤ <0)�(|vj (s)− w| ≥ p/2)dwds

≤ 2c5nkr
dp−1EN

∫ T

0

∫
ε2d

∑
j

(|vj (s)− w|2 + |vj (s)− w|)�(|w| ≤ <0)dwds

≤ 4c5nkr
dp−1EN

∫ T

0
ε2d

∑
j

(|vj (s)− w|2 + 1)�(|w| ≤ <0)dwds

≤ c6nkT r
d<d0p

−1ENε
2d
∑
j

(|vj (0)|2 + <2
0 + 1) ,

for some constants c5 and c6. As a result, there exists a constant c7 such that if p ≥ c4/2,
then ∫ T

0

∫∫
K112�(|w| ≤ <0)dxdwds ≤ c7nkr

d<d+2
0 p−1 . (5.12)

Step 6. To treat the term K111, we first replace �(K1(x, v,w,q(s)) ≥ <) with a more
tractable expression. To ease the notation, let us write K1(q) for K1(x, v,w,q). It is not
hard to show

K1(S
ijq)−K1(q) ≤ X1(i, j,q)+X2(i, j,q)+ Y (i, j,q) ,

where

Y (i, j,q) = V ε
(|xi−xj |

)
B(vi − vj , nij )ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
,

X1(i, j,q) =
∑
k �=j

V ε (|xi−xk|) B(vi − vk, nik)ζ

(
v
j
i − (v

j
i − vk) · niknik − w

ε

)

ξ

(
x − xi

ε
, v − w

)
,

X2(i, j,q) =
∑
k �=i

V ε
(|xj −xk|

)
B(vj − vk, njk)ζ

(
vk + (vij − vk) · njknjk − w

ε

)

ξ

(
x − xk

ε
, v − w

)
.

Observe that if

B(vi − vj , nij )�(|vi − vj | ≤ p)V

( |xi−xj |
ε

)
ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
�= 0 ,

then

|xi − x| ≤ c8rε , |xj − x| ≤ c8rε , |vi − w| ≤ c8ε , |vi − vj | ≤ p ,
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for some constant c8. As a result, the expression K1(S
ijq) − K1(q) is bounded above

by

c9ε
d
∑
k

�(|xk − x| ≤ c9rε)(|vk − w| + p) =: R(x,w,q) ,

for some constant c9. From this we deduce that K111 is bounded above by

k

∫ ∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
(

1 + n−1f̂ ε(x, v,w; q)
)−1

�(K1(x, v,w,q)+ R(x,w,q) ≥ <)G(s,q)νβ(dq)

=: kEND̂
−(x, v,w, s)�(K1(x, v,w,q(s))+ R(x,w,q(s)) ≥ <) .

As in (5.9) we have

EN sup
t∈[0,T ]

∫∫
φ̃(D̂−(x, v,w, s))�(|w| ≤ <0)dxdw ≤ c3φ̃(n<0)(r

2d log r + εr3) ,

where φ̃(z) = z
√

log+ z. As a result, the expression

EN

∫ T

0

∫∫
K111 �(|w| ≤ <0)dxdwds (5.13)

is bounded above by

kEN

∫ T

0

∫∫
D̂−(x, v,w, s)�(|w| ≤ <0)�(K1(x, v,w,q(s))+ R(x,w,q(s)) ≥ <)

�(D̂−(x, v,w, s) ≥ <1)dxdwds

+kEN

∫ T

0

∫∫
D̂−(x, v,w, s)�(|w| ≤ <0)�(K1(x, v,w,q(s))+ R(x,w,q(s)) ≥ <)

�(D̂−(x, v,w, s) < <1)dxdwds

≤ k(log+ <1)
−1/2EN

∫ T

0

∫∫
φ̃(D̂−(x, v,w, s))�(|w| ≤ <0)dxdwds

+k<1EN

∫ T

0
|{(x,w) : K1(x, v,w,q(s))+R(x,w,q(s)) ≥ < , |w| ≤ <0}| ds

≤ c3T φ̃(n<0)(r
2d log r + εr3)k(log+ <1)

−1/2

+k<1

<

∫ T

0

∫∫
EN(K1(x, v,w,q(s))+ R(x,w,q(s)))�(|w| ≤ <0)dxdwds ,

for every <1 > 1. (Here and below |A| denotes the Lebesgue measure of a set A.)
Evidently if <0 ≥ 1, then

EN

∫∫
R(x,w,q(s)))�(|w| ≤ <0)dxdw = c10r

d<d0(<0 + p) , (5.14)
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for some constant c10. On the other hand,

ENK1(x, v,w,q(s)) ≤
∫ ∑

i,j

V ε(|xi − xj |)B(vi − vj , nij ) ξ

(
x − xi

ε
, v − w

)

ζ

(
v
j
i − w

ε

)(
1 + n−1f̂ ε(x, v,w; Sijq)

)−1
G(s,q)νβ(dq)

=
∫ ∑

i,j

V ε(|xi − xj |)B(vi − vj , nij ) ξ

(
x − xi

ε
, v − w

)

ζ

(
vi − w

ε

)(
1 + n−1f̂ ε(x, v,w; q)

)−1
G(s, Sijq)νβ(dq) .

Again the elementary inequality (5.10) yields

ENK1(x, v,w,q(s))

≤ p1

∫ ∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ξ

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
(

1 + n−1f̂ ε(x, v,w; q)
)−1

G(s,q)νβ(dq)

+ 1

logp1 − 1

∫ ∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ξ

(
x − xi

ε
, v − w

)

ζ

(
vi − w

ε

)
ψ

(
G(s, Sijq)
G(s,q)

)
G(s,q)νβ(dq) ,

for every p1 > 1. Hence, we can repeat (5.11) to assert that for some constant c11,

EN

∫ T

0

∫∫
K1(x, v,w,q(s))�(|w| ≤ <0)dxdwds (5.15)

≤ p1EN

∫ T

0

∫∫
D̂−(x, v,w, s)�(|w| ≤ <0)dxdwds + c11r

d

logp1
.

From this, (5.14) and (5.8) we learn that (5.13) is bounded above by

c12k(log+ <1)
−1/2φ̃(n<0)(r

2d log r+εr3)+c12
k<1

<
rd<d+1

0 (np1<0+<0+p)+ c11r
dk<1

< logp1
,

for some constant c12. This and (5.12) imply that the expression∫ T

0

∫∫
K11�(|w| ≤ <0)dxdwds , (5.16)

is bounded above by

c12k(log+ <1)
−1/2φ̃(n<0)(r

2d log r+εr3) + c12
k<1

<
rd<d0(np1<0 + <0 + p)+ c11r

dk<1

< logp1

+ c7nkr
d<d+2

0 p−1 .
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We now choose p = p1 = <1 = <1/4 and k = (log <)1/4 to deduce that the expression
(5.16) is bounded above by

c13

(
φ̃(n<0)(r

2d log r + εr3)+ nrd<d+2
0

)
(log <)−1/4 .

This and (5.11) imply that the expression∫ T

0

∫∫
ENK1(x, v,w,q(s))�(K1(x, v,w,q(s)) ≥ <)�(|w| ≤ <0)dxdwds

is bounded above by

c14

(
φ̃(n<0)(r

2d log r + εr3)+ nrd<d+2
0

)
(log <)−1/4 + c14r

d(log log <)−1 ,

for some constant c14. The term K2 is treated likewise. From this and

(log+ log+ X)1/2 =
∫ ∞

e

�(X ≥ <)
d<

2< log <(log log <)1/2 ,

one can readily deduce that for some constant c15,

EN

∫ T

0

∫∫
φ̂(D+(x, v,w, t)) �(|w| ≤ <0)dxdwdt

≤ c15[φ̃(n<0)(r
2d log r + εr3)+ nrd<d+2

0 ] ,

where φ̂(z) = z(log+ log+ z)1/2. This and (5.9) imply

EN

∫ T

0

∫∫
φ̂(|D(x, v,w, s)|) �(|w| ≤ <0)dxdwds (5.17)

≤ c16[φ̃(n<0)(r
2d log r + εr3)+ nrd<d+2

0 ] ,

for some constant c16.

Step 7. We now turn to the martingale term. From (5.4) we learn that
EN (M(x, v,w, t)−M(x, v,w, s))2 is equal to

EN

∫ t

s

∑
i,j

V ε(|xi−xj |)B(vi−vj , nij )[F(x
θ , v,w; Sijq(θ))−F(xθ , v,w; q(θ))]2dθ ,

where xθ := x + θw. This in turn equals to the expected value of∫ t

s

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )
(

1 + n−1f (xθ , v,w; Sijq)
)−2

(
1 + n−1f (xθ , v,w; q))

)−2

[
ξ

(
xθ − xj

ε
, v − w

)
ζ

(
v
j
i − w

ε

)
+ ξ

(
xθ − xi

ε
, v − w

)
ζ

(
vij − w

ε

)

−ξ

(
xθ − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
− ξ

(
xθ − xj

ε
, v − w

)
ζ

(
vj − w

ε

)]2

dθ.
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Here we have simply written q for q(θ). Using

(
4∑

r=1

ar

)2

≤ 4
4∑

r=1

a2
r , we bound

EN (M(x, v,w, t) − M(x, v,w, s))2 by the sum of four terms 31, 32, 33 and 34. For
these terms the square of the expression in the brackets is replaced with

4ξ2
(
xθ − xi

ε
, v − w

)
ζ 2

(
v
j
i −w

ε

)
, 4ξ2

(
xθ − xj

ε
, v − w

)
ζ 2

(
vij −w

ε

)
,

4ξ2
(
xθ − xi

ε
, v − w

)
ζ 2
(
vi−w

ε

)
, 4ξ2

(
xθ − xj

ε
, v − w

)
ζ 2
(
vj −w

ε

)
,

respectively. We start with 33. The term 33 is bounded above by

4EN

∫ t

s

∑
i,j

V ε(|xi−xj |)B(vi−vj , nij )ξ
2
(
xθ − xi

ε
, v − w

)
ζ 2
(
vi − w

ε

)
(

1 + n−1f (xθ , v,w; q)
)−2

dθ

≤ 4c1EN

∫ t

s

εd
∑
i,j

11(|xj − xθ | ≤ c1rε)(|vj − w| + c2ε)ξ
2
(
xθ − xi

ε
, v − w

)
ζ 2

(
vi − w

ε

)(
1 + n−1f (xθ , v,w; q)

)−2
dθ .

(Compare this with (5.8).) From ξ2 ≤ ξ‖ξ‖L∞ , ζ 2 ≤ ζ‖ζ‖L∞ and ‖ξ‖L∞ ≤ 1 we
deduce,

33 ≤ 4c1‖ζ‖L∞ nEN

∫ t

s

εd
∑
j

11(|xj (θ)− xθ | ≤ c1rε)(|vj (θ)− w| + c2ε)dθ .

(5.18)

The term 34 is treated likewise.
We now turn to 31. The term 31 is bounded above by

4EN

∫ t

s

∑
i,j

V ε(|xi−xj |)B(vi−vj , nij )ξ
2
(
xθ − xi

ε
, v − w

)
ζ 2

(
v
j
i − w

ε

)

(
1 + n−1f (xθ , v,w; Sijq)

)−2
dθ

= 4
∫ t

s

∑
i,j

∫
V ε(|xi − xj |)B(vi−vj , nij )ξ

2
(
xθ − xi

ε
, v − w

)
ζ 2

(
v
j
i − w

ε

)

(
1 + n−1f (xθ , v,w; Sijq)

)−2
G(θ,q)dθ

= 4
∫ t

s

∑
i,j

∫
V ε(|xi − xj |)B(vi−vj , nij )ξ

2
(
xθ − xi

ε
, v − w

)
ζ 2
(
vi − w

ε

)
(

1 + n−1f (xθ , v,w; q)
)−2

G(θ, Sijq)dθ .
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Fix k > 1. As in Step 5 we apply the inequality (5.10) and Lemma 4.7 to deduce that
the expression

∫∫
31�(|w| ≤ <0)dxdw is bounded above by

4k
∫∫ ∫ t

s

∑
i,j

V ε(|xi−xj |)B(vi−vj , nij )ξ
2
(
xθ − xi

ε
, v − w

)
ζ 2
(
vi − w

ε

)

(
1 + n−1f (x, v,w; q)

)−2
�(|w| ≤ <0)G(θ,q)dθdxdw + C3r

d‖ζ‖L∞

log k − 1

≤ 4c1nkEN

∫∫ ∫ t

s

εd
∑
j

�(|xj − xθ | ≤ c1rε)(|vj − w| + c2ε)

�(|w| ≤ <0)dθdxdw + C3r
d‖ζ‖L∞

log k − 1
.

The terms32 is treated likewise. From this, (4.6) and (5.18) we deduce that the expression

EN

∫∫
(M(x, v,w, t)−M(x, v,w, s))211(|w| ≤ <0)dxdw ,

is bounded above by

c17nkEN

∫∫ ∫ t

s

εd
∑
j

11(|xj (θ)− xθ | ≤ c1rε)(|vj (θ)− w| + c2ε) (5.19)

�(|w| ≤ <0)dθdxdw + c17r
d

log k
≤ c18nkr

d<d+1
0 |t − s| + c18r

d

log k
,

for every k > 1. We now choose k = |t − s|−1/2 to deduce that for some constant c19,

EN

∫∫
(M(x, v,w, t)−M(x, v,w, s))2 11(|w| ≤ <0)dxdw (5.20)

≤ c19nr
d<d+1

0 | log |t − s||−1 ,

whenever |t − s| < 1. If we set s = 0 and choose k = e in (5.19) we obtain

EN

∫∫
M(x, v,w, t)211(|w| ≤ <0)dxdw ≤ c19(enr

d<d+1
0 t + rd) . (5.21)

Step 8. Recall the decomposition (5.5). We fix v and write∫
g(x, v,w, t)χ<0(w)dw =

∫
g(x − wt, v,w, 0)χ<0(w)dw

+
∫

X(x, v,w, t)χ<0(w)dw

+
∫

Y (x, v,w, t)χ<0(w)dw

+
∫

M(x − wt, v,w, t)χ<0(w)dw

=: m1(x, t)+m2(x, t)+m3(x, t)+m4(x, t) ,
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where

X(x, v,w, t) =
∫ t

0
A(x − w(t − s), v, w, s)ds,

Y (x, v,w, t) =
∫ t

0
D(x − w(t − s), v, w, s)ds .

Put g0(x, v,w) = g(x, v,w, 0) and f̂ ε
0 (x, v,w) = f̂ ε(x, v,w; q(0)). By Lemma 5.4,∫ T

0

∫ T

0

∫∫
(m1(x, t)−m1(y, s))

2

|(x, t)− (y, s)|d+2 dxdydsdt ≤ C6(T )<
d
0‖g0‖2

L2
<0

≤ c20n<
d
0r

d

(5.22)

because
∫
g2

0dxdw ≤ n
∫
f̂ ε

0 dxdw. For m2 we write m2 = m21 + m22, where
m2i (x, t) = ∫

Xi(x, v,w, t)χ<0(w)dw and

Xi(x, v,w, t) =
∫ t

0
Ai(x − w(t − s), v, w, s)ds ,

A1(x, v,w, t) = A(x, v,w, t)11(|A(x, v,w, t)| ≥ <) ,

A2(x, v,w, t) = A(x, v,w, t)11(|A(x, v,w, t)| < <) .

Using Lemma 5.4 and (5.6), we certainly have

EN

∫ T

0

∫ T

0

∫∫
(m22(x, t)−m22(y, s))

2

|(x, t)− (y, s)|d+2 dxdydsdt (5.23)

≤ C6(T )T <
d
0EN‖A2‖2

L2
<0

≤ C6(T )T <d0<EN‖A‖L1 ≤ c21<
d
0r

d< .

On the other hand,∫ T

0

∫
|m21(x, t)|dxdt ≤

∫ T

0

∫∫
|X1(x, v,w, t)|�(|w| ≤ <0)dxdwdt

≤ T

∫ T

0

∫∫
|A(x, v,w, s)|11(|A(x, v,w, s)| > <)

�(|w| ≤ <0)dxdwds

≤ T

log <

∫ T

0

∫∫
φ(|A(x, v,w, s)|)�(|w| ≤ <0)dxdwds .

This and (5.7) imply

EN

∫ T

0

∫
|m21(x, t)|dxdt ≤ c22r

2d log r

log <
. (5.24)

One can readily use (5.8), (5.16), and the conservation of the kinetic energy to show

EN

∫ T

0

∫∫
|D(x, v,w, s)|χ<0(w)dxdwds

≤ c23nr
dEN

∫ T

0

∫
ε2d

∑
j

(|vj (s)| + <0)χ<0(w)dwds + c23r
d

≤ c24n<
d+1
0 rd .



32 F. Rezakhanlou

We then use this and (5.17) to assert that m3 can be decomposed as m31 +m32 with∫ T

0

∫ T

0

∫∫
(m32(x, t)−m32(y, s))

2

|(x, t)− (y, s)|d+2 dxdydsdt ≤ c25n<
2d+1
0 rd< , (5.25)

EN

∫ T

0

∫
|m31(x, t)|dxdt ≤ c25[φ̃(n<0)(r

2d log r + εr3)+ nrd<d+1
0 ](log log <)−

1
2 ,

in just the same way we obtained (5.23) and (5.24).

Step 9. We now turn to m4. Fix δ > 0. We replace M with

M̂(x, v,w, t) = δ−1
∫ t+δ

t

M(x − wt, v,w, s)ds

in the definition of m4 to yield

m̂4(x, t) =
∫

M̂(x, v,w, t)χ<0(w)dw .

Note that M̂ satisfies the equation M̂t + w · M̂x = M̃ in the weak sense where,

M̃(x, v,w, t) = δ−1(M(x − wt, v,w, t + δ)−M(x − wt, v,w, t)) .

As a result, we may apply Duhamel’s principle to assert,

M̂(x, v,w, t) = δ−1
∫ δ

0
M(x − wt, v,w, s)ds +

∫ t

0
M̃(x − w(t − s), v, w, s)ds .

Using this we write

M̂(x, v,w, t) = M0(x − wt, v,w)+M1(x, v,w, t) , (5.26)

where M0(x, v,w) = δ−1
∫ δ

0 M(x, v,w, s)ds. We now apply Lemma 5.4 to yield∫ T

0

∫ T

0

∫∫
(m̂4(x, t)− m̂4(y, s))

2

|(x, t)− (y, s)|d+2 dxdydtds (5.27)

≤ c26<
d
0

(
‖M̃‖L2

<0
‖M1‖L2

<0
+ ‖M0‖2

L2
<0

)
,

By Jensen’s inequality,

EN‖M0‖2
L2
<0

≤ δ−1
∫ δ

0

∫∫
ENM

2(x, v,w, s)�(|w| ≤ <0)dxdwds ≤ c26<
d+1
0 rdn ,

(5.28)

where for the last inequality we have used (5.21). In the same fashion we can show

EN‖M̂‖2
L2
<0

≤ c26<
d+1
0 rdn .

