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Abstract: We study a d-dimensional stochastic particle system in which the particles
travel deterministically in between stochastic collisions. The collisions are elastic and
occur with a probability of order e when two particles are at a distance less than .
When the number of particles N goes to infinity and Ne9+*~! goes to a nonzero constant,
we show that the particle density converges to a solution of the Boltzmann equation
provided that ¢ > d + 1.

1. Introduction

A long-standing open problem in statistical mechanics is the derivation of the Boltzmann-
equation from the hard sphere model. In the hard sphere model, one starts with N
spheres of diameter ¢ that travel according to their velocities and collide elastically. In a
Boltzmann-Grad limit, we send N — oo, & — 0insuch a way that Ne?~! — Z, where
Z is a positive finite number. If f(x, v, ¢) denotes the density of particles of velocity v,
then f satisfies the Boltzmann equation

fitv- fo= /R me = )L G ) F Ol — £ (rav) £ G v))dn du,
(1.1)

where S denotes the unit sphere, dn denotes the d — 1-dimensional Hausdorff measure
on S, and

V=v— (- (v—v)n,

V, = vy + (- (v —vy)n.
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The derivation of (1.1) from the hard sphere model was established by Lanford for short
times in [La]. Later Illner and Pulvirenti [IP, P] replaced the smallness on time with a
smallness on the initial density in a suitable norm.

The finiteness of the mean free path is the main property of the hard sphere model
that is responsible for its kinetic behavior. The condition N = O (¢'~?) implies that on
average a particle experiences finitely many collisions in one unit of time. This property
is still valid if we increase the number of particles to N = 0(51_“_d) but reduce the
probability of a collision to O (e®). (Equivalently, we increase the range of interaction
from O (N /1=y to O (N'/(1=¢=4)) ) In this way we obtain a family of models by vary-
ing o, and it turns out that for large o many probabilistic arguments become available.
To avoid some technical issues, we consider a suitable smoothing of the hard sphere.
More precisely, we take a nonnegative continuous function V of compact support V and
assume that a collision occurs with a stochastic rate equal to V& (|x; —x;[) B(v; —v;, n;;),
where Ve(r) = ¢~V (r/e), x; and x; are the positions of the colliding particles, v;
and v; are the velocities of the colliding particles, and n;; = (x; — x;)/|x; — x;|. We
assume B(0, n) = 0 so that only particles of different velocities can collide. As a result,
only for a time of order O(¢) the rate V¥(|x; — x;|)B(v; — vj, n;;) is nonzero. This in
particular implies that the true rate of collision is of order O(g) x 0(80"1) = 0(&%).
Indeed we show that if V is chosen so that f V(x|)dx = 1 and ¢ > d + 1 then the
microscopic particle densities will converge to a solution of the Boltzmann equation

fitve fo =fRd/SB(v—v*,n)[f(x,v’)f(x,v;)—f(x,v)f(x,v*)]dndv* (12)

ase — 0.

When d > 2, the best existence result available for (1.1) is due to DiPerna and Lions
[DLil]. This existence result is formulated for the so-called renormalized solution and
the uniqueness for such solutions is an open problem. Because of this what we show
in this article is that the limit points of the microscopic particle densities as ¢ — 0 are
all DiPerna-Lions solutions. Note however that if we already know a bounded strong
solution exists, then there exists a unique renormalized solution [Li].

In Rezakhanlou-Tarver [RT] and Rezakhanlou [R1] we established a Boltzmann-type
equation for stochastic models in dimension one. In these articles we considered discrete-
velocity models in which @ = 1 and the velocities belong to a finite set. Note that when
d =1, Eq. (1.2) is trivial because of the elastic collision. However, we may consider
more general collision rules for which the conservation of momentum is still valid but
the conservation of the kinetic energy is violated. For such one dimensional models, one
should be able to relax the finiteness assumption of [RT] and derive a Boltzmann-type
equation for the macroscopic particle densities provided that o > 1.

A variation of our model has been studied in Rezakhanlou [R2] to derive an Enskog
type equation for the macroscopic particle densities. In [R2] we examined a system in
which particles collide elastically with probability O(N~!) when two particles are at
distance o. The particle density now satisfies the Enskog equation that is similar to (1.1)
except that the expression in brackets is replaced with

Ud_l[f(x, v/)f(x —on, v;) —fx,v)f(x +on,v.)].

The organization of the paper is as follows. In Sect. 2 the main result is stated. In Sect.
3 the proof of the main result is sketched. In Sect. 4 we establish the entropy and entropy
production bounds. In Sect. 5 the velocity averaging techniques are used to prove the
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compactness of the collision term. This will be used in Sect. 6 to establish a variant of
Stosszahlensatz (Boltzmann’s molecular chaos principle) for the microscopic loss term.
Sects. 7 and 8 are devoted to the Stosszahlensatz for the microscopic gain term. The
proof of the kinetic limit is carried out in Sects. 9 and 10. In Sect. 11 we address an
entropy production bound on the macroscopic densities.

2. Notation and Main Result

This section is devoted to the statement of the main result. We start with a description
of our stochastic models.

In our models we have N particles in the d-dimensional torus T¢. Define the state
space £ = (T? x RY)N; q € £ is the N-tuple,

q=x,v)=(q1,....9N), X=(x1,...,xn), V=(v1,...,Vn),

where ¢; = (x;, v;). The process q(¢) is a Markov process with the infinitesimal gener-
ator A = Ag + A.. We have that for any smooth g : £ — R,

N
)
Ayg(q) = E v; - a—f(q) , (2.1)
i=1 !

N
Acg@ =1 Y Vi(xi—x; DB — v (¢ (S7a) - g@),  @2)

ij=1

where V&(r) = e"‘_IV(g) with V : R — [0, c0) a continuous function of compact
support such that fRd V(xDdx = 1; B: R4 xS — [0,00) is a Lipschitz continu-
ous function such that B(v' — v}, n) = B(v — v4, n) and sup, , B(v, nv|~! < oo;

nij = %, and S% q is the configuration obtained from q by replacing (v;, v ;) with

(vij, v;.), where

v = v = (v = v)) -nij)nij,
Vi = v — ((vj — i) -nipnij = vj + (v — vj) - nijnij .
We also assume that the function
X
A(x,v) :=V(x|)B (v, —>
x|
is twice differentiable in x and its second x—derivatives are Lipschitz continuous in both
x and v variables. Note that when B is not identically constant, even the continuity of
the function A implies that V vanishes in a neighborhood of 0.

Convention 2.1. The meaning of the expression V*(|x; — x/|) is as follows. The points
{‘ — xj? is defined

to be the signed distance between xlk and x;?. Hence, we may regard x; — x; as a point

in R9. Also, forx € T?, t € R and v € R, the point x + fv € T9 is defined mod 1.
Interpretations of this sort will be assumed throughout the paper without mentioning.

x; and x; each have d coordinates in the circle T. The k'™ difference x
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Let f 0.7d x RY — [0, c0) be a measurable function such that

/ / (fO(x, v)? exp(ao|v]?) dxdv < +o0 (2.3)
Td JR4

for some p > 1 and p > 0. We then define

N

1
1'dg) = F(@da = 5 [ ] 170 v)
i=1

with Z = [ £O(x, v)dxdv. We also define the number ¢ by the relationship T¢I N =
zZ

Given a configuration ¢, define the empirical measure 7 by
N
7(t,dg; @ =7(t,dg) =&Y 800, (dq) -
i=1
The transformation q(-) + m induces a probability measure Py on the space D =
L([0, T]; M), where M is the space of measures 7 (f, dg) with 7 (r, T¢ x RN =27

and M is equipped with the weak topology. Observe that by the law of large numbers
for the independent random variables we have

ngnoo/‘/J(x,v)n(t,dx,dv)—fj(x,v)fo(x,v)dxdv 1ldq) =0.
Define
(s = [ /S B — e, ) f ) f () ds (2.4)
0 (f, Hw) = fR d /S B — vy, ) f0) f (v2)dn d,

and Q = Q" — Q™. We say that f is a renormalized solution of (1.2) if

O*(f. )
1+ f

for every positive T and for every Lipschitz continuous § : [0, co) — R that satisfies
sup, (1 +7)|8'(r)| < oo, we have that

B +v-B(f)x =B (O f)

feLl (T xR %[0, T]), f=>0, e L'(T? xRY x [0, 7)),

in weak sense.

Theorem 2.2. Assume that « > d + 1. Then the family {Py : N € N} is tight. Moreover

every limit point of Py is concentrated on the set of renormalized solutions of (1.2) such
that f(x,v,0) = O, 1) and

sup/ FA 4+ x]? + [v]> +log" fHdxdv < oo . (2.5)
t
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Ideally we would like to prove that any limit point of the sequence {Pxy : N € N} is
concentrated on the space of functions f such that

/OOO// //S B(v — vi, n)(f' f — ffs)log <’;£*) dndxdvdv.dt < co. (2.6)

Presumably the method of this article can be used to establish (2.6) by differentiating
the expression

EN/// £, v, ) logt fO¢(x, v, 1) dxdv ,

where Ex denotes the expectation with respect to the measure Py, § = 6(¢) — 0
as e — 0,and f%%(x,v,1) := f%*(x, v; q(r)) is a microscopic approximation of the
density and is defined by (4.4). Instead we would rather pursue a quicker approach and
only prove a consequence of (2.6) that is good enough for many known properties of the
solutions. See Sect. 11 for more details.

We only prove Theorem 2.2 when « = d + 1. The interested reader can check that
the proof also works when o > d + 1. Note that when « = d + 1, then N and ¢ are
related by 2N = Z and VE(r) = €9V (r/e).

3. Sketch of proofs

In this section, we sketch the proofs and explain some of the main ideas. The first general
global existence result for the Boltzmann equation was established by DiPerna and Lions
in the prominent article [DLil]. An important aspect of the Boltzmann equation is the
smoothing effect of its flow term d; + v - d;.. This is now known as the velocity averaging
lemma and was quantitatively formulated and studied by Glose et al. in [GLiPS]. The
velocity averaging lemmais recalled in Sect. 5 as Lemma 5.4 and has the following flavor:
Ifboth f and % +v- % belong to a weakly compact subset of LI(T? xR? x [0, T]) and W
is a bounded smooth function, then the velocity average f fx,v, )Y (w)dv =: p(x,t)
belongs to a strongly compact subset of L' (T x R? x [0, T]). The velocity averaging
lemma and DiPerna-Lions approach play an essential role in the present article.
We used the empirical measure

N
me(dq: q) =Y 8x,0(dg)
i=1
as a candidate for the microscopic density in Sect. 2. Because of the nonlinearity of
the collision term, it is necessary to replace 7. (dq; q) with a smoother candidate. One
possibility is to take a smooth nonnegative function 5 : R** — R of compact support
and total integral 1, and consider

N
(e % 0°)(x,v) = f20, v @) =62 ) 0’ (i —x, 0 — ),
i=1
where r]‘S ()=8"H
function J,

n(z/8) for a small positive §. Needless to say that for a smooth test

/ Jdn, = / J (e % n‘s) dxdv + Error(§8), 3.1)
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where Error(§) — 0 as § — 0. In other words, if we choose a sequence § = §(¢)
that goes to zero as ¢ — 0, then f%()¢ behaves weakly like the empirical measure
7. If, however, we study f°®)-¢ as a pointwise function, the behavior of f%-¢ depends
critically on the way 8(g) goes to zero. For example, if §(¢) = ¢, then fé(x, v; q) :=
f&&(x, v; q) is a Poisson-like random variable, and is not expected to approximate the
macroscopic density for small €. To see this, observe that whenever n (’%, ”’8;”) # 0,
then (x;, v;) belongs to a set of volume 0 (%), If particles are scattered evenly in
space, only N 02y = 0(1) particles are involved in the calculation of f*(x, v; q).
As aresult, we do not have enough particles to benefit from the expected ergodic prop-
erty of the model. Because of this, the random function f¢ does not approximate the
macroscopic particle density in a strong sense. In the same way, we may argue that
the function f*(x, v; q) is rather rough as a function of (x, v). In other words, no
(x, v)-regularity of the function f* should be expected. In a crucial step, we show in
Sect. 5 that the velocity averages of f¢ are regular in (x, t)-variable. More precisely, if
f(x, 1) = f fe(x,v; q(t))¥ (v)dv for a smooth function ¥, then

T
En supf /|p8(x+h,t+oz) — p%(x, )| < const.(loglog |logs|)™*, (3.2)
|h|<8 JO

where Ey denotes the expected value and og = (2d + 2)~"(d+3)"!.The proof of (3.2)
involves an entropy bound, an entropy production bound, and the aforementioned veloc-
ity averaging lemma. Section 4 is devoted to several entropy—like bounds, an entropy
production bound, and their consequences. For example we show in Lemma 4.5 that

sup Exy sup /fs(x, v; q()) log f¥(x, v; q(1))dxdv < 00 . (3.3)
N te[0,T]

Also, a microscopic version of (2.6) is the content of Lemma 4.7.
A sketch of the proof of (3.2) is in order. We will see in Sect. 5 that weakly f* satisfies

fE+v fE=T°+N°+¢°, (3.4)

where I'? is a collision-like term and N? is a martingale. The term ¢® has bounded L'
norm and comes from replacing the differential operator v; - d, with v - 9, whenever
n’ (x; —x, v —v) # 0. Asin (2.4), we write ['¢ = ' —I'?, where I'_ and I'?. represent
the microscopic loss and gain terms respectively. Since no bound on the L!-norm of rL
is available, we switch to a renormalized version of f¢. The entropy bound (3.3) allows
us to replace f® with g, = for a large number 7. It turns out that g° satisfies

an equation similar to (3.4):

fg
I4+n—1 fe

v gt =T+ N +65 =1 — T + N° +¢, (3.5)

where I'4 is close to a term that looks like I'%. (1+ n_lfa)_z. It turns out that the
entropy bound (3.3) can be used to show that re belongs to a weakly compact subset
of L. To treat f‘i we use our bound on I and the microscopic analog of the entropy
production bound (2.6). As a result, the renormalized collision terms f‘ﬁr and ['2 belong

to a weakly compact subset of L!. In the same fashion, we treat the martingale term NE.
We then directly apply the velocity averaging lemma (Lemma 5.4) to establish (3.2).
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It is for the derivation of (3.2) that the condition « = d + 1 (in general @ > d + 1)
plays a crucial role. To have f‘ft bounded in L', we are forced to choose §(g) = ¢ in
our choice of the density f%¢. This is because we can find two positive constants cq
and c such that the term a;; := V®(|x; — x;)n®(x; — x, v; — v) is bounded above by
clsd]l(|xj — x| < coe)nf(x; — x, v; — v). Such a bound would allow us to take advan-
tage of the renormalization because a double sum of a;; is bounded above by a product
of density like quantities. Only if we assume « > d + 1, then f* is of order one and
a renormalization of f° has a chance to work. Indeed for « < d + 1, the function f*
is a large function of order O0(e*~?~1) and has a small support of volume O (e9+1-),
For such a function we do not expect to have (3.2), and in fact a compactness for its
renormalization g, is not good enough to yield (3.2).

After our success in proving the regularity of p?, it is tempting to derive the macro-
scopic equation (1.1) by passing to the limit in (3.4) or its renormalized variation (3.5).
Indeed the microscopic loss term can be expressed as

1 Xi—X Vi —UV
EZVS(Ixi—XjDU( ' , 18 )B(Ui—vj,nij)
i,j

I'é (x, v)
€

1 Xi—X Vi —UV
5,Zn< —, )K(x,-,vi), (3.6)

where

K(x,v) = Y VE(x = x;)B (v —v;, m)

I |x — x|
:;gdZA<x_xj,v—vj). (3.7)
- &
J

An important assumption of Boltzmann, known as Stosszahlensatz, asserts that a pair of
particles before a collision behave like independent random variables. Such an assump-
tion allows us to replace the collision term I'® with something like the macroscopic
collision term Q_ (¢, f¢). For our rigorous derivation of the Boltzmann equation, we
need to establish a suitable variant of Stosszahlensatz. Indeed our variant can be simply
described in terms of the random function K . Roughly, if (===, *=2) 3 0 for some i
in (3.6), then |x; — x| and |v; — v| are of order O (¢). If K (x, v) is sufficiently regular in
(x, v)-variables, then we can replace K (x;, v;) with K (x, v). When such a replacement
is performed, we can replace I'® (x, v) with f°(x, v)K (x, v). On the other hand, the
regularity bound (3.2) can be used to assert,

K(x,v) ~ e // VE(lx -y B (v —w ;) £2 (. wydydw

~ // B(w — w,n) f%(x, w)dwdn.
S

(See Sect. 6 for more details.) The above plausible argument explains the role of the
regularity estimate (3.2) in establishing the Stosszahlensatz for the loss term. Before we
move to the next step and discuss our variant of Stosszahlensatz for the gain term, let
us pause here to mention that in spite of the appeal of the above argument, the choice
of our microscopic density f¢ for the derivation of the macroscopic equation is wrong.
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This is because f°(x, v) is a Poisson-like random object and does not approximate the
macroscopic density. In fact what we obtained, namely Q= (f*, f¢) does not approx-
imate the macroscopic loss term simply because Q7 (f¢, f¢) is a nonlinear function
of a Poisson-like random variable f¢. This is also evident from (3.4) because a simple
calculation reveals that the martingale term N¢ does not go away as ¢ — 0, i.e., f*
remains random as ¢ — 0. However, if we consider f%©)¢ for a choice of 8(¢) that
satisfies lim,_,0 §(¢) = 0 and lim,_.9 8(¢)/e = +o00, then f‘g(g) should approximate
the macroscopic density because now

8(8) 2d Xi—X Vi —UV
§(e),e . = | —=
7 (x,v,Q)—( A ) Z”( 8(e) " 8(e) )

' 2d 5e) \ > : s
involves N x ()¢ = O (T) many particles, and since — 00, We are

e
dealing with a large number of particles. Hence we expect ) to approximate the mac-
roscopic density for small € by a law of large numbers. We can then derive an equation
similar to (3.4) for f3@)-¢ =: fe;
fi+v fi=T"+N°+&,

where I'¢ corresponds to the collision term, N¢ is the martingale term, and €° is a small
error that goes to zero as ¢ — 0. After a renormalization, we arrive at

g +v-gi=T"+N+¢&°,

where gf = S 1t turns out that N® — 0 as & — 0 because 3(g)/e — +00. As

14+n~1f¢
_ ~ ~\—2 ~ ~ ~
before, I'? is more or less like I'® (1 + n"fe) . Also, I'* = T'{ —TI'® where, for
instance,

~ 1
P vy = 562 3 Ve = xjDn* @ i —x, v = 0) By — ) nij)
iJ

1
: Eszd Zn‘g(g)(x,- —x,vi —v)K(x;,v5) .
1

As before, the Stosszahlensatz can be achieved for the loss term if we can replace
K (x;, v;) with K (x, v). Of course, we only need to make such a replacement for the

_ - N2
renormalized loss term I'Z that is more or less of the form I'® (1 +n7lfe ) . Some

care is needed to carry out the replacement of K (x;, v;) with K (x, v) because K is only
(x, v)-regular in L!'-sense, ie., (3.2) holds. The renormalization factor involves f ¢ that
is not so compatible with the type of expression we have for K; the function K (x, v)
is a velocity average of a density-like function that resembles f¢ and not f¢ = f3)¢,
This creates a rather delicate situation that is handled by choosing §(¢) in such a way
that the smallness of K (x;, v;) — K (x, v) would compensate for the incompatibility of
8@ with f¢. The punchline is that we need to choose a sequence 8 (¢) that satisfies

lin})S(s)s*] (loglogloglog | 10g8|)*i =0. (3.8)
e—>
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We will see in Theorem 6.1 that for a choice of
8(e) = 8(loglogloglog|logg|)ﬁ1 ,

the term K (x;, v;) can be replaced with K (x, v) in I'¢ . To give a partial justification for
(3.8), let us assume that something stronger than (3.2) holds for the function K, namely

sup  |K(x +a,v+ w) — K(x,v)| < const.(loglog|logd|)~* . 3.9

lal.|w|<s
As a consequence,
IK (xi, v;) — K(x,v)| < const.(loglog|loge|)~*,

whenever 7°® (x; — x, v; — v) # 0. To avoid the incompatibility of %) with f¢, we
apply the crude inequality

&

—2d
F3© > const. <@> fe. (3.10)

To guarantee that the smallness of K (x;, v;) — K (x, v) is not fully annulled by the large
factor (5(e)/ s)z‘i, we may require

limO(S(s)s_l(loglog | 10g8|)_% =0. 3.11)
E—>

It turns out that since K satisfies something like (3.2) instead of (3.9), the requirement
on é(e) is (3.8) instead of (3.11).
As the reader will find out, the microscopic density we will use in Sects. 6-11 are of

the form
(81 (8ae)\? Xi—X v —
f(x’v’q)_< E ) ( ‘ ) ;"(sme)’ 82(e>>‘

Clearly f¢ = f%()-¢ when 8; = 8, = 6. For the presentation of this section we decided
to use f 3(e) However the density f ¢ with 81 and 8, satisfying limg_,¢82/8; = 0 will
simplify some arguments in Sects 9 and 10. See for example (9.24) and (9.25).