From this, (5.26) and (5.28) we deduce

EN‖M1‖2
L2
<0

≤ 2c26<
d+1
0 rdn . (5.29)
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By (5.20), EN‖M̃‖2
L2
<0

is bounded above by

δ−2EN

∫ T

0

∫∫
[M(x, v,w, t + δ)−M(x, v,w, t)]2 �(|w| ≤ <0) dxdwdt (5.30)

≤ c27nr
d<d+1

0 δ−2| log δ|−1 .

From this and (5.27–29) we deduce that there exists a constant c28 such that if δ ∈
(0, 1/2), then

EN

∫ T

0

∫ T

0

∫∫
(m̂4(x, t)− m̂4(y, s))

2

|(x, t)− (y, s)|d+2 dxdydtds (5.31)

≤ c28<
d
0<

d+1
0 rdnδ−1| log δ|−1/2 .

Note that

m̂4(x, t)−m4(x, t) =
∫ (

δ−1
∫ δ

0
Ns(x, v,w, t)ds

)
�(|w| ≤ <0)dw ,

where Ns(x, v,w, t) = M(x −wt, v,w, t + s)−M(x −wt, v,w, t). As in (5.30) we
may use (5.20) to assert,

EN‖m̂4 −m4‖L2
<0

≤ ENδ
−1
∫ δ

0
‖Ns‖L2

<0
ds ≤ c28<

(d+1)/2
0 rd/2n1/2| log δ|−1/2 .

(5.32)

Final Step. From (5.24–25) and (5.32) we learn that if

Fδ(m) =
∫ T

0

∫ δ

0

∫∫
|m(x + h, t + α)−m(x, t)| 11(|h| ≤ δ)δ−d−1 dxdhdαdt ,

then

ENFδ(m
ε) ≤ EN

(Fδ(m1)+ Fδ(m22)+ Fδ(m32)+ Fδ(m̂4)
)

+ c29<
d
0r

2d log rφ̃(n<0)(log log <)−1/2 (5.33)

+ c29<
(d+1)/2
0 rd/2n1/2| log δ|−1/2 .

On the other hand, by Jensen’s inequality,

Fδ(m)
2 ≤ c30

∫ T

0

∫ δ

0

∫∫
|m(x + h, t + α)−m(x, t)|2 11(|h| ≤ δ)δ−d−1dxdhdαdt

≤ c31δ

∫ T

0

∫ δ

0

∫∫ |m(x + h, t + α)−m(x, t)|2
|(h, α)|d+2 11(|h| ≤ δ)dxdhdαdt

≤ c31δ

∫ T

0

∫ T

0

∫∫ |m(x + h, t + α)−m(x, t)|2
|(h, α)|d+2 dxdhdαdt ,

whenever δ ≤ T . As a result, we may apply (5.22–23), (5.25) and (5.31) to assert that
the expression

EN

(Fδ(m1)+ Fδ(m22)+ Fδ(m32)+ Fδ(m̂4)
)
,
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is bounded above by a constant multiple of

δ1/2<
(d+1)/2
0 rd/2n1/2<1/2 + <

d+1/2
0 rd/2n1/2| log δ|−1/4 .

From this and (5.33) we deduce that the expression ENFδ(m
ε) is bounded above by a

constant multiple of

δ1/2<
d+1/2
0 rd/2n1/2<1/2 + <

d+1/2
0 rd/2n1/2| log δ|−1/4

+<d0r
2d log rφ̃(n<0)(log log <)−1/2 + <

(d+1)/2
0 rd/2n1/2| log δ|−1/2 .

We now choose < = δ− 1
2 to conclude

ENFδ(m
ε) ≤ c32<

d
0r

2d log rφ̃(n<0)(log | log δ|)− 1
2 , (5.34)

for some constant c32.
Let us write c33 for the volume of the unit ball in R

d and put

mε

δ̄
(x, v, t) = 1

c33

∫ δ̄

0

∫
|h|≤δ̄

mε(x + h, v, t + α) δ̄−d−1 dhdα .

The bound (5.34) implies

EN‖mε

δ̄
−mε‖L1 ≤ c31<

d
0r

2d log rφ̃(n<0)(log | log δ̄|)− 1
2 . (5.35)

It is not hard to see that the Lipschitz constant ofmε

δ̄
in (x, t)-variable isO(‖mε‖L∞ δ̄−1).

Hence,

sup
|h|,|α|≤δ

|mε

δ̄
(x + h, v, t + α)−mε

δ̄
(x, v, t)| ≤ c33n<

d
0 δ̄

−1δ ,

for some constant c33. From this and (5.35) we can readily deduce

EN sup
|h|,|α|≤δ

∫
|mε(x + h, v, t + α)−mε(x, v, t)|dxdt

≤ c34n<
d
0 δ̄

−1δ + c34<
d
0r

2d log rφ̃(n<0)(log | log δ̄|)− 1
2 .

We now choose δ̄ = δ1/2 to complete the proof. ��

Proof of Lemma 5.2. First assume ξ ∈ Cr and define

ρ̂ε<0
(x, v, t) =

∫
f̂ ε(x, v,w; q(t))χ<0(w)dw .

We certainly have

f̂ ε = gε + (f̂ ε)2

f̂ ε + n
.
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Moreover,

∫∫
(f̂ ε)2

f̂ ε + n
dxdw =

∫∫
(f̂ ε)2

f̂ ε + n
�(f̂ ε > n

1
2 )dxdw+

∫∫
(f̂ ε)2

f̂ ε + n
�(f̂ ε≤n

1
2 )dxdw

≤
∫∫

f̂ ε 11(f̂ ε > n
1
2 )dxdw +

∫∫
n

1
2

n
f̂ ε dxdw

≤ 2

log n

∫∫
φ(f̂ ε)dxdw + n− 1

2

∫∫
f̂ εdxdw ,

where φ(f ) = f log+ f . Hence we may apply Lemma 5.3 and Lemma 4.4 to assert

EN sup
|h|,|α|≤δ

∫ T

0

∫
|ρ̂ε<0

(x + h, v, t + α)− ρ̂ε<0
(x, v, t)|dxdt

≤ EN sup
|h|,|α|≤δ

∫ T

0

∫
|mε

n,<0
(x + h, v, t + α)−mε

n,<0
(x, v, t)|dxdt

+c1r
2d log r (log n)−1 + c1r

dn− 1
2

≤ c2r
2d(log r)n<d+1

0

(
log+(n<0)

)1/2
(log | log δ|)−1/2 + c2r

2d log r (log n)−1 .

We now choose n = (log | log δ|) 1
3 to obtain

EN sup
|h|,|α|≤δ

∫ T

0

∫
|ρ̂ε<0

(x + h, v, t + α) − ρ̂ε<0
(x, v, t)|dxdt

≤ c3<
d+1
0 (log <0)r

2d log r(log log | log δ|)−1 .

From this, (4.6), and∫
f̂ ε(x, v,w; q)�(|w| ≥ <0)dw ≤ 1

<2
0

∫
f̂ ε(x, v,w; q)|w|2dw ,

we learn

EN sup
|h|,|α|≤δ

∫ T

0

∫
|ρ̂ε(x + h, v, t + α)− ρ̂ε(x, v, t)|dxdt

≤ c4<
d+1
0 (log <0)r

2d log r(log log | log δ|)−1 + c4(1 + ε2r2)<−2
0 .

By choosing <0 = (log log | log δ|)1/(d+2) we deduce

EN sup
|h|,|α|≤δ

∫ T

0

∫
|ρ̂ε(x + h, v, t + α)− ρ̂ε(x, v, t)|dxdt

≤ c5r
2d log r(log log | log δ|)− 1

d+3 ,

whenever ξ ∈ Cr .
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We now would like to relax the restriction on the support of ξ .After a scaling argument
we deduce

EN sup
|h|,|α|≤δ

∫ T

0

∫
|ρ̂ε (x + h, v, t + α)− ρ̂ε(x, v, t)|dxdt

≤ c5(‖ξ‖L∞ + R4(ξ))r
2d log r(log log | log δ|)− 1

d+3 , (5.36)

whenever ξ(x, v) = 0 for |x| + |v| ≥ r .
We now consider a nonnegative function ξ that satisfies (5.2) only. We write ρ̂ε =

ρε1 + ρε2 , where

ρεj (x, v, t) =
∫

f̂ ε
j (x, v,w; q(t))dw ,

f̂ ε
j (x, v,w; q)) =

∑
i

ξj

(
x − xi

ε
, v − w

)
ζ

(
vi − w

ε

)
,

for j = 1 and 2, where ξ1 + ξ2 = ξ and ξ1(x, v) = ξ(x, v)χ(x/r)χ(v/r), where χ is
a smooth function with support inside the ball {v : |v| ≤ 2} and χ(v) = 1 whenever
|v| ≤ 1. Since

R4(ξ1) ≤ c6r
b+1R3(ξ)+ c6 sup

|x|,|v|≤2r
ξ(x, v)r−1 ,

for some constant c6 and R3(ξ) + R0(ξ) ≤ 1, we deduce that R4(ξ1) ≤ c7r
b+1 for

some constant c7. On the other hand, the condition ξ(x, v) ≤ (1 + |v|)b+1 implies that
‖ξ1‖L∞ ≤ c8r

b+1 for some constant c8. We now apply (5.36) to assert

EN sup
|h|,|α|≤δ

∫ T

0

∫
|ρε1(x + h, v, t + α)− ρε1(x, v, t)|dxdt

≤ c9r
2d+b+1 log r(log log | log δ|)− 1

d+3 , (5.37)

for some constant c9.
We now turn to ρε2 . First observe that we can write ξ2 = ξ21+ξ22 where ξ21(x, v) = 0

if |v| ≤ r and ξ22(x, v) = 0 if |x| ≤ r . With the aid of the decomposition ξ2 = ξ21 + ξ22
we write ρε2 = ρε21 +ρε22. We first treat ρε21. Observe that the condition (5.2) implies that
for some function γ with

∫
(1 + |x|)γ (x)dx ≤ 1,

|ξ(x, v)− ξ(x,w)| ≤ γ (x)(|v| + |w| + 1)b|v − w| .

This in particular implies

ξ(x, v) ≤ γ (x)|v|(|v| + 1)b + ξ0(x),
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where ξ0(x) := ξ(x, 0). The condition (5.2) implies
∫
(1 + |x|)ξ0dx ≤ 1. As a result,

ρε21(x, v, t) ≤ c10

∫ ∑
i

γ

(
x − xi

ε

)
ζ

(
vi − w

ε

)(
|v − w|b+1 + 1

)
�(|v − w| ≥ r)dw

+c10

∫ ∑
i

ξ0

(
x − xi

ε

)
ζ

(
vi − w

ε

)
�(|v − w| ≥ r)dw

≤ c10

r(1−b)/2

∫ ∑
i

γ̂

(
x − xi

ε

)
ζ

(
vi − w

ε

)(
|v − w|(b+3)/2 + 1

)
dw

≤ c11

r(1−b)/2

∫ ∑
i

γ̂

(
x − xi

ε

)
ζ

(
vi − w

ε

)
(|vi |2 + |v|(b+3)/2 + 1)dw

= c11ε
d

r(1−b)/2

∑
i

γ̂

(
x − xi

ε

)
(|vi |2 + |v|(b+3)/2 + 1) ,

where γ̂ = γ + ξ0 and r ≥ 1. From this and the conservation of energy we deduce

EN

∫
ρε21(x, v, t)dx ≤ ENc12r

(b−1)/2ε2d
∑
i

(|vi(t)|2 + |v|(b+3)/2 + 1)

= ENc12r
(b−1)/2ε2d

∑
i

(|vi(0)|2 + |v|(b+3)/2 + 1) (5.38)

≤ c13(1 + |v|(b+3)/2)r(b−1)/2 .

The term ρε22 is treated likewise;

ρε22(x, v, t) ≤ c14

∫ ∑
i

γ

(
x − xi

ε

)
ζ

(
vi − w

ε

)(
|v − w|b+1 + 1

)
�(|x − xi | ≥ rε)dw

+ c14

∫ ∑
i

ξ0

(
x − xi

ε

)
ζ

(
vi − w

ε

)
�(|x − xi | ≥ rε)dw

≤ c14

r

∫ ∑
i

γ̃

(
x − xi

ε

)
ζ

(
vi − w

ε

)(
|v − w|b+1 + 1

)
dw

≤ c15

r

∫ ∑
i

γ̃

(
x − xi

ε

)
ζ

(
vi − w

ε

)
(|vi |2 + |v|b+1 + 1)dw

= c15ε
d

r

∑
i

γ̃

(
x − xi

ε

)
(|vi |2 + |v|b+1 + 1) ,

where γ̃ (x) = |x|γ (x)+ |x|ξ0(x) and r ≥ 1. As in (5.38) we deduce

EN

∫
ρε22(x, v, t)dx ≤ ENc16r

−1ε2d
∑
i

(|vi(t)|2 + |v|b+1 + 1)

≤ c17(1 + |v|b+1)r−1 .
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From this, (5.38) and (5.37) we learn

EN sup
|h|,|α|≤δ

∫ T

0

∫
|ρ̂ε(x + h, v, t + α)− ρ̂ε(x, v, t)|dxdt

≤ c18r
2d+b+1 log r(log log | log δ|)−1/(d+3) + c18(1 + |v|(b+3)/2)r(b−1)/2.

We now choose r = (log log | log δ|)αb to conclude

EN sup
|h|,|α|≤δ

∫ T

0

∫
|ρ̂ε(x + h, v, t + α)− ρ̂ε(x, v, t)|dxdt

≤ c19(1 + |v|(b+3)/2)(log log | log δ|)−αb .

This completes the proof of Lemma 5.2 when ξ ≥ 0. The proof for general ξ follows
from the fact that if (5.2) holds for ξ , then it holds for both the positive and the negative
parts of ξ . ��

6. Stosszahlensatz for the Loss Term

In this section, we use Theorem 5.1 to establish a variant of Boltzmann’s molecular chaos
principle for the loss term. Recall the definition of the density f δ,ε that was defined by
(4.4). Let ζ be a nonnegative continuous function of compact support with

∫
ζdx = 1

and define

f̃ ε(x, v; q) :=
(

ε

δ1(ε)

)d (
ε

δ2(ε)

)d N∑
i=1

ζ

(
xi − x

δ1(ε)

)
ζ

(
vi − v

δ2(ε)

)
,

where δr (ε) = ε<r(ε) for r = 1, 2. We assume <2(ε) ≤ <1(ε) = <(ε), where

<(ε) := (log log log log | log ε|) 1
2d+1 . (6.1)

Note that we may write

f̃ ε(x, v; q) =
∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v) , (6.2)

where

ζ̃ εr (z) = <r(ε)
−dζ

(
z

ε<r(ε)

)
, (6.3)

for r = 1, 2. Given a smooth function α : R → R, we define the renormalized micro-
scopic loss term Q

ε,α
− by

Q
ε,α
− (x, v; q)=

∑
i,j

V ε(|xi−xj |)B(vi−vj , nij ) ζ̃
ε
1 (xi−x)ζ̃ ε2 (vi−v)α(f̃ ε(x, v; q)).

(6.4)

Given a function g : R
d → R

d , put

Lg(v) =
∫ ∫

S

B(v − v∗, n)g(v∗)dndv∗ =
∫

B̄(v − v∗)g(v∗)dv∗, (6.5)

where B̄(v) = ∫
S
B(v, n)dn. Recall α0 = (2d + 2)−1(d + 3)−1. Theorem 6.1 is the

main result of this section.
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Theorem 6.1. There exists a constant C7(T ) such that if α satisfies

sup
z
(z + 1)α(z) ≤ n ,

then

EN

∫ T

0

∫∫ ∣∣∣f̃ ε(x, v; q(s)) Lf̃ ε(x, ·; q(s))(v) α(f̃ ε(x, v; q(s)))

−Q
ε,α
− (x, v; q(s))

∣∣∣�(|v| ≤ <0)dxdvds (6.6)

≤ C7(T )n<
d+2
0 <(ε)−1/2,

provided <2(d+2)/α0
0 ≤ log log | log ε|.

Recall

A(x, v) = V (|x|)B
(
v,

x

|x|
)
,

R(ξ) = R0(ξ)+ R1(ξ)+ R2(ξ)+ R3(ξ) .

Let B denote the set of functions ξ such that R(ξ) < ∞ for b = 0 in (5.1). Recall the
space of functions L and the functional Lk that were defined right before Lemma 4.5.
We also define the space L̂ as the space of functions γ for which the following condition
holds: There exist two constants k = k(γ ) and c = c(γ ) such that for every α > 0, we
can find a decomposition γ = γ1 + γ2 with ‖γ1‖L1 ≤ α and Lk(γ2) ≤ c.

Lemma 6.2. There exist two functions Â and γ , and a positive constant c0 such that Â
is of compact support in the x-variable, Â ∈ B, γ ∈ L̂, |γ (x)| ≤ exp(−c0|x|) for every
x with |x| > 1, and A(x, v) = ∫

Â(x − y, v)γ (y)dy.

Proof. The function Â is simply defined by Â = A − OxA, where Ox denotes the
Laplace operator with respect to the x–variable. Recall that by our assumptions on A,
the second x–partial derivatives of A are Lipschitz continuous. As a consequence of this
we have that Â ∈ B. To express A as a convolution involving Â, let us write F for the
Fourier operator in the x–variable. More precisely,

FJ (z, v) =
∫

J (x, v) exp(2πix · z)dz ,

where i = √−1. Since FÂ(z, v) = (1 + 4π2|z|2)FA(z, v) =: γ̄ (z)FA(z, v), we have
A(x, v) = ∫

Â(x − y, v)γ (y)dy with γ = F−1γ̄ . A straightforward calculation yields

γ (x) = c0

∫ ∞

0
exp(−π |x|2/θ − θ/(4π))θ−d/2dθ ,

for some constant c0. (See [S], p. 131 for a derivation. It is worth mentioning that γ (x)
is a constant multiple of |x|−1e−|x| when d = 3.) It is not hard to show that γ ∈ L1 and
that γ decays exponentially fast as |x| increases. To show γ ∈ L̂, pick a small τ > 0
and define

γ2(z) =
{
γ (z) for |z| ≥ τ ,

γ
(
τz
|z|
)

for |z| < τ .

Since γ ∈ L1, we have lim ‖γ1‖L1 = 0 as τ → 0. We can readily show that if k > 0,
then supτ Lk(γ2) < ∞. This completes the proof of the lemma. ��
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Define

Kε(x, v; q) =
∑
j

V ε(|x − xj |)B
(
v − vj ,

x − xj

|x − xj |
)
,

K̂ε(x, v; q) =
∑
j

εdÂ

(
x − xj

ε
, v − vj

)
,

Kε,δ(x, v,q) =
∫

Kε(x − z, v; q)ζ δ (z) dz ,

K̂ε,δ(x, v,q) =
∫

K̂ε(x − z, v; q)ζ δ (z) dz ,

where ζ is a smooth nonnegative function of compact support that satisfies
∫
ζdz = 1,

and ζ δ(z) = δ−dζ(z/δ). As a consequence of Theorem 5.1 we have,

Lemma 6.3. There exists a constant C8 = C8(T ) such that for every v ∈ R
d and δ > 0,

EN

∫ T

0

∫
|Kε(x, v; q(t))−Kε,δ(x, v; q(t))|dxdt

≤ C8

[
(1 + |v|2)(log log | log δ|)−α0 + ε

]
,

EN

∫ T

0

∫
|K̂ε(x, v; q(t))− K̂ε,δ(x, v; q(t))|dxdt

≤ C8

[
(1 + |v|2)(log log | log δ|)−α0 + ε

]
.

Proof of Theorem 6.1. Step 1. To ease the notation, let us write α(x, v) for
α(f̃ ε(x, v; q)), K(x, v) for Kε(x, v; q) and Kδ(x, v) for Kε,δ(x, v,q). We certainly
have

Q
ε,α
− (x, v; q) =

∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)K(xi, vi)α(x, v). (6.7)

Our goal is to replaceK(xi, vi)withK(x, v) in (6.7). For this, we first replaceK(xi, vi)

with K(xi, v). Since B(v, n) is Lipschitz continuous in v, we have that

|K(xi, vi)−K(xi, v)| ≤ c0ε<(ε)
∑
j

V ε(|xi − xj |) =: c0ε<(ε)g
ε(xi) ,

whenever ζ̃ ε2 (vi − v) �= 0. As a result, if we set

X(x, v) =
∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)α(x, v)(K(xi, vi)−K(xi, v)),

then

|X(x, v)| ≤ c0ε<(ε)
∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)α(x, v)gε(xi)

≤ c1ε<(ε)ε
d
∑
i,j

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)α(x, v)�(|xj − x| ≤ c1ε<(ε))

≤ c1nε<(ε)ε
d
∑
j

�(|xj − x| ≤ c1ε<(ε)) ,
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for some constant c1. Hence∫∫
|X(x, v)|�(|v| ≤ <0)dxdv ≤ c2nε<(ε)

d+1<d0 . (6.8)

Step 2. We would like to show that there exists a function ψ(ε) with limε→0 ψ(ε) = 0
such that

EN

∫ T

0

∫∫
|Qε,α

− (x, v; q(t))− Q̂
ε,α
− (x, v; q(t))|�(|v| ≤ <0)dxdvdt ≤ ψ(ε), (6.9)

where Q̂ε,α
− (x, v; q) = f̃ ε(x, v; q)α(x, v)K(x, v). To achieve this, let us bound

Y (x, v) =
∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)α(x, v)(K(xi, v)−K(x, v)). (6.10)

To show that Y (x, v) is small, we write

K(xi, v)−K(x, v) = Kδ(xi, v)−Kδ(x, v)

+K(xi, v)−Kδ(xi, v) (6.11)

+Kδ(x, v)−K(x, v).

We now replace K(xi, v) − K(x, v) in the definition of Y (x, v) with each of three
differences that appeared on the right-hand side of (6.11). The result will be denoted by
Y1(x, v), Y2(x, v) and Y3(x, v) respectively. Evidently,

Y (x, v) = Y1(x, v)+ Y2(x, v)+ Y3(x, v) . (6.12)

Put ζ̂ = |∇ζ | and ζ̂ δ(z) = δ−d ζ̂ (z/δ). Evidently,

|ζ δ(a)− ζ δ(b)| ≤ δ−1|b − a|
∫ 1

0
ζ̂ δ(a + θ(b − a))dθ .

From this we learn if ζ̃ ε1 (xi − x) �= 0 and ε<(ε) ≤ δ, then the expression

|Kδ(xi, v)−Kδ(x, v)| ,
is bounded above by

c3δ
−1ε<(ε)

∫ ∫ 1

0
K(z, v)ζ̂ δ(x + θ(xi − x)− z)dθdz

≤ c3‖ζ̂‖L∞ δ−1ε<(ε)

∫
K(z, v)δ−d�(|x − z| ≤ c3δ + c3ε<(ε))dz =: G(x, v)

for some constant c3. Moreover,∫
G(x, v)dx ≤ c4δ

−1ε<(ε)ε2d
∑
j

|v − vj | ≤ c4δ
−1ε<(ε)ε2d

∑
j

(|v| + |vj |2 + 1) ,

for some constant c4. This and the conservation of the kinetic energy imply that there
exists a constant c5 such that

EN

∫ T

0

∫∫
|Y1(x, v)|�(|v| ≤ <0)dxdvdt ≤ c5<

d+1
0 nδ−1ε<(ε) , (6.13)

whenever <0 ≥ 1 and δ ≥ ε<(ε).
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To bound Y3, we write

|Y3(x, v)| ≤ f̃ ε(x, v; q)α(f̃ ε(x, v; q))|Kδ(x, v)−K(x, v)| ≤ n|Kδ(x, v)−K(x, v)|.
This and Lemma 6.3 imply

EN

∫ T

0

∫∫
|Y3(x, v)|�(|v| ≤ <0)dxdvdt ≤ c6n<

d+2
0 (log log | log δ|)−α0 + c6n<

d
0ε ,

(6.14)

for some constant c6.

Step 3. We now concentrate on Y2. By Lemma 6.2, A(x, v) = ∫
Â(x− y, v)γ (y)dy for

a function Â ∈ B and γ ∈ L̂. As a result,

K(x, v) =
∫

K̂(x − εy, v)γ (y)dy =
∫

K̂(x − y, v)γ ε(y)dy , (6.15)

where γ ε(y) = ε−dγ (y/ε). We certainly have

Kδ(x, v) =
∫

K̂δ(x − y, v)γ ε(y)dy ,

for K̂δ = K̂ε,δ . Write

K −Kδ = (K̂ − K̂δ) ∗x γ ε = (K̂ − K̂δ)�(K̂ − K̂δ ≤ <) ∗x γ ε (6.16)

+(K̂ − K̂δ)�(K̂ − K̂δ > <) ∗x γ ε ,
where ∗x denotes the convolution in the x-variable. Replace K −Kδ in the definition of
Y2 with the two terms which appeared on the right-hand side of (6.16). The result will
be denoted by Y21 and Y22. As a result

Y2(x, v) = Y21(x, v)+ Y22(x, v), (6.17)

where,

Y21(x, v) =
∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)α(x, v)(Hδ ∗x γ ε)(xi, v) , (6.18)

where Hδ = (K̂ − K̂δ)�(K̂ − K̂δ ≤ <). Note that we may write γ = γ1,τ + γ2,τ , where
supτ Lk0(γ2,τ ) < ∞ for each k0 > 0, and lim ‖γ1,τ‖L1 = 0 as τ → 0. To ease the
notation, we simply write γr for γr,τ . Set γ εr (x) = ε−dγr(x/ε) for r = 1, 2. We replace
γ ε in (6.18) with γ εr for r = 1 and 2 and denote the result by Y211 and Y212 respectively.
Evidently,

Y21(x, v) = Y211(x, v)+ Y212(x, v). (6.19)

We certainly have

lim
τ→0

‖γ ε2 ‖L1 = lim
τ→0

‖γ2‖L1 = 0 . (6.20)

From this we learn

lim
τ→0

‖Hδ ∗x γ ε2 ‖L∞ ≤ lim sup
τ→0

‖Hδ‖L∞‖γ ε2 ‖L1 ≤ < lim sup
τ→0

‖γ ε2 ‖L1 = 0 .



Boltzmann–Grad Limits for Stochastic Hard Sphere Models 43

This implies

lim
τ→0

sup
x,v

|Y212(x, v)| ≤ n lim
τ→0

‖Hδ ∗x γ ε2 ‖L∞ = 0. (6.21)

On the other hand,

|Y211(x, v)| ≤ n
∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)|Hδ ∗x γ ε1 |(xi, v)

≤ n
∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)(|Hδ| ∗x γ ε1 )(xi, v) .

As a result, the expression
∫∫ |Y211(x, v)|�(|v| ≤ <0)dxdv is bounded above by

n

∫
εd
∑
i

ζ̃ ε2 (vi − v)(|Hδ| ∗x γ ε1 )(xi, v)�(|v| ≤ <0)dv = nε2d
∑
i

Gε,δ(xi, vi) ,

(6.22)

where

Gε,δ(x,w) =
∫∫

ε−d |Hδ(x − y, v)|�(|v| ≤ <0)γ
ε
1 (y)ζ

(
w − v

ε<2(ε)

)
<2(ε)

−ddydv

=
∫∫

ε−d |Hδ(x−y,w−v)|�(|v−w|≤<0)γ
ε
1 (y)ζ

(
v

ε<2(ε)

)
<2(ε)

−ddydv

= ε−2d
∫∫

ρδ(x − y,w − v)η̃ε

(y
ε
,
v

ε

)
dydv ,

where

ρδ(x, v) = |Hδ(x, v)|�(|v| ≤ <0) ,

η̃ε(x, v) = γ1(x)<(ε)
−dζ

(
v

<(ε)

)
.

We are now in a position to apply Lemma 4.6. Recall supτ ‖Lk0(γ2)‖L1 < ∞. From
this, it is not hard to deduce

sup
τ,ε

‖Lk0(η̃ε)‖L1 < ∞ . (6.23)

Observe that ‖ρδ‖L∞ ≤ <. From (6.22-23) and Lemma 4.6 we deduce that the expression

EN

∫ T

0

∫∫
|Y211(x, v)|χ<0(v)dxdv ,

is bounded above by

c7nEN

∫ T

0
‖ρδ‖L∞ h(‖ρδ‖L1)(1 +N−1@(q(t)))dt

≤ c7n<

(
EN

∫ T

0
h2 (‖ρδ‖L1

)
dt

)1/2 (
EN

∫ T

0

(
1 +N−1@(q(t))

)2
dt

)1/2

≤ c8n< h

(∫ T

0
EN(‖ρδ‖L1)dt

)
, (6.24)
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where for the last inequality we have used Proposition 4.3(i), Jensen’s inequality and
the concavity of the function h2. Also, we may apply Lemma 6.3 to assert

EN

∫ T

0
‖ρδ‖L1 dt ≤

∫ T

0
‖(K̂ − K̂δ)χ<0‖L1 dt

≤ c9(log log | log δ|)−α0

∫
(1 + |v|2)χ<0(v)dv + c9ε<

d
0

≤ c10<
d+2
0 (log log | log δ|)−α0 + c9ε<

d
0 ,

where χ<0(v) = �(|v| ≤ <0). This and (6.24) yield

EN

∫∫
|Y211(x, v)|χ<0(v)dxdv ≤ c11n<

[
(log log log | log δ|)−1 + | log ε|−1

]
(6.25)

for some constant c11 that is independent of τ and so long as <2(d+2)/α0
0 ≤ log log | log δ|

and <d0 ≤ ε−1/2. (Here we are using the fact that if <2(d+2)/α0
0 ≤ log log | log δ| and

<d0 ≤ ε−1/2, then

<d+2
0 (log log | log δ|)−α0 ≤ (log log | log δ|)−α0/2 , and ε<d0 ≤ ε1/2 .)

Using (6.20), (6.21) and the fact that the constant c11 in (6.25) is independent of τ , we
deduce,

EN

∫∫
|Y21(x, v)|χ<0(v)dxdv ≤ c11n<

[
(log log log | log δ|)−1 + | log ε|−1

]
,

(6.26)

so long as <2(d+2)/α0
0 ≤ log log | log δ|, <d0 ≤ ε−1/2.

Step 4. We now turn to Y22. Observe that if ζ̃ ε1 (xi − x) �= 0, then |xi − x| ≤ c12ε<(ε)

for some constant c12. Also, since Â(x, v) is of compact support in the x-variable, we
have that the expression

|K̂(xi−εy, v)−K̂δ(xi−εy, v)| =
∣∣∣∣
∫
(K̂(xi − εy, v)− K̂(xi − εy − z, v))ζ δ(z)dz

∣∣∣∣ ,
is bounded above by

∫
εd

∑
j

∣∣∣∣Â
(
xi − xj

ε
− y, v − vj

)
− Â

(
xi − xj − z

ε
− y, v − vj

)∣∣∣∣ ζ δ(z)dz
≤ c13

∫
εd
∑
j

�(|xi − xj − z| or |xi − xj | ≤ c14ε|y| + c14ε)|v − vj |ζ δ(z)dz

≤ c13

∫
εd
∑
j

�(|x − xj − z| or |x − xj |≤c15ε|y| + c15ε<(ε))|v−vj |ζ δ(z)dz ,
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whenever ζ̃ ε1 (xi − x) �= 0. In particular, if |y| ≤ <(ε), then

|K̂(xi − εy, v)− K̂δ(xi − εy, v)| ≤ c16<(ε)
d

∫
pε(x, z, v)ζ δ(z)dz, (6.27)

where pε(x, z, v) = pε(x, v)+ pε(x − z, v) and

pε(x, v) = εd<(ε)−d
∑
j

�(|x − xj | ≤ 2c15ε<(ε))|v − vj | .

Because of this, we decompose γ = γ̂1 + γ̂2 with γ̂1(z) = γ (z)�(|z| ≤ <(ε)). Set

Rr = (K̂ − K̂δ)�(K̂ − K̂δ ≥ <) ∗x γ̂ εr ,
Y22r (x, v) =

∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)Rr(xi, v)α(x, v) ,

where γ̂ ε(z) = ε−d γ̂ (z/ε) for r = 1 and 2. We certainly have

Y22(x, v) = Y221(x, v)+ Y222(x, v) . (6.28)

Recall that there exists a constant c17 such that the function γ satisfies |γ (z)| ≤
c17e

−c17|z| for |z| > 1. Set γ̃ (z) = c17e
−c17|z|/2, γ̃ ε(x) = ε−d γ̃ ε(x/ε). We have

|R2| ≤ e−c17<(ε)/2
(
|K̂| + |K̂δ|

)
∗x γ̃ ε .

As in the derivation of (6.27), we can easily show that if |xi − x| ≤ c13ε<(ε), then

|K̂(xi − y, v)| ≤ qε(x − y, v) , |K̂δ(xi − y, v)| ≤ (qε ∗x ζ δ)(x − y, v) ,

where

qε(x, v) = c18(1 + |v|)εd
∑
j

�(|x − xj | ≤ c18ε<(ε))(|vj | + 1) ,

for a constant c18. As a result,

|Y222(x, v)|χ<0(v) ≤ c19n<0χ<0(v)e
−c17<(ε)/2(qε ∗x γ̃ ε + qε ∗x γ̃ ε ∗x ζ δ)(x, v) ,

for a constant c19. From this we deduce

EN

∫ T

0

∫∫
|Y222(x, v)|χ<0(v)dxdvdt ≤ c20n<

d+1
0 e−c17<(ε)/2<(ε)d , (6.29)

for some constant c20.
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We now turn to Y221. So far < has been an arbitrary positive number. We now assume
that <̂(ε) := <<(ε)−d/c16 > 1. The inequality (6.27) and Jensen’s inequality imply that
the expression |Y221(x, v)| is bounded above by

c16 ‖γ̂1‖L1 <(ε)d
∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)α(x, v)

∫
pε(x, z, v)ζ δ(z)dz

·�
(
c16<(ε)

d

∫
pε(x, z, v)ζ δ(z)dz ≥ <

)

≤ c16‖γ̂1‖L1 n<(ε)d
(∫

pε(x, z, v)ζ δ(z)dz

)

·�
(
c16<(ε)

d

∫
pε(x, z, v)ζ δ(z)dz ≥ <

)

≤ c16‖γ̂1‖L1 n<(ε)d(log <̂(ε))−1/2φ̃

(∫
pε(x, z, v)ζ δ(z)dz

)

≤ c16‖γ̂1‖L1 n<(ε)d(log <̂(ε))−1/2
∫

φ̃(pε(x, z, v))ζ δ(z)dz,

where φ̃(z) = z(log+ z)1/2. As a result,

EN

∫ T

0

∫∫
|Y221(x, v)|�(|v| ≤ <0)dxdvdt ≤ c21n<(ε)

d(log <̂(ε))−1/2 . (6.30)

Here we are using (4.8), Jensen’s inequality, and the fact that the density p can be
expressed as an average of f ε–like densities. More precisely, the function pε(x, v) is
bounded above by a constant multiple of

∫ (
εd
∑
i

�(|a − xi | ≤ ε)|vi − v|
)
β(x − a)da ,

where β(a) = (ε<(ε))−d�(|a| ≤ 2c15ε<(ε)).

Step 5. From (6.8), (6.12–14), (6.17), (6.26) and (6.28–30) we deduce,

EN

∫ T

0

∫∫ ∣∣∣Qε,α
− (x, v; q(t))− Q̂

ε,α
− (x, v; q(t))

∣∣∣ �(|v| ≤ <0)dxdvdt

≤ c22n
[
ε<(ε)d+1<d0 + δ−1ε<(ε)<d+1

0 + <d+2
0 (log log | log δ|)−α0 + ε<d0

+<(log log log | log δ|)−1+<| log ε|−1 + <d+1
0 e−c17<(ε)/2<(ε)d + <(ε)d(log <̂(ε))−1/2],

so long as <2(d+2)/α0
0 ≤ log log | log δ| and <d0 ≤ ε−1/2. We now choose < = (log log log

| log ε|)1/2 and δ = ε<(ε)2 to derive (6.9). More precisely,

EN

∫ T

0

∫∫ ∣∣∣Qε,α
− (x, v; q(t)) − Q̂

ε,α
− (x, v; q(t)

∣∣∣�(|v| ≤ <0)dxdvdt (6.31)

≤ c23n<
d+2
0 (log log log log | log ε|)−1/(4d+2) ,

provided <2(d+2)/α0
0 ≤ log log | log ε|.
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To complete the proof, we need to study

|Q̂ε,α
− (x, v; q)− f̃ ε(x, v; q)α(x, v)Lf̃ ε(x, ·; q)(v)|

≤ n|Kε(x, v; q)− Lf̃ ε(x, ·; q)(v)|. (6.32)

As a consequence of Lemma 6.3,

EN

∫ T

0

∫∫
|Kε(x, v; q(t)) − Kε,δ(x, v; q(t))|�(|v| ≤ <0)dxdvdt (6.33)

≤ c24<
d+2
0

[
(log log | log δ|)−α0 + ε

]
.

Because of this, we may compare Lf ε with Kε,δ . Indeed

Kε,δ(x, v) =
∫

εd
∑

V

( |x − xj − z|
ε

)
B

(
v − vj ,

x − xj − z

|x − xj − z|
)
ζ δ(z)dz

=
∫

εd
∑
j

V

( |y|
ε

)
B

(
v − vj ,

y

|y|
)
ζ δ(x − y − xj )dy

=
∫ ∞

0

∫
S

ε2d
∑
j

V (ρ)B(v − vj , n)ζ
δ(x − ερn− xj )ρ

d−1dndρ

=
∫ ∞

0

∫
S

ε2d
∑
j

V (ρ)ρd−1B(v − vj , n)(ζ
δ(x − ερn− xj )

−ζ δ(x − xj ))dndρ

+
∫ ∞

0

∫
S

ε2d
∑
j

V (ρ)ρd−1B(v − vj , n)ζ
δ(x − xj )dndρ

= : K1(x, v)+K2(x, v).