To this end, let us assume that the function n is of the form n(x, v) = ¢(x)¢(v).

- N2
Again, the gain term is approximately equal to "%, (1 +nlfe ) , where

P, v) =) V(= xi DT (i — )2 (] = v)Bi —vj, i)
iJ
. ~ d . . .

with ¢¢(a) = (5(%)) s (%) In fact the Stosszahlensatz for the gain term is achieved
in two steps. In our first step, which is carried out in Sect. 7, we establish a variant
of Stosszahlensatz that is useful only when we show that the macroscopic density is a
supersolution. This allows us to generously replace I'{ with a smaller quantity whenever
appropriate. For example, if we define

() = uf (e @) =) Ve —xD) (vl + 1),

J
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and pick a smooth function J of the variable v, then we have that the expression

f (v + n e (x, v @) T2 (v)dv

is bounded above by

/(1 +n 7 v @)Y VA — 2 D8 (0 — 08 ! —v)
i
B —vj.ni))(1+ € uf (xiz @)™ J(v) dv, (3.12)

for every positive £. We then show that the omission of the term (14+n~" £ (x, v; q)) 2
from the right-hand side causes an error that is small for large n. This turns out to be
useful because we would rather have a renormalization of the form (14 £~ e (xi;q)) -1
instead of (1 + n~! f2(x, v; q))> when we are dealing with the gain term. This stems
from the fact that u® (x; q) is a velocity averaging for which the regularity (3.2) applies.
After dropping (1 +n~! f£(x, v; q))~2 from (3.12), we are left with

%ed Z/ VE(xi — x; DB — v, ni))E i —x)(1 + £ b i)' I2 ), (3.13)

where J&(v) = ¢4 i 28 (v — w)J (w)dw. We can now express (3.13) as
D i — 0K (i, v+ €7 ()

where

1 _ .
R(x.v) =3 ) V(i —x;)B <v—v,-, |x i )J“?
j

x —xj|

X —X; X—Xj
v—(v—vj) — .
lx — x| |x — x;]
It turns out that now we are in a position to repeat our treatment for the loss term where
K (1 + ¢~ 'u®)~! plays the role of K.

In Sect. 8 we establish a variant of Stosszahlensatz that is needed when we treat the
macroscopic densities as subsolutions. This time we study

(1 + n_lﬂg(x))_l / I (x, v)J (V)dv,

where

uf(x) = 8‘1228()@ —Xx) <|vj|3/2 + l).
J

Our Stosszahlensatz for the collision term allows us to replace the microscopic col-
lision terms with suitable nonlinear functionals of densities that enjoy some stabilities
with respect to the weak topology. This will be used in Sects. 9 and 10 to pass to the
limit and derive the macroscopic equation (1.2).
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4. Entropy and Entropy Production Bound

We start with the entropy bound. Define

d
v (dg) = (g) “exp8 Y luilP)dg .

Using the property B(v' — v}, n) = B(v — vy, n), it is not hard to deduce that the colli-
sion operator A_ is reversible with respect to the measure vg. That is, for every bounded
continuous functions 7n; and 1,,

/UzAcm dvg =/771Ac772 dvg .

From this we can readily deduce that vg is an invariant measure and that the adjoint A*
of A with respect to vg equals to —Ag + A..

If q(0) is distributed according to Mo(dq) = Fo(q)dq =: Go(q)vfg (dq), then at later
times q(#) is distributed according to

n(t,dq) = F(t, Qdq =: G(t, qQ)vp(dq) , 4.1
where G is a solution to the forward equation
G, =AG. 4.2)

As in Lemma 2.2 of [RT] we can easily show

Lemma 4.1. Choose f = ag/(p — 1) for ag and p as in (2.3). Then there exists a
constant ¢ such that

P 0 b =
sup / (G, @) vp(da) < f (6°@)" vptda < exp@n) .

Regard T¢ as the box [0, 1]¢ with opposite faces identified, and partition T¢ x R?

into sets of the form,
d d
[ Ttar. o) > [ Ttay. 27) .
r=1 r=1

of side length 8. Let us write 7° for such a partition . We then define
N
N(@; K) = N(x1,v1, .., xn, ons K) =) 1, v) € K)
i=1

for every set K € T¢ x R? and

Q) =Y ¢W(g: D),
IeJ®

where ¢ (z) = zlog z. Similarly, we partition T¢ into sets of the form

d
H[arv by)
r=1
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of side length § and write J? for the resulting partition. We then define
*(q) = ) ¢WN(g; I xRY),
Ieg#?
*°(q) == Y ¢ N(g; I x RY)).
IeJe

- . . . ) .
Note that each I € J¢ can be written as a union of O (¢~%) sets in ¢ . From this and
convexity of ¢, it is not hard to show that there exists a constant ¢ such that

o (q) < (@) . (4.3)
Using Lemma 4.1, we can repeat the proof of Theorem 4.1 of [R2] to deduce
Proposition 4.2. There exists a constant Co(T') such that
p—1 o
En sup exp [— (¢ @y + <I>8(q(s)>)] < exp(Co(TIN) .
0<s<T 2p

Define

1+logs|™! ifs <1
O
1 otherwise.

Fix a continuous function  : R xR? — [0, 0o) of compact support with [ ndxdv = 1
and define

af(x,v) = / n°(x—z,v—w)a(z, w)dzdw,
where n(x,v) = 8‘2dn(§, g) As in [RT] and [R2], we have the following conse-
quences of Proposition 4.2:

Proposition 4.3. (i) There exists a constant C1(T, r) such that

Ey sup [N710% (@) + N8 @) ] = airn)

0<s<T

for every positive integer r.
(ii) There exists a constant C1(n) such that for every nonnegative «,

N
D ot (i) < Cim) el e h(lellz) (N + F(g)).
i=1
(iii) There exists a constant C\ such that for every measurable set K € T? x R¢ and

K C T4,

N(q; K) < C1h(|B:K)(N + ®*(q))
N(q; K x RY) < C1h(|1B:K)(N + *(q)) ,

where BeK = K + ¢[0, 114 and ng =K+ &[0, 114.
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Let n : RY x RY — [0, o0) be a continuous function such that f ndxdv = 1, and
define ¢1, £ : RY — [0, 00) by ¢1(x) = [ n(x, v)dv and & (v) = [ n(x, v)dx. Define

s e\2d N Xi—X Vi —v
v = (3) Zn( . ) (44)

i=

N
ug (@ =6’y "¢ (x’ - x) (vl +1). (4.5)
i=1

We simply write f¢ for f%¢ when 8 = ¢ and u® for u$, whena = 1.

Lemma 4.4. There exist constants Co, Co(T) and Co(T, a) such that if n satisfies
n(x,v) = 0for (x,v) with |x| 4+ |v| > r, |Inllre < 1 and a € [1, 2), then

En sup/(|v|2 + 1) FE(x, v; q(1)dxdv < Ca(1 + &2r?), (4.6)
t

En sup ffg(x,v;q(t))log+ FE(x, v; q(0) dxdv < Co(T)(1 4+ r*logr), (4.7)

0<t<T

Ey sup / ul(x; q(0)  [log* ul(x; q(1)]' " dx
0<t<T

< (T, a) (1 +r¥logr + 5“r3> . (4.8)

Proof. The bound (4.6) is a consequence of the conservation of the kinetic energy; one

can readily show
[ X0 (B0 ) o+ v
- € e

= 8"/242 (”“l—_”) (02 + Ddv

= [ 3 0a)u) — vl + Dy

<2Ze*r? +27e¥ Z lvi () + Z
i

=276 +226 ) i (0))* + Z .
i

(Recall Z = 24N )
The proof of (4.7) is an immediate consequence of Proposition 4.3(i) and the fact
that there exists a constant cq such that,

SO0 v @) SN (Q; Teer (2, 0) < co ) {AN(Q: 1) 1 T € T, TN Ieer (x,0) 3 B}

where Iy (x, v) is a cube with center (x, v) and side length «.
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For (4.8), observe
N
/fe(x,v; Q) (o] + Ddv = an(x’ —. ”) (Jvl* + Ddv
i=1
N d Xi — X a
=Zs n v ) (Jup — ev]? + Ddv
i=1 €
N Xi — X
€0 (T) @l + 1)
i=1
a,. .d Y Xi — X
—&'re Z{] . .
i=1

v

Since,

N

i=1
it suffices to bound,

sup Ey  sup / i (x: q(1) log™ @ (x: q()dxx , (4.9)
N 0<t<T

where i°(x; q) = [(Jv|* + 1) f°(x, v; @)dv.
Observe that we may write

[v|* +1
y(v)

where y (v) = (2m) 42 exp(—|v|?/2). If ¢(z) = z(logt z)!~%/2, then by Jensen’s
inequality and the elementary inequalities

log" AB <log™ A +1log"™ B,
(A+ B)I=/2 < pAl=a/2 | pl-a/2

AB'-42 < & p2/a (1 - 9) B,
=3 2

i(x;q) = y () fE(x, v; @)dv,

we deduce,

y /1l -1
o (x; q)) < /45 (M—Jr foix, v q)) y (v)dv
v (v)

= /.(|U|d + 1)f8(x, v; q)[long fg(x, v; q)]lfa/Z dv
d 1 1-a/2
= f(|U|“ + 1) fe(x, v; Q[log" fE(x, v; Q1" dv
+c1 /(Ivl2 + 1) fe(x, v; q)dv

< Cz/(lv|2+ l)fg(x,v;Q)dv+62/f8(x, v; @ log* f°(x, v; @)dv,

for some constants ¢; and c,. This, (4.7) and (4.6) imply (4.8). O
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For our purposes, we also need Lemma 4.4 for a function 7 that is not necessar-
ily of compact support. To this end, let us write £ for the set of continuous functions
n:RY x R? — [0, 0o) such that for some positive k, the function

Ly(m(x,v):= sup nx+z,v+w), (4.10)

2], lwl<k

belongs to L' (R?9).

Lemma 4.5. Suppose that n € L. Then there exist constants Co(T, n) and Cao(T, n,a)
such that for every a € [1, 2),

Ey sup /fe(x,v; q(1))log™ £%(x, v; q(1)) dxdv < Co(T, 1) , (4.11)
0<t<T

En sup / ut (v q(0) [log™ 0 q())] ™ dx < Ex(Tymoa) . (412)
0<t<T

Proof. Take a continuous function g : R? x R — [0, 0o) such that [ fdxdv = 1 and
its support is contained in the ball with center at the origin and radius k. We certainly
have

N
Fox, v q) = //Zn (u ;) g <L L) dydw (4.13)
iz & & & &
al y—x w-—v y—Xi w—1U;
</ Lkm)( ,—)8‘2";6 (— ’)dydw.
; & & & &

Put

Li(me(x,v) = e Li(n) (—z —S) ,

N
ng(x,v;q)=Z/3(x gx’,—v 8”’) .
i=1

We can now rewrite (4.13) as

e, v Q) < (Li(e * f(x,0) (4.14)

where * denotes the convolution. The bound (4.11) is now an immediate consequence
of (4.14), Jensen’s inequality and (4.7).
For the proof of (4.12), set

preo = [ peode. vy = [Licvar, pe =ty (-2).
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We then have
N

v = [[ &3 ("" = v) ] (%) (ul* + Ddydv  (4.15)
i=1

N .
< //Zy(y;x)m (y_gx’><|v,-|“+1>dy
i=1

= ye ¥ 0°(x), (4.16)

R X — X;
i) =) B ( - ) (uil” + 1.
1
The bound (4.12) is now an immediate consequence of (4.15), Jensen’s inequality and
4.8). O

Using a similar idea, we can also allow a function 5 that merely belongs to £ in
Proposition 4.3(ii). More precisely,

where

Lemma 4.6. There exists a constant Cy (k) such that ifn € Lwith Ly(n) € L', then

N
> et (i vi) < CLOONLk) 1l Alllal 1) (N + (@),
i=1

where ¢ (z) = zlog"t z and of is as in Proposition 4.3.

Proof. Without loss of generality, we may assume that ||Li(n)||.1 < 1. Take a con-
tinuous function B : R? x R? — [0, 00) such that [/ Bdxdv = 1 and its support is
contained in the ball with center at the origin and radius k. We use Proposition 4.3(ii) to

assert that for some constant C 1,

N N
Zoﬁ(xi,vi):ff f/Zn%xi—z, vi — wa(z, w)e g
i=1 i=1

(xi —y b — ”) dzdwdydv

&

N
< ] [ X oo -z - wat we s
i=1

(x" Y bz ”) dzdwdydv
& &

N
= / f D (Li) xa)(y,v)e 2 (% vi;v)dydv
i=1

< CiBILk® * allzee h (L) * allL1) (N 4 @°(q))
< Ci®)llellz h(llell 1) (N + @°(q)) ,

where .
L) (x,v) = e 2 Li(n) (;, g) :

This completes the proof of lemma. O
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We now turn to the entropy production bound.

Lemma 4.7. There exists a constant C3 such that

S vl —x DB — vy (S STD
/(; ;V (lxi —x; ) B(v; Ujvl’lzj)l/f< G(t.q )G(t,q)vﬂ(dq)§C3N,

where Y (z) = zlogz —z + 1.
Proof. Recall that q(¢) is distributed according to
p(t,dq) = G, q)vgdq) ,

with G solving (4.2). Define

H(1) =/10gG(t,(I)M(t,d(I) =/G(t,(l)10gG(t,Q)vﬂ(dQ),

with B asin Lemma 4.1. Recall that vg is invariant for both Ag and A,. A straightforward
calculation yields

d
SH® = / (Alog G)(t. )G (1, @vs(dq)
= /(.AclogG)de,g +/.A0G dvg

= /(AclogG)de,g +/.ACG dvg .

‘We now use

G(SYq)
G(q)

G N
=/ZV8(|xi_xj|)B(Ui_Uj,nij)IOg G(S(g)q)G(S”CI)Uﬁ(dCI%

i,J

[ Actog6)Gavs = [ 3 v —xjpBews = vy o G(@)vp(da)
i,J

to deduce

d . G, S"q)
ZH(Z) = —/; VEi(lxi — xj)B(vi — vj, nij)y (T‘l)) G(t, qQvg(dq).

This completes the proof because H (0) < const-N. O
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5. Compactness of Averaged Densities

Recall that the microscopic density f is defined by f*(x,v;q) = >, n (L=, 1=2)

e’ ¢
for a nonnegative continuous function n of compact support such that [ ndxdv = 1. On
account of the collision term, we would like to study

|x — x;| X — X
Ké(x,v;q) = v =—2)Bv—v, — ).
(x. v q) Z < - Srem

More generally, we may take two continuous functions & : R x R? — Rand ¢ : R? —
[0, 00), and define

f%x,v,w;q):Zs(%w—w)@(”’;w) .

We assume [ ¢{dx = 1 and that ¢ is of compact support. The function f ¢ is a density-like
function and we would like to study its average

pf(x,v,1) = g ZE (x—Tx,(t) v — U,’(t)) .

The main objective of this section is a strong compactness result for the averaged den-
sity p®. For this we will need some conditions on &. To state these conditions, we fix a
constant b € [0, 1) and define several seminorms:

Ro(&) = sup [£(x, v)|(1 + [v]) 071,
Ri(E) = /(1 + |xDIE(x, 0)]dx,

Ra(&) = | 1+ Ix]) sup [E(x, v) — £, w)l]v — w| ' A + vl + [w)h P dx, (5.1)

vFEW
R3(§) = sup sup &(x, v) — &y, V)|Ix — yI7 A + o)~
vV x y
R4(€) = sup sup I&(x, v) — £, )]|x — yI7h.
vV x y

Theorem 5.1. There exists a constant C4(T) such that if
R(E) :=Ro(§) + Ri(§) + Ra(§) + Ra(§) < 1, (5.2)

then

T
Ey sup sup / /|,08(x+h,v,t—|—oc)—,og(x,v,t)|dxdt
|h|<é «€0,6]1J0

< C4(T)(A + v|®T372) [(loglog | log 8]) ™ +¢] .

for every v, where oy = (2d + b +2)"1(d + 3)~ L.
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To prepare for the proof of Theorem 5.1, let us define

o°(x,v,1) = /fg(x, v, w; q(t)dw .

We now state a lemma that is equivalent to Theorem 5.1.

Lemma 5.2. There exists a constant 64(T) such that if € satisfies (5.2), then

T
Ey sup sup f f 10°(x +h,v,t +a) — p°(x, v, t)|dxdt
|h|<d8 «€[0,6] /O
< Co(T)(A + 0] ") (log log | Tog 8)) ™,

for every v.

We first demonstrate how Lemma 5.2 implies Theorem 5.1.

Proof of Theorem 5.1. Since & satisfies (5.2), there exists an integrable function y such
that

E(x, v) — ECx, )] < ¥ )1+ o] + [w)’|v —w], /)/(X)dx =1. (53

Note that we can find a constant ¢ such that if {(z) # 0, then |z| < c&. From this and
(5.3) we deduce,

|108(x1 v, t) - ﬁé‘(x’ v, t)'

B () e (e ()
X —X; Vi —w b
5628/23/( - )c( - )(1+|v—vi|>dw

for some constant ¢». As a result of this, the elementary inequality |v — v;|? < 2 +
2|v|? + 2|v;|?, and the conservation of the kinetic energy we have,

T
/ / p°(x, v, 1) — p°(x, v, )|dxdt < cze(1+ "),
0
for a constant c3. This and Lemma 5.2 imply Theorem 5.1. O

For the proof of Lemma 5.2, we first replace the density f ¢ with the renormalized
density

nfe(x, v, w; q(1))
n+ fs(x, v, w; q(1)) '

where n is a positive integer. Define m®(x, v, t) = mi’eo(x, v, 1) = fgz(x, v, w; q(2))
Xeo (w)dw, where xg,(w) = 1(Jw| < £p). The next lemma is the main ingredient for
the proof of Lemma 5.2.

Let C, denote the set of continuous & : R? x R? — [0, co) such that &(x, v) = 0 for
Ix| 4+ v = r and ||§][L> + R4(§) = 1.

gn(x, v, wiq1) =
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Lemma 5.3. There exists a constant Cs(T) such that if ¢ € C, andr > 1, then

T
Eyn sup sup / /Img(x—kh,v,t—i—oa)—ms(x,v,t)|dxdt
lh| <8 «e[0,5]1J0

< Cs(T)r* log rntd*" (log* (nto))"* (log | log 8)) /2 ,
for every v.

An important tool to be used for the proof of Lemma 5.4 is the celebrated averaging
lemma:

Lemma 5.4. There exists a constant Ce(T) such that if m(x,t) = fgo(x — wt, w)

Xeo(w)dw and m(x,t) = [m(x, w, 1) xe,(w)dw with m(x, w, 1) = f(; y(x — w(t —
s), w, s)ds, then

T T ~ ~ 2
(m(x,t) —m(y,s)) d
dxdydsdt < Cg(T)L ,
Lo ] e dsdvasis < camigiviig i,

T T A A 2
(M(x, 1) —m(y,s)) o
dxdydsdt < Ceg(T)L ’
/(‘) /(‘) / [(x, 1) — (y, s)|4+2 xdydsdt < Ce(T)yllg ||ng0

where

T
Iy, = fo / / V26, w, 1) ey (w)dxdwdr,
-0
8%, = / (8%)%(x, w) xeo (w)dxdw .

See for example [GLiPS] for a proof.

Proof of Lemma 5.3. Step 1. First observe that it suffices to establish the lemma for a &
that is continuously differentiable. This is because if & is merely x-Lipschitz, then we
may approximate it by continuously differentiable functions and pass to the limit. From
now on we assume that £ is continuously differentiable.

We define B(r) = % and F(x,v,w;q) = B(f°(x,v,w; q) = g (x,v, w; q).
Write g(x, v, w, t) for g5(x, v, w; q(#)), and set g(x, v, w, 1) := g(x + wt, v, w, t).
Evidently g(x, v, w, 1) = F(x + wt, v, w; q(¢)). It is well known that the process

Mx,v,w,t) = F(x +wt,v, w; q(t)) — F(x, v, w; q(0))

t
_ / (i +A) F(x 4+ ws, v, w; q(s))ds ,
0 as

is a martingale and that its quadratic variation Ex (M (x, v, w,t) — M (x, v, w, $))? is
given by

t
EN/ (AF? —2FAF)(x + wé, v, w; q(6))do (5.4)

t
= EN/ (AcF? —2F A.F)(x + wo, v, w; q(9))d6b .
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As a result, we may write

t
gx,v,w, 1) = g(x,v,w,0) + / A(x +ws, v, w, s)ds
0

t
—}—/ D(x +ws,v,w,s)ds + M(x,v,w,t),
0
where

Alx,v,w,s) = <w . % + A()) F(x, v, w; q(s))
D(x,v,w,s) = A F(x, v, w; q(s)) .