Evidently

K2(x, v) = ε2d
∑
j

B̄(v − vj )ζ
δ(x − xj ). (6.34)

On the other hand, if δr = ε<r(ε) for r = 1, 2 and δ = δ1, then

Lf̃ ε(x, ·; q)(v) =
∫

B̄(v − v∗)
∑
j

ζ̃ ε1 (xj − x)ζ̃ ε2 (vj − v∗)dv∗

= ε2d
∑
j

ζ δ1(x − xj )

∫
B̄(v − v∗)ζ δ2(vj − v∗)dv∗

= ε2d
∑
j

ζ δ1(x − xj )

∫
(B̄(v − v∗)− B̄(v − vj ))ζ

δ2(vj − v∗)dv∗
(6.35)+K2(x, v)

=: K3(x, v)+K2(x, v).
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By the Lipschitzness of B̄,

|K3(x, v)| ≤ c25ε
2d
∑
j

ζ δ1(x − xj )

∫
|v∗ − vj |ζ δ2(vj − v∗)dv∗

≤ c26δ2ε
2d
∑
j

ζ δ1(x − xj ),

for some constants c25 and c26. This and (6.35) yield,∫∫
|K2(x, v)− Lf̃ ε(x, ·; q)(v)|�(|v| ≤ <0)dxdv ≤ c27δ2<

d
0 . (6.36)

Moreover,

K1(x, v) = −
∫ ε

0

∫ ∞

0

∫
S

ε2d
∑
j

V (ρ)ρd−1B(v − vj , n)ρ

∇ζ δ1(x − θρn− xj ) · n dndρdθ.
If V (ρ) = 0 for ρ > c28, then

|K1(x, v)| ≤ c28

∫ ε

0

∫ ∞

0

∫
S

ε2d
∑
j

V (ρ)ρd−1B(v − vj , n)

|∇ζ δ1(x − θρn− xj )|dndρdθ,∫
|K1(x, v)|dx ≤ c28εδ

−1
1 ‖∇ζ‖L1 ε2d

∑
j

B̄(v − vj )

≤ c29εδ
−1
1 ε2d

∑
j

|v − vj |.

Hence, we can use the conservation of the kinetic energy to assert

EN

∫∫
|K1(x, v)|�(|v| ≤ <0)dxdv ≤ c30εδ

−1
1 <d+1

0 . (6.37)

From Kε,δ = K1 +K2, (6.36) and (6.37) we learn

EN

∫ T

0

∫∫
|Kε,δ(x, v)− Lf̃ ε(x, ·; q)(v)|�(|v| ≤ <0)dxdv

≤ c30<
d+1
0 <1(ε)

−1 + c27<
d
0ε<2(ε) .

This, (6.32) and (6.33) imply∫ T

0

∫∫
EN |Q̂−

ε,α(x, v; q(t)) − f̃ ε(x, v; q(t))(v)α(x, v)Lf ε(x, ·; q(t))(x)|

�(|v| ≤ <0)dxdvdt ≤ c31n<
d+2
0 <1(ε)

−1.

This and (6.31) complete the proof. ��
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We end this section with two consequences of Theorem 6.1 that will be used in Sect. 9.
For our first corollary, we obtain a bound on the renormalized loss term.

Corollary 6.4. There exists a constant Ĉ7(T ) such that

EN

∫ T

0

∫∫
Q

ε,α
− (x, v; q(s))�(|v| ≤ <0)dxdvdt ≤ Ĉ7(T )n<

d+2
0 . (6.38)

Proof. Observe that Theorem 6.1 allows us to replace Q−
ε,α with f̃ εLf̃ εα(f̃ ε). Since

f̃ εα(f̃ ε) ≤ n and
∫
Lf̃ ε(x, v, t)dx ≤ c0(1 + |v|), we conclude (6.38). ��

A review of the proof of Theorem 6.1 reveals that there is a slight room for improve-
ment in the bound (6.38). Indeed, our arguments involved momentum-type bounds
whereas the conservation of the kinetic energy implies a bound like (4.6). To take advan-
tage of this, we may replace B(v, n) with B̂(v, n) := B(v, n)J (v) in the proof of Theo-
rem 6.1, where J is a nonnegative smooth function such that lim sup J (v)|v|−b < ∞ as
|v| → ∞ for a constant b < 1. Using Theorem 5.1, (4.8) and Lemma 4.5 for a = b+ 1,
one can readily check that Theorem 6.1 is still valid for B̂. As a corollary to this we have:

Corollary 6.5. There exists a constant Ĉ7(T , b) such that for b ∈ [0, 1),

EN

∫ T

0

∫∫
Qε,α,b

ε (x, v; q(s))�(|v| ≤ <0)dxdvdt ≤ Ĉ7(T , b)n<
d+2
0 ,

where

Q
ε,α,b
− (x, v; q) =

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )|vi − vj |b ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)

α(f̃ ε(x, v; q)) .

7. Stosszahlensatz for the Gain Term, Part I

In this section, we establish some type of Stosszahlensatz for the gain term. Our formu-
lation however differs from what we had in Sect. 6. Instead of an inequality analogous to
inequality (6.6), we prove two alternative inequalities for the gain term. These inequali-
ties are the content of Theorem 7.1 of this section and Theorem 8.1 of the next section.
Theorem 7.1 will be used in Sect. 9 when we show that the macroscopic densities are su-
persolutions. Theorem 8.1 will be used in Sect. 10 to show that the macroscopic densities
are subsolutions.

To prepare for the statement of the main result of this section, let us start with some
definitions. Assume that ζ is a nonnegative smooth function of compact support that
satisfies

∫
ζdz = 1. Using this ζ , define ζ̃ ε1 and ζ̃ ε2 as in Sect. 6. Recall the function

f̃ ε(x, v; q(s)) = f̃ ε(x, v, s) that was given right before (6.1). Define

Qε
+(x, v; q) =

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ζ̃
ε
1 (xi − x)ζ̃ ε2 (v

j
i − v) ,

ūε(x; q) =
∑
j

V ε(|x − xj |)(|vj |3/2 + 1) , (7.1)

ûε(x; q) = εd
∑
j

ζ̃ ε1 (x − xj )(|vj |3/2 + 1) .
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In Sect. 9, we need to study

Qε
+,n(x; q; J ) =:

∫
Qε

+(x, v; q)(1 + n−1f̃ ε(x, v; q))−2J (v)dv,

where J is a continuous function of compact support. Define

Q+(g)(v) =
∫ ∫

S

B(v − v∗, n)g(v′)g(v′
∗)dndv∗ ,

Q+(g; J ) =
∫

Q+(g)(v)J (v)dv ,

3(g) =
∫

g(v)(1 + |v|)dv .

Also define

Q+(g; q; J ;α1, α2) := Q+(g; J )(1 + α1ū
ε(x; q))−1(1 + α2û

ε(x; q))−2 . (7.2)

We are now ready to state the main result of this section, Theorem 7.1. In this section,
we reduce the proof of Theorem 7.1 to Theorem 8.1 of Sect. 8. For both Theorems 7.1
and 8.1, we need to assume that the size of the support of ζ is sufficiently large. This
assumption is not used in the part of the proof of Theorem 7.1 that is presented in this
section, and is needed only for the proof of Theorem 8.1.

Theorem 7.1. There exists a constant C8(T , J ) such that for every < ≥ 1 and every
nonnegative continuous function J of compact support,

EN

∫ T

0

∫ [
Qε

+,n(x; q(s); J )−Q+(f̃ ε(x, ·,q(s)); q; J ; <−1, <−1)
]−

dxds

≤ C8(T , J )(<(log log n)−1 + n−1/2<2(ε)
−2d + <<(ε)−1/4) .

Proof. Step 1. Define

Qε
+,n,<(x; q; J ) =

∫ ∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ζ̃
ε
1 (xi − x)ζ̃ ε2 (v

j
i − v)

(1 + n−1f̃ ε(x, v; q))−2(1 + <−1ūε(xi; q))−1J (v)dv .

We certainly have

Qε
+,n(x; q; J ) ≥ Qε

+,n,<(x; q; J ). (7.3)

Also define Q̂ε
+,<(x; q; J ) to be,∫ ∑

i,j

V ε(|xi − xj |)B(vi − vj , nij )ζ̃
ε
1 (xi − x)ζ̃ ε2 (v

j
i − v)

(1 + <−1ūε(xi; q))−1J (v)dv .

We would like to show that Qε
+,n,< − Q̂ε

+,< is small whenever n is large. To show this,

we first observe that if ζ̃ ε1 (xi − x)ζ̃ ε2 (v
j
i − v) �= 0 then

|xi − x| ≤ c0ε<1(ε), |vji − v| ≤ c0ε<2(ε) (7.4)
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for some positive constant c0. Take a nonnegative smooth function β of compact support
with β(z) = 1 for |z| ≤ 2c0 and define

gε(x, v; q) = c1<1(ε)
−d<2(ε)

−d
∑
k

β

(
xk − x

ε<1(ε)

)
β

(
vk − v

ε<2(ε)

)
,

for c1 = ‖ζ‖2
L∞ . We then have that if (7.4) occurs, then

f̃ ε(x, v; q) ≤ gε(xi, v
j
i ; q). (7.5)

Using this we deduce

1 − (1 + n−1f̃ ε(x, v; q))−2 ≤ 1 − (1 + n−1gε(xi, v
j
i ; q))−2

whenever ζ̃ ε1 (xi − x)ζ̃ ε2 (v
j
i − v) �= 0. As a result,

|Qε
+,n,<(x)− Q̂ε

+,<(x)| ≤
∫ ∑

i,j

V ε(|xi − xj |)B(vi − vj , nij )ζ̃
ε
1 (xi − x)ζ̃ ε2 (v

j
i − v)

[
1−(1+n−1gε(xi, v

j
i ; q))−2

]
(1+<−1ūε(xi; q))−1J (v)dv

= εd
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ζ̃
ε
1 (xi − x)J ε(v

j
i )

[
1 − (1 + n−1gε(xi, v

j
i ; q))−2

]
(1 + <−1ūε(xi; q))−1,

where

J ε(v) = ε−d(J ∗v ζ̃ ε2 )(v) = ε−d<2(ε)
−d

∫
J (v − w)ζ

(
w

ε<2(ε)

)
dw .

This and the elementary inequality

1 − (1 + n−1gε(x, v; q))−2 ≤ 2n−1gε(x, v; q)
1 + n−1gε(x, v; q)

=: gεn(x, v)

imply that the expression∫
|Qε

+,n,<(x; q; J )− Q̂ε
+,<(x; q; J )|dx (7.6)

is bounded above by

c1ε
2d
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )g
ε
n(xi, v

j
i ; q)(1 + <−1ūε(xi; q))−1

�(|vji | ≤ <0) , (7.7)

where c1 = ‖J‖L∞ and <0 is chosen so that J ε(w) = 0 for any w with |w| > <0.
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Step 2. Put c2 = 4‖V ‖L∞ . Using (7.7), we can certainly assert that the expression
(7.6) is bounded above by K1(q)+K2(q), where

K1(q) = c1ε
2d
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )g
ε
n(xi, v

j
i ; q)(1 + <−1ūε(xi; q))−1

�(|vji | ≤ <0)�
(
c2ε

d<−1|vi − vj |3/2 > 1
)
,

K2(q) = c1ε
2d
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )g
ε
n(xi, v

j
i ; q)(1 + <−1ūε(xi; q))−1

�(|vji | ≤ <0)�
(
c2ε

d<−1|vi − vj |3/2 ≤ 1
)
.

Using the assumption B(vi − vj , nij ) ≤ c3|vi − vj |, the bound gεn ≤ 2, and the elemen-
tary inequalities

�
(
c2ε

d<−1|vi − vj |3/2 > 1
)

≤ c
1/3
2 εd/3<−1/3|vi − vj |1/2 , |vi − vj |3/2

≤ 2|vi |3/2 + 2|vj |3/2 ,

we deduce that the term K1(q) is bounded above by

4c1c
1/3
2 c3ε

2d<−1/3εd/3
∑
i,j

V ε(|xi − xj |)(|vi |3/2 + |vj |3/2)(1 + <−1ūε(xi; q))−1

≤ 4c1c
1/3
2 c3ε

2d<−1/3εd/3
∑
i,j

V ε(|xi − xj |)|vi |3/2(1 + <−1ūε(xi; q))−1

+4c1c
1/3
2 c3ε

2d<−1/3εd/3
∑
i,j

V ε(|xi − xj |)|vj |3/2(1 + <−1ūε(xi; q))−1

≤ 4c1c
1/3
2 c3ε

2d<−1εd/3
∑
i

|vi |3/2ūε(xi,q)(1 + <−1ūε(xi; q))−1

+4c1c
1/3
2 c3ε

2d<−1εd/3
∑
j

ūε(xi,q)(1 + <−1ūε(xi; q))−1

≤ 8c1c
1/3
2 c3ε

2dεd/3
∑
i

(|vi |3/2 + 1) . (7.8)

From this and the conservation of the kinetic energy we deduce that for some constant
c4,

sup
s
ENK1(q(s)) ≤ c4ε

d/3 . (7.9)



Boltzmann–Grad Limits for Stochastic Hard Sphere Models 53

We now turn to the second term. We have,

ENK2(q(s)) =
∫

c1ε
2d
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )g
ε
n(xi, v

j
i ; q)

(1 + <−1ūε(xi; q))−1

�(|vji | ≤ <0)�
(
c2ε

d<−1|vi − vj |3/2 ≤ 1
)
G(s,q)νβ(dq)

=
∫

c1ε
2d
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )g
ε
n(xi, vi; Sijq)�(|vi | ≤ <0)

(1+<−1ūε(xi; Sijq))−1�
(
c2ε

d<−1|vi−vj |3/2 ≤1
)
G(s, Sijq)νβ(dq).

One can easily verify that for some constant c5,

ūε(xi; Sijq) ≥ 1

2
ūε(xi; q)− 2‖V ‖L∞ εd |vi − vj |3/2,

(7.10)
gεn(xi, vi; Sijq) ≤ gεn(xi, vi; q)+ c5n

−1<1(ε)
−d<2(ε)

−d ,

where for the first inequality we have used the elementary inequality |vji |3/2 ≥ 1
2 |vi |3/2−

|vi − vj |. The first inequality in (7.10) implies that if c2ε
d<−1|vi − vj |3/2 ≤ 1, then

1 + <−1ūε(xi; Sijq) ≥ 1

2
+ 1

2
<−1ūε(xi; q).

From this and (7.10) we deduce

ENK2(q(s)) ≤ c6

∫
ε2d

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )g
ε
n(xi, vi; q)

�(|vi | ≤ <0)
(

1 + <−1ūε(xi; q)
)−1

G(s, Sijq)νβ(dq)

+c6n
−1<2(ε)

−2d
∫

ε2d
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )

�(|vi | ≤ <0)
(

1 + <−1ūε(xi; q)
)−1

G(s, Sijq)νβ(dq)

= : K21(s)+K22(s) .

Fix k ≥ 2. We now apply (5.10) to deduce that the term K21(s) is bounded above by

k

∫
c6ε

2d
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )g
ε
n(xi, vi; q)

�(|vi | ≤ <0)
(

1 + <−1ūε(xi; q)
)−1

G(s,q)νβ(dq)

+ 2c6

log k − 1

∫
ε2d

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ψ

(
G(s, Sijq)
G(s,q)

)
νβ(dq)

=: K211(s)+K212(s) , (7.11)
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because gεn ≤ 2. We use Lemma 4.7 to claim

∫ T

0
K212(s)ds ≤ c7

log k
, (7.12)

for some constant c7. On the other hand, the inequality

εd
∑
j

V ε(|xi − xj |)|vi − vj | ≤ (|vi | + 1)
∑
j

V ε(|xi − xj |)(1 + |vj |) , (7.13)

implies,

∫ T

0
K211(s)ds ≤ c8<k

∫ T

0

∫
ε2d

∑
i

gεn(xi, vi; q)G(s,q)νβ(dq)ds ,

for a constant c8. This and (7.12) imply that for every k ≥ 2,

∫ T

0
K21(s)ds ≤ c8<k

∫ T

0

∫
ε2d

∑
i

gεn(xi, vi; q)G(s,q)νβ(dq)ds + c7

log k
. (7.14)

Repeating (7.11–14) for the term K22 leads to

∫ T

0
K22(s)ds ≤ c9n

−1<2(ε)
−2dk1 + c7

log k1
,

for some constant c9 and every k1 ≥ 2. By choosing k1 = √
n we deduce

∫ T

0
K22(s)ds ≤ c9n

−1/2<2(ε)
−2d + 2c7

log n
. (7.15)

Step 3. We certainly have

gεn = 2gε

n+ gε
≤ 2r

n+ r
+ 2�(gε > r) ,

for every positive r . This implies

∫ T

0
K211(s)ds ≤ K2111 +K2112 , (7.16)

where

K2111 = 2c8<k
r

n+ r
ε2dN = 2c8Z<k

r

n+ r
=: c9<k

r

n+ r
,

K2112 = 2c8<k

∫ T

0
ε2d

∑
i

�
(
(xi, vi) ∈ Aε

r (q)
)
G(s,q)νβ(dq)ds,

where
Aε
r (q) = {(x, v) : gε(x, v; q) > r} .
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We certainly have that for some constants c10 and c11,

gε(x, v; q) ≤ c10<1(ε)
−d<2(ε)

−d
∑
k

�(|xk − x| ≤ c11ε<1(ε), |vk − v| ≤ c11ε<2(ε)) .

Also, if

ĝε(x, v; q) := c10<1(ε)
−d<2(ε)

−d
∑
k

�(|xk − x| ≤ 2c11ε<1(ε), |vk − v|
≤ 2c11ε<2(ε)) ,

Âε
r (q) := {(x, v) : ĝε(x, v; q) > r} ,

then we can find a positive constant c12 such that

Aε
r (q)+ c12ε[−1, 1]2d ⊆ Âε

r (q) .

We can now apply Proposition 4.3(iii) to deduce

K2112 ≤ c13<kEN

∫ T

0
h(|Âε

r (q(s))|)(1 +N−1@ε(q(s)))ds (7.17)

for some constant c13. By Chebeyshev’s inequality

|Âε
r (q)| ≤ 1

r

∫∫
ĝε(x, v; q)dxdv = c14

r
,

for some constant c14. From this and (7.17) we learn

K2112 ≤ c13<kEN

∫ T

0
h
(c14

r

)
(1 +N−1@ε(q(s)))ds .

This and Proposition 4.3(i) imply

K2112 ≤ c15<kT h
(c14

r

)
.

From this and (7.16) we deduce

EN

∫ T

0
K211(s)ds ≤ c9<k

r

n+ r
+ c15<k h

(c14

r

)
.

By choosing r = √
n we deduce

EN

∫ T

0
K211(s)ds ≤ c16<k(log n)−1.

This and (7.12) (or (7.14)) imply

EN

∫ T

0
K21(s)ds ≤ c16<k(log n)−1 + c7(log k)−1 .

By choosing k = (log n)
1
2 we learn

EN

∫ T

0
K21(s)ds ≤ c17<(log log n)−1.



56 F. Rezakhanlou

We now use this and (7.15) to obtain

EN

∫ T

0
K2(s)ds ≤ c17<(log log n)−1 + c9n

−1/2<2(ε)
−2d + 2c7

log n
.

From this and (7.9) we conclude

EN

∫ T

0

∫
|Qε

+,n,<(x; q; J )− Q̂ε
+,<(x; q(s), J )|dxds

≤ c18<(log log n)−1 + c18n
−1/2<2(ε)

−2d + c18ε
d/3 . (7.18)

Step 4. In view of (7.18) and (7.3) we would like to study Q̂ε
+,<. Evidently

Q̂ε
+,<(x; q; J ) = εd

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )

× ζ̃ ε1 (xi − x)(1 + <−1ūε(xi; q))−1J ε(v
j
i )

= εd
∑
i

ζ̃ ε1 (xi − x)KJ (xi, vi)(1 + <−1ūε(xi; q))−1 ,

where

J ε = J ∗ ζ̂ ε , ζ̂ ε(v) = ε−d<2(ε)
−dζ

(
v

ε<2(ε)

)
,

and KJ (x, v) is equal to

∑
j

V ε(|x − xj |)B
(
v − vj ,

x − xj

|x − xj |
)
J ε
(
v − (v − vj ) · x − xj

|x − xj |
x − xj

|x − xj |
)
.

(7.19)

Let us define

Qε
+(x; q; J ;α1, α2) := εd

∑
i

ζ̃ ε1 (xi − x)KJ (xi, vi)(1 + α1ū
ε(xi; q))−1

·(1 + α2û
ε(x; q))−2 . (7.20)

We certainly have

Q̂ε
+,<(x; q; J ) ≥ Qε

+(x; q; J ; <−1, <−1) . (7.21)

On the other hand, it follows from Theorem 8.1 of the next section that for a constant
c19,

EN

∫ T

0

∫ ∣∣∣Qε
+(x; q(s); J ; <−1, <−1)−Q+(f̃ ε(x, ·; q(s)); q; J ; <−1, <−1)

∣∣∣dxds
≤ c19<<(ε)

−1/4 .

This, (7.3), (7.18) and (7.21) complete the proof of the theorem. ��
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8. Stosszahlensatz for the Gain Term, Part II

In the previous section, we reduced the proof of Theorem 7.1 to a claim that is the main
goal of this section, namely Theorem 8.1. This theorem will also be used in Sect. 10 to
show that the macroscopic densities are subsolutions.

Recall the functions ζ̃ ε1 , ζ̃ ε2 , ūε, ûε, and the density f̃ ε of Sect. 6 and 7. Also recall
KJ that was given by (7.19) and

Qε+(x; q; J ;α1, α2) = εd
∑
i

ζ̃ ε1 (xi − x)KJ (xi , vi )(1 + α1ū
ε(xi ; q))−1(1 + α2û

ε(x; q))−2 ,

Q+(g; q; J ;α1, α2) = Q+(g; J )(1 + α1ū
ε(x; q))−1(1 + α2û

ε(x; q))−2 .

Theorem 8.1. There exists a constant C9 = C9(T , J ) such that for every continuous
function J of compact support,

EN

∫ T

0

∫ ∣∣∣Qε
+(x; q(s); J ;α1, α2)−Q+(f̃ ε(x, ·,q(s)); q; J ;α1, α2)

∣∣∣dxds
≤ C9(1 + α1α

−1
2 )(1 + α−1

2 )<(ε)−1/4 .

To prepare for the proof of Theorem 8.1, we state two lemmas that are the analogs
of Lemmas 6.2 and 6.3. Define,

A(v, x̄, v̄) = V (|x̄|)B
(
v̄,

x̄

|x̄|
)
J

(
v − v̄ · x̄

|x̄|
x̄

|x̄|
)
.

Evidently

KJ (x, v) =
∑
j

∫
A

(
v − w,

x − xj

ε
, v − vj

)
ζ̂ ε(w)dw

=: εd
∑
j

Aε

(
v,

x − xj

ε
, v − vj

)
,

where ζ̂ ε(v) = ε−d<2(ε)
−dζ

(
v

ε<2(ε)

)
and Aε = A ∗v ζ̂ ε.

Lemma 8.2. There exist three functions Â = Â(v, x̄, v̄), η = η(x) and γ = γ (x), and
two constants c and R such that Â(v, x̄, v̄) = η(x̄) = 0 if |x̄| > R, supv R(Â(v, ·, ·)) <
∞ ,

|Â(v, x̄, v̄)− Â(w, x̄, v̄)||v − w|−1 + |Â(v, x̄, v̄)− Â(v, x̄, w̄)||v̄ − w̄|−1 ≤ η(x) ,

γ ∈ L̂, |γ (x)| ≤ exp(−c|x|) for x with |x| > 1, η(x) ≤ c for all x, and

A(v, x̄, v̄) =
∫

Â(v, x̄ − y, v̄)γ (y)dy .

The proof Lemma 8.2 is very similar to the proof of Lemma 6.2 and is omitted.



58 F. Rezakhanlou

Define

Kε
J (v, x̄, v̄; q) =

∑
j

εdA

(
v,

x̄ − xj

ε
, v̄ − vj

)
,

K̂ε
J (v, x̄, v̄; q) =

∑
j

εdÂ

(
v,

x̄ − xj

ε
, v̄ − vj

)
,

K
ε,δ
J (v, x̄, v̄; q) =

∫
Kε
J (v, x̄ − z, v̄; q)ζ δ (z) dz ,

K̂
ε,δ
J (v, x̄, v̄; q) =

∫
K̂ε
J (v, x̄ − z, v̄; q)ζ δ(z)dz .

As a consequence of Theorem 5.1 we have,

Lemma 8.3. There exists a constant C10 = C10(T , J ) such that the expressions

EN

∫ T

0

∫
|Kε

J (v, x̄, v̄; q(s))−K
ε,δ
J (v, x̄, v̄, s; q(s))|dx̄ds ,

EN

∫ T

0

∫
|K̂ε

J (v, x̄, v̄; q(s))− K̂
ε,δ
J (v, x̄, v̄, s; q(s))|dx̄ds ,

are bounded above by

C10(1 + |v̄|2)(log log | log δ|)−α0 + C10ε ,

for every v, v̄ ∈ R
d and δ > 0.

We are now ready to give a proof for Theorem 8.1. The proof of this theorem is similar
to the proof of Theorem 6.1. Because of this, some of the steps are only sketched.

Proof of Theorem 8.1. Step 1. To ease the notation, let us write U(x) = U(x,q) for
(1 + α2û

ε(x; q))−1 and S(x) = S(x,q) for (1 + α1ū
ε(x; q))−1 . Using these abbrevi-

ations we have

Qε
+(x; q; J ;α1, α2) = εd

∑
i

ζ̃ ε1 (xi − x)KJ (xi, vi)S(xi)U
2(x) . (8.1)

We first would like to replace KJ (xi, vi) with KJ (x, vi) in (8.1). Recall that ∗x denotes
the convolution in the x-variable. Define Kδ

J = KJ ∗x ζ δ , where ζ δ(z) = δ−dζ(z/δ).
Let us write

Y (x) = Y (x,q) := εd
∑
i

ζ̃ ε1 (xi − x)(KJ (xi, vi)−Kδ
J (xi, vi))S(xi)U

2(x) . (8.2)

We write A = Â ∗x̄ γ for functions Â(v, ·, ·) ∈ B and γ ∈ L̂ that satisfy the
assumptions of Lemma 8.2. As a result, Aε = Âε ∗x̄ γ , where

Âε(v, x̄, v̄) =
∫

Â(v − w, x̄, v̄)ζ̂ ε(w)dw .
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We certainly have KJ = K̂J ∗x γ ε, where

K̂J (x, v) = εd
∑
j

Âε

(
v,

x − xj

ε
, v − vj

)
, γ ε(y) = ε−dγ

(y
ε

)
. (8.3)

Also, Kδ
J = K̂δ

J ∗x γ ε, where K̂δ
J = K̂J ∗x ζ δ . Write

KJ −Kδ
J = (K̂J − K̂δ

J ) ∗x γ ε = T1 ∗x γ ε + T2 ∗x γ ε , (8.4)

where T1 = min(K̂J − K̂δ
J , <). Replace KJ − Kδ

J in the definition of Y with the two
terms which appeared on the right-hand side of (8.4). The result will be denoted by
Y1 = Y1(x,q) and Y2 = Y2(x,q). As a result

Y (x) = Y1(x)+ Y2(x) , (8.5)

where

Y1(x) = εd
∑
i

ζ̃ ε1 (xi − x)(T1 ∗ γ ε)(xi, vi)S(xi)U2(x). (8.6)

Step 2. By Lemma 8.2, we may write γ = γ1,τ + γ2,τ , where supτ Lk0(γ2,τ ) < ∞ for
some k0 > 0, and lim ‖γ1,τ‖L1 = 0 as τ → 0. To ease the notation, we simply write γr
for γr,τ . Set γ εr (x) = ε−dγr(x/ε) for r = 1, 2. We replace γ ε in (8.6) with γ εr for r = 1
and 2 and denote the result by Y11 and Y12 respectively. Evidently

Y1(x) = Y11(x)+ Y12(x) . (8.7)

We certainly have
lim
τ→0

‖γ ε2 ‖L1 = lim
τ→0

‖γ2‖L1 = 0 .

From this we learn

lim
τ→0

‖T1 ∗x γ ε2 ‖L∞ ≤ lim sup
τ→0

‖T1‖L∞‖γ ε2 ‖L1 ≤ < lim sup
τ→0

‖γ ε2 ‖L1 = 0 .

This implies

lim
τ→0

∫
|Y12(x)|dx ≤ < lim

τ→0
‖T1 ∗x γ ε2 ‖L∞ = 0 . (8.8)

On the other hand, if we write Gε for |T1| ∗x γ ε1 , then

|Y11(x)| ≤ εd
∑
i

ζ̃ ε1 (xi − x)Gε(xi, vi)U(x) . (8.9)

Take a nonincreasing smooth function β : [0,∞) → [0, 1] such that β(a) = 1 for
a ∈ [0, 1] and β(a) = 0 for a ∈ [2,∞). Fix a positive k and put βk(a) = β(a/k).
Define

Y111(x) = εd
∑
i

ζ̃ ε1 (xi − x)Gε(xi, vi)βk(|vi |)U(x) ,

Y112(x) = εd
∑
i

ζ̃ ε1 (xi − x)Gε(xi, vi)(1 − βk(|vi |))U(x) .
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Evidently,

|Y11| ≤ Y111 + Y112 . (8.10)

Moreover,

Y112(x) ≤ <εd
∑
i

ζ̃ ε1 (xi − x)�(|vi | ≥ k)U(x)

≤ <k−3/2εd
∑
i

ζ̃ ε1 (xi − x)|vi |3/2U(x) ≤ <k−3/2α−1
2 . (8.11)

As in the proof of Theorem 6.1, we would like to apply Lemma 4.6 to bound Y111.
For this, we need to have a convolution in both x and v variables. We already have a
convolution in the x-variable. To produce a v-convolution, we first estimate the Lipschitz
constant of T1 in the v–variable. For this, we only need to bound the Lipschitz constant
of the function K̂J in the v-variable. For this, we apply Lemma 8.2 to obtain

|K̂J (x, v)− K̂J (x,w)| ≤ c0|v − w|εd
∑
j

�(|x − xj | ≤ c0ε) , (8.12)

for some constant c0. Let us write Gε
k(x, v) for Gε(x, v)βk(v). Using (8.12) one can

readily obtain,

|Gε
k(x, v)−Gε

k(x,w)| ≤ c1|v−w|εd
∑
j

�(|x−xj | ≤ c0ε)+ c1k
−1Gε(x,w)|v−w| ,

for some constant c1. From this, it is not hard to deduce that the expression

|εd
∑
i

ζ̃ ε1 (xi − x)(Gε
k(xi, vi)−Gε

k(xi, vi + z))U(x)| , (8.13)

is bounded above by

c1|z|ε2d
∑
i,j

ζ̃ ε1 (xi − x)�(|xi − xj | ≤ c0ε)U(x)+ c1|z|<k−1
∑
i

ζ̃ ε1 (xi − x)U(x)

≤ c1|z|ε2d
∑
i,j

ζ̃ ε1 (xi − x)�(|x − xj | ≤ c2ε<(ε))U(x)+ c1<k
−1α−1

2 |z|

≤ c1ε
d |z|α−1

2

∑
j

�(|x − xj | ≤ c2ε<(ε))+ c1<k
−1α−1

2 |z| .

Because of this, we may define Ĝε
k = Gε

k ∗v ζ ε and assert∫ ∣∣∣εd∑
i

ζ̃ ε1 (xi − x)Gε
k(xi, vi)U(x)− εd

∑
i

ζ̃ ε1 (xi − x)Ĝε
k(xi, vi)U(x)

∣∣∣dx
≤ c3α

−1
2 ε<(ε)d + c3<k

−1α−1
2 ε , (8.14)

for a constant c3. Since Ĝε
k = (|T1|βk) ∗ η̄ε for η̄ε(x, v) = ε−2d η̄(x/ε, v/ε), η̄(x, v) =

γ1(x)ζ(v), we can now apply Lemma 4.6 to deduce that the expression

EN

∫ T

0

∫
|Y111(x)|dxds , (8.15)
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is bounded above by,

c4EN

∫ T

0
‖Lk0(η̄)‖L1 ‖T1‖L∞ h(‖T1βk‖L1)(1 +N−1@(q(s)))ds

+c3α
−1
2 ε<(ε)d + c3k<α

−1
2 ε . (8.16)

On the other hand, we may apply Lemma 8.3 and the definition T1 to assert,

‖Lk0(η̄)‖L1 ≤ c5(k0) , ‖T1‖L∞ ≤ < ,

EN

∫ T

0
‖T1βk‖L1ds ≤ EN

∫ T

0
‖(K̂J − K̂δ

J )βk‖L1ds

≤ c6(log log | log δ|)−α0

∫
(1 + |v|2)βk(v)dv + c6kε

≤ c7k
d+2(log log | log δ|)−α0 + c6kε ,

for constants c5(k0), c6 and c7 that are independent of τ and ε. We now use this and
(8.16), and repeat (6.24) to deduce that the expression (8.15) is bounded above by

c8<(log log log | log δ|)−1 + c8| log(kε)|−1 + c3α
−1
2 ε<(ε)d + c3<k

−1α−1
2 ε , (8.17)

for a constant c8 that is independent of τ . Choose k = (log log | log δ|)1/2 and assume
that kε ≤ ε1/2. Using (8.8), (8.10–11), (8.17) and the fact that the constants c3 and c5

in (8.16) are independent of τ , we deduce that the expression EN

∫ T
0

∫ |Y1(x)|dxds is
bounded above by

c8<(log log log | log δ|)−1 + 2c8| log ε|−1 + c3α
−1
2 ε<(ε)d

+c3(log log | log δ|)−1/2<α−1
2 ε + c3<(log log | log δ|)−3/4α−1

2 . (8.18)

Step 3. We now turn to Y2. In this step, we mostly follow Step 4 of the proof of Theo-
rem 6.1. Observe that if ζ̃ ε1 (xi − x) �= 0, then |xi − x| ≤ c9ε<(ε) for some constant c9.
Also, since Â(v, x̄, v̄) is of compact support in the x̄-variable, we can repeat the proof
of (6.27) to assert that whenever ζ̃ ε1 (xi − x) �= 0 and |y| ≤ <(ε),

|K̂J (xi − εy, v)− K̂δ
J (xi − εy, v)| ≤ c10<(ε)

d(|v| + 1)
∫

pε(x, z)ζ δ(z)dz , (8.19)

for a constant c10, where pε(x, z) = pε(x)+ pε(x − z) and

pε(x) = c11ε
d<(ε)−d

∑
j

�(|xj − x| ≤ c11ε<(ε))(|vj | + 1) ,

for a constant c11. Because of this, we decompose γ = γ̂1+γ̂2 with γ̂1(z) = γ (z)�(|z| ≤
<(ε)). Set Rr = T2 ∗x γ̂ εr , for γ̂ ε(z) = ε−d γ̂r (z/ε), fix a positive k, and define

Y21(x,q) = εd
∑
i

ζ̃ ε1 (xi − x)�(|vi | ≤ k)R1(xi, vi)S(xi)U
2(x) ,

Y22(x,q) = εd
∑
i

ζ̃ ε1 (xi − x)�(|vi | > k)R1(xi, vi)S(xi)U
2(x) ,

Y23(x,q) = εd
∑
i

ζ̃ ε1 (xi − x)R2(xi, vi)S(xi)U
2(x) .
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We certainly have

Y2(x,q) = Y21(x,q)+ Y22(x,q)+ Y23(x,q) .

Recall that the function γ satisfies |γ (z)| ≤ c12e
−c12|z| for |z| > 1 and a positive constant

c12. We can show

EN

∫ T

0

∫
|Y23(x,q(s))|dxds ≤ c13α

−1
2 e−c12<(ε)/2<(ε)d , (8.20)

in just the same way we showed (6.29).
We now assume k + 1 = <1/2. As in the proof of Theorem 6.1 we assume that

<̂(ε) := <1/2(<(ε))−d > 1. The inequality (8.19) implies that the expression |Y21(x,q)|
is bounded above by

c14

∫
<(ε)dεd

∑
i

ζ̃ ε1 (xi − x)(|vi | + 1)U(x)pε(x, z)ζ δ(z)dz

× �
(
(1 + k)<(ε)d

∫
pε(x, z)ζ δ(z)dz ≥ <

)

≤ c14α
−1
2 <(ε)d

(∫
pε(x, z)ζ δ(z)dz

)
�
(
<(ε)d

∫
pε(x, z)ζ δ(z)dz ≥ <1/2

)

≤ c14α
−1
2 <(ε)d(log <̂(ε))−1/2φ̃

(∫
pε(x, z)ζ δ(z)dz

)

≤ c14α
−1
2 <(ε)d(log <̂(ε))−1/2

∫
φ̃(pε(x, z))ζ δ(z)dz ,

where φ̃(z) = z(log+ z)1/2. As a result, we may apply (4.8) to deduce

EN

∫
|Y21(x,q(s))|dx ≤ c15<(ε)

d(log <̂(ε))−1/2α−1
2 . (8.21)

(Compare this with (6.30).) Similarly, we use (8.19) to assert that the expression
|Y22(x,q)| is bounded above by

c16<(ε)
dεd

∑
i

ζ̃ ε1 (xi − x)(|vi | + 1)�(|vi | > k)U(x)

∫
pε(x, z)ζ δ(z)dz

≤ c16k
−1/2<(ε)dεd

∑
i

ζ̃ ε1 (xi − x)(|vi | + 1)3/2U(x)

∫
pε(x, z)ζ δ(z)dz

≤ c17<(ε)
dk−1/2α−1

2

∫
pε(x, z)ζ δ(z)dz ,

from constants c16 and c17. Recall k + 1 = <1/2. As a result,

EN

∫ T

0

∫
|Y22(x,q(s))|dxds ≤ c18<(ε)

d<−1/4α−1
2 , (8.22)

for a constant c18.
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Step 5. From (8.5), (8.18), and (8.20-22) we learn that the expression

EN

∫ T

0

∫
|Y (x,q(s))|dxds ,

is bounded above by

c8<(log log log | log δ|)−1 + 2c8| log ε|−1/2 + c3α
−1
2 ε<(ε)d

+c3(log log | log δ|)1/2<α−1
2 ε + c3<(log log | log δ|)−3/4α−1

2

+c13α
−1
2 e−c12<(ε)/2<(ε)d + c15<(ε)

d(log <̂(ε))−1/2α−1
2 + c18<(ε)

d<−1/4α−1
2 .