Hence
t
gx,v,w,t) = g(x —wt, v, w,0) +/ Alx —w@ —s5), v, w,s)ds
0

t
—i—/ Dx —w( —5),v,w,s)ds + M(x —wt,v,w,t). (5.5
0

Our goal is to show that the w-average of each term on the right-hand side of (5.5) is
strongly compact with respect to the L! topology . In view of the averaging lemma, we
would like to show that the functions A and D are weakly compact in L.

Step 2. We have that the expression (w . % + Ao) F(x, v, w; q) equals to

ﬂ/(fs(X,v,w;q))Z<w;vi>-é(x_gxi,v—w);“(vi;w) ,

where é (z, v) denotes the z-gradient of £(z, v). As a result,

A, v, w, )] < B'(fF(x, v, w; @) f5(x, v, wi q(s))

where f%(x, v, wi q) = Y, i (35, B2, v — w) for fj(z, v, w) = |v-&(—z, w)[Z(v).
Since B’ is bounded by 1, we deduce

|A(x, v, w, )| < fE(x, v, w; q(s)) - (5.6)

This and (4.7) imply that there exists a constant ¢ such that

sup Ey sup //¢(|A(x, v, w, s)DI(w| < Lo)dxdw < cor’logr  (5.7)
N s€[0,T]

where ¢(z) = zlog™ z.
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Step 3. We now concentrate on the collision term. We have that 2.4, F (x, v, w; q) equals
to

LA -1
ZVS (Ixi —x;1) B(vi — vj, nij) (1+n_ fg(x,v,w;q))
i,j

. N |
(147 v ws S7q))

. j_ .. i_
|:€<X_XI,U—W>§<Ui w)+$<x xj,v—w)f(v] w)
& & € &
(e () e (e (M)
& 3 & &

=: Q1+ Q) — Q3 — Qq,

where, for example, 21 = Q(x, v, w, q) equals to

. R -1
P E Vv (—'xl x]|> B(v; —vj, njj) (l —i—n*lfg(x, v, w; q))
- & ’ ’
l,/

_ - J_
(1 +n fE (v, ws Sijq)) 15 <x xz,v—U))C (vl w) .
& &

Using this decomposition we can write

1 1
D(x,v, w,s) = §D+(x, v.w,s) = 5D (x, v, w,5)
where

Dt (x,v, w,5) = Qi(x, v, w, q(s)) + L (x, v, w, q(s)) ,
D™ (x,v,w,s) = Q3(x, v, w, q(s)) + QL4(x, v, w, q(s)) .

The term €23 is bounded above by D~ which is equal

a Wi X1\ oo ooy (S0, vi Zw
S;V( A )B(v, v],n,])§< A , U w){( A )

(1 +n ! Fe(x, v, w q)>_1

< ae? YU — x| < crre)y —v;lé(x_x",u_w>€(vi _w)
&

iJ

(1 +n7 ! Fe(x, v, w q))i1

< clgdZ]l(IXj — x| <crre)(Jvj — w| + c26)8 (x _SXivU _ w> ¢ (U,- — w)

i,j

(1 +n7 o (x, v, ws q))i1

<cine? Y M(lxj — x| < crre)(jvj — wl + c2e)
J
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for some constants ¢y and c;. In the same fashion, we can treat 24. As a result
D (x,v,w,s) < 2ﬁ_(x,v,w,s) (5.8)
< 2cine® Y M (lxj(s) — x| < crre)(v(s) — wl + c28) .
J
From this and (4.8) we deduce that there exists a constant c3 such that,

Ey sup / / (D™ (x, v, w, sHL(Jw| < Lo)dxdw < c3p(nlo)(r* logr + er’)
s€[0,T]

(5.9

where ¢(z) = z/log™ z.

Step 4. In this step we study the function DT. From B(v,.j — v’;, nij) = B(v; —vj, njj)
we deduce that '

Ex<i(x, v, w, q(s)) 11 (x, v, w, 4(5)) = ©)
_ / Q1 (r. v, w, @) 1R (x. v, w, @) > OG5, @) vp(dq) .

is bounded above by,
. X —X; vij —w
D Vel —xi DB — vy i) € (= v —w ) £ | -

i,j

~ . -1
(17 v wi ST) Qi 0w, @) = DG rp(da)

e X — X Vi —w
=/Zv(|x,-—x,-|>B(vi—vj,ni,»)s< - ,v—w>§< - )
i,j

A 1 .. ..
(1+n7 v w ) @i, w, ST = OGE, STqusda)

Fix k > 1. We now use the elementary inequality

a= %b: %b]l (% fk)—i—%b]l (% >k) (5.10)
Skb—i_[%bg%_%—i_l]logk%l

to deduce that Ex Q21 (x, v, w, q(s)) 1(R21(x, v, w, q(s)) > £) is bounded above by
X — X Vi —w
kuVS(lxi —x;[)B(v; —vj,nij)$< - l,v—w>C< l . )
iJ

~ —1 ..
(1 7l o, v, w q)) 121 (x, v, w, S7q) > £)G (s, Qvp(dq)

1 X — X Vi —w
+logk—_1f;vg<|xi—xj|>B(vi—vj,ni,->s( - ’,v—w)c<’8 )

1A -1 G(s, SV q)
(l+n lfg(X,v, w; q)) lﬁ(Tq)q
=: Q1+ Qi2,

> G(s,qvg(dq)
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for every k > 1. We certainly have that the expression fOT [ Qi2dxdwds is bounded
above by

1 r .
logk—1/0 ///;V (Ixi = x;DBvi — vj, nij)

1(lx; — x| < re)¢ (”" ; w) " (G(S’ qu)> vp(dq)dxdwds  (5.11)

G(s, q)
1 T
d .d
— g%, logk——1/o /;Vs(lxi—xJ-I)B(vi—vj’"if)
G(s, S q) Csr
_ d d < — 3
( GG Q) )”’3( D= gk =

where for the last inequality we have used Lemma 4.7.

Step 5. We now turn to €11. Fix p > 1. We can certainly write
Q= Qi+ Q2

where 2111 equals to

k/ ZVg(lxi_le)B(vi_vj’nij)]l(|vi—vj| < ) (x —8x,- e w) . (Ui ; w)
iJ

N —1 ..
(1 ! o x, v, w q)) 11 (x, v, w, S7q) > 0)G(s, Qvp(dq) -

The term 2112 is obtained from €211 by replacing l(Jv; —v;| < p) with 1(|v; —v;| > p).
One can readily show that for some constant c4,

iz < kes [ o Uy = vl = care. vy~ wl = p— cae)lloy — wl +2)
i,j

¢ (x — - w) ¢ (vi . w) (14 Fo @) GG @)
e &

IA

cwk/ed Z]l(|xj — x| < cyre, |vj — w|
j

v

p—c4e)(|vj —wl + )G (s, Qup(dq) .

From this we deduce that if p > c4/2 and ¢ < 1, then the expression

T
/ // Q2l(Jw| < £oy)dxdwds ,
0
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is bounded above by

T
csnkrtEx [ [ €43 (luj(6) — wl+ DGl = )10y 6) — wl = p/2)duds
0 N
J

T
< 2csnkrdp_1EN/ /82‘1 § (10 () — w* + |vj(s) — wHI(|w| < €o)dwds
0 A
J

T
< 4C5nkrdp_1EN/ g2 § (lvj(s) — w|* + DI(w| < £o)dwds
0 3
J

< conkTried p~ Ene® Y (v (P + 6+ 1),
J

for some constants c5 and cg. As a result, there exists a constant ¢7 such thatif p > c¢4/2,
then

T
/ // Qull(jw| < Lo)dxdwds < eqnkrdedt2p=1 . (5.12)
0

Step 6. To treat the term 2111, we first replace 1(21(x, v, w, q(s)) > £) with a more
tractable expression. To ease the notation, let us write €21 (q) for 1 (x, v, w, q). Itis not
hard to show

Qi(SYq) — Q1(q) < X1G, j,q) + X206, j, Q) + Y, j, q) ,

where

. . X — X vi—w
YG,jq@=V (Ixi—le)B(vi—vj,nij)§< - aU—U))C( )

v.j — (v-j — Vk) - RikNik — W
X1G, j, @) = Y VE (Ixi—xi]) Bvi —vk,n,-k>c( — —

/ e
k#j

X — X
S( ,v—w>,
&

o vk+(vi.—vk)-njknjk—w
XoGi, joq) =YV (Ixj—xil) Bvj — vk, nji)¢ ( —
ki

S(x_xk,v—w> .
I3
Observe that if

B(vi —vj, nipl(lvi —v;| < p)V (m;xj')s (x e w> ‘ (vi _w) o

& &

then

lxi —x| <csre, |x;—x[<cgre, |vi—w|=<cge, |vi—v;|=<p,
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for some constant cg. As a result, the expression Q(SY q) — 21(q) is bounded above
by

coe? > (i — x| < core)(lvk — w| + p) =: R(x, w, q) ,
k

for some constant cg. From this we deduce that €211; is bounded above by

k/ZVE(PCi _xj|)B(Ui — vj,nij)é (x _Exi,v — w) Is (vi ; w)
l?./

(1 + nflj?g(x’ v, W; q))_1 1(Q(x,v,w,q) + R(x, w, q) > £)G(s, (])Vﬁ(d(])
=: kENb_(x, v, w, HT(Q(x, v, w, q(s)) + R(x, w, q(s)) > £) .

As in (5.9) we have

En sup / qg(lA)_(x, v, w, s))I(Jw| < £y)dxdw < C3<5(n€0)(r2d logr + £r3) ,
t€l0,7T]

where ¢(z) = z/log™ z. As a result, the expression

T
EN/ f/ Qi1 1(w]| < Lo)dxdwds (5.13)
0

is bounded above by

KEx /T// B (x, v, w, H(w] < €)1 (x, v, w, q(5)) + RCx, w, 4(s)) > )
' 1(D™(x, v, w, s) > £))dxdwds
+AEy /T // B (e, v, w, (] < €)1 (x, v, w, () + R(x, w, q(5)) > 0
0 1(D™(x, v, w, s) < £1)dxdwds

T
< k(log* €)' 2Ey / / F(D™ (x. v, w, H(w| < Lo)dxdwds
0

T
+kelENf (G w) = Q1x v w, )+ RO w, q(s)) = € [w] < o}l ds
0
< e3Td(nlo)(r*? logr + er®)k(log™ 1)~ 1/?

T
%/ // En(Q1(x, v, w, q(s)) + R(x, w, q(s)L(Jw| < bo)dxdwds ,
0

7

for every £1 > 1. (Here and below |A| denotes the Lebesgue measure of a set A.)
Evidently if €9 > 1, then

En / / R, w, gDI(w] < €o)dxdw = ciort(o+p) . (5.14)
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for some constant cjg. On the other hand,

X — X
EnQi(x, v, w, q(s)) < fZ VExi = X B —vj, nip) § ( v w)
i,j

&

v/ —w s -]
o4 . (1 +n fi(x, v, w; S”q)) G(s,qvg(dq)
=fZV€<|xi — %D B —vj,n,-ﬂs(%,v—w)
i,J

¢ <”i ; w) (1 +n (v w; q))_1 G(s, S q)vp(dq) .

Again the elementary inequality (5.10) yields

EnQi(x,v, w, q(s))

= pl/Z VEe(lxi — xj)B(vi — vj, n;j) <x _SXI"U _ w> . (vi ; w)

i,j

N -1
(1407 v wi) G @vpda)
1 X — X
- - VE(x; —xi)B; — v, n;; Lv—
+10gp1_1/; (Ixi — x; ) B(vi — v, n,,>s( v w)

- G(s, S q)
C( - >1/f< Go.0) )G(s,q)v,a(dq),

for every p; > 1. Hence, we can repeat (5.11) to assert that for some constant ¢y,

T
EN/ // Qi(x, v, w, q@s)1(w| < £y)dxdwds (5.15)
0

T . enrd
< plEN/ / D™ (x,v,w, s)1(|lw| < £y)dxdwds + .
0 log p1

From this, (5.14) and (5.8) we learn that (5.13) is bounded above by

cllrdkﬂl

- kl
crok(log €0)"12¢ (o) (X log r+sr3)+01271”dggﬂ(”Pleo‘f‘go"‘l’)jL Clog p1
1

for some constant c17. This and (5.12) imply that the expression
T
/ // Qul(lw| < €o)dxdwds , (5.16)
0

cllrdkél
tlog pi

is bounded above by

- ke
ciok(log™ €))7 2 (o) (r* log r+er®) + clzTIrd%(npleo + &+ p)+

+ C7nkrd£61+2p_1 .
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1/4

We now choose p = p; = ¢; = £'/% and k = (log £)!/* to deduce that the expression

(5.16) is bounded above by
c13 ((Z)(neo)(rw logr + er®) + nrdeg“) (log £)~1/4 |
This and (5.11) imply that the expression
/OT [/ EnQi(x, v, w, q(s)1(2(x, v, w, q(s)) > OL(|w| < Lo)dxdwds
is bounded above by
c1s (#nt0) ¥ logr + &r) + nr€d*?) (log /% + c1ar loglog )",
for some constant cj4. The term €2 is treated likewise. From this and

00 de
log™1 +)(‘/2=/ 1(X > ¢ ,
(log™ log™ X) X = O g tloglog 172

one can readily deduce that for some constant c;s,

T
Ex / / SO (o v w0 1(lw| < Lodxdwds
0
< c15[@p (o) logr + er®) + nried ],

where ¢(z) = z(log* log™ z)!/2. This and (5.9) imply

T
EN/ / ¢(D(x,v,w,5)) 1wl < €o)dxdwds (5.17)
0
< c16ld (o) logr + er’) +nrded )
for some constant cjg.

Step 7. We now turn to the martingale term. From (5.4) we learn that
Ey M(x,v,w,t) — M(x,v, w, s))2 is equal to
t
EN/ D VE(xi—xDBi—vj, nip)[F (%, v, w; $Yq0)—F (x%, v, w; q(6))1%d6 ,
A l,]

0

where x” := x + Ow. This in turn equals to the expected value of

t .. -2
/ Z VE(lxi — xj)B; —vj, njj) (1 +n7 (O v, w S”(l))
N l,/

(1 + n_lf(xe, v, w; q)))i2

6 _ .. J_ 0 _ . i
|:€<x x‘/,v—w>§<v’ w)+é<x x’,v—w)g“(U-’ w)
e ) e )
0
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2 4
=< 4261,2, we bound

r=1
En (M(x,v,w, 1) — M(x, v, w, 5))> by the sum of four terms 'y, ', I'3 and I'4. For
these terms the square of the expression in the brackets is replaced with

J i_
(e () (o (),
€ € € e
45_2 .xe_.xj v —w ;2 U['_w 452 xe_x] v —w ;2 Uj_w
e € ' e € '
respectively. We start with I'3. The term I'3 is bounded above by

t 0 o
4EN/S ZV€<|xl-—xj|>B<vi—vj,n,-,-)sz(x - xl,v—w> ;2(%)

iJj

-2
(1 Fn (8, v, w q)) d6

4
Here we have simply written q for q(8). Using (Z ar)
r=1

t 0 _ .
s4c1ENf e"Zn(|xj—x9|sclre)(|v,-—w|+cze)§2<x - x’,v—w)c2
N

i,j
- -2
<v, w) (1 —l—n*lf(xe, v, w; q)) dag .
)

(Compare this with (5.8).) From £2 < &||&]|1, ¢> < ¢[I¢]lz and ||| < 1 we
deduce,

t
T3 < 4c1||c||LoonEN/ e 1(1xj(0) — x| < cire) (v (0) — w + cr6)d6 .
S .
J
(5.18)

The term I'y4 is treated likewise.
We now turn to I'y. The term I'; is bounded above by

t 0 _ . j_
4EN/S ZV£(|xi—Xj|)B(Ui_Uj,”lij)é:z(x Ex’,v—w>§2<v’ w)

iJj

.. -2
<1+n—1f(x9,v,w;s”q)) o

! . x? — x; vij—w
=4/S ;fv(|x,-—x,-|)B(vl-—vj,nl~,-)sz( - ,v—w>¢2< ) )

.. -2
(1 R S”q)) G (6, q)do

! . x? — x; v —w
=4/S ;fv(|x,-—x,-|)B(v,-—v,-,nl~,-)52( - ,v—w>¢2< - )

-2 g
(1 +n7 (v, w; q)) G0, S q)do .
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Fix k > 1. As in Step 5 we apply the inequality (5.10) and Lemma 4.7 to deduce that
the expression [ T'11(Jlw| < €o)dxdw is bounded above by

t 0 o o
4k//l in:V8(|xi_Xj|)B(Ui_Uj,l’ll‘j)q‘;:z(x - x’7U _ w) §2<¥)

(1 +n (v, ws q)) 1(Jw| < £9)G (0, q)dOdxdw + GarfligllLee
logk — 1
t
< 4cinkEy /// gdzﬂqxj _x9| < Clrg)(|vj — w| + c26)
s ]
Cyrd o
1(|w| < o)dbdxdw + SN
logk — 1

The terms I'; is treated likewise. From this, (4.6) and (5.18) we deduce that the expression
Ew [ [ G0 w0 = MG v 0,91 ) < )dxdw,

is bounded above by

t
c17nkEN/// ey T M(xj(0) — x| < cire)(vj(0) — w| +c28)  (5.19)
§ J

Clgrd

d
1(jw| < Lo)dOdxdw + L < crgnkr®ed s — 5] + <57
logk logk

for every k > 1. We now choose k = |t — s|~Y/2 to deduce that for some constant c19,

EN/ Mx,v,w,t) — M(x,v,w, s))2 I1(lw| < £p)dxdw (5.20)

d yd+1 —1
£ Il

< cionr |log|t —s

’

whenever |t — s| < 1. If we set s = 0 and choose k = e in (5.19) we obtain
En //M(x, v, w, )2 1(lw| < €o)dxdw < cro(enrdt + 7). (5.21)
Step 8. Recall the decomposition (5.5). We fix v and write
fg(x, v, w, 1) xe(w)dw = /g(x —wt, v, w, 0) x¢ (W)dw
+ / X(x,v,w, 1) xew)dw
+ / Y(x,v,w,t)xe(w)dw

+/M(x — wt, v, w, 1) xe, (w)dw

=:myi(x,t) +ma(x, 1) + ma(x, 1) + ma(x, 1),
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where .
X(x,v,w,t) = / Ax —w( —s),v,w, s)ds,
0

t
Y(x,v,w,t) = / Dx —w( —s),v,w,s)ds .
0

Put go(x, v, w) = g(x, v, w, 0) and f(f(x, v, w) = fs(x, v, w; q(0)). By Lemma 5.4,

T T 2
mi(x,t) —mi(y,s)) d 2 d.d
dxdydsdt < Ce(T)yllgoll < cyonlyr
/0 /0 / |Cx, 1) = (3, $)]4+2 0Ty 0
(5.22)

because [ gddxdw < nff(fdxdw. For my we write my = my; + mpy, where
myi(x,t) = [ X;(x, v, w,t)xe(w)dw and
t
Xi(x,v,w,t) = / Ai(x —w( —s),v,w,s)ds ,
0
A(x,v,w,t) = A(x, v, w, HIL(A(x, v, w, )| > £),
Arx(x,v,w, 1) = Alx,v,w, HI1(JAx, v, w, )| < ).
Using Lemma 5.4 and (5.6), we certainly have

Tt (ma(x, 1) —mxn(y, s))?
EN/O /o / |(x, 1) — (y, $)|4+2 dxdydsdt (5.23)

= Co(MTLEN A2l < Co(TT (LENIANlL1 < ea1€grie .
“0

On the other hand,
T T
/ f|m21(x,z>|dxdt 5/ / 1X1Ge v, w, D[L(w] < Lo)dxdwds
0 0

T

< Tf / AGr, v, w, )[L(AG, v, w, 5)] > £)
0

1(|lw| < £o)dxdwds

T T
< / / A, v, w, D] < Lo)dxdwds .
log? Jo
This and (5.7) imply
T coor?d logr
Ey |maq (x, D)|dxdt < ez (5.24)
0 ogt

One can readily use (5.8), (5.16), and the conservation of the kinetic energy to show
T
Ey / / ID(x, v, w,s)|xe(w)dxdwds
0
T
< cz3nrdEN/ f&zd Z(Ivj )] + €0) xeo (w)dwds + cz3rd

0 -

J

< C24n€g+lrd .
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We then use this and (5.17) to assert that m3 can be decomposed as m3; + m3p with

T T 1) — ,8))2
/ f f (m3(x, ) =m3(y, 5)) dxdydsdt < czsnﬁ(z)d-'_lrdea (5:25)
o Jo (e, 1) = (v, $)|4F2

T
EN/ / Im31(x, Hldxdt < eas[d(nlo)(r* logr + er’) + nréed 1 (loglog 07,
0

in just the same way we obtained (5.23) and (5.24).
Step 9. We now turn to m4. Fix § > 0. We replace M with
R 1+8
M(x,v,w,t) =8_1/ M(x — wt, v, w, s)ds
t
in the definition of m4 to yield

Mia(e, 1) = /M(x, 0, w, 1) ey (W)

Note that M satisfies the equation M, +w - Mx = M in the weak sense where,
M(x, v,w,t) = S_I(M(x —wt,v,w,t+38) — M(x —wt,v, w,t)).

As a result, we may apply Duhamel’s principle to assert,
A s r
M(x,v,w, 1) =8 f M(x — wt, v, w, s)ds +/ M —w(t —s),v, w,s)ds .
0 0
Using this we write

M(x,v,w,t) =M0(x — wt, v, w)—}—Ml(x, v, w,t), (5.26)

where Mo(x, v, w) = §1 f(f M(x,v,w, s)ds. We now apply Lemma 5.4 to yield

ot (a(x, 1) — ria(y, 5))?
/0 /o / |(x, 1) — (v, 8)]4+2 dxdydtds (5.27)

d v 1 02
< ca6t] (nMn% 1M1 + 11 ) ,
0

By Jensen’s inequality,

5
ExIMOl, =87 / // ExM*(x, v, w, $)1(Jw| < Lo)dxdwds < ca605 " 'rn
Lo 0
(5.28)

where for the last inequality we have used (5.21). In the same fashion we can show

ENIMIG, < caty™rin.
0
From this, (5.26) and (5.28) we deduce

ENIIM'|3, < 2co6t5™'rn . (5.29)
o
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By (5.20), Ey ||1f4||i2 is bounded above by
£

0

T
6_2EN/ f/[M(x,U,w,t+5)—M(x,v,w,t)]2 1(|w| < £y) dxdwdt  (5.30)
0
< cz7nrd€g+15_2| log6|_1 .

From this and (5.27-29) we deduce that there exists a constant cg such that if § €

(0, 1/2), then
T T GiaGen) =gy, s))
EN/O /0 / [(x, 1) — (v, 5)|9+2 dxdydtds (5.31)

< o t8ed T rdns " log 51712 .

Note that
§
ﬁ14(x,t)—m4(x,t)=/<51[ Ns(x,v,w,t)dS) I(lw| < £o)dw ,
0

where N*(x, v, w,t) = M(x —wt,v, w,t +5) — M(x — wt, v, w, t). As in (5.30) we
may use (5.20) to assert,

8
A — G d+1)/2 —
Eliis = mallz < Ens 1/ IN®lz ds < east”™2r a2l 1og s 12
0

(5.32)

Final Step. From (5.24-25) and (5.32) we learn that if

T )
Fs(m) =/ / / Im(x +h, 1 +a) —m(x, )| 1(h| < 8)8 ¢V dxdhdadr ,
0 0

then
EnFs(m®) < Ey (Fs(m1) + Fs(ma) + Fs(mzp) + Fs(iia))
+ ¢2003r* log rép(nlo) (loglog €)1/ (5.33)

+ oot V2212 10g 51712

On the other hand, by Jensen’s inequality,
T pé
Fs(m)? < C30/ / // Im(x +h,t +a) —m(x,0)|* 1(/h] < 8)8 " dxdhdadt
0o Jo

T pé 2

imx+h,t+ao)—m(x,t)|

<318 (k| < 8)dxdhdadt
! /0 /0 / |, o) 452 4

T T 2
imx +h,t +a) —m(x,1)]
<c 8/ / / dxdhdadt ,
U Jo [

whenever § < T. As a result, we may apply (5.22-23), (5.25) and (5.31) to assert that
the expression

Ey (Fs(my) + Fs(maz) + Fs(m3a) + Fs (i)
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is bounded above by a constant multiple of

81/26(()d+1)/2rd/2n1/2£1/2 n €g+l/2rd/2n1/2| log 8]~ /4 |

From this and (5.33) we deduce that the expression Ey Fs(m®) is bounded above by a
constant multiple of

§U2g1H1 2 d 212912 4 41120412172 100 51=1/4

+€gr2d log rq;(nﬁo)(log log E)_l/z + E(gd+l)/2rd/2nl/2| log (S|_1/2 .
We now choose ¢ = 8_% to conclude
EnFs(m®) < c324r? log rp(no) (log | log3)) 2 (5.34)

for some constant c3;.
Let us write ¢33 for the volume of the unit ball in R? and put

10 B}
mg(x, v, 1) = —/ / me(x +h,v,t+a)d 9V dhda .
€33 Jo Jin|<é
The bound (5.34) implies
€ & d.2d Z sh—1
Enlmé —mF |1 < e31€§r* logr(no)(log | log 1) ™2 . (5.35)

Itis not hard to see that the Lipschitz constant of mg in (x, r)-variableis O (|m® ||z~ 8§~ 1).
Hence,

sup |m5(x + h, v, 1+ @) —mE(x, v, 1) < c33n€ds71s
Ao <8

for some constant c33. From this and (5.35) we can readily deduce

EyN sup /|m8(x+h,v,t+oz)—mg(x,v,t)|dxdt
[hl,la|<8

< 341085718 + 34042 log rd(nto) (log | log 5) 2 .
We now choose 8 = §'/2 to complete the proof. O

Proof of Lemma 5.2. First assume & € C, and define

laz\o(-xv v, t) = / fe(x’ vV, w; q(t))Xﬁo(w)dw .

We certainly have
(f)?

ff=g+=—.
Fevn
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Moreover,

Fey2 Fey2 Fey2
/ Ef ) dxdw :/ Ef ) 1(f¢ > n%)dxdw—i—// Ef ) ll(fggn%)dxdw
fS +I’l fs +n fs +}’l

// feufe > n%)dxder// nn—jfsdxdw

- f/¢(f8)dxdw+n‘%/ fédxdw ,

logn

IA

IA

where ¢(f) = flog™ f. Hence we may apply Lemma 5.3 and Lemma 4.4 to assert

T
Ey sup / /|,6§0(x+h,v,t+a)—ﬁfo(x,v,t)|dxdt
[hl,la|<é JO

T
< Eyn sup / f|mfl eo(x+h,v,t+(x)—m;i 0o (X5 v, D)ldxdt
I, lal <8 JO ’ ’

d,-%

—|—c1r2d logr (logn)_l +cir
< o (log ntd*! (log* (n€0))' (log | log 8)~"/% + c2r* log r (logn) ™" .

We now choose n = (log|logé |)% to obtain

T
Ey sup / /|,6§O(x +hvt+o)— ﬁfo(x, v, 1)|dxdt
Ihl,lel<s JO

< 360 (log €9)r* log r (log log | log 8]) ™" .

From this, (4.6), and
re 1 re 2
So v, w l(w| = €o)dw < 7 v, ws @lwl*dw,
0
we learn

T
Ey sup / / 1p°(x +h,v,t +a) — p%(x, v, t)|dxdt
|, || <6 JO

< sl (log Lo)r* log r (loglog | log 8)) ™" + ca(1 + &%r?) ¢y 2 .

By choosing £y = (loglog |log §])!/@+2) we deduce

T
Ey sup / /|/38(x+h,v,t+a)—ﬁg(x,v,t)|dxdt
7], lee| <8 JO

< csr? log r(loglog | log5|)*#3 ,

whenever & € C,.
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We now would like to relax the restriction on the support of £. After a scaling argument
we deduce

T
Ey sup / /.|,<3"3 (x+h,v,t+a)—p%(x,v,t)|dxdt
|hl,le] <8 JO

< es(lE |1 + Ra(@))r* logr(loglog | log 8]) 7 , (5.36)

whenever & (x, v) = O for |x| + |v]| > .
We now consider a nonnegative function £ that satisfies (5.2) only. We write p° =
p§ + p5, where

o) = [ e v wiqndu.

fxvwq)=> ¢ (x;xi,v—w);“(vi;w) ,

for j = 1 and 2, where &1 + & = & and &1(x, v) = &(x, v)x(x/r)x (v/r), where y is
a smooth function with support inside the ball {v : |v| < 2} and x(v) = 1 whenever
|[v] < 1. Since

Ra(E1) < cor’T'R3(E) + ¢ sup  E(x,v)r!,

[x],|v]<2r

for some constant cg and R3(£) + Ro(§) < 1, we deduce that R4(£)) < c7rb*! for
some constant ¢7. On the other hand, the condition &(x, v) < (1 + |v|)b+1 implies that
lE1]lL < cgr®t! for some constant cg. We now apply (5.36) to assert

T
Ey sup / /|,0f(x+h,v,t~|—oz)—,of(x,v,t)|dxdt
||| <6 /O

< c;)rM"'b'H log r(loglog | log(SI)_d%r3 , (5.37)

for some constant cg.

‘We now turn to ,05. First observe that we can write &, = &1 +£&>7 where &1 (x, v) =0
if [v| < rand & (x, v) = 0if |x| < r. With the aid of the decomposition &, = &1 + &2
we write p; = p5, + p5,. We first treat p3, . Observe that the condition (5.2) implies that
for some function y with [(1 + |x)y (x)dx <1,

|E(x, v) — ECr, w)| < Yy @) (0] + [w] + DP o —w] .
This in particular implies

E(x, v) < y @Il + D + &),
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where &y (x) := &(x, 0). The condition (5.2) implies f(l + |x)é&pdx < 1. As aresult,
& X=X vi —w b+l _
Py (x, v, 1) 5610/21/( - )C( . ><v w| +1>11(Iv w| > r)dw
L

X — X Vi —w
+c1o/2§o< . '){(lg )11(|v—w|2r)dw
€10 Vi — w
F= b)/zfz < ) ( - - >(|v_w|(b+3)/2+l>dw
c X —X Vi —w
(1 l;)/2 /Z ( l) ( l p >(|Ui|2+|v|(b+3)/2+ Ddw

d

Cl11¢€ ~ [ X —X;

= Ja-b2 y( . ’)(|vi|2+|v|<b+3)/2+1>,
i

where y = y + & and r > 1. From this and the conservation of energy we deduce

Ey f P31 (x, v, 0dx < Exciar® D223 (i) + [0 P2 4 1)
i
= Encior® D223 " ((ui ) + [PtV 1) (5.38)
i

< ci3(1 + [p| O O=D/2

The term p5, is treated likewise;
P53 (x, v, 1) < 614/2 < )C( ) —w|Pt! 4 1) I(lx — x;| = re)dw
+014/Zf§0< )
CM/Z (x—xl)g( ) —w|b+1+1)dw
= /Z (’“ _x’) (”’ )<|v,| + !+ Ddw
= C”fd > (x _gx") (il + ol 41
i

where y(x) = |x|y (x) + |x|&o(x) and » > 1. As in (5.38) we deduce

e < )]1(|x—x,~| > re)dw

I/\

| /\

Ew [ phatrv.0dx < Exeior™'e 3 (P + o+ 1)
i

< cp7(1+ Pt
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From this, (5.38) and (5.37) we learn

T
Ey sup / /|,68(x+h,v,t+a)—ﬁg(x,v,t)|dxdt

], l|<é 0
< 1372 Jog r(loglog | log 8]) ™1/ 4 ¢1g(1 + |v|+/2)0=D/2,
We now choose » = (loglog | log §|)*» to conclude
T
Ey sup / / 10 (x +h,v,t +a) — p%(x, v, t)|dxdt
7], lee|<8 JO
< c19(1 + | "*)7)(log log | log 8)) ™ .

This completes the proof of Lemma 5.2 when & > 0. The proof for general £ follows
from the fact that if (5.2) holds for &, then it holds for both the positive and the negative
partsof £. O

6. Stosszahlensatz for the Loss Term

In this section, we use Theorem 5.1 to establish a variant of Boltzmann’s molecular chaos
principle for the loss term. Recall the definition of the density f%¢ that was defined by
(4.4). Let ¢ be a nonnegative continuous function of compact support with [ ¢dx =1
and define

o= (o) (o) B (i) ()
U ae) \we) & \se ) (ae )

where §,(¢) = €, (¢) forr = 1, 2. We assume £,(g) < £1(e) = £(¢), where

£(¢e) := (loglogloglog | log 8|)Tl+l . 6.1)
Note that we may write
Fro v =) — 05w —v) 6.2)
where
ey _ —d <
¢ () =4,(e)" ¢ (82,(8)) ; (6.3)

for r = 1, 2. Given a smooth function « : R — R, we define the renormalized micro-
scopic loss term Q%% by

Q7 (x, v @)=Y Ve (Ixi —x; DB —vj, nij) f (6 —x)¢5 (v —v)ar(f€ (x, v: @)).
i
(6.4)

Given a function g : RY — R4, put
Lew = [ fS B = vemg(e)dndv. = [ Bw-vgwdv. 69

where B(v) = [g B(v, n)dn. Recall ag = (2d +2)~'(d + 3)™". Theorem 6.1 is the
main result of this section.
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Theorem 6.1. There exists a constant C7(T) such that if « satisfies

sup(z + Da(z) <n,
then
T £ 7 ~
EN/O // |7 G a@) LI (o q@) @ @l (. v g(s)

—Qi“(x, v; q(s)) |1(Jv| < £o)dxdvds (6.6)
< C1(T)ntd ()12,

provided £ T/* < loglog |log ¢|.
Recall
Ax,v) = V(x)B (v, ﬁ) ,
R(E) =Ro&) +Ri(§) + Ra(8) +R3(8) .

Let B denote the set of functions & such that R(§) < oo for b = 0in (5.1). Recall the
space of functions £ and the functional L; that were defined right before Lemma 4.5.

We also define the space L as the space of functions y for which the following condition
holds: There exist two constants k = k(y) and ¢ = c(y) such that for every o > 0, we
can find a decomposition y = y1 + y2 with ||y1]l1 <« and L (y2) < c.

Lemma 6.2. There exist two functions A and y, and a positive constant co such that A
is of compact support in the x-variable, A € B, y € L, |y (x)| < exp(—col|x]) for every
x with |x| > 1, and A(x,v) = [ A(x — y,v)y (y)dy.

Proof. The function Ais simply defined by A = A — A A, where A, denotes the
Laplace operator with respect to the x—variable. Recall that by our assumptions on A,
the second x—partial derivatives of A are Lipschitz continuous. As a consequence of this

we have that A € B. To express A as a convolution involving A, let us write F for the
Fourier operator in the x—variable. More precisely,

FJ(z,v) = / J(x,v)expQmix - z)dz ,

where i = +/—1. Since FA(z, v) = (1 +47%2) FA(z, v) =: 7(2) FA(z, v), we have
A(x,v) = [A(x — y,v)y(y)dy withy = F~19. A straightforward calculation yields

V(X) = C0 /Ooexp(_n|x|2/9 _ 9/(471))9_d/2d9 ,
0

for some constant cg. (See [S], p. 131 for a derivation. It is worth mentioning that y (x)
is a constant multiple of |x|~'e~*l when d = 3.) It is not hard to show that y € L! and
that y decays exponentially fast as |x| increases. To show y € L, pick a small = > 0
and define

y(@)  forzl =1,

y (ﬁ) for|z| < 7.

»m(z) = {

Since y € L', we have lim ||y, |1 = 0ast — 0. We can readily show that if k > 0,
then sup, Li(y2) < oo. This completes the proof of the lemma. O
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Define

lx — xj|
N A (X —x;
Ké(x,v;q) = edA L ov—vi),
w0 =3 (520w

K% (x, v, q) =/K€(x—z, v; @20 (2)dz,

X — X
Ke(r,viq) =Y VE(lx —x;)B (v —vj, : ) :
J

K& (x,v,q) = / Kf(x —z,v:q)¢° () dz,

where ¢ is a smooth nonnegative function of compact support that satisfies f tdz =1,
and ¢ 5(7) = s £(z/8). As a consequence of Theorem 5.1 we have,

Lemma 6.3. There exists a constant Cg = Cg(T) such that for every v € R and § > 0,

T
Ey f f |K®(x, v; q(1)) — K% (x, v; q(1))|dxdt
0

T
En / / |K®(x, v; q(1)) — K= (x, v; q(1))|dxdt
0

< Gy (1 + ) Goglog [1og 8™ +¢] .

Proof of Theorem 6.1. Step 1. To ease the notation, let us write o(x,v) for
a(fe(x,v;q), K(x,v) for K¢(x, v; q) and K®(x, v) for K&%(x, v, q). We certainly
have

Q% (x, viq) = Y If (v — X)Z5 (v — v)K (x;, vi)ar(x, v). (6.7)

Our goal is to replace K (x;, v;) with K (x, v) in (6.7). For this, we first replace K (x;, v;)
with K (x;, v). Since B(v, n) is Lipschitz continuous in v, we have that

K (xi, vi) — K (xi, v)| < cosl(e) Y VE(lxi — x;1) =: coel(e)g® (xi) ,
J

whenever Ef (v; — v) # 0. As aresult, if we set

X(x,v) =Y & (i — 085 (v — v)a(x, v)(K (xi, v;) — K (xi, ),

then
X (x, v)| < coslle) Y & (xi — x)Z5 (v — v)a(x, v) g (x;)

< crel(e)e? Y If (i — )75 (i — V), VI(lxj — x| < c1e£(e))
i,J
< cinel(e)e? Y 1(lxj — x| < crel(e)) |
J
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for some constant c¢;. Hence
/ 1X (x, v)|1(Jv| < Lo)dxdv < canet(e)?ed. (6.8)

Step 2. We would like to show that there exists a function v (&) with limg—.¢ ¥ (e) =0
such that

T
EN/(; / 102% (x, v; q(1) — Q2% (x, v; (M) IL(Jv] < Lo)dxdvdt < Y(e), (6.9)

where Q‘E“ (x,v;q) = fg (x, v; Qo (x, v)K (x, v). To achieve this, let us bound

Y, ) = Y 8 — 08 — val, v)(K (i, v) = K(x, ). (6.10)

To show that Y (x, v) is small, we write
K(xi,v) — K(x,v) = K’ (x;, v) = K°(x, v)
+K (x;, v) — K2 (x;, v) (6.11)
+K8(x, v) — K(x,v).

We now replace K (x;, v) — K(x,v) in the definition of Y (x, v) with each of three
differences that appeared on the right-hand side of (6.11). The result will be denoted by
Yi(x,v), Ya(x, v) and Y3(x, v) respectively. Evidently,

Y(x,v) =Yi(x,v) + Ya(x,v) + Y3(x,v) . (6.12)
Put ¢ = |V¢|and £%(z) = 679¢(z/5). Bvidently,

1
1£%(a) — 2 (b)Y < 87 |b — a|/ a+6b—a)do.
0

From this we learn if Ef (xi —x) # 0 and e£(e) < 4, then the expression
|K® (xi, v) = K°(x, )],
is bounded above by

1
C35—lse(s)// K(z,0)C%(x + 6(x; — x) — 2)dOdz
0
< c3llE e 87 el(e) / K(z,v)8 1(|x — z| < 38 + c3e(¢))dz =: G(x, v)

for some constant c3. Moreover,

/ G(x, v)dx < cs8™ " el(e)e* Y v —vj| < cad™'el(e)e™ D (vl + v;[* + 1),
j j

for some constant c4. This and the conservation of the kinetic energy imply that there
exists a constant c¢s such that

T
EN/ / Y1 (x, v)|1(Jv] < €o)dxdvdr < st ns el(e), (6.13)
0

whenever £g > 1 and § > e£(e).
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To bound Y3, we write
1V3(x, v)| < £5(x, v; @ f€(x, v; @)K (x, v) — K (x, v)| < n|K?(x,v) — K(x,v)].

This and Lemma 6.3 imply

T
En / / |Y3(x, v)|1(Jv] < €o)dxdvdr < centl™(loglog |log 8]) ™ + centlie
0
(6.14)

for some constant cg.