Choose < = (log log log | log ε|)1/2 and δ = ε<(ε)2 to deduce

EN

∫ T

0

∫
|Y (x,q(s))|dxds ≤ c19(1 + α−1

2 )(log log log log | log ε|)− 1
4d+2 . (8.23)

We now bound∫
εd
∑
i

ζ̃ ε1 (xi − x)|Kδ
J (xi, vi)−Kδ

J (x, vi)|S(xi)U2(x)dx . (8.24)

This can be treated in just the same way we established (6.13). Indeed whenever ζ̃ ε1 (xi −
x) �= 0, the expression

|Kδ
J (xi, vi)−Kδ

J (x, vi)| ,
is bounded above by

c20δ
−1ε<(ε)

∫
KJ (z, vi)�(|x − z| ≤ c20δ + c20ε<(ε))dz

≤ c20δ
−1ε<(ε)

∫
KJ (z, vi)�(|x − z| ≤ 2c20δ)dz,

for some constant c20. Moreover, from |vi − vj | ≤ (|vi | + 1)(|vj | + 1) we learn,

KJ (z, vi) ≤ c21(|vi | + 1)
∑
j

V ε(|z − xj |)(|vj | + 1) =: c21(|vi | + 1)uε(z) .

Hence the term |Kδ
J (xi, vi)−Kδ

J (x, vi)| is bounded above by

c22δ
−1ε<(ε)(|vi | + 1)δ−1ε<(ε)

∫
uε(z)�(|x − z| ≤ 2c20δ)dz =: δ−1ε<(ε)(|vi | + 1)Gε(x).

As a result, the expression (8.24) is bounded above by

c22δ
−1ε<(ε)EN

∫
εd
∑
i

ζ̃ ε1 (xi − x)(|vi | + 1)Gε(x)S(xi)U
2(x)dx

≤ c22δ
−1ε<(ε)α−1

2 EN

∫
Gε(x)dx

≤ c23δ
−1ε<(ε)ε2dENε

2d
∑
j

(|vj | + 1) ≤ c24δ
−1ε<(ε) ,
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where for the last inequality, we have used the conservation of the kinetic energy. From
this and (8.23) we learn

EN

∫ T

0

∫ ∣∣∣∑
i

ζ̃ ε1 (xi(s)− x)(KJ (xi(s), vi(s))−Kδ
J (x, vi(s)))S(xi(s))U

2(x)

∣∣∣dxds
≤ c25(1 + α−1

2 )(log log log log | log ε|)− 1
4d+2 , (8.25)

for δ = ε<(ε)2 and a constant c25. However, this δ is not what we need. We would rather
have δ1 = δ1(ε) = ε<(ε) in place of δ. The reason we were forced to choose such a δ
was because when we replaced xi with x in Kδ

J , we had an error of order O(ε<(ε)δ−1).
Otherwise a choice of δ = δ1, would have led to the same estimate (8.23). Based on this
observation, we can repeat the proof of (8.23) to assert that the expression

EN

∫ T

0

∫ ∣∣∣∑
i

ζ̃ ε1 (xi(s)− x)(K
δ1
J (x, vi(s))−Kδ

J (x, vi(s)))S(xi(s))U
2(x)

∣∣∣dxds ,
is bounded above by

c26(1 + α−1
2 )(log log log log | log ε|)− 1

4d+2 . (8.26)

(In showing this, some of the steps of the proof of (8.23) can be skipped.) We can
certainly write

εd
∑
i

ζ̃ ε1 (xi − x)K
δ1
J (x, vi)S(xi)U

2(x)

=
∫ ∑

i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)K
δ1
J (x, vi)S(xi)U

2(x)dv .

Moreover, using a bound similar to (8.12), it is not hard to show that the expression∫∫
εd
∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)|Kδ1
J (x, vi)−K

δ1
J (x, v)|S(xi)U2(x)dxdv ,

is bounded above by

c27

∫∫ ∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)U(x)

∫ ∑
j

V ε(|xi − xj + z|)|v − vi |ζ δ1(z)dzdxdv

≤ c28ε<(ε)

∫∫
εd
∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)U(x)
∑
j

∫
�(|xj − x + z|

≤ c28ε<(ε))ζ
δ1(z)dzdx

≤ c28

∫∫
α−1

2 <(ε)
∑
j

�(|xj − x + z| ≤ c28ε<(ε))ζ
δ1(z)dzdx

≤ c29α
−1
2 ε<(ε)d+1 .

From this and (8.25–26) we learn that there exists a constant c30 such that
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EN

∫ T

0

∫∫ ∣∣∣Qε
+(x; q(s); J ;α1, α2)− Q̂ε

+(x; q(s); J ;α1, α2)

∣∣∣ dxds
≤ c30(1 + α−1

2 )(log log log log | log ε|)− 1
4d+2 , (8.27)

where

Q̂ε
+(x; q; J ;α1, α2) =

∫ ∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)K
δ1
J (x, v)S(xi)U

2(x)dv ,

and δ1 = ε<(ε).

Step 6. Next we would like to replace S(xi) with Sδ1(x), where Sδ1 = (1 + α1ũ
δ1)−1

with ũδ1 = ūε ∗ ζ δ1 and δ1 = ε<(ε). Define

Q̄ε
+(x; q; J ;α1, α2) =

∫ ∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)K
δ1
J (x, v)Sδ1(x)U2(x)dv

=
∫

f̃ ε(x, v; q)Kδ1
J (x, v)Sδ1(x)U2(x)dv .

We would like to show that for some constant c31,

EN

∫ T

0

∫∫ ∣∣∣Q̄ε
+(x; q(s); J ;α1, α2)− Q̂ε

+(x; q(s); J ;α1, α2)

∣∣∣ dxds
≤ c31[α−1

2 + α1α
−1
2 (1 + α−1

2 )]<(ε)−1/4 . (8.28)

The proof of (8.28) can be carried out in the same way we showed (8.27). Indeed, we
first restrict v to a bounded set. This is done by defining

Q̂ε
+,k0

(x; q; J ;α1, α2) =
∫ ∑

i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)K
δ1
J (x, v)�(|v| ≤ k0)S(xi)U

2(x)dv ,

Q̄ε
+,k0

(x; q; J ;α1, α2) =
∫

f̃ ε(x, v; q)Kδ1
J (x, v)�(|v| ≤ k0)S

δ1 (x)U2(x)dv ,

for a large positive k0. It is not hard to see that the term K
δ1
J (x, v)U(x) is bounded by

a constant multiple of α−1
2 (|v| + 1) provided that the support of ζ is sufficiently large.

As a result,

EN

∫ T

0

∫∫ ∣∣∣Q̂ε
+(x; q(s); J ;α1, α2)− Q̂ε

+,k0
(x; q(s); J ;α1, α2)

∣∣∣ dxds
≤ c32α

−1
2 EN

∫ T

0

∫∫ ∑
i

ζ̃ ε1 (xi − x)ζ̃ ε2 (vi − v)(|v| + 1)�(|v| ≤ k0)dxdvds

≤ c33α
−1
2 k−1

0 EN

∫ T

0
ε2d

∑
i

(1 + |vi |2)ds

= c34α
−1
2 k−1

0 ,

where for the last equality we have used the conservation of the kinetic energy. This
means that if we replace Q̂ε+ with Q̂ε

+,k0
in (8.28), we cause an error that is bounded

above by c34α
−1
2 k−1

0 . In the same fashion we can argue that if we replace Q̄ε+ with Q̄ε
+,k0
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in (8.28), we cause an error that is bounded above by c34α
−1
2 k−1

0 . After this, we first
replace ūε with ũδ for δ = ε<(ε)2. Note

S(xi)− Sδ(xi) = α1(ũ
δ(xi)− ūε(xi))(1 + α1ũ

δ(xi))
−1(1 + α1ū

ε(xi))
−1 .

Now ũδ(xi)− ūε(xi) plays the role ofKδ
J −KJ in the proof of (8.25). To follow the proof

of (8.25) line by line, observe that the term (1 + α1ũ
δ)−1(1 + α1ū

ε)−1 is bounded by 1
and that the term K

δ1
J (x, v)U(x) is bounded by a constant multiple of α−1

2 k0 provided

that the support of ζ is sufficiently large. Hence we spare one U to control Kδ1
J and use

the other U to repeat the proof of (8.25). We then repeat the proof of (8.26) to replace
Sδ with Sδ1 . Finally we choose k0 = <(ε)1/4 to complete the proof of (8.28).

Final Step. To complete the proof of the theorem, we first observe that Q+(g; J ) =∫
gL(g, J )dv, where

L(g, J )(v) =
∫ ∫

S

B(v − v∗, n)g(v∗)J (v − (v − v∗)n · n)dndv∗ .

As in the final step of the proof of Theorem 6.1, we have

|Kδ
J (x, v)− L(f̃ ε(x, .; q), J )(v)| ≤ (εδ−1

1 + δ2)X(x, v) , (8.29)

where
X(x, v) = ε2d

∑
j

γ δ1(x − xj )(|v − vj | + 1) ,

where γ δ1(x) = δ−d
1 γ (x/δ1) for a suitable function γ of compact support. It is not hard

to see that XU is bounded above by a constant multiple of |v| + 1 if the support of ζ is
sufficiently large. This and (8.27–29) complete the proof of the theorem. ��

9. Supersolutions

In this section we establish one half of Theorem 2.1 by showing that any limit point of
PN is concentrated on the space of supersolutions of the Boltzmann equation (1.1).

An integrable function f is called a supersolution of (1.1) with initial data f 0 if for
every t ∈ [0, T ],

f (x, v, t) ≥ f 0(x − vt, v)+
∫ t

0
Q(f, f )(x − v(t − s), v, s)ds ,

for almost all (x, v).
It is not hard to show that f is a supersolution if and only if

f (x + vt, v, t) ≥ f (x, v, 0) exp

(
−
∫ t

0
Lf (x + vθ, v, θ)dθ

)

+
∫ t

0
Q+(f (x, ·, s))(v) exp

(
−
∫ t

s

Lf (x + vθ, v, θ)dθ

)
ds,

(9.1)

for almost all (x, v). (See for example [DLi1], p. 345.)
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Recall that

f̃ ε(x, v; q) = ε2d
∑
i

ζ δ1(ε)(xi − x)ζ δ2(ε)(vi − v) ,

where ζ δ(z) = δ−dζ(z/δ), δr (ε) = ε<r(ε) for r = 1, 2, <2(ε) ≤ <1(ε) = <(ε) and <(ε)
is as in (6.1). We now assume

lim
ε→0

<2(ε)<(ε)
−1 = 0 , lim

ε→0
<2(ε) = ∞ .

The transformation

q(·) �→ f̃ ε(x, v, t)dxdvdt = f̃ ε(x, v; q(t))dxdvdt =: π(dx, dv, dt) ,

assigns a measure to each realization of q(·). We regard this measure as a member of

M̂ := {π : π(Td × R
d × [0, T ]) = ZT } . (9.2)

The transformation q(·) �→ π induces a probability measure QN on M̂. The main
result of this section is Theorem 9.1.

Theorem 9.1. The sequence {QN } is tight and if Q is a limit point, then Q is concen-
trated on the space of measures π such that π(dx, dv, dt) = f (x, v, t)dxdvdt for a

nonnegative integrable function f such that Q±(f,f )
1+f

∈ L1(Td × R
d × [0, T ]),

sup
t∈[0,T ]

∫∫
f (1 + |x|2 + |v|2 + log+ f )dxdv < ∞, (9.3)

and f is a supersolution of (1.1) with initial data f 0.

Proof. Step 1. As in the proof of Theorem 5.1, let us write F(x, v; q) = Fn(x, v; q) =
nf̃ ε(x,v;q)
n+f̃ ε(x,v;q) = βn(f̃

ε(x, v; q)), where βn(r) = nr
n+r

. Recall that the process

M(x, v, t) = F(x+vt, v; q(t))−F(x, v; q(0))−
∫ t

0

(
∂

∂s
+ A

)
F(x+vs, v; q(s))ds

is a martingale and that its quadratic variation is given by

ENM(x, v, t)2 = EN3(t) := EN

∫ t

0
(AF 2 − 2FAF)(x + vs, v; q(s))ds

= EN

∫ t

0
(AcF

2 − 2FAcF )(x + vs, v; q(s))ds. (9.4)

As a result, we may write

F(x, v; q(t)) = F(x − vt, v; q(0))+
∫ t

0
A(x − v(t − s), v, s)ds

+
∫ t

0
D(x − v(t − s), v, s)+M(x − vt, v, t), (9.5)
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where A = (
∂
∂x

· v + A0
)
F and D(x, v, t) = AcF (x, v; q(t)). A straightforward cal-

culation yields

(AcF
2 − 2FAcF )(x, v)

= 1

2

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )(f̃
ε(x, v; Sijq)− f̃ (x, v; q))2

×
(

1 + n−1f̃ ε(x, v; q)
)−2 (

1 + n−1f̃ ε(x, v; Sijq)
)−2

.

Evidently (f̃ ε(x, v; Sijq)− f̃ (x, v; q))2 is equal to

<1(ε)
−2d<2(ε)

−2d

[
ζ

(
xi − x

δ1(ε)

)
ζ

(
v
j
i − v

δ2(ε)

)
+ ζ

(
xj − x

δ1(ε)

)
ζ

(
vij − v

δ2(ε)

)

− ζ

(
xi − x

δ1(ε)

)
ζ

(
vi − v

δ2(ε)

)
− ζ

(
xj − x

δ1(ε)

)
ζ

(
vj − v

δ2(ε)

)]2

.

Define

m1
ij = 8ζ 2

(
xi − x

δ1(ε)

)
ζ 2

(
v
j
i − v

δ2(ε)

)
, m2

ij = 8ζ 2
(
xi − x

δ1(ε)

)
ζ 2
(
vi − v

δ2(ε)

)
.

Using this we can write,

ENM
2(x, v, t) ≤ EN

∫ t

0
M1(x + vs, v,q(s))ds + EN

∫ t

0
M2(x + vs, v,q(s))ds ,

(9.6)

where

Mr(x, v,q) = <1(ε)
−2d<2(ε)

−2d
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )m
r
ij (x, v; q)

×
(

1 + n−1f̃ ε(x, v; q)
)−2 (

1 + n−1f̃ ε(x, v; Sijq)
)−2

for r = 1, 2. For some constants c0, c1 and c2 we have that the term M2(x, v,q) is
bounded above by
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c0<1(ε)
−2d<2(ε)

−2d
∑
i,j

V ε(|xi − xj |)|vi − vj |

× ζ 2
(
xi − x

δ1(ε)

)
ζ 2
(
vi − v

δ2(ε)

)(
1 + n−1f̃ ε(x, v; q)

)−1

≤ c1<1(ε)
−2d<2(ε)

−2dεd
∑
i,j

�(|xj − x| ≤ c1δ1(ε))(|vj − v| + c1δ2(ε))

× ζ 2
(
xi − x

δ1(ε)

)
ζ 2
(
vi − v

δ2(ε)

)(
1 + n−1f̃ ε(x, v; q)

)−1

≤ c2<1(ε)
−2d<2(ε)

−2dεd
∑
i,j

�(|xj − x| ≤ c1δ1(ε))(|vj − v| + c1δ2(ε))

× ζ

(
xi − x

δ1(ε)

)
ζ

(
vi − v

δ2(ε)

)(
1 + n−1f̃ ε(x, v; q)

)−1

≤ c2<1(ε)
−d<2(ε)

−dnεd
∑
j

�(|xj − x| ≤ c1δ1(ε))(|vj − v| + c1δ2(ε)) .

From this and the conservation of the kinetic energy we learn

EN

∫ t

0

∫∫
M2(x + vs, v,q(s))�(|v| ≤ <0)dxdvds

≤ c3n<2(ε)
−dε2d<d0EN

∫ t

0

∑
j

(|vj |2 + <0)�(|v| ≤ <0)ds ≤ c4n<
d+1
0 <2(ε)

−d ,

(9.7)

for some constants c3 and c4. On the other hand the term ENM1(x, v,q(s)) is bounded
above by

8<1(ε)
−2d<2(ε)

−2d
∫ ∑

i,j

V ε(|xi − xj |)B(vi − vj , nij )

× ζ 2
(
xi − x

δ1(ε)

)
ζ 2

(
v
j
i − v

δ2(ε)

)(
1 + n−1f̃ ε(x, v; Sijq)

)−1
G(s,q)νβ(dq)

= 8<1(ε)
−2d<2(ε)

−2d
∫ ∑

i,j

V ε(|xi − xj |)B(vi − vj , nij )

× ζ 2
(
xi − x

δ1(ε)

)
ζ 2
(
vi − v

δ2(ε)

)(
1 + n−1f̃ ε(x, v; q)

)−1
G(s, Sijq)νβ(dq) .

As in Step 8 of the proof of Lemma 5.3, we can use (5.10), (9.7) and Lemma 4.7 to show
that for every k > 1,

EN

∫ t

0

∫∫
M1(x + vs, v; q(s))�(|v| ≤ <0)dxdvds

≤ c5kn<
d+1
0 <2(ε)

−d + c5<1(ε)
−d<2(ε)

−d(log k)−1.