Step 3. We now concentrate on Y». By Lemma 6.2, A(x, v) = [ A(x — vy, v)y (y)dy for
a function A € B and y € L. Asa result,

K(x,v) = / K(x — ey, v)y(y)dy = / K(x =y vy (dy . (6.15)
where y¢(y) = "¢y (y/e). We certainly have
K(x,v) = / K2 (x =y, v)y*(y)dy

for K8 = K9, Write
K—K'=(K—-—K % y®=(K—KHI(K — K® < 0) %, y° (6.16)
+(K — KHI(K — K® > €) %, y°,

where s, denotes the convolution in the x-variable. Replace K — K¢ in the definition of
Y, with the two terms which appeared on the right-hand side of (6.16). The result will
be denoted by Y>;1 and Y25. As a result

Yo(x,v) = Yo1(x,v) + Yoo (x, v), (6.17)

where,

Yar(x,v) = Y &f (i — )5 (v — v)a(x, v)(H? %, y)(xi, v) (6.18)

where H® = (12 — 125)]1(13 - K? < £). Note that we may write y = y1 ; + y2,¢, Where
sup, Ly, (y2,:) < oo for each kg > 0, and lim ||y ;[|;1 = 0 as T — 0. To ease the
notation, we simply write y, for y,. .. Set 7 (x) = ey, (x/e) forr = 1, 2. We replace
y®in (6.18) with y for r = 1 and 2 and denote the result by Y>11 and Y5 respectively.
Evidently,

Y21(x,v) = Ya11(x, v) + Y212(x, v). (6.19)
We certainly have
lim |yl = lim [[y2ll,r =0. (6.20)
=0 —0
From this we learn

lim IH® sy y5 |zoo < limsup | H?||zoolly5 |1 < limsup [|y5 )10 =0.

=0 7—0
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This implies

lim sup |Ya12(x, v)| < n hm | H? %, y§ 1o = 0. (6.21)

T—>0 x,v

On the other hand,

Yar1(x,0) <0y 2f (6 — x)Z5 (v — V) H? % yf | (xi, v)

i

<n Y L — 085 — V) (H® e v (xi,v)
i
As a result, the expression ff [Ya11(x, v)|1(Jv| < £p)dxdv is bounded above by

n/ed Y& i = 0 (H 5 v (i, (] < Lo)dv = ne™ Y~ GO (i, vy)
l l (6.22)

where

G (x, w) = // “H? (x — y, v)|L(|v] < Lo)yf (y);( " )>e2<s> 4dydv

// “NH (x—y, w—v)[1(jv— w|<eo>y1(y>;<

o2 // PP (x =y, w — V)i (X, —) dydv,

0% (x, v) = [H%(x, v)|1(Jv| < &) ,
e, ) = nLe s (7)) -

—d
e ))Eg(s) dydv

where

We are now in a position to apply Lemma 4.6. Recall sup, || Lk, (y2)ll;1 < oo. From
this, it is not hard to deduce

sup || Lk, (1)1l 1 < o0 . (6.23)
7,8
Observe that || ,0‘S ||Loe < £.From (6.22-23) and Lemma 4.6 we deduce that the expression

T
EN/O f [Y211(x, v)| ¢y (W)dxdv ,

is bounded above by

T
cmEN/O 0% oo (Ul % Il ) (1 + N~ d(q(r)))dr

T 1/2 T 5
sme(EN / h2(||p8||u)dr) (EN f (14 N"'o@) dr)
0 0

T
<cgnl h </ EN(||p8”L')dt> ; (6.24)
0

172
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where for the last inequality we have used Proposition 4.3(i), Jensen’s inequality and
the concavity of the function /2. Also, we may apply Lemma 6.3 to assert

T T
ENf ||p5||L1drsf (K — K®)xe,ll 1 dt
0 0

< co(loglog | log §]) ™ /(1 + v xe, (V)dv + coeld
< c10€3 " (loglog | log )™ + coell

where x¢,(v) = 1(|v|] < £p). This and (6.24) yield

EN/ Y211 (5, )l ey (v)dxdv < erint | (log loglog [ og )™ + [loge| ™|
(6.25)
P 2(d+2)/ao
for some constant cq; that is independent of T and so long as £, < loglog |log§|

and Z‘é < ¢~ 12, (Here we are using the fact that if Z(z)(d+2)/a° < loglog|logd| and
Zg < ¢ 1/2 then

€42 (loglog | log 8)) ™ < (loglog |log 8)) ™/ | and e€d < &'/2 )

Using (6.20), (6.21) and the fact that the constant cq; in (6.25) is independent of T, we
deduce,

ENf Y21 (x, v) | xeo (Wdxdv < c11ne [(log10g10g|log8|)_l n |10g8|_1] ,
(6.26)

so long as Zé(d+2)/a° < loglog|log$|, Zg <e 12,
Step 4. We now turn to Y,. Observe that if g:f (x; —x) # 0, then |x; — x| < c128€(¢)

for some constant cqp. Also, since A(x, v) is of compact support in the x-variable, we
have that the expression

’

1K (xi —ey, v) — K° (x; —ey, v)| = ‘f(mxi —ey,v) — K(xi — ey — 2, 0)¢° (2)dz

is bounded above by

/gd )3 A(u_w_v})_A<)H_f—z_y,v_vj)‘§a(z)dz
J

& &
d )
< e [ o U —x; = 2lor i = x| < cuselyl + cuelo = vyl @)z
J

A

IA

crn [ 301 ;= zlor = x| Serselyl + erseb(eNlv v 16 @z
J
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whenever g:f (x; —x) # 0. In particular, if |y| < £(g), then

IK (xi — ey, v) — K2 (x; — ey, v)| < c16€(e)? / Pi(x, 2, 1) (2)dz,  (6.27)
where p®(x, z, v) = pf(x,v) + p*(x — z, v) and

phx,v) = el(e)™ Y M(Ix — x| < 2158w — vj .
J

Because of this, we decompose y = 1 + 72 with P1(z) = Y (2)1(|z] < £(¢)). Set
Ry = (K — KHI(K — K = £) %, 7,
Yaor(x, v) = Y Zf (i — )5 (v — V)R, (xi, v)er(x, v)
i
where 7¢(z) = e~?p(z/¢) for r = 1 and 2. We certainly have
Y2 (x,v) = You(x, v) + Ya22(x, v) . (6.28)

Recall that there exists a constant ¢17 such that the function y satisfies |y (z)| <
c17e =1l for |z] > 1. Set 7(z) = c17e 17RI2 58(x) = e p%(x/e). We have

|Ral = e (1K) + |R?]) 5 7° .
As in the derivation of (6.27), we can easily show that if |x; — x| < c13¢6£(¢), then

IK(xi —y,0)| <q(x —y,v), |K2(xi —y,0)| < (¢° % £O)(x — y,0),

where

g°(x.v) = cig(1+ [oDe? Y (x — x;] < crge(e)(v;] + 1) ,
J

for a constant c¢;g. As a result,
Y2220, )| Xt (V) < c10nLoxey (W)e™ T2 (gF s P+ ¢ e 7 0 £ (x,0)
for a constant c¢19. From this we deduce

T
Ey / / Y202(x, 0) | x0o (V)dxdvdt < caonldTe= 1420 e)? - (6.29)
0

for some constant cpg.
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We now turn to Y25;. So far € has been an arbitrary positive number. We now assume
that £(¢) := ££(¢)~?/c1¢ > 1. The inequality (6.27) and Jensen’s inequality imply that
the expression | Y221 (x, v)| is bounded above by

ci6 1Pl €@ )2 (i — )85 (v — v)a(x, v) / Po(x, 2, v)¢ (2)dz

1 (cmz(s)d / Pe(x, 2, )% (2)dz = z)
< ci6l Pl 1 ne(e) </ pix,z, v)c‘s(z)dz)
1 (cmz(e)d / PP,z 0 ()dz = z)
< cigllPillpr nt(e) (log £(2))"'*¢ ( / pi(x.z, v):%z)dz)
< ci6llP1ll ne(e) (log £(e) ="/ / d(p° (x, 2, 1) (2)dz,

where ¢(z) = z(log™ z)!/2. As a result,

T
EN/ //lezl(x,v)lllﬂvl < Lo)dxdvdt < crint(e) (logl(e)™?. (6.30)
0

Here we are using (4.8), Jensen’s inequality, and the fact that the density p can be
expressed as an average of f®-like densities. More precisely, the function p®(x, v) is
bounded above by a constant multiple of

/ (ed Z]l(|a —xi| < &)|v; — v|) B(x —a)da ,

where B(a) = (85(8))_d]1(|a| < 2ci15¢l(e)).
Step 5. From (6.8), (6.12-14), (6.17), (6.26) and (6.28-30) we deduce,

T
EN/ // ‘Qia(’“’ v; q() — 0% (x, v; q(1) | 1(Jv| < Lo)dxdvdt
0
< con[et(e) e + 67 et(e)e§ ! + €5 loglog | log )™ + e
+e(logloglog |log 8)) ™' +€[log e[|~ + €4 e=c174@/2¢ ()4 4 (e) (log £(e)) ™1/,

so long as Z(z)(dJrz)/aO < loglog|logé§| and Zg < &7 1/2. We now choose £ = (logloglog
| log ,9|)1/2 and § = 86(8)2 to derive (6.9). More precisely,

T
EN/ // ‘Qia(x, v; q() — 0%%(x, v; () |L(Jv| < £o)dxdvdt (6.31)
0

gd+2 1/(4d+2)
0 ’

< co3n (loglogloglog|loge|)™

provided Z(z)(d+2)/a° < loglog|loge|.
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To complete the proof, we need to study

10%%(x, v; @) — fE(x, v; Qa(x, v)LfE(x, -5 q)(v)|
<n|K®(x,v;q) — LfE(x, - q)v)]. (6.32)

As a consequence of Lemma 6.3,
T
EN/ / |K*(x, v; q(1)) — K*°(x, v q(0)|1(|v| < €o)dxdvdt  (6.33)
0
< C24€g+2 [(log log | log §]) ™% + 8] .

Because of this, we may compare Lf* with K&?. Indeed
lx —x; — z| X—Xxji—2
KS’Sx,vzfad V(—j B v—v‘,—] S(2)dz
(x,v) > - P =)t @
Jope (oo )
- £ y
j
o0
Z/ fsMZV(p)B(v—v,-,n);“(x—spn—x,-)pd—‘dndp
0 S -
j

= / / e " V(p)p!T B —vj, )¢’ (x — gpn — x))
0 S :
J
—¢%(x = xj))dndp
+/ /82d > Vi) p® ' B — v, m)¢’ (x — xj)dndp
0 S -
J
=:Q1(x,v) + Q2(x, v).
Evidently

Q. v) =Y B — )’ (x — x)). (6.34)
j

On the other hand, if §, = £, (¢) forr = 1,2 and § = §;, then

LG @) = [ B =) 3 E = 0F 0 - vdo,

J

= & 2581 (x —xj) / B — v)¢%2(v; — vo)dv,
j

= 52d2§81(x —Xj)/(é(v — ) — B(v —v))¢®2(v; — v,)dv,
J

6.35
+Q7(x, v) ( )

=: Q3(x, v) + Q2(x, v).
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By the Lipschitzness of B,

1Q3(x, v)| < 02582d2§8‘(x—xj)/|v* — 012 (v — vo)dv,

J

2d s
< c2602¢ Z€ Hx —xj),
J

for some constants cp5 and c¢2¢. This and (6.35) yield,

/ 1Q0(x,v) = LF*(x, 5 @@)[1(v] < Lo)dxdv < ca782L§. (6.36)

Moreover,

Qi(x,v) = —/OS/OOO/SSMZV(/));O”lB(v—vj,n)p
j

V{al (x —0pn —x;) -ndndpdb.

If V(p) = 0 for p > ¢33, then

Q1 (x, v)] < ez /6[00/82"2 V(0)p! ' Bv —vj.n)
0 JO S :
J

IVZ% (x — 6pn — x;)|dndpdo,

/|91<x, v)ldx < a8y IVl €2 ) B — ;)
i

< 629851_182d Z v —v;l.
J
Hence, we can use the conservation of the kinetic energy to assert
En /f 121 (x, V)[1(Jv] < Lo)dxdv < 3088y €dT. (6.37)

From K&% = Q) + Qs, (6.36) and (6.37) we learn

T
EN/ // |K8’8(x, v) — Lfs(x, 5 @) |L(Jv| < €o)dxdv
0
< 3081 (e) T + eortdetale)

This, (6.32) and (6.33) imply

T A ~
fo f / En107(rv:q(0) — F(x, v: q0)@artx, ) LFE (x. - q(0) ()]
1(jv| < Lo)dxdvdr < c3nd e (e)~ "

This and (6.31) complete the proof. 0O
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We end this section with two consequences of Theorem 6.1 that will be used in Sect. 9.
For our first corollary, we obtain a bound on the renormalized loss term.

Corollary 6.4. There exists a constant 6'7(T) such that
T A
EN/ // 0%%(x, v; q(s)I(Jv| < Lo)dxdvdt < C7(T)nﬂg+2 . (6.38)
0

Proof. Observe that Theorem 6.1 allows us to replace O, with FEL fea(f?). Since
fea(f®) <nand [ Lf¢(x,v,t)dx < co(1 + |v]), we conclude (6.38). O

A review of the proof of Theorem 6.1 reveals that there is a slight room for improve-
ment in the bound (6.38). Indeed, our arguments involved momentum-type bounds
whereas the conservation of the kinetic energy implies a bound like (4.6). To take advan-
tage of this, we may replace B(v, n) with é(v, n) := B(v, n)J (v) in the proof of Theo-
rem 6.1, where J is a nonnegative smooth function such that lim sup J ()|v]™? < oo as
|v| — oo for aconstant b < 1. Using Theorem 5.1, (4.8) and Lemma 4.5 fora = b+ 1,
one can readily check that Theorem 6.1 is still valid for B.Asa corollary to this we have:

Corollary 6.5. There exists a constant é7(T, b) such that for b € [0, 1),

T
En f / / 054 (x, v q))I(v] < bodxdvds < Co(T, byntd+? |
0
where

0P (x, v q) = Z VE(Ixi — x; DB — vy, nij)lvi — vj 1P ¢f (xi — x)Z5 (v — v)
i,j

a(ff(x,v;q)) .

7. Stosszahlensatz for the Gain Term, Part I

In this section, we establish some type of Stosszahlensatz for the gain term. Our formu-
lation however differs from what we had in Sect. 6. Instead of an inequality analogous to
inequality (6.6), we prove two alternative inequalities for the gain term. These inequali-
ties are the content of Theorem 7.1 of this section and Theorem 8.1 of the next section.
Theorem 7.1 will be used in Sect. 9 when we show that the macroscopic densities are su-
persolutions. Theorem 8.1 will be used in Sect. 10 to show that the macroscopic densities
are subsolutions.

To prepare for the statement of the main result of this section, let us start with some
definitions. Assume that ¢ is a nonnegative smooth function of compact support that
satisfies f ¢dz = 1. Using this ¢, define ff and 228 as in Sect. 6. Recall the function

Fe(x, v;q(s)) = F&(x, v, s) that was given right before (6.1). Define
Q4 (x.viq) = > VE(Ixi — ;DB — vy mipE (i — 1) ] —v)
iJ
i (xiq) =Y VE(x —x; (v P4+ 1) (7.1)
J
a0 q) = e Y of e —xp) (v PP+ 1)
J
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In Sect. 9, we need to study

04, (xiqy J) =: / 0 (x,viq)(1 + nlFE(x, v @) 72T (v)d,

where J is a continuous function of compact support. Define
0+(8)) = / fs B(v — vy, m)g(v)g(vy)dndv, ,
0+(8:J) = / Q+(8)(Ww)J(v)dv,

I'(g) = /g(v)(l + |v])dv .
Also define

Q1 (g:q: Jion. ) 1= Q4 (g: (1 + it (x: @) (1 + et (x: @))% . (7.2)

We are now ready to state the main result of this section, Theorem 7.1. In this section,
we reduce the proof of Theorem 7.1 to Theorem 8.1 of Sect. 8. For both Theorems 7.1
and 8.1, we need to assume that the size of the support of ¢ is sufficiently large. This
assumption is not used in the part of the proof of Theorem 7.1 that is presented in this
section, and is needed only for the proof of Theorem 8.1.

Theorem 7.1. There exists a constant Cs(T, J) such that for every £ > 1 and every
nonnegative continuous function J of compact support,

T —
EN/O / [Qi!”(X; a(s); ) — Q4 (f(x, - q()); q; J5 €7, [1)] dxds
< C3(T, N(Eoglogn) ™" +n7"22(e) 7 + £e(e)™%) .
Proof. Step 1. Define

0 xiq J) = / Y VE(xi — xi DB — vj. & (i — 085 (0] — v)
i,j

(L+n fo 0, v @) 20 + 67 (g @) 7 T (v)dv
We certainly have
0% ,(xiq: ) = 0%, ,(xiq; ). (7.3)

Also define Qi,ﬁ(x; q; J) to be,
/Z VE(Ixi — ;) B(ui — vj. mip)Ef (i — 085 (v] — v)
i,J

A+ ¢ (xi: @) T (v)dv .

We would like to show that Qi_ i = Qﬁr ¢ 1s small whenever n is large. To show this,

we first observe that if Ef (x;i — x)g:ig (vij —v) # 0 then

i — x| < coeli(e). |v] —v| < coela(e) (7.4)
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for some positive constant cp. Take a nonnegative smooth function 8 of compact support
with B(z) = 1 for |z| < 2¢o and define

= o (32)0(25)
g (x,v;q) = c11(e)"“La(e) Xk:ﬁ gl (s) P el (¢)

forc; = ||¢ ||%oo. We then have that if (7.4) occurs, then

e, vq) < (i, v)s Q). (1.5)
Using this we deduce
L= (U n oo o) 2 < 1 — (14 n gt (o, )5 ) 72
whenever Ef (x;j — )c)gzé3 (vij —v) # 0. As aresult,
Q% e (0) = OF ()] < / > VE(x = X DB — vy miEf (v — 05 ] = v)
i,
[1=Qn™tg ool @) 2] A7 (i @)~ T )

= e > VE(Ixi — ;) Bi — vy, nipE (i — 0T )
i,j

[1 = +ng ]2+ @ )™,

where

JE) = e~4(J %, E)(v) = e~ 0ep(e) ¢ f T —w)¢ < w )dw
ela(¢)

This and the elementary inequality

2n7 gt (x, v; q)

1—A+ntgf @, v q) 2 < =: g5 (x,
(1+n""g%(x,v;q) " < T Tnlgi(r. o q) g, (x,v)
imply that the expression
/IQi,n,z(x;q; D) — Q% ,(x; q; J)ldx (7.6)

is bounded above by

c162 > VE(xi — x DB — vy, ni)gh (i, vl (L + €7 (g q) 7!
ij
1(v/] <€), 17

where ¢; = ||J ||~ and £ is chosen so that J¢(w) = 0 for any w with |w| > £g.
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Step 2. Put ¢ = 4||V||L~. Using (7.7), we can certainly assert that the expression
(7.6) is bounded above by Q1(q) + 22(q), where

Qi) = 18 Y VE(xi — x DB — v nij)gh (xin vl (L + €71 (s q) 7!
iJj

1(v!| < £o)1 (chdz—Hv,» —u P2 s 1) ,

() = c16® Y VE(xi — x; DB — vj.nij)gh (i v] s @) (1 + €7 (s q)) !
iJ

1(jv!| < €)1 <czsdz—1|v,- — ;P2 < 1) .

Using the assumption B(v; —v;, n;;) < c3|v; — v;|, the bound g; < 2, and the elemen-
tary inequalities

H(C28d£71|vi—vj|3/2>l> Sc;/3sd/3€71/3|v,-—vj|1/2, |v,-—vj|3/2

< 20w 4+ 2pv; P2,
we deduce that the term €21 (q) is bounded above by

dcrcy e3e e RPN Ve (g — x (v + o P A + 71 (s q) 7!

i,j
< 4e16) e3e 07 B3N VE (g — xg DI PR+ e (s )7
i,J
+Hcie)e3e e PP Y e (g — x DI PO+ € (i ) !
iJj

< dereyPese® ey P (1 + € (i @)
i
iy Pe3e 0713yt (g (1 + € (i @) !
J
< 8c1cy e3Py (i + 1) (7.8)

1

From this and the conservation of the kinetic energy we deduce that for some constant
C4,

sup ExQ1(q(s)) < cae?? (7.9)
N
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We now turn to the second term. We have,

Ensaa) = [ e 3V x; 0BG~ vj.m)gi o v @)
i,j
A+ (i @)~

1w/ | < o)1 (c2e?e " oy v, 2 < 1) Gls, @vp(da)

= /QSMZVS(IM — ;B — vj, nij)gh(xi, vis SY@L(Jv;] < €o)
i,j

(07 (s ST ™' (e2e?e ™ o=, 2 <1) Gs, ST @vp(da)

One can easily verify that for some constant cs,

_ . 1_
@ (s S q) = S (xi; @) = 2|Vl ev; — v,

y _ _ _ (7.10)
gn (i, vis S7q) < g5 (i vis @) +esn” () a(e) ™

where for the firstinequality we have used the elementary inequality |vij 132 > % lv; |32 —

lvi — v;|. The first inequality in (7.10) implies that if c;e4¢~!v; — v;|3/ < 1, then

. 1 1
P (s ST @) = 5+ 50710 (5 @)-
From this and (7.10) we deduce

ENS(a) = co [ €3 37V = DBl — vy.m)gi i v @)
i,J

-1 .
1| < o) (147" (i @) GGs, ST@vp(da)
+een Ml (e)"H / e " VE(Ixi — x,1)Bvi — vj, nij)
iJ

-1 ..
1 < o) (1+ 7% (@) GG, STvp(da)
=1 $221(5) + Q22(5) -

Fix k > 2. We now apply (5.10) to deduce that the term €271 (s) is bounded above by

kf%s” Y VExi — x;) B — vy, nij)gh(xi, vis q)

i,j

-1
1l < o) (1+ €78 (63 @) G5, @vp(da)
2cq

=0 e G(s, SV q)
+10gk — /EZd; Vi(lxi — x;j)B(vi —vj, nij)y (T‘l)) vp(dq)

(7.11)

=: Q11(s) + Q2212(5) ,
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because g; < 2. We use Lemma 4.7 to claim

T o
Qop(s)ds < —,
0 logk

for some constant ¢7. On the other hand, the inequality

e? Y VE(x — xjD v — vl < (il + DY VE(x — x1)(1+ (o))
J J
implies,

T T
/ Qo1 (s)ds < cstk / / e3¢t (xi, vi; G s, Qv (da)ds |
0 0 N
1

for a constant cg. This and (7.12) imply that for every k > 2,

gk

T T
/ Q1(s)ds < cgzk/ /szd > gh(xi,vi: @G (s, Qvp(dq)ds + 7
0 0 ; Io

Repeating (7.11-14) for the term €25, leads to

7
logk; ’

T
f Qo (s)ds < con™2(e) 2k +
0

for some constant cg and every k; > 2. By choosing k; = /n we deduce

r 1/2 2d 2¢7
/ Qoa(s)ds < con~2ay(e) 2 4 2T
0 logn

Step 3. We certainly have

20¢ 2
g=—_ <= Lougt s,

n+g&  n+r

for every positive r. This implies

T
/ Q11(8)ds < Qo111 + Q2112
0

where
Qo111 = 2c8lk—— XN = 2eg Z0k—— —: colk—
2111 =— 8n+r - 8 n+r—-9 n_"_r,
T
Q112 = 2cytk f Y 1 ((xi, vi) € AL@) G (s, Qvp(dq)ds,
0 3
1
where

AL(@ = {(x,v) : g°(x, v:q) > 1} .

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)
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We certainly have that for some constants c¢ and c11,

55

g°(x, v; @) < ci0€1() a(e) ™ Y " M(Ixi — x| < crieli(e), vk — v < criela(e)) .

k
Also, if

85 (x, v; @) == croi () a(e)™ Y lxx — x| < 2c118€1(8), g — vl

k
< 2c118£2(8)) ,

AL(q) = {(x,v) 1 §5(x, v q) > 1},

then we can find a positive constant ¢y, such that
AL(q) + cipel—1, 11 € Af(q) .

We can now apply Proposition 4.3(iii) to deduce

T
iz = cnthEy [ 1AL QNN + N0 @)
0
for some constant cj3. By Chebeyshev’s inequality
A 1
AL (@] < —// 8 (v, v; Q)dxdv = 2|
r r
for some constant cj4. From this and (7.17) we learn
r Cl14 —1 g6
Sz = cnthEy [0 (%) 14+ N e @nds
0

This and Proposition 4.3(i) imply

Cl4
Qo112 < c15tkT h (—) )
r

From this and (7.16) we deduce
T
r Cl4
EN/ Q11 (s)ds < colk—— + 15tk h (—) :
0 n+r r

By choosing r = /n we deduce

T
EN/ Q11(s)ds < cretk(logn) ™.
0

This and (7.12) (or (7.14)) imply
T
EN/ Qo(s)ds < c16€k(logn)_1 —i—cv(logk)_1 .
0
By choosing k = (log n)% we learn

T
EN/ Q1 (s)ds < c7£(loglogn) ™.
0

(7.17)
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We now use this and (7.15) to obtain

T
2
EN/ Qo (s)ds < ci7£(loglogn) ™ + con~V205(e)"2 + =
0 logn
From this and (7.9) we conclude
T A
En fo / 105, ok @ 1) — 05, (x; q(s), J)ldxds
< c1gf(loglog n)71 + clgnfl/zﬁg(s)fzd + C]gé‘d/3 . (7.18)

Step 4. In view of (7.18) and (7.3) we would like to study Qﬁr ;- Bvidently

Q% (i q; J) =6y VE(lxi — xjDBi — vj,nij)
iJ
x EF (o — 01+ €' (s @) 71T ()
=&Y (i — 0Ky (i, v) (14 27 (s q)) 7!

1

where

JE=UxC%, f(v) =)t ( - > ;
elr(e)

and K (x, v) is equal to

e x—xj e x—x,' X—Xj
ZV(|x—xj|)B v—vj, —— | J (v—(v—vj)- : .
F lx — x| lx — x| |x — x|

(7.19)

Let us define

0% (xi q; Js oy, ) o= ¢ fo(xi — 0Ky (i v) (1 + aqie® (xi5.q))
i
(1 + anit®(x; ) 2. (7.20)
We certainly have

0% (s )= Q5 (xiqs Ji 7' 7)) (7.21)

On the other hand, it follows from Theorem 8.1 of the next section that for a constant
€19,

T
EN/O f ‘Qi(x; q(s): J; 0 0 — 0L (FE(x, 5 q(e)): q; i €78, e | dxds
< cioll(e)~ V4.

This, (7.3), (7.18) and (7.21) complete the proof of the theorem. O
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8. Stosszahlensatz for the Gain Term, Part 11

In the previous section, we reduced the proof of Theorem 7.1 to a claim that is the main
goal of this section, namely Theorem 8.1. This theorem will also be used in Sect. 10 to
show that the macroscopic densities are subsolutions.

Recall the functions Ef , g:f, i, if, and the density f € of Sect. 6 and 7. Also recall
K j that was given by (7.19) and

Q% (i q; Jren, ) = 4 Y8 (i — x)Ky (xi v) (1 + et (xis @)~ (1 + anit® (x: ) 72,

04(g:q; T a1, 02) = 04(g; (1 + a1 (x; @)~ (1 + a2it® (x5 q) 72

Theorem 8.1. There exists a constant C9 = Co(T, J) such that for every continuous
function J of compact support,

T
ENL f )Qi—(-x’ q(S), J, o, (Xz) — Q+(f8(x’ - q(s))’ q’ J’ 051,052) d.de
< Co(1 +aray (1 + a3 Hee) ™.

To prepare for the proof of Theorem 8.1, we state two lemmas that are the analogs
of Lemmas 6.2 and 6.3. Define,

A(v, %, 9) = V(Z)B (a, i) J (v e ii) .
| x| | x| |x]

Evidently

Ky(x,v) = Z/A(v—w,x_exj,v—vj)g:s(w)dw
j
= 8dZA8 (v,x_xj,v—vj) ,
- &
J

where £¢(v) = £ 945(e)"9¢ (%) and A® = A %, C°.

Lemma 8.2. There exist three functions A= A(v, X,0), n =nx)andy = y(x), and
two constants ¢ and R such that A(v, x, v) = n(x) = 0if|x| > R, sup, R(A(v, -, ) <
o,

A, %, 0) — A(w, %, 0)[Jv — w| ™' + A, X, 0) — Au, X, )| — 0|~ < nx),

y € L, ly (x)| < exp(—clx]|) for x with |x| > 1, n(x) < c for all x, and

A, 5. 5) = /A(v, -y, 0)y)dy .

The proof Lemma 8.2 is very similar to the proof of Lemma 6.2 and is omitted.
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Define

X —X;
Ké(v,x,0;q) = A (v, L oo—vi),
5( Q X/j ( - J

A A X —X;
K5 i, 0:q) =) &4 (v, ],E—vj) ,

&
J

Kj’a(v,)f, v;q) = / K5(,x —z,0; Q¢° (z)dz,
K5’ (v, %, 7; q) =f13§(v,i—z, 0; @)% (2)dz .

As a consequence of Theorem 5.1 we have,

Lemma 8.3. There exists a constant C1o = C1o(T, J) such that the expressions

T
EN/ /|K§(v,£,ﬁ;q(S))—K?‘S(v,i,ﬁ,szq(S))ldids,
0
T A A
EN/ flKﬁ(v,i,l_);Q(S))—Kj’s(v,i,ﬁ,S;Q(S))ldids,
0

are bounded above by
Cro(1 + [91*) (log log | log 8)) ™ + Cioe ,

forevery v, v € R? and § > 0.

‘We are now ready to give a proof for Theorem 8.1. The proof of this theorem is similar
to the proof of Theorem 6.1. Because of this, some of the steps are only sketched.

Proof of Theorem 8.1. Step 1. To ease the notation, let us write U(x) = U (x, q) for
(1 4+ ant®(x; q))~" and S(x) = S(x, q) for (1 4+ o1t (x; q))~" . Using these abbrevi-
ations we have

Q% (xiq: ey o) =& ) 0 (v — 0K (xi, v)S)U(x) . (8.1)

1

We first would like to replace Ky (x;, v;) with Kj(x, v;) in (8.1). Recall that *, denotes
the convolution in the x-variable. Define K§ = K %, {5, where Ca(z) = S’dg“(z/a).
Let us write

Y() =Y, q ="y f (i — x)(Ky(xi,vi) — K)(xi, vi)Sx)U(x) . (8.2)

We write A = A x5 y for functions A(v, ) € Band y € £ that satisfy the
assumptions of Lemma 8.2. As a result, A®* = A® x; y, where

A (v, %, 0) = /A(v —w, %, D) (w)dw .
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We certainly have K; = K 7 *x Y&, where

~ ~ X — X
Kjx.v) =) A° <v, - ’,v—vj> . Y =ey (g) . (83
j

Also, K? = 12§ %, ¢, where RS = IQ'] s, 9. Write
Kj—Kj=(K;— K} se y® =Tisy y* + Toy v° (8.4)

where T = min(Ie J— K j ?). Replace K; — K ﬁ in the definition of Y with the two
terms which appeared on the right-hand side of (8.4). The result will be denoted by
Y1 =7Y1(x,q) and Y = Y2 (x, q). As a result

Y(x) =Y1(x) + Ya(x), (8.5)
where
Yi(x) =) 5f O — x)(T0 % y*) 0, vi) S) U (). (8.6)
i
Step 2. By Lemma 8.2, we may write y = y1,; + ¥2,¢, Where sup, L, (y2,¢) < oo for
some ko > 0, and lim ||y < ||;1 = 0 as v — 0. To ease the notation, we simply write y;

for y.¢. Set y£ (x) = e 4y, (x/e) forr = 1, 2. We replace y* in (8.6) with y¢ for r = 1
and 2 and denote the result by Y11 and Y7, respectively. Evidently

Yi(x) =Ynx) 4+ Yilx) . (8.7)

We certainly have
lim [ly5 |0 = lim [[y2]l0 =0.
=0 =0

From this we learn

Tli_r)% 71 %y y5 lzee < limsup [ Tillzoe s [0 < €limsup lys [0 = 0.

=0 =0
This implies
lim / [Y12(x)|dx < € lim || T; %y y5 lpe = 0. (8.8)
T—0 —0
On the other hand, if we write G® for |T}| %, y{, then

Y1)l < e Y (i — )G (i, v)U (x) . (8.9)

Take a nonincreasing smooth function 8 : [0, 00) — [0, 1] such that B(a) = 1 for
a € [0,1] and B(a) = 0 for a € [2, 00). Fix a positive k and put Br(a) = B(a/k).
Define

Vi) =&Y ff (i — )G (i, vi) B DU (x)

Yin@) =&y 5 (i —0)G (xi, v)(1 = B(uiNU(x) .
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Evidently,
Yul <Y+ Yz - (8.10)

Moreover,
Yina(x) < €e? Yy of (i — )l(Jvi| = kU (x)

1
< ek32ed ZEf(xi — )i PPU ) < ek st (8.11)

1

As in the proof of Theorem 6.1, we would like to apply Lemma 4.6 to bound Y71;.
For this, we need to have a convolution in both x and v variables. We already have a
convolution in the x-variable. To produce a v-convolution, we first estimate the Lipschitz
constant of 77 in the v—variable. For this, we only need to bound the Lipschitz constant

of the function K in the v-variable. For this, we apply Lemma 8.2 to obtain
1Ky (x,v) = K G, w)| < colv—wle? Y 1(lx — x| < coe) . (8.12)
J

for some constant cg. Let us write Gi(x, v) for G®(x, v) Bk (v). Using (8.12) one can
readily obtain,

|G (x, v) — G (x, w)| < ci|v—w|e? Zﬂ(lx —xj| < coe) + 1k GE (x, w)lv —wl,
j

for some constant c¢;. From this, it is not hard to deduce that the expression

64> Zf (i — X) (G (xi, vi) — G (i, vi + DU ()] (8.13)

is bounded above by
crlzle? Y T8 (i = 0(Ixi — xj] < coe)U (¥) +crlzlek™ Y f (v — U (x)
i,J i
< c1lzle* )¢ (i = 0(lx — xj| < c2sl(e)DU (x) + crtk ™oy 2]
iJ
< c1e|zlas’! Zﬂ(lx —xj| < c2el(e)) + crtk oy 2] .

J

Because of this, we may define Gi = Gi %y £ and assert
/ |e" D (i = DG v)U () — e Y 8 (i — 1) G (xi, v) U (x) |dx
i i
< c30; 'el(e) + etk s e (8.14)

for a constant c¢3. Since (A?i = (|T11Bx) * 71¢ for ¢ (x, v) = e 247 (x /e, v/e), fj(x, v) =

y1(x)¢ (v), we can now apply Lemma 4.6 to deduce that the expression

T
EN/ /|Y111(x)|dxds, (8.15)
0
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is bounded above by,

T
GEN [ L@ 1T AT+ N @ Ga)ds
0
+esa; 'el(e)! + csktas e . (8.16)
On the other hand, we may apply Lemma 8.3 and the definition 77 to assert,

Lk, (MLt < esko) , Tl < €,

T T
Ex f ITiBellds < Ex / IRy — BBl ds
0 0

< co(loglog | log 8]) / (14 [v]»)Br(v)dv + coke
< 7k (loglog | log 8]) ™ + ceke |

for constants c¢s5(kg), c¢ and c7 that are independent of ¢ and ¢. We now use this and
(8.16), and repeat (6.24) to deduce that the expression (8.15) is bounded above by

cst(logloglog |log 8)) ™! + cs|log(ke)| ™! + czay 'el(e)! + stk oz e, (8.17)

for a constant cg that is independent of 7. Choose k = (loglog | log 8])!/? and assume
that ke < g!/2. Using (8.8), (8.10-11), (8.17) and the fact that the constants c3 and c;

in (8.16) are independent of 7, we deduce that the expression Ey fOT f |Y1(x)|dxds is
bounded above by

cs(logloglog|log 8)) ™! + 2¢s|loge| ™! + c3a; Tel(e)?
+c3(loglog |log 8)) /% ¢a; e + c3£(loglog [ log 8)) /st . (8.18)

Step 3. We now turn to Y>. In this step, we mostly follow Step 4 of the proof of Theo-
rem 6.1. Observe that if Ef (xi —x) # 0, then |x; — x| < coel(e) for some constant cg.
Also, since A(v, X, ¥) is of compact support in the x-variable, we can repeat the proof
of (6.27) to assert that whenever Ef (x;i —x) #0and |y| < £(e),

1Ky (xi — ey, v) — K5 (xi — ey, v)| < crol@)?(v] + 1) / P, 288 (2)dz, (8.19)
for a constant ¢, where p®(x, z) = p®(x) + p®(x — z) and

Pr) = cuee@)™ Y 1(Ix; — x| < cuigt(@)(lv;
J

+1),

for a constant ¢ 1. Because of this, we decompose y = p1 4y, with P1(z) = y (2)1(|z| <
£(¢)). Set Ry = Th #y yf, for p(z) = e=9.(z/¢), fix a positive k, and define

Yar(x, @) =&y Zf (i — 0)1(vi] < k)R (i, v) S U (x)

1

Yo(x, q) =&Y if (i — OM(|vi| > k)R (xi, v) S U (x)

1

Yos(x, @) = ) If (i — ) Ra(xi, v)S(x) U (x) .

l
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We certainly have

Yo(x,q) = Y21(x, q) + Yoo (x, q) + Y23(x, q) .

Recall that the function y satisfies |y (z)| < c12e ™12l for |z| > 1and a positive constant
c12. We can show

T
EN/ /|Y23(x,q(s))|dxds < ez, e 2 gy (8.20)
0

in just the same way we showed (6.29).
We now assume k + 1 = ¢!/2. As in the proof of Theorem 6.1 we assume that

0(g) := £'2(¢(¢))~? > 1. The inequality (8.19) implies that the expression | Y2 (x, q)|
is bounded above by

cia / €e)’e? Y of (i — ) (vl + DU ) p° (x, 2)8° (2)dz

x 1 ((1 +k)e(e) / Pe(x, 28 (2)dz > E)
< caay ' 0(e)’ ( / P, z)r:%z)dz) 1 (6@)" / P(x. 2)¢° (2)dz = 51/2)
< 403 () (log é(e)) 1?4 ( / pex, z):%z)dz)
< c1aey () (log (e)) 112 f (" (x, D) @)z
where ¢(z) = z(logt 2)!/2. As a result, we may apply (4.8) to deduce

Ey / V21 (x, q(s))|dx < e15£(e) (log £(e)) a5 " . (8.21)

(Compare this with (6.30).) Similarly, we use (8.19) to assert that the expression
|Y22(x, q)] is bounded above by

c16t(@)?e? Y 2f (v — x)(vil + DI(lvi| > HU (x) / ph(x, )¢ (2)dz
i
< cigk™2e(e)'e? Y o (v — x)(Juil + 12U (x) / Pe(x, 98 (2)dz
i
< cirt(e)’k ey / pe(x, 2)¢° (R)dz
from constants ¢ and c17. Recall k + 1 = ¢1/2. As a result,

T
En / / [Y22(x, q(s))|dxds < c15(e)? eV 4as !, (8.22)
0

for a constant cg.
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Step 5. From (8.5), (8.18), and (8.20-22) we learn that the expression

T
Ew [ [ e aoplaxas
0
is bounded above by

cs€(logloglog|log 8)) ™! + 2cs|log | V% + 305 ' el (e)?
+c3(loglog| 10g8|)]/2€a2_18 + c3f(loglog | 10gr3|)*3/4012_1
+ezay e O 0(e)! 4 c150(e) (log €)™ Pay ! + ergle) e ey !

Choose ¢ = (logloglog | 10g5|)1/2 and 6 = 85(8)2 to deduce
T 1
EN/ / 1Y (x, q(s))|dxds < c19(1 + az_l)(loglogloglog |loge|)” %4+2 . (8.23)
0
We now bound

/ed D L = 0)IK (xiy vi) — K5 (e, ) |S(x) U (x)dx (8.24)

This can be treated in just the same way we established (6.13). Indeed whenever Ef (x; —
x) # 0, the expression

|KS (i, vi) — K5 (x, 0]

is bounded above by
208 el () f Kj(z, vi)I(|x — z| < 208 + c20l(€))dz
< c208 ' el(e) / Kj(z, vi)l(|x — z| < 2c200)dz,
for some constant ¢29. Moreover, from |v; — v;j| < (Jv;| + 1)(|v;| + 1) we learn,

Ky oo) < (ol + DY VE(z = x;D (vl + D =2 car (il + Duf (2) -
J

Hence the term |K§ (xi, v;) — K? (x, v;)| is bounded above by
ed Let(e) (v + DS et (e) / u® ()U(Jx — z| < 2c208)dz =: 8~ Let(e)(Jvi| + 1NGE (x).

As a result, the expression (8.24) is bounded above by

228 el(e) En / ey i i — ) (il + DG () S () U (x)dx

< endlet(e)as 'En / G* (x)dx

< e3dlet(@)e™ Ene® )y (lvjl + 1) < casdlel(e)
Y
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where for the last inequality, we have used the conservation of the kinetic energy. From
this and (8.23) we learn

T
Ey /0 / | D& (i) = DK (i (9), vi(5) = K (x, v () S0y (5)U (o) |dxdls
<cp5(1 + a;l)(log logloglog | 10g8|)_ﬁ, (8.25)

for 8 = e£(¢)? and a constant ¢»5. However, this § is not what we need. We would rather
have 61 = &1(¢) = e€(e) in place of §. The reason we were forced to choose such a §
was because when we replaced x; with x in K ?, we had an error of order O (e£(g)81).
Otherwise a choice of § = 81, would have led to the same estimate (8.23). Based on this
observation, we can repeat the proof of (8.23) to assert that the expression

T
Ey fo f | > & i) = (K (x wi6) — K 0x, mi () S Gy () U200 |dxds

is bounded above by

ca6(1 + a5 ") (log log log log | log £]) ™72 | (8.26)

(In showing this, some of the steps of the proof of (8.23) can be skipped.) We can
certainly write

e 8 (i — 0K (v S U (x)
i
= / > & (i — 085 i — VK (x, v) S U ()dv
i
Moreover, using a bound similar to (8.12), it is not hard to show that the expression
/ / e 5 (i — 085 (i — v)IKS (x, ) — K, 0)IS ) U (x)dxd v

i

is bounded above by

27 // ZEf(Xl —X)Ef(vi — v)U(x)/ZV8(|xl. —xj+ 2D — Ui|§51(Z)dzdxdv
i j

< casel(e) // e L (i — )5 (i — U () Zf 1(jx; — x + 2|
i J

< c2el(6))0° (2)dzdx

= / / o7 0(e) Y 1l — x + 2| < casel () (2)dzdx
J

< C29a2_18£(8)d+1 .