In just the same way we derived (9.7) and (5.19). By choosing k = e we learn

EN

∫ t

0

∫∫
M1(x + vs, v; q(s))�(|v| ≤ <0)dxdvds ≤ c6n<

d+1
0 <2(ε)

−d ,
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for some constant c6. This and (9.6–7) imply

ENM(x, v, t)2 ≤ c7n<
d+1
0 <2(ε)

−d , (9.8)

for some constant c7. Now we use Doob’s inequality to deduce

EN

∫∫
sup

0≤t≤T
M(x, v, t)2�(|v| ≤ <0)dxdv ≤ 4c7<

d+1
0 <2(ε)

−d . (9.9)

Step 2. We certainly haveD(x, v, s) = D+(x, v, s)−D−(x, v, s)whereD±(x, v, s) =
D±(x, v; q(s)) and

D+(x, v,q) = ε2d
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ζ
δ1(ε)(xi − x)ζ δ2(ε)(v

j
i − v)

×
(

1 + n−1f̃ ε(x, v; q)
)−1 (

1 + n−1f̃ ε(x, v; Sijq)
)−1

,

D−(x, v,q) = ε2d
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ζ
δ1(ε)(xi − x)ζ δ2(ε)(vi − v)

×
(

1 + n−1f̃ ε(x, v; q)
)−1 (

1 + n−1f̃ ε(x, v; Sijq)
)−1

.

It is not hard to see that there exists a constant c8 such that,

|f̃ ε(x, v; q)− f̃ ε(x, v; Sijq)| ≤ c8<1(ε)
−d<2(ε)

−d . (9.10)

On account of this, let us define

D̂±(x, v; q) = Qε
±(x, v; q)

(
1 + n−1f̃ ε(x, v; q)

)−2
, (9.11)

where Qε+ was defined by (7.1) and

Qε
−(x, v; q) =

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij ) ζ̃
ε
1 (xi − x)ζ̃ ε2 (vi − v).

From (9.10) and <1(ε) ≥ <2(ε) we deduce

|D±(x, v; q)− D̂±(x, v; q)| ≤ c8<2(ε)
−2dQε

±(x, v; q)
(

1 + n−1f̃ ε(x, v; q)
)−1

.

(9.12)

We now claim

EN

∫ T

0

∫∫
|D±(x, v; q(s))− D̂±(x, v; q(s))|�(|v| ≤ <0)dxdvds

≤ c9n<
d+2
0 <2(ε)

−2d . (9.13)

for a constant c9. For this, it suffices to show that there exists a constant c10 such that

EN

∫ T

0

∫∫
Qε

±(x, v; q(s))
(

1 + n−1f̃ ε(x, v; q(s))
)−1

�(|v| ≤ <0)dxdvds

≤ c10<
d+2
0 n . (9.14)
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In the case ofQε−, the bound (9.14) is a consequence of Corollary 6.4. We delay the proof
of the inequality (9.14) in the case Qε+ because we need something stronger, namely a
uniform integrability of the renormalized loss and gain terms. More precisely, we prove
that there exists a constant c11 such that

EN

∫ T

0

∫∫
X±(x, v; q(s))�(X±(x, v; q(s)) ≥ <)dxdvds

≤ c11n
[
<d+2

0 (log <)1/4<2(ε)
−1/2 + (log log <)−1

]
(9.15)

for < > e and small ε, where X± is a short-hand for Qε±
(

1 + n−1f̃ ε
)−1

.

We establish (9.15) with the aid of Theorem 6.1 and (4.8). To this end let us write Y−
for f̃ ε

(
1 + n−1f̃ ε

)−1
Lf̃ ε. Fix k > 1. We certainly have

X−�(X− ≥ <) ≤ Y−�(X− ≥ <)+ |X− − Y−|
≤ Y−�(X− − Y− ≥ </2)+ Y−�(Y− ≥ </2)+ |X− − Y−|
≤ k�(X− − Y− ≥ </2)+ 1

(log k)1/2 φ̃(Y−)

+ 1

(log(</2))1/2 φ̃(Y−)+ |X− − Y−|

≤
(

2k

<
+ 1

)
|X− − Y−| + [(log k)−1/2 + (log(</2))−1/2]φ̃(Y−) ,

where φ̃(z) = z(log+ z)1/2. From this, the inequality Y− ≤ nLf̃ ε, (4.8) and Theo-
rem 6.1 we deduce,

EN

∫ T

0

∫∫
X−(x, v; q(s))�(X−(x, v; q(s)) ≥ <)�(|v| ≤ <0)

≤ c12

(
2k

<
+ 1

)
n<d+2

0 <(ε)−1/2 + c12φ̃(<0)
[
(log k)−1/2 + (log <)−1/2

]
.

Choosing k = < yields

EN

∫ T

0

∫∫
X−(x, v; q(s))�(X−(x, v; q(s)) ≥ <)�(|v| ≤ <0)dxdvds

≤ 3c12n<
d+2
0 <(ε)−1/2 + 2c12φ̃(<0)(log <)−1/2 .

This implies (9.15) in the case of X−.
We can use (5.10) and Lemma 4.7 to establish a similar bound for X+. First observe

that (9.10) implies

(
1 + n−1f̃ ε(x, v; Sijq)

)−1 ≤ c13

(
1 + n−1f̃ ε(x, v; q)

)−1
, (9.16)
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for small ε. From (5.10) we deduce that we can find a constant c14 such that for every
k > 1,∫

X+(x, v; q)�(X+(x, v; q) ≥ <)G(s,q)νβ(dq)

=
∫

ε2d
∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ζ
δ1(ε)(xi − x)ζ δ2(ε)(vi − v)

×
(

1 + n−1f̃ ε(x, v; Sijq)
)−1

�(X+(x, v; Sijq) ≥ <)G(s, Sijq)νβ(dq)

≤ k

∫
ε2d

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ζ
δ1(ε)(xi − x)ζ δ2(ε)(vi − v)

×
(

1 + n−1f̃ ε(x, v; Sijq)
)−1

�(X+(x, v; Sijq)

≥ <)G(s,q)νβ(dq)+ (log k)−1K(x, v, s) ,

where the function K(x, v, s) satisfies

∫ T

0

∫∫
K(x, v, s)dxdvds ≤ c14 ,

by Lemma 4.7. In the case of < = e, we simply use (9.16) to deduce

EN

∫ T

0

∫∫
X+(x, v; q(s))�(X+(x, v; q(s)) ≥ e , |v| ≤ <0)dxdvds

≤ c15kEN

∫ T

0

∫∫
X−(x, v; q(s))�(|v| ≤ <0)dxdvds + c14(log k)−1 . (9.17)

We now choose k = e in (9.17) to deduce (9.14) in the case of Qε+ from (9.14) in the
case of Qε−.

Going back to (9.15), we apply (9.16) to assert that the expression

∫ T

0

∫∫ ∫
X+(x, v; q)�(X+(x, v; q) ≥ <)�(|v| ≤ <0)G(s,q)νβ(dq)dxdvds ,

(9.18)

is bounded above by

c16

∫ T

0

∫∫
K1�(|v| ≤ <0)dxdvds+c16

∫ T

0

∫∫
K2�(|v| ≤ <0)dxdvdt+c14(log k)−1 ,

for some constant c16, where

K1 = k

∫
ε2d

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )�(|vi − vj | ≤ p)ζ δ1(ε)(xi − x)ζ δ2(ε)(vi − v)

×
(

1 + n−1f̃ ε(x, v; q)
)−1

�(X+(x, v; Sijq) ≥ <)G(s,q)νβ(dq) ,
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andK2 is obtained fromK1 by replacing �(|vi −vj | ≤ p)with �(|vi −vj | > p). Here p
is a fixed positive number that will be chosen later. We now use Chebyshev’s inequality
to assert that the term ∫ T

0

∫∫
K2�(|v| ≤ <0)dxdvds ,

is bounded above by

kp−1/2
∫ T

0

∫∫ ∫
ε2d

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )|vi − vj |1/2ζ δ1(ε)(xi − x)ζ δ2(ε)(vi − v)

×
(

1 + n−1f̃ ε(x, v; q)
)−1

�(X+(x, v; Sijq) ≥ <)G(s,q)νβ(dq)dxdvds .

This and Corollary 6.5 imply

∫ T

0

∫∫
K2�(|v| ≤ <0)dxdvdt ≤ c17kp

−1/2n<d+2
0 (9.19)

for a constant c15.
We now turn to K1. Observe that by (9.16), X+ ≤ X̂+, where,

X̂+(x, v; q) ≤ √
c13 Q

ε+(x, v; q)
(

1 + n−1f̃ ε(x, v; q))
)−1/2 (

1 + n−1f̃ ε(x, v; Sijq))
)−1/2

.

Evidently we can find a constant c18 such that if

V ε(|xi − xj |)ζ δ1(ε)(xi − x)ζ δ2(ε)(vi − v)�(|vi − vj | ≤ p) �= 0,

then |xi − x|, |xj − x| ≤ c18δ1(ε), |vi − v| ≤ c18δ2(ε) and |vi − vj | ≤ p. From this we
learn that the expression

|X̂+(x, v; Sijq)− X̂+(x, v; q)| ,

is bounded above by

c19ε
d<1(ε)

−d<2(ε)
−d
∑
k

�(|xk −x| ≤ c19δ1(ε))(|vk −v|+p)) =: <2(ε)
−dR(x, v; q) ,

for a constant c17. The proof of this is very similar to what was presented in the begin-
ning of Step 6 of the proof of Lemma 5.3 and is omitted. Hence, for every p1 > 1, the
expression ∫ T

0

∫∫
K1�(|v| ≤ <0) dxdvds ,

is bounded above by

k

∫ T

0

∫∫ ∫
X−(x, v; q)�(X+(x, v; q)+ <2(ε)

−dR(x, v; q)

≥ < , |v| ≤ <0)G(s,q)νβ(dq)dxdvds
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≤ kp1EN

∫ T

0

∫∫
�(X+(x, v; q(s))+ <2(ε)

−dR(x, v; q(s)) ≥ <)dxdvds

+kEN

∫ T

0

∫∫
�(X−(x, v; q(s)) ≥ p1)X−(x, v; q(s))�(|v| ≤ <0)dxdvds

≤ kp1

<
EN

∫ T

0

∫∫ (
X+(x, v; q(s))+ <2(ε)

−dR(x, v; q(s))
)

�(|v| ≤ <0)dxdvds

+c20k
(
n<d+2

0 <(ε)−1/2 + φ̃(<0)(logp1)
−1/2

)
≤ c21

kp1

<
(<d+2

0 n+ p<d+1
0 <2(ε)

−d)+ c20k
(
n<d+2

0 <(ε)−1/2 + φ̃(<0)(logp1)
−1/2

)
,

where for the second inequality we used Chebyshev’s inequality and (9.15) and for the
third inequality we used (9.14). From this and (9.19) we learn that the expression (9.18)
is bounded above by

c22
kp1

<
(<d+2

0 n+ p<d+1
0 <2(ε)

−d)+ c22k
(
n<d+2

0 <(ε)−1/2 + φ̃(<0)(logp1)
−1/2

)
+c22kp

−1/2n<d+2
0 + c14(log k)−1 .

We choose p = log <, p1 = <1/2 and k = (logp1)
1/4 to deduce (9.14) in the case of

X+.
We now discuss a consequence of (9.14) that is easier to use. Define

<̄(ε) = exp(<(ε)8/5) .

Note that if < ≤ <̄(ε), then

(log <)1/4<2(ε)
−2 + (log log <)−1 ≤ 2(log log <)−1 ,

for sufficiently small ε. From this, (9.14) and the identity

(
log+ log+ min(X, <̄(ε))

)1/2 =
∫ <̄(ε)

e

�(X ≥ <)
d<

2< log <(log log <)1/2 ,

one can readily deduce that for some constant c20,

EN

∫ T

0

∫∫
φ̂
(

min
(
|D̂±(x, v, t)|, <̄(ε)

))
�(|v| ≤ <0)dxdvdt

≤ c23n<
d+2
0 ,

EN

∫ T

0

∫∫
|D̂±(x, v, t)|�(|D̂±(x, v, t)| ≥ <̄(ε))�(|v| ≤ <0)dxdvdt

≤ c23n<
d+2
0 (log log <̄(ε))−1 , (9.20)

where φ̂(z) = z(log+ log+ z)1/2.

Step 3. Consider the process

F(x + vt, v; q(t)) exp

(∫ t

0
Lf̃ ε(x + vθ, ·; q(θ))(v)dθ

)
.
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This is a product of a semimartingale and a monotone process. More precisely, fix (x, v)
and consider the process X(t) = F(x + vt, v; q(t)). We have dX = (A+D)dt + dM ,
where A, D and M are as in Step 1. To ease the notation, let us simply write Lf̃ ε(x +
vθ, v, θ) for Lf̃ ε(x+ vθ, ·,q(θ))(v) and Y (t) = ∫ t

0 W(θ)dθ for the increasing process∫ t
0 Lf̃

ε(x + vθ, v, θ)dθ . By a standard stochastic calculation,

d(XeY ) = (A+D +XW)eY dt + eY dM .

As a result, the function F(x + vt, v; q(t)) equals to

F(x, v; q(0)) exp

(
−
∫ t

0
Lf̃ ε(x + vθ, v, θ)dθ

)
+ M̂(x, v, t)

+
∫ t

0

[(
∂

∂s
+ A

)
F(x + vs, v; q(s))+ F(x + vs, v; q(s))Lf̃ ε(x + vs, v; q(s))

]

· exp

(
−
∫ t

s
Lf̃ ε(x + vθ, v, θ)dθ

)
ds,

where M̂(x, v, ·) is a martingale with quadratic variation

ENM̂(x, v, t)2 = EN

∫ t

0
exp

(
−2
∫ t

s

Lf̃ ε(x + vθ, v, θ)dθ

)
3(ds) , (9.21)

where the function 3 was defined in (9.4). From this we learn

βn(f̃
ε(x + vt, v, t)) = βn(f̃

ε(x, v, 0)) exp

(
−
∫ t

0
Lf̃ ε(x + vθ, v, θ)dθ

)

+
∫ t

0
A(x + vs, v, s) exp

(
−
∫ t

s

Lf̃ ε(x + vθ, v, θ)dθ

)
ds

+
∫ t

0
D+(x + vs, v, s) exp

(
−
∫ t

s

Lf̃ ε(x + vθ, v, θ)dθ

)
ds

+R1(x, v, t)+ M̂(x, v, t) , (9.22)

where

R1(x, v, t) =
∫ t

0

(
F(x + vs, v; q(s))Lf̃ ε(x + vs, v, s)−D−(x + vs, v, s)

)

· exp

(
−
∫ t

s

Lf̃ ε(x + vθ, v, θ)dθ

)
ds .

From (9.21) we learn that ENM̂(x, v, t)2 ≤ EN3(t). This, (9.8) and Doob’s inequality
imply

EN sup
t∈[0,T ]

M̂(x, v, t)2 ≤ 4EN3(T ) ≤ 4c7n<
d+1
0 <2(ε)

−d . (9.23)

Also, observeFLf̃ ε ≥ f̃ εLf̃ ε(1+n−1f̃ ε)−2. We now use this, (9.13) and Theorem 6.1
to assert

EN sup
t∈[0,T ]

∫∫
[R1(x, v, t)]

−�(|v| ≤ <0)dxdv ≤ c24n<
d+2
0 <2(ε)

−1/2 , (9.24)
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for a constant c24. Here and below, we write a− for max(−a, 0). On the other hand, we
have

A(x, v, t) = β ′(f̃ ε(x, v, t))<1(ε)
−d<2(ε)

−d
∑
i

vi − v

δ1(ε)
· ∇ζ

(
xi − x

δ1(ε)

)
ζ

(
vi − v

δ2(ε)

)
,

which implies

|A(x, v, t)| ≤ c25<1(ε)
−d<2(ε)

−d
∑
i

|∇ζ |
(
xi − x

δ1(ε)

)
ζ

(
vi − v

δ2(ε)

)
δ2(ε)

δ1(ε)
.

Hence, ∫∫
|A(x, v, t)|dxdv ≤ c26

<2(ε)

<1(ε)
. (9.25)

Fix k > 0 and put f̃ ε
k = min(f̃ ε, k). We now would like to replace D+(x, v, t) with

Q+(f̃ ε
k (x, ·, t))(v)(1 + <−1ûε(x, t))−2(1 + <−1ūε(x, t))−2 ,

where ûε(x, t) = ∫
(1+|v|3/2)f̃ ε(x, v, t)dv and ūε(x, t) are as in (7.1), and < is a fixed

positive number that will be sent to infinity in the end. Recall that by (9.12), the replace-
ment of D+ with D̂+ causes a small error. In view of (9.20), let us define Zε(x, v, t) to
be

min
(
D̂+(x, v, t), <̄(ε)

)
−Q+(f̃ ε

k (x, ·, t))(v)(1+<−1ûε(x, t))−2(1+<−1ūε(x, t))−2 .

From (9.12), (9.20) and (9.23–25) we deduce

f̃ ε(x + vt, v, t) ≥ βn(f̃
ε(x + vt, v, t))

= βn(f̃
ε(x, v, 0)) exp

(
−
∫ t

0
Lf̃ ε(x + vθ, v, θ)dθ

)

+
∫ t

0
Q+(f̃ ε

k (x, ·, s))(v)(1 + <−1ûε(x, t))−2(1 + <−1ūε(x, t))−2

× exp

(
−
∫ t

s

Lf̃ ε(x + vθ, v, θ)dθ

)
ds

+
∫ t

0
Zε(x, v, s) exp

(
−
∫ t

s

Lf̃ ε(x + vθ, v, θ)dθ

)
ds

+R2(x, v, t) ,

with R2 satisfying

EN

∫ T

0

∫∫
[R2(x, v, s)]

−�(|v| ≤ <0)dxdvds

≤ c26n<
d+2
0

[
<2(ε)

−1/2 + (log log <̄(e))−1
]
. (9.26)
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Final Step. Define f̄ ε(x, v; q) = ∑
V ε(|xi − x|)V ε(|vi − v|). The transformation

q(·) �→ (f̃ ε(x, v, t)dxdvdt, f̄ ε(x, v, t)dxdvdt)

= (f̃ ε(x, v; q(t))dxdvdt, f̄ ε(x, v; q(t))dxdvdt
=: (π(dx, dv, dt), π ′(dx, dv, dt)) ,

assigns a measure to each realization of q(·). We regard this measure as a member of
M̂2. The transformation q(·) �→ (π, π ′) induces a probability measure Q̂N on M̂2. Let
us define S(m1,m2,m3) to be the set of nonnegative measurable functions (f, f ′), such
that f, f ′ : T

d × R
d × [0, T ] → [0,∞),

sup
0≤t≤T

∫∫
φ(f (x, v, t)+ f ′(x, v, t))dxdv ≤ m1 ,

sup
0≤t≤T

∫∫
(f (x, v, t)+ f ′(x, v, t))dxdv ≤ m1 ,

sup
0≤t≤T

∫
φ̄(u(x, t)+ u′(x, t))dx ≤ m1 ,

for φ̄(z) = z(log+ z)1/4,

u(x, t) =
∫
(|v|3/2 + 1)f (x, v, t)dv , u′(x, t) =

∫
(|v|3/2 + 1)f ′(x, v, t)dv ,

and that we can find a pair of functions g and r such that

f (x, v, t) = f 0(x − vt, v)+
∫ t

0
g(x − v(t − s), v, s)ds + r(x, v, t) ,

∫ T

0

∫∫
φ̂(|g(x, v, t)|)�(|v| ≤ <0)dxdvdt ≤ m2<

d+2
0 ,

∫ T

0

∫∫
|r(x, v, t)|�(|v| ≤ <0)dxdvdt ≤ m−1

3 <d+2
0 .