From this and (8.25-26) we learn that there exists a constant c¢3g such that
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T
EN/o //)Qi(“q“”;“h“ﬁ—Qi(X:q(sw;al,oez) dxds
< c30(1 +a2*1)(loglogloglog|1ogg|)—4,fﬁ’ 8.27)

where

0% (x; q; J; a1, @) =/ZEf(x,- — 0 W — VK (x, v)S)U(x)dv

and 61 = gl(e).

Step 6. Next we would like to replace S(x;) with $% (x), where $°' = (1 4+ ayi®)~!
with % = it® % £% and 8; = e£(¢). Define

0% (x; q; Js ay,00) = / Y &G =08 (v — K] (x, v) S () U (x)dv

=/f8(x,v; QK5 (x, 0)ST (U (x)dv .
We would like to show that for some constant c¢31,
T = A
EN/ // )Qi(xﬂl(sﬁ Jiar, o) — Q% (x5 q(s); J; o, an)| dxds
0

< esiloy ey (14 a; H1eE) TV (8.28)

The proof of (8.28) can be carried out in the same way we showed (8.27). Indeed, we
first restrict v to a bounded set. This is done by defining

0 4y (i @ Jran, ) = /ZZf(x,- — 08 @i = VK @ (] < k) S U (x)dv .
0% (i@ Jran @) = /f%c, v K (0L < ko)S™ (U 0dv,
for a large positive k. It is not hard to see that the term K i‘ (x, v)U (x) is bounded by

a constant multiple of o, Yl + 1) provided that the support of ¢ is sufficiently large.
As a result,

T
EN/ // ‘Qi(x?q(s);f;“l’az)— Q% 1, (x: 4(9): J: 1, @) | dxds
0

T
< cgzaglENfO // D & (i = 085 (i — v) (vl + D] < ko)dxdvds

T
5C33a;1k0—1ENf 82d§ (1 + |vi|®)ds
0 N
1

—1,—1
=cua, ko,
where for the last equality we have used the conservation of the kinetic energy. This
means that if we replace Q¢ with Qi ko in (8.28), we cause an error that is bounded

above by c34a; ! ky ! In the same fashion we can argue that if we replace Qi with Qﬁr ko



66 F. Rezakhanlou

in (8.28), we cause an error that is bounded above by c34a, lko_ ' After this, we first
replace i¢ with i® for § = el(¢)%. Note
S(xi) = 8% (i) = 01 (@ (xi) — i° ) (1 + e’ () 7 (4 + eqit® (i) "

Now % (x;) — it (x;) plays the role of K ﬁ — K j in the proof of (8.25). To follow the proof
of (8.25) line by line, observe that the term (1 + a12%) ™' (1 4+ 12°) ™! is bounded by 1
and that the term K i‘ (x, v)U (x) is bounded by a constant multiple of o, lko provided

that the support of ¢ is sufficiently large. Hence we spare one U to control K jl and use
the other U to repeat the proof of (8.25). We then repeat the proof of (8.26) to replace
§% with $°1. Finally we choose ko = 2(e)Y* to complete the proof of (8.28).

Final Step. To complete the proof of the theorem, we first observe that Q4 (g; J) =
[ gL(g, J)dv, where

L(g, J)(v) = f/ B — vy, n)g(e)J (v — (v — vy)n - n)dndv, .
S
As in the final step of the proof of Theorem 6.1, we have

IKS(x, v) — L(fé(x, 5 q), J)()] < (87" +8) X (x, v) (8.29)

where
X(x,v) = gZdZyB'(x —xj)(lv—=v;|+1),
J

where y% (x) = Sfdy (x/81) for a suitable function y of compact support. It is not hard
to see that XU is bounded above by a constant multiple of |v| 4 1 if the support of ¢ is
sufficiently large. This and (8.27-29) complete the proof of the theorem. O

9. Supersolutions

In this section we establish one half of Theorem 2.1 by showing that any limit point of
‘Pw is concentrated on the space of supersolutions of the Boltzmann equation (1.1).

An integrable function £ is called a supersolution of (1.1) with initial data £ if for
every t € [0, T],

fx,v,t) > fO(x —vt,v) + ft of, Hlx —v(t —s),v,8)ds ,
0

for almost all (x, v).
It is not hard to show that f is a supersolution if and only if

t
f(x+vt,v, 1) = f(x,v,0)exp (—/ Lf(x+v9,v,9)d6>
0

t t
+/ 04+ (f(x,-,5)(v)exp (—/ Lf(x 4+ 0, v,0)d0> ds,
0 K
9.1)

for almost all (x, v). (See for example [DLil], p. 345.)
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Recall that
fia v =) 10w - 020w ),
i

where §‘s(z) = 8“1;(1/8), §.(e) =¢el,(e)forr =1,2,0,(e) < L1(e) = £(¢) and £(¢g)
is as in (6.1). We now assume

sli_r)rbﬁz(s)ﬂ(a)_l =0, sh—%b(g) =00.
The transformation

q() > Ff(x,v, dxdvdt = fE(x, v; q(t))dxdvdt =: 7w (dx,dv, dt) ,

assigns a measure to each realization of q(-). We regard this measure as a member of

M:={m:7(T xR x [0, T]) = ZT} . 9.2)

The transformation q(-) — 7 induces a probability measure Qx on M. The main
result of this section is Theorem 9.1.

Theorem 9.1. The sequence {Qn} is tight and if Q is a limit point, then Q is concen-
trated on the space of measures w such that w(dx,dv,dt) = f(x, v, t)dxdvdt for a

e i ; O (L) o 7 1(Td & Rd
nonnegative integrable function f such that =1 7€ L' (T x R* x [0, T)),

sup /f F+ x|+ [v]> +logT fdxdv < oo, (9.3)
tel0,T]

and f is a supersolution of (1.1) with initial data f°.

Proof. Step 1. As in the proof of Theorem 5.1, let us write F(x, v; q) = F,(x,v; q) =

nfrOvia) g Fey y _
T g = Pr(F (v v @), where £, (r) = 757 Recall that the process

t
M(x,v,t) = F(x+vt,v; q(t)) — F(x, v; q(O))—/ (% + A) F(x+uvs, v; q(s))ds
0

is a martingale and that its quadratic variation is given by

t
ENM(x,v,1)? = ENT(1) := EN/ (AF? —2F AF)(x + vs, v; q(s))ds
0
t
= Ey / (A.F? —2F A.F)(x + vs, v; q(s))ds. 9.4)
0

As a result, we may write

t

F(x,v;q@)) = F(x —vt, v; q(0)) + / Alx —v(t —s), v, s)ds
0

t
+/ D(x —v(t—s),v,5)+ M(x —vt,v, t), (9.5)
0
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where A = (£ v+ Ag) F and D(x, v, 1) = AF (x, v; q(1)). A straightforward cal-
culation yields

(A F? —2F A F)(x, v)
1 - . ~
=5 2 VUi = xj DB — v nij)(F(x, v; 87q) = fx, v @)’
iJ

X (1 + n_lfs(x, v; q))_2 (1 + n_lfs(x, v; Sijq)>_2

Evidently (F¢(x, v; S¥q) — f(x, v; q))? is equal to

PR ]— PR Ui‘_v
21(e) "2 0, ()2 (x, x) v v (XJ x) J
e e [; ne ) oo ) T Ge )\ we
() () G
S1(e) 82(¢) 81(e) 82(¢) '

Define

I o2 (Xi—X\ 2 Uij_v R Y (R I
mij =8¢ <51(e))§ (az(s)>’ "= (51(8)>§ <52(8>>'

Using this we can write,

t t
ExM2(x, v, 1) < E f Mi(x + vs. v, q(s))ds + Ex f Ma(x + vs, v, q(s))ds
0 0
(9.6)

where

M (x,v,q) = £1(e) *a(e) 2 Y " VE(Ixi — x; D B(i — v, nij)mj; (x, v q)
i,j

X (1 +n_1f‘€(x, v; q))_2 (1 +n_1f‘€(x, v; S’./‘q)>_2

for r = 1, 2. For some constants cg, c; and ¢, we have that the term M>(x, v, q) is
bounded above by
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col1() a(e) ™ Y " VE(xi — xjDlvi — v
i,J

2 [ Xi — X s fvi—v s . .
x4 <&@))§(5ﬂ@)<1+” f(L%qﬂ

< c1l1(e) M ea(e) e Y " 1(Ix; — x| < c181(e)) (v — v] + c182(e))
iJj
2f(Xi = X) 2fUi TV —1 Fe o)
o <31<8)>§ <5z<s>><]+” )
< eali() 2 (e) e Y (lxj — x| < c181(e)(lvj — vl + €182(8))
iJj
Xi — X Vi — VU _1 7e . -1
X§<81<s))§<82(8)><1+" freva)

< cati(e) " a(e) e Y T 1(Ix; — x| < c181(e)) (lv; — v] + c182(2)) -
J

From this and the conservation of the kinetic energy we learn
t
EN/ / My(x + vs, v, q(s)U(Jv| < £o)dxdvds
0

t
< e3nly(e) e UG EN f D (vjl? + €)(lv] < €o)ds < canti ™ a(e) ™,
0 X

J
9.7

for some constants c3 and c4. On the other hand the term Ex M1 (x, v, q(s)) is bounded
above by

821(5)—2%(8)—”[ngaxi — XD B —vj, nij)

i,J

L J_ . N
x ¢2 (u) 2 (v’ v) (1 +n7 o (x, v S”q)) ] G(s,qvs(dq)

S1(e) 82(e)

= 8¢1(e) o (e)™ f > VE(xi — x;) B — v, nij)
)

s Xi—Xx\ o, fvi—V 1 e ' 1 g
x (sl(e))g (32(8)>(1+” Fr@vie) GG, sTqupa)

As in Step 8 of the proof of Lemma 5.3, we can use (5.10), (9.7) and Lemma 4.7 to show
that for every k > 1,

t
EN/ / Mi(x + vs, v; q(s))1(Jv| < £y)dxdvds
0
< eskntd ey (e)74 + est1(e) " ea(e) " (log k) L.

In just the same way we derived (9.7) and (5.19). By choosing k = e we learn

t
Ew [ [ M6t vs, v a0l < tordrduds < canegeaer .
0
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for some constant c¢. This and (9.6-7) imply
ExM(x,v,0)* < et ea(e)™ 9-8)

for some constant ¢7. Now we use Doob’s inequality to deduce

En // sup M (x, v, 1)?1(Jv] < €o)dxdv < dc7td 1 ex(e)77 . 9.9)
0<t<T

Step 2. We certainly have D (x, v, s) = DT (x, v, s)— D~ (x, v, s) where D*(x,v,s) =
D*(x, v; q(s)) and

DY v, q) =2 Y VE(xi — x;DBO; — vy, mi)e O (xp — )¢ (] —v)
iJ
~ —1 - .. —1
x (1+n—1f8(x,v; q)) <1+n_1f5(x,v; S'fq)) :
D™ (v q) =2 Y VExi = xj DB = vj. i)™ i = 002 (v )
i,J
~ -1 ~ ..
X (1 +n71f€(x, v; q)) (1 + nilfs(x, v; S”q))

-1

It is not hard to see that there exists a constant cg such that,
|FEG v @) — fE(x, v S Q)] < cgli(e) la(e) ™ . (9.10)

On account of this, let us define

AL £ —1 fe -2
DE(x,viq) = Qi vi@) (1407 i vi@) ©.11)
where Q¢ was defined by (7.1) and
0" (x,viq@) = Y VE(Ixi — x;DBi — vy, nij) If (xi — 05 (v; — ).
ij
From (9.10) and £ (¢) > £,(¢e) we deduce

~ - -1
ID¥Ge, v @) = ¥, v @) < esta() 05 (x v @) (1407 5 r v: @)

9.12)
‘We now claim
T A
Ex / f f D (x, v: q(s)) — D*(x, v; q(s)[1(1v] < Lo)dxdvds
0
< contdT2e5(e)7 . 9.13)

for a constant cg. For this, it suffices to show that there exists a constant ¢ such that

r - -1
Ew [ [[ ouerviaen (1407 i via) 10l < to)dadvds
0

< c1oldn . (9.14)
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In the case of Q% , the bound (9.14) is a consequence of Corollary 6.4. We delay the proof
of the inequality (9.14) in the case Q% because we need something stronger, namely a
uniform integrability of the renormalized loss and gain terms. More precisely, we prove
that there exists a constant c¢j; such that

T
En / / / X1 (xv; qG)I(X e (x. v: q5)) = Odxdvds
0
<cpn [eg“(log@‘/“ez(e)*‘/z + (log log z)*‘] 9.15)

N
for £ > e and small &, where X1 is a short-hand for Q% (1 + n_lf‘e) .
We establish (9.15) with the aid of Theorem 6.1 and (4.8). To this end let us write Y_

~ ~\—1 ~
for f¢ (1 +n_1f8) L f¢. Fix k > 1. We certainly have
X 1(X_>0) <Y_1(X_>0)+|X_ —Y_|
<Y X =Y. > 62+ YUY > £/2)+|X_ — V|

1 -
<kl(X_—Y_>1¢/2)+ Wmt)

1 -
gy ?) T IX- — X

2 -
< (7" + 1) |X_ — Y_| + [(logk)~12 + (log(£/2))"*1p(Y_) ,

where q5(z) = z(log™ 2)1/2. From this, the inequality Y_ < ang, (4.8) and Theo-
rem 6.1 we deduce,

T
e /0 // X (x, v; )X~ (x, 3 q(5)) = OL(Jv] < bo)

2k -
= cn (7 + 1) nlg*20e) ™2 + ca(to) [ (logh) ™12 + og )72 .

Choosing k = ¢ yields

T
Ex / / / X_(x, v Q)X _ (x, v: q(8) = OL(Jo| < o)dxdvds
0

< 3cint] 2 e(e) T 4+ 2c126 (€o) (log )% .

This implies (9.15) in the case of X_.
We can use (5.10) and Lemma 4.7 to establish a similar bound for X . First observe
that (9.10) implies

(1 R Sijq)>_1 <cn (1 fnl fea, v;q)>_1 : (9.16)
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for small e. From (5.10) we deduce that we can find a constant c14 such that for every
k>1,

/X+(x, v; QLX 1 (x,v;q) = O)G(s, Qug(dq)

= f 2 VE(xi — xj)BOi — vj, ni)c" O (i — 02 (v — v)

i,j
~ .. -1 .. ..
x (17 oo $T0) (X0 v 57q) 2 GG, STqvs(dg)

<k f 23 " VE(xi — x) B — v, mi)e® (i — 02O (0 — v)

i,J
- .. -1 ..
x (1 ! fox, v S‘/q)) 1(X 1 (x, v; S q)
> 0)G(s, Qvp(dq) + (logh) ™' Q(x, v, 5) ,

where the function 2 (x, v, s) satisfies

T
/ /f Q(x, v, s)dxdvds < ci14,
0

by Lemma 4.7. In the case of £ = e, we simply use (9.16) to deduce

T
By [ [[ xetvaonce e viao) z e ol < o)dadvds
0
T
< cl5kEN/ // X_(x,v; qsNU(Jv] < £o)dxdvds —i—cl4(10gk)71 . (9.17)
0
We now choose k = ¢ in (9.17) to deduce (9.14) in the case of Q¥ from (9.14) in the

case of Q% .
Going back to (9.15), we apply (9.16) to assert that the expression

T
/ ///X+(x9 vy QU(X 4 (x, v: q) = OL(|v| < £o)G (s, Qvp(dq)dxduds ,
0
(9.18)

is bounded above by

T T
c16/ // Qv < Zo)dxdvds~|—c16/ // Ql(jv] < Zo)dxdvdt—i—cm(logk)_l,
0 0
for some constant c;¢, where
Q= k/82d2 VE(Ixi — xj DB — vj. mipl(lv; — vj] < p)e®1© (x; — )02 (; — v)
ij

~ —1 ..
« (1 ! e v q)) 1(X1(x, v; S7q) > )G (s, Qup(dq) ,
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and £2; is obtained from €21 by replacing 1(|v; —v;| < p) with 1(jv; —v;| > p).Here p
is a fixed positive number that will be chosen later. We now use Chebyshev’s inequality

to assert that the term
T
/ // Qo 1(Jv| < Lo)dxdvds
0

T
kp*‘”/o /f/swzvaux,-—x,~\)B(v,-—v,-,n,-,-)wi—v,-|”2;51<8>(xi—x);‘sz@(v,-—v)
iJ

is bounded above by

x (1 +n e, v q))_1 (X4 (x,v; SYq) > £)G(s, Qvg(dq)dxdvds .

This and Corollary 6.5 imply

T
/ // Q1 (|v| < Lo)dxdvdt < ci7kp~*ned™? (9.19)
0

for a constant c5s.
We now turn to 1. Observe that by (9.16), X+ < X, where,

A - —1/2 _ . 12
Reeoviw = ven 0w va (14n7! Feviay) (147 v sTa))
Evidently we can find a constant cg such that if
Ve = xiDE™ @ (v — 02 (0 — v)I(Jvi — vyl < p) #0,

then |x; — x|, [x; — x| < c1861(8), |[v; — v| < c1802(¢) and |v; —v;| < p. From this we
learn that the expression

|)A(+(x, v; S¥q) — )A(+(x, v;q)l,

is bounded above by

c19e?1(e) " ta(e)™ Y M(lxk — x| < c1981(e)) (lug — vl + p)) =: £a(e) “R(x, v; Q) ,
k

for a constant c17. The proof of this is very similar to what was presented in the begin-
ning of Step 6 of the proof of Lemma 5.3 and is omitted. Hence, for every p; > 1, the

expression
T
/ // Ql(Jv] < £g) dxdvds ,
0

T
k/ ///Xf(x,v; QI(X 4 (x, v; q) + £2(e) " R(x, v; q)
0
>0, v <Lo)G(s, Qvg(dq)dxdvds

is bounded above by
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T
< kp\Ey / / / (X4 (x, v (5)) + £2(6) 4 R(x, 3 q(s)) = O)dxdvds
0

T
+kEN/ // 1(X—(x,v; q(8)) = p)X_(x, v; q(s)L(Jv| < €o)dxdvds
0

kp1 T —d
< TEN/ // <X+(x, v q(5)) + £2(6) " R(x, v: q(s))) 1(|v| < Lo)dxdvds
0

+eaok (neg2(e)™ + $(to)log p)~"2)
kp1 - _ p _
< o= (0 Pn 4 peg T ea(e) ™) + caok (ntf P e(e) ™ + Beo)tog p) 7).
where for the second inequality we used Chebyshev’s inequality and (9.15) and for the

third inequality we used (9.14). From this and (9.19) we learn that the expression (9.18)
is bounded above by

kp, _ _ ~ _
en =L (€5 + pti T o)) + enk (nef e@) " 4 G(ko) og p1)12)
+enkp™ Pnedt + clallogh) ™t
We choose p = log¥, p1 = Y2 and k = (log pl)l/4 to deduce (9.14) in the case of

Xy.
We now discuss a consequence of (9.14) that is easier to use. Define

0(e) = exp(€(e)®) .
Note that if £ < Z(s), then
(10g€)1/4£2(8)_2 + (loglog E)_l < 2(log logﬁ)_1 ,
for sufficiently small ¢. From this, (9.14) and the identity

de
2¢1log £(loglog £)1/2°

- 172 e
(log+ log+ min(X, E(s))) = / 1(X =20
e

one can readily deduce that for some constant ¢,

T A A -
EN/ //d)(min (|Di(x,v,t)|,e(g))) 1(jv| < €o)dxdvdt
0

< Cz3nﬂg+2 ,

En /T // |DE(x, v, DL DE(x, v, 1)| > £(e)L(|v| < Lo)dxdvdt

< cz;)nzg“(log logl(e))~", (9.20)
where ¢(z) = z(log+ log™ 2)!/2.