As in the proof of Lemma 5.2,

∫∫
|βn(f )− f |dxdv =

∫∫
f 2

f + n
dxdv

≤ 2

log n

∫∫
φ(f )dxdv + n− 1

2

∫∫
f dxdv

≤ 2

log n

∫∫
(φ(f )+ f ) dxdv . (9.27)

From this, Lemma 4.4, (9.5), (9.9), (9.12), (9.20), (9.24) and Chebyshev’s inequality we
deduce

Q̂N(S(m1,m2,m3)
c) ≤ c27

(
m−1

1 + nm−1
2

)
+c27

(
m−1

3 − 4m1/ log n
)−1 (

n(log log <̄(ε))−1 + <2(ε)<(ε)
−1
)
,
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where Ac denotes the complement of a set A. We choose n = m
1/2
2 to obtain

Q̂N(S(m1,m2,m3)
c) ≤ c27(m

−1
1 +m

−1/2
2 )

+c27

(
m−1

3 − 8m1/ logm2

)−1 (
m

1/2
2 (log log <̄(ε))−1 + <2(ε)<(ε)

−1
)
.

We now choose m2 = expm2
1 and m3 = m1/9 to yield

Q̂N(S(m1,m2,m3)
c) ≤ c28m

−1
1 + c28

(
(m2 log log <̄(ε))−1 + <2(ε)(<(ε))

−1
)
.

From this we learn that there exists an integer N(m1) such that

lim sup
m1→∞

sup
N≥N(m1)

Q̂N(S(m1, expm2
1,m1/9)c) = 0 . (9.28)

We now consider the space E consisting of measurable functions (f, f ′, Z) such that
f, f ′, Z : T

d × R
d × [0, T ] → [0,∞) and∫ T

0

∫∫
(f + f ′ + |Z|) dxdvdt < ∞ .

The transformation

q �→
(
f̃ ε(x, v, t), f̄ ε(x, v, t), Zε(x, v, t)

)
,

defines an augmented probability measure Q̃n
N on the space E . Let us define S̃(m1,m2)

to be the set of (f, f ′, Z) such that (f, f ′) ∈ S(m1, expm2
1,m1/9) and∫ T

0

∫∫
φ̂ (|Z(x, v, t)|) �(|v| ≤ <0)dxdvdt ≤ m2<

d+2
0 .

From (9.28) and (9.20) we learn

lim sup
m1→∞

sup
N≥N(m1)

Q̃n
N(S̃(m1,m1)

c) = 0 . (9.29)

Pick a nonnegative continuous function J of compact support and define

Fn
J (f, f

′, Z) =
∫ T

0

∫∫ [Gn(f, f ′, Z)(x, v, t)
]−

J (x, v, t)dxdvdt ,

where Gn(f, f ′, Z)(x, v, t) is defined to be

f (x + vt, v, t)− βn(f (x, v, 0)) exp

(
−
∫ t

0
Lf (x + vθ, v, θ)dθ

)

−
∫ t

0
Q+ (fk) (v)

(
1 + <−1u(x, s)

)−2 (
1 + <−1u′(x, s)

)−2

× exp

(
−
∫ t

s

Lf (x + vθ, v, θ)dθ

)
ds

−
∫ t

0
Z(x, v, s) exp

(
−
∫ t

s

Lf (x + vθ, v, θ)dθ

)
ds ,
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where fk = min(f, k) and,

u(x, t) =
∫
(|v|3/2 + 1)f (x, v, t)dv , u′(x, t) =

∫
(|v|3/2 + 1)f ′(x, v, t)dv .

Then we may apply (9.26) to assert

lim
N→∞

∫
Fn
J (f, f

′, Z)Q̃n
N(df, df

′, dZ) = 0 . (9.30)

We would like to study the integrand as a functional of (f, f ′, Z) when (f, f ′, Z) ∈
S̃(m1,m1). In fact Fn

J restricted to S̃(m1,m1) is a continuous functional with
respect to the weak topology. This follows from DiPerna–Lions’ work [DLi1] because if
(fm, f

′
m,Zm) is a sequence in S̃(m1,m1) such that (fm, f ′

m,Zm) → (f, f ′, Z) weakly
in L1, then

∫ t
s
Lfm(x + vθ, v, θ)dθ converges to

∫ t
s
Lf (x + vθ, v, θ)dθ strongly in L1

and

Q+ (min(fm(x, ·, s), k)) (v)
(

1 + <−1um(x, s)
)−2 (

1 + <−1u′
m(x, s)

)−2
,

converges weakly in L1–sense to

Q+ (min(f (x, ·, s), k)) (v)
(

1 + <−1u(x, s)
)−2 (

1 + <−1u′(x, s)
)−2

.

(See for example Lemma 5.3.11 of [CIP].) Choose a sequence {Nr} such that Q̃n
Nr

is

convergent as r → ∞ for every n. As a result, if Q̃n is the limit of Q̃n
Nr

, then we

apply (9.30) to deduce that the measure Q̃n is concentrated on the space of functions
(f, f ′, Z) for which Fn

J (f, f
′, Z) = 0. On the other hand, we can now use Theorem 7.1

and (9.20) to assert that if J (·) is a nonnegative continuous function of compact support,
then

∫
Z(x, v, s)J (v)dv ≥ 0 almost surely with respect to Q̃n. We then send k → ∞,

and < → ∞ in this order and use the montone convergence theorem to deduce that if
(f, f ′, Z) ∈ S̃(m1,m1), then f satisfies

f (x + vt, v, t) ≥ βn(f (x, v, 0)) exp

(
−
∫ t

0
Lf (x + vθ, v, θ)dθ

)

+
∫ t

0
Q+(fk(x, ·, s))(v) exp

(
−
∫ t

s

Lf (x + vθ, v, θ)dθ

)
ds ,

(9.31)

with probability one with respect to the measure Q̃n. We send m1 → ∞ and use (9.29)
to deduce that the measure Qn is concentrated on the space of functions (f, f ′, Z) for
which (9.31) holds. The statement (9.31) does not involve (f ′, Z) and the f –marginal of
Q̃n, say Q, is independent of n and is a limit point of QN . As a result, (9.31) is valid with
probability one with respect to any limit point Q of the sequence {QN }. We finally send
n → ∞ to conclude that the measure Q is concentrated on the space of supersolutions.
��
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10. Subsolutions

In this section we establish the other half of Theorem 2.1, namely any limit point of the
sequence {PN } is concentrated on the space of supersolutions of the Boltzmann equation
(1.1). As in Sect. 9, it is more convenient to work with the sequence {QN }. Let us start
with a definition for subsolutions.

An integrable function f is called a subsolution of (1.1) with initial data f 0, if for
every t ∈ [0, T ],

f (x, v, t) ≤ f 0(x − vt, v)+
∫ t

0
Q(f, f )(x − v(t − s), v, s)ds ,

for almost all (x, v).
It is not hard to show that f is a subsolution if and only if

f (x + vt, v, t) ≤ f (x, v, 0) exp

(
−
∫ t

0
Lf (x + vθ, v, θ)dθ

)

+
∫ t

0
Q+(f (x, ·, s))(v) exp

(
−
∫ t

s

Lf (x + vθ, v, θ)dθ

)
ds ,

(10.1)

for almost all (x, v). (See for example [DLi1], p. 350.)
The main result of this section is Theorem 10.1.

Theorem 10.1. If Q is a limit point of the sequence {QN }, then Q is concentrated on the
space of measures π(dx, dv, dt) = f (x, v, t)dxdvdt with f a nonnegative subsolution
of (1.1) with initial data f 0.

Proof. Let us simply write Qε±(x, v, s) for Qε±(x, v; q(s)) and f̃ ε(x, v, s) for
f̃ ε(x, v; q(s)). As in the proof of Theorem 9.1, we apply (9.12), Theorem 6.1, (9.22–23)
and (9.25) to assert

βn(f̃
ε(x + vt, v, t)) = βn(f̃

ε(x, v, 0)) exp

(
−
∫ t

0
Lf̃ ε(x + vθ, v, θ)dθ

)

+
∫ t

0
Qε

+(x + vs, v, s)
(

1 + n−1f̃ ε(x, v, s)
)−2

· exp

(
−
∫ t

s

Lf̃ ε(x + vθ, v, θ)dθ

)
ds

+n−1
∫ t

0
βn(f̃

ε(x + vs, v, s))
Lf̃ ε(x + vs, v, s)

1 + n−1f̃ ε(x + vs, v, s)

· exp

(
−
∫ t

s

Lf̃ ε(x + vθ, v, θ)

)
ds

+Rε(x, v, t),

where Rε satisfies

EN

∫ T

0

∫∫
|Rε(x, v, s)|�(|v| ≤ <0)dxdvds ≤ c0n<

d+2
0 <(ε)−1/2 + c0<2(ε)<(ε)

−1 .

(10.2)
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We now consider the transformation q(·) �→ (f̃ ε, Zε
1, Z

ε
2) for

Zε
1 = min

{
Qε

+
(

1 + n−1f̃ ε
)−2

, <̄(ε)

}
,

Zε
2 = n−1βn(f̃

ε)
(

1 + n−1f̃ ε
)−1

,

and denote the distribution of this transformation by Q̃n
N . If

Fn
J (f, Z1, Z2) =

∫ T

0

∫∫ ∣∣Gn(f, Z1, Z2)
∣∣ J dxdvdt ,

for

Gn(f, Z1, Z2) = βn(f (x + vt, v, t))− βn(f (x, v, 0)) exp

(
−
∫ t

0
Lf (x + vθ, v, θ)dθ

)

+
∫ t

0
Z1(x + vs, v, s) exp

(
−
∫ t

s

Lf (x + vθ, v, θ)dθ

)
ds

+
∫ t

0
Z2(x+vs, v, s)Lf (x+vs, v, s) exp

(
−
∫ t

s

Lf (x + vθ, v, θ)

)
ds,

then we use (10.2) and (9.20) to assert that for every continuous function J of compact
support,

lim sup
N→∞

∫
Fn
J (f, Z1, Z2)Q̃n

N(df, dZ1, dZ2) = 0 . (10.3)

Let us define Ŝ(m1) to be the set of functions (f, Z1, Z2) such that Z2 ∈ [0, 1] and
(f, Z1) ∈ S̃(m1,m1) with S̃ as in (9.28). Evidently (9.28) implies

lim sup
m1→∞

sup
N≥N(m1)

Q̃n
N(Ŝ(m1)

c) = 0 . (10.4)

Note that Fn
J , restricted to the set Ŝ(m1), is a continuous functional with respect to the

weak L1–convergence. This is because Z2 ∈ [0, 1] and that by the velocity averaging
lemma, if fm is a sequence of functions such that fm → f weakly, then Lfm → Lf

strongly in L1–sense. Given a subsequence of {N}, we can find a subsequence of it, say
{Nr}, such that the sequence {Q̃n

Nr
} converges for every n as Nr → ∞. As in the proof

of Theorem 9.1, we can use the continuity of Fn
J , (10.4) and (10.3) to deduce that if

Q̃n is the limit of the sequence {Q̃n
Nr

} as r → ∞, then Q̃n is concentrated on the set
of (f, Z1, Z2) such that Fn

J (f, Z1, Z2) = 0. To complete the proof, we need to identify
Z1 and Z2. First we can claim that for any continuous function J of compact support,

lim
n→∞ lim sup

N→∞

∫ {∫ T

0

∫∫
Z2 J dxdvdt

}
Q̃n
N(df, dZ1, dZ2) = 0 . (10.5)
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To see this, observe that for every positive k, Zε
2 ≤ Z

ε,k
21 + Z

ε,k
21 , where

Z
ε,k
21 = Zε

2�(f̃
ε ≤ k) , Z

ε,k
22 = �(f̃ ε ≥ k) .

From this we can readily deduce (10.5) because

lim
n→∞ sup

N

EN

∫ T

0

∫∫
Z
ε,k
21 J dxdvdt = 0 ,

lim
k→∞

sup
N

EN

∫ T

0

∫∫
�(f̃ ε ≥ k)J dxdvdt = 0 .

From (10.5) we deduce that Z2 = 0 almost surely with respect to Q̃, where Q̃ is any
limit point of Q̃n.

On the other hand, for every nonnegative continuous function J of compact support,
we may apply Theorem 8.1 with α1 = 0 and α2 = 1 to assert that for every n,

lim
N→∞

∫ {∫ T

0

∫∫ ∫
(Z1 −Q+(f ))(1 + u)−2Jdxdvdt

}+
Q̃n
N(df, dZ1, dZ2) = 0 ,

where u = u(x, t) = ∫
(1 + |v|3/2)f (x, v, t)dv. Again the expression inside the curly

brackets is a continuous functional of (f, Z1, Z2) if we restrict it to the set Ŝ(m1).
From this and (10.4) we can readily deduce that Q̃n is concentrated on the set of triplets
(f, Z1, Z2) such that

Z1 ≤ Q+(f ).

This, (10.5), (9.27) and Lemma 4.4 imply the f –marginal of Q̃ is concentrated on the
space of subsolutions. ��

11. Entropy Production Bound Revisited

In this section we establish a variant of (2.6). The method of the proof is similar to
[DLi2]. Define β(a, b) = (a − b) log a

b
for a, b > 0. We also put β(a, b) = +∞

whenever a or b ≤ 0.

Theorem 11.1. Let Q be a limit point of the sequence {QN }. Then

∫ ∞

0

∫ ∫ ∫
S

β(F (x, v, v∗, t), F (x, v′, v′
∗, t))B(v − v∗, n)dndvdv∗dxdt < ∞,

(11.1)

where

F(x, v, v∗, t) =
∫

f (x, v, t)f (x, v∗, t)Q(df ). (11.2)

Proof. The proof is similar to what has been presented in previous sections and we only
sketch it. To ease the notation, we simply write {QN } for a convergent subsequence of
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{QN }. Let ψ(z) = z log z − z + 1 for z > 0 and ψ(z) = +∞ for z ≤ 0. Recall the
function G of (4.1). Since ψ is convex,

ψ

(
G(t, Sijq)
G(t,q)

)
≥ ψ(a)+ ψ ′(a)

(
G(t, Sijq)
G(t,q)

− a

)
,

for every positive a. As a result,

ψ

(
G(t, Sijq)
G(t,q)

)
G(t,q) ≥ ψ̂(a)G(t,q)+ ψ ′(a)G(t, Sijq) , (11.3)

where ψ̂(a) = ψ(a)− aψ ′(a) = 1 − a. By Lemma 4.7, there exists a constant c0 such
that for every N and T > 0,

∫ T

0

∫
ε2d

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ψ

(
G(t, Sijq)
G(t,q)

)
G(t,q)νβ(dq)dt ≤ c0.

(11.4)

We would like to derive (11.1) from (11.4). For this we would rather have a linear
expression in G for the integrand of (11.4). Let us take a smooth bounded nonnegative
function a = a(t, x, v, v∗, n) and use (11.4) and (11.3) to assert

K :=
∫ T

0

∫
ε2d

∑
i,j

V ε(|xi − xj |)B(vi − vj , nij )ζ
δ1(ε)(xi − x)(1 + αûε(x; q))−2

×
[
ψ̂(a(x, vi, vj , nij ))+ ψ ′(a(x, vji , v

i
j , nij ))

]
G(t,q)νβ(dq)dxdt ≤ c ,

where δ1(ε) is as in Sect. 9, the function ûε is as in Theorem 8.1, and α > 0 is a fixed
constant that will be sent to 0 in the end. Using the proof of Theorem 8.1, it is not hard
to establish

lim
N→∞

K = lim
N→∞

∫ ∫ T

0

∫∫ ∫ ∫
S

B(v − v∗, n)f (x, v, t)f (x, v∗, t) (1 + αu(x, t))−2

·
[
ψ̂(a(x, v, v∗, n))+ ψ ′(a(x, v′, v′

∗, n))
]
dndxdvdv∗dt QN(df )

=: lim
N→∞

∫
Xα(f )QN(df ), (11.5)

where u(x, t) = ∫
f (x,w, t)(|w|3/2 + 1)dw. Using the proof of Theorem 9.1 we can

readily deduce

lim
N→∞

K =
∫

Xα(f )Q(df ). (11.6)

From (11.4–6) we learn

∫ [∫ T

0

∫∫ ∫ ∫
S

B(ff∗ψ̂(a)+ f ′f ′
∗ψ

′(a))(1 + αu)−2dndxdvdv∗dt
]

Q(df ) ≤ c0 .
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So far we have assumed that a is smooth, bounded and nonnegative. The smoothness
condition can be relaxed by approximating a measurable function a by smooth functions
and applying the dominated convergence theorem. From this we deduce∫ T

0

∫∫ ∫ ∫
S

B(v − v∗, n)[Fα(x, v, v∗, t)ψ̂(a(x, v, v∗, n, t))

+Fα(x, v
′, v′

∗, t)ψ
′(a(x, v, v∗, n, t))]dndxdvdv∗dt ≤ c0 (11.7)

for every bounded uniformly measurable function a, where

Fα(x, v, v∗, t) =
∫

f (x, v, t)f (x, v∗, t)(1 + αu(x, t))−2Q(df ) .

Ideally we would like to choose a(x, v, v∗, n, t) to beFα(x, v′, v′∗, t)/Fα(x, v, v∗, t).
Since a is supposed to be bounded, we first put a to be min(F̂α(x, v′, v′∗, t)/(F̂α(x, v,
v∗, t), <). Using such a choice for a in (11.7) we obtain
∫ T

0

∫∫ ∫ ∫
S

B(v − v∗, n)ψ<(Fα(x, v
′, v′∗, t)/Fα(x, v, v∗, t))Fα(x, v, v∗, t)dndxdvdv∗dt ≤ c0 ,

where ψ<(z) = ψ(z)�(z ≤ <). We now send < → ∞, α → 0 and use Fatou’s lemma to
deduce∫ T

0

∫∫ ∫ ∫
S

B(v − v∗, n)ψ(F (x, v′, v′∗, t)/F (x, v, v∗, t))F (x, v, v∗, t)dndxdvdv∗dt ≤ c0 .

From this we can readily deduce
∫ T

0

∫∫ ∫ ∫
S

B(v − v∗, n)ψ(F (x, v, v∗, t)/F (x, v′, v′∗, t))F (x, v′, v′∗, t)dndxdvdv∗dt ≤ c0 .

This completes the proof of (11.1) because β(a, b) = ψ(a/b)b + ψ(b/a)a. ��
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