Step 3. Consider the process

t

F(x +vt,v; q(1)) exp </ Lfe(x + 00, Q(9))(v)d9> :
0
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This is a product of a semimartingale and a monotone process. More precisely, fix (x, v)
and consider the process X () = F(x + vt, v; q(¢)). We have dX = (A+ D)dt +dM,
where A, D and M are as in Step 1. To ease the notation, let us simply write L f fx +
vo, v, 0) for Lfa (x40, -,q@)(v)and Y () = fot W (6)d0 for the increasing process
fot Lfg (x + v0, v, 0)d6. By a standard stochastic calculation,

d(Xe') = (A+ D+ XW)eVdt +e¥dM .
As aresult, the function F(x + vt, v; q(¢)) equals to

t
F(x, v; q(0)) exp <—/ Lf‘s(x + 00, v, 9)d9> + M(x, v, 1)
0

t
+/ [(% + A> F(x 4+ vs,v; q(s)) + F(x + vs, v; q(s))Lfg(x + vs, v; q(s))]
0 S

1
- exp (*/ Lfé(x+v,v, 0)49) ds,

s

where M (x, v, ) is a martingale with quadratic variation

t t
ENM(x,v, 1) = EN/ exp <—2/ Lfé(x+v0,v, 9)d9> r'ds) ., 9.21)
0 K

where the function I' was defined in (9.4). From this we learn

t
Bu(ff(x + vt v, 1) = Bu(f*(x, v, 0)) exp (— / Lf*(x+v0,v, 9>d9>
0
' ¢
+[ A(x + vs, v, ) exp <—/ Lfﬁ(x + 00, v, 0)d9> ds
0 s
t t
—i—/ DV (x + vs, v, s) exp (—/ Lfs(x + 00, v, 9)d0> ds
0 K

+R(x, v, 1) + M(x,v,1) , (9.22)

where

t ~

Ri(x,v,t) = / (F(x +vs,v; q(s))Lf(x +vs,v,5) — D™ (x + vs, v, s))
0
t
- exp <—/ Lff(x+v0,v, 0)d9> ds .
s

From (9.21) we learn that Ey M (x, v, 1)> < ExT'(¢). This, (9.8) and Doob’s inequality

imply

Eyn sup M(x,v,0)* <4ENT(T) < demntd ™ er(e)™ . (9.23)
te[0,T]

Also, observe FL ¢ > f¢L f¢(1+n~' f¢)~2. We now use this, (9.13) and Theorem 6.1
to assert

En sup //[Rl(x, v, D17 1(Jv| < €o)dxdv < coantd™ey(e) V2, (9.24)
tel0,T]
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for a constant cp4. Here and below, we write a~ for max(—a, 0). On the other hand, we
have

A, v, 1) = B/ (x, v, )1 () a(e)” dZ o Ve (21(;;);(';2;3;) ,

which implies

i — é
G v, 0] < casti(e) o) dZ'“'(a (e;C);(l;z(s;) 8?8

Hence,

12163)
lie)

/ [A(x, v, t)|dxdv < co6 (9.25)

Fix k > 0 and put f,f = min(fs, k). We now would like to replace D™ (x, v, t) with

Q-+ (ff (e, s )@Y+ €715 (e, )2+ €7 " (x, 1) 72,
where i (x, 1) = [ (14 |v[>/?) f%(x, v, t)dv and i® (x, t) are as in (7.1), and £ is a fixed
positive number that will be sent to infinity in the end. Recall that by (9.12), the replace-
ment of D with DT causes a small error. In view of (9.20), let us define Z¢(x, v, t) to
be
min (D% (x, 0,0, ) = 04 (f (6, @)+ €71 (e, 0) 21+ (x,1) 72
From (9.12), (9.20) and (9.23-25) we deduce
fE(x+vt,v,0) = Bu(fE(x +vt, v, 1))
t
= Bu(ff(x,v,0))exp (—/ Lf*(x+v6,v, 9)d9)
0
t
+f Q1 (fi (s N @A+ €713 (e, 1) 2 (1 + 71" (x, 1)) 72
0

t
X exp (—/ Lfg(x—i—vG,v,G)dO) ds
s

t t

+f Z8(x, v, 8) exp (—/ Lfg(x+v9,v,9)d9) ds
0 K

+R2('xav9t)s

with R satisfying

T
EN/ / [Ra(x, v, )] 1(|Jv] < £o)dxdvds
0
< caonty ™ [52(8)_1/ 2 4 (loglog f(e))‘l] : (9.26)
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Final Step. Define f¢(x,v; q) = > VEe(lx; — x])VE(Jv; — v|). The transformation

q() > (fé(x, v, Hdxdvdt, f&(x, v, t)dxdvdt)

(F8(x, v; q(0))dxdvdt, & (x, v; q(t))dxdvdt
: (m(dx, dv, dt), n'(dx, dv, dt)) ,

assigns a measure to each realization of q(-). We regard this measure as a member of

M2, The transformation q(:) = (m, 7’) induces a probability measure 6) N Oon M2, Let
us define S(m 1, my, m3) to be the set of nonnegative measurable functions (f, f/), such
that f, f/: T¢ x R? x [0, T] — [0, o0),

sup / P(f(x,v,0) + f'(x, v, 0))dxdv < my,

0<t<T

sup f/(f(x, v, 1)+ f(x,v,1))dxdv < my,

0<t<T

sup /(ﬁ(u(x, ) +u'(x,t)dx <my,

0<t<T
for ¢(z) = z(log™ 2)/4,
u(x,t):/(|v|3/2+1)f(x,v,t)dv, u’(x,z):/(|u|3/2+1)f’(x,v,r)dv,

and that we can find a pair of functions g and r such that

t

flx,v,t) = fo(x —vt,v) + f glx —v(t —s),v,8)ds +r(x,v,t),
0
T
/ f d(lg(x, v, DDI(Jv| < €o)dxdvdt < matd ™
0

T
/ // Ir(x, v, )[1(|v| < Lo)dxdvdr < m3 ' ed+2 .
0

As in the proof of Lemma 5.2,

//Iﬁn(f)—fldxdv=// fjfndxdv

i//qs(f)dxdv+n—%/ fdxdv
logn

2
I // (@(f)+ fldxdv. 9.27)
ogn

IA

IA

From this, Lemma 4.4, (9.5), (9.9), (9.12), (9.20), (9.24) and Chebyshev’s inequality we
deduce

ON(S(m1, ma, m3)°) < cx7 (ml_l + nm2_1>

+cy7 <m3_1 — 4m1/10gn)_1 (n(loglogf(s))fl + 62(8)6(8)7]) ,
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/

where A€ denotes the complement of a set A. We choose n = mé ? to obtain

On(S(my, ma, m3)°) < car(my! +m2_1/2)
—1 _
. <m3_1 - 8m1/10gm2> (mé/z(log log £(¢))~! + ez(e)z(s)*‘) .

We now choose m, = exp m% and m3 = m1/9 to yield

O (S, ma, m3)°) < cogm" + cag ((m2 loglog £(e)) ™" + La(e) () ™) -
From this we learn that there exists an integer N (m) such that

limsup sup QOn(S(mi,expm?, m1/9)) =0. (9.28)

mi—>00 N>N(m)

We now consider the space £ consisting of measurable functions (f, f’, Z) such that
£, f'.Z:T? xR x [0, T] — [0, o) and

T
/ / (f + f +1Z|)dxdvdt < ¢ .
0
The transformation
q— (fg(x, v, 1), FE(x, v, 1), Z(x, v,t)) ,

defines an augmented probability measure Q’l’\, on the space &. Let us define S(m 1, m»)
to be the set of (f, f/, Z) such that (f, f') € S(ml,expm%, m1/9) and

T
//q3(|Z(x,v,t)|)]1(|v|§Zo)dxdvdt§m2€g+2.
0

From (9.28) and (9.20) we learn
limsup sup Q% (S(my,m))=0. (9.29)

m|—>o00 N>N(mp)

Pick a nonnegative continuous function J of compact support and define

T
Fif £, 2) =/ // [G"(f, [/ Z)(x, v, )] J(x, v, 1)dxdvdt
0

where G"(f, f', Z)(x, v, t) is defined to be

t

fx+vt,v, 1) = Ba(f(x,v,0)) exp <—f Lf(x+v0,v, 9)d9)
0
t -2 -2
- 1+ 0" u(x, 1+ 07" (x,
/0 0+ () @ (14, 9) (14 w9
X exp <—/ Lf(x+v9,v,9)d9> ds

t t
—/ Z(x,v,s)exp <—/ Lf(x+v9,v,9)d9)ds,
0

s
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where f; = min( f, k) and,

u(x,t)=/(|v|3/2+1)f(x,v,t)dv, u/(x,t):/(|v|3/2+1)f/(x,v,t)dv.

Then we may apply (9.26) to assert
Nlim f}'?(f, 1, Z)Q’]v(df, df',dz) =0. (9.30)
—00

We would like to study the integrand as a functional of (f, f’, Z) when (f, ', Z) €

S‘(ml,ml). In fact ]—'; restricted to S(ml,ml) is a continuous functional with

respect to the weak topology. This follows from DiPerna—Lions’ work [DLil] because if
(fims frms Zm) is a sequence in S(my, m1) such that (fi, /1, Zm) = (f, [/, Z) weakly

in L', then f; L (x +v0, v, 0)dé converges to f; Lf(x 4+ v0, v, 0)d6 strongly in L'
and

-2 -2
0.+ (min(fin(x, -, ), k) () (1 0y (x, s)) (1 + o (x, s)) ,

converges weakly in L'—sense to

-2

0. (min(f(x, - 5), k) (v) (1 ey s))_2 (1 o (x, s))

(See for example Lemma 5.3.11 of [CIP].) Choose a sequence {N;} such that Q’;v, is
convergent as r — oo for every n. As a result, if Q" is the limit of QN"r, then we

apply (9.30) to deduce that the measure Q" is concentrated on the space of functions
(f. f'. Z) for which F7}(f, f', Z) = 0. On the other hand, we can now use Theorem 7.1
and (9.20) to assert that if J (-) is a nonnegative continuous function of compact support,
then f Z(x,v,s)J(v)dv > 0 almost surely with respect to Q”. We then send k — o0,
and £ — oo in this order and use the montone convergence theorem to deduce that if
(f, f', Z) € S(my, my), then f satisfies

t
fx+ovt,v,t) = B, (f(x,v,0)) exp <—/ Lf(x + 00, v,9)d9>
0

t t
+/ O+(fk(x, -, 5))(v)exp (—/ Lf(x +v0,v, 6’)d9> ds ,
’ ’ 931

with probability one with respect to the measure Q". We send m| — oo and use (9.29)
to deduce that the measure Q" is concentrated on the space of functions (f, f’, Z) for
which (9.31) holds. The statement (9.31) does not involve (f’, Z) and the f—marginal of
Q", say Q, is independent of n and is a limit point of Q. As a result, (9.31) is valid with
probability one with respect to any limit point Q of the sequence {Qy}. We finally send
n — oo to conclude that the measure Q is concentrated on the space of supersolutions.
O
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10. Subsolutions

In this section we establish the other half of Theorem 2.1, namely any limit point of the
sequence {Py} is concentrated on the space of supersolutions of the Boltzmann equation
(1.1). As in Sect. 9, it is more convenient to work with the sequence {Qy}. Let us start
with a definition for subsolutions.

An integrable function f is called a subsolution of (1.1) with initial data f°, if for
every t € [0, T],

t
Fleav0) < fO — v, v) +/ O, )(x — v(t —5), v, $)ds ,
0

for almost all (x, v).
It is not hard to show that f is a subsolution if and only if

t

f(x+vt,v,1) < f(x,v,0)exp <—f Lf(x+v9,v,9)d9)
0

t t
+ / 04 (f(x, - )(v) exp (— / Lf(x + 10, v, e)de) ds
0 s
(10.1)

for almost all (x, v). (See for example [DLil], p. 350.)
The main result of this section is Theorem 10.1.

Theorem 10.1. If Q is a limit point of the sequence {Qn}, then Q is concentrated on the
space of measures w(dx, dv, dt) = f(x, v, t)dxdvdt with f a nonnegative subsolution
of (1.1) with initial data f°.

Proof. Let us simply write Q% (x,v,s) for Q% (x,v;q(s)) and fg(x, v,s) for
f": (x, v; q(s)). As in the proof of Theorem 9.1, we apply (9.12), Theorem 6.1, (9.22-23)
and (9.25) to assert

t
Bu(fE(x + vt, v, 1)) = Bu(fE(x, v, 0)) exp (—/ Lfe(x + v, v, 0)d9>
t 0 » 2
—i—/ 0% (x +vs,v,s) (1 —|—n71f‘9(x, v, s))
0

t
-exp <—/ Lfé(x +v6,v, Q)dé) ds
s

Lf‘s(x + vs, v, s)
+n-lfe(x 4 vs, v, 5)

t
+n~! / Bu(f(x + vs,v,5)) 1
0

t
-exp <—/ Lfe(x+v0,v, 0)) ds
s
+R€(x’ v? t)’
where R¢ satisfies

T
EN/ / |RE (x, v, $)|1(Jv| < €o)dxdvds < conti™e(e)™1? 4 cola(e)l(e) ™! .
0
(10.2)
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We now consider the transformation q(-) — ( f¢, Z3, Z5) for
& : e —1 fe -2 -
zi=mind 0% (1+n7' /) "L 2o}
- |
z3=n" B (1407 %)

and denote the distribution of this transformation by Q’}V If

T
f;(f, Z1,Z») :/ / |g”(f, Z],Zz)|.ldxdvdl‘,
0

for

t

G"(f, 21, Z2) = Bu(f(x + 01,0, 1) — Bu(f (x,v,0)) eXp(—/ Lf(x+v0,v, 9)d9)
0

t t
—}—f Z1(x 4+ vs, v, s) exp <—/ Lf(x+v9,v,9)d9)ds
0

s

t t
+/ Zr(x+vs,v,s)Lf (x+vs, v, s) exp(—/ Lf(x +v0,v, 9)) ds,
0 K

then we use (10.2) and (9.20) to assert that for every continuous function J of compact
support,

lim sup/f';(f, 71, Z2) Q% (df.dZ),dZy) =0 . (10.3)

N—o0

Let us deﬁge é(ml) to be Ehe set of functions (f, Z1, Z») such that Z, € [0, 1] and
(f, Z1) € S(my, my) with S as in (9.28). Evidently (9.28) implies

limsup sup QL (S(m)) =0. (10.4)

myp—>0o0 N>N(mp)

Note that F’ ;’, restricted to the set S (my), is a continuous functional with respect to the
weak L'—convergence. This is because Z, € [0, 1] and that by the velocity averaging
lemma, if f;, is a sequence of functions such that f,, — f weakly, then Lf,, — Lf
strongly in L'—sense. Given a subsequence of {N}, we can find a subsequence of it, say
{N,}, such that the sequence {Q’}\,r} converges for every n as N, — 00. As in the proof
of Theorem 9.1, we can use the continuity of F7’, (10.4) and (10.3) to deduce that if
Q” is the limit of the sequence {Qrzlvr} as r — 00, then Q” is concentrated on the set

of (f, Z1, Z>) such that ]—"’} (f, Z1, Z3) = 0. To complete the proof, we need to identify
Z1 and Z,. First we can claim that for any continuous function J of compact support,

T
lim limsup/ {/ // ) dedvdt} Q’I’\,(df,dzl,dzz) =0. (10.5)
0

n—0oo N—o00
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To see this, observe that for every positive k, Z5 < Zg’lk + Z;*lk, where
Z5 = Z50(f < k), Z =1 = k).

From this we can readily deduce (10.5) because

T
lim supEN[ // Zg’lkJ dxdvdt =0,
n— 00 N 0

T
lim supEN/ // 1(f¢ = k)J dxdvdt =0 .
0

k—o0 N

From (10.5) we deduce that Z, = 0 almost surely with respect to Q where Q is any
limit point of Q™.

On the other hand, for every nonnegative continuous function J of compact support,
we may apply Theorem 8.1 with «; = 0 and o, = 1 to assert that for every n,

T +
lim {/ ///(ZI—QJr(f))(l—i—u)2dedvdt} % (df,dZy,dZy) =0,
0

N—oo

where u = u(x,t) = f(l + |v|3/2)f(x, v, t)dv. Again the expression inside the curly
brackets is a continuous functional of (f, Z1, Z) if we restrict it to the set S (my).

From this and (10.4) we can readily deduce that Q" is concentrated on the set of triplets
(f, Z1, Z>) such that

Z1 < 07 ().

This, (10.5), (9.27) and Lemma 4.4 imply the f-marginal of O is concentrated on the
space of subsolutions. 0O

11. Entropy Production Bound Revisited
In this section we establish a variant of (2.6). The method of the proof is similar to

[DLi2]. Define B(a,b) = (a — b) log% for a,b > 0. We also put B(a,b) = 400
whenever a or b < 0.

Theorem 11.1. Let Q be a limit point of the sequence {Qy}. Then

o
/ f//ﬁ(F(x, v, Vg, 1), F(x, V', v, 1)) B(v — vy, n)dndvdv,dxdt < oo,
0 S
(11.1)

where
F(x,v,v*,t)=/f(x,v,t)f(x,v*,t)Q(df). (11.2)

Proof. The proof is similar to what has been presented in previous sections and we only
sketch it. To ease the notation, we simply write {Qy} for a convergent subsequence of
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{On}. Let ¥ (z) = zlogz —z+ 1 for z > 0 and ¥ (z) = 400 for z < 0. Recall the
function G of (4.1). Since v is convex,

Gt S7q) (G S
1/f< ) )zllf(a)+1/f(a)< Ga. —a) :
for every positive a. As a result,

" <G(t, Siiq)

) G(t,q) > (@G, q + v (@G, SVq), (11.3)
G(t,q)

where 1/}(a) = ¥ (a) —ay’'(a) = 1 —a. By Lemma 4.7, there exists a constant ¢y such
that for every N and T > 0,

G, S
/ f 2dZV‘9(|x,—xj|)B(vl v,,nl,w( g(t ;’))Ga,q)vﬁ(dq)dryo.

(11.4)
We would like to derive (11.1) from (11.4). For this we would rather have a linear

expression in G for the integrand of (11.4). Let us take a smooth bounded nonnegative
function a = a(t, x, v, vy, n) and use (11.4) and (11.3) to assert

T
sz:=/ fssz VE(xi = x) B — v, ni)c% O (g — x)(1 + it (x: )2
0 L.
l,]

x [ (@te, vi, v i) + '@ v v mig) | G @vpdapdidr < c.

where 81(¢) is as in Sect. 9, the function % is as in Theorem 8.1, and o > 0 is a fixed
constant that will be sent to 0 in the end. Using the proof of Theorem 8.1, it is not hard
to establish

T
lim Q = lim // ////B(v—v*,n)f(x, v,z‘)f(x,v*,t)(l—l—ozu(x,t))_2
N—oo N—oo 0 S

. [@(a(x, v, Vs, 1)) + ¥ (a(x, V', v, n))] dndxdvdv.dt Qn(df)
= Jim_ / Xo()Qn ), (115)

where u(x,t) = f f(x, w, )(Jw|*? + 1)dw. Using the proof of Theorem 9.1 we can
readily deduce

lim sz:/xo,(f)g(df). (11.6)

N—o0

From (11.4-6) we learn

T
/[/ ////SB(ff*&(a)+f/f>,iw/(a))(1+au)—2dndxdudv*dt} Q(df) < cp.
0



84 F. Rezakhanlou

So far we have assumed that a is smooth, bounded and nonnegative. The smoothness
condition can be relaxed by approximating a measurable function a by smooth functions
and applying the dominated convergence theorem. From this we deduce

T
/ /f / / B(v — vy, n)[Fy(x, v, vy, t)l/Af(a(x, v, Vg, 1, 1))
0 S

+Fy(x, v, v, Y (a(x, v, vy, n, 1) ldndxdvdv.dt < co (11.7)

for every bounded uniformly measurable function a, where
Fo(x,v, 04, t) = / fx,v,t) f(x, v, (1 + au(x, t))_2Q(df) .

Ideally we would like to choose a(x, v, vy, 1, f) tobe Fy (x, V', v}, )/ Fy(x, v, vy, 1).

Since a is supposed to be bounded, we first put a to be min(ﬁa (x, v, v, t)/(ﬁa (x, v,
Vs, 1), £). Using such a choice for a in (11.7) we obtain

T
/ ////B(v—v*,n)llfe(Fa(x,v/,v;,t)/Fa(x,v,v*,t))Fa(x,v,v*,t)dndxdvdv*dtsco,
0 S

where ¥y (z) = ¥ (2)1(z < £). We now send £ — oo, « — 0 and use Fatou’s lemma to
deduce

T
/ // / / B(v — vy, )Y (F(x, 0, v;, 1)/ F(x,v, 04, 1)) F(x, v, v, t)dndxdvdvsdt < cqp .
0 S

From this we can readily deduce

T
/ ////B(v—v*,n)lp(F(x,v,v*,t)/F(x,v', v, D)) F(x, v, v, t)dndxdvdvsdt < ¢ .
0 S

This completes the proof of (11.1) because (a, b) = ¥ (a/b)b+ ¥ (b/a)a. O
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