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Abstract

In 2010 Menon and Srinivasan published a conjecture for the statistical structure of
solutions ρ to scalar conservation laws with certain Markov initial conditions, proposing
a kinetic equation that should suffice to describe ρ(x, t) as a stochastic process in x
with t fixed, or as a stochastic process in t with x fixed. In this article we largely
resolve this conjecture.

1 Introduction

In this article we show the statistics of ρ(x, t) solving the scalar conservation law

(1.1)

{
ρt = H(ρ)x in R× (0,∞),

ρ = ρ0 in R× {0},

admits an exact kinetic description when the initial data ρ0 = ρ0(x) is a piecewise-deterministic
Markov process (PDMP), determined by a generator A0 acting on test functions ψ(p) ac-
cording to

(1.2) (A0ψ)(p) = b0(p)ψ′(p) +

∫ ∞
p

(
ψ(p+)− ψ(p)

)
f 0(p, p+) dp+.
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The random path ρ0(x) may be constructed by solving (deterministically) the ODE dρ0/dx =
b0(ρ0), interrupted by jumps which occur stochastically: the probability that ρ0 makes a jump
in the short interval (x, x+ dx) is

(1.3)

(∫ ∞
p

f 0(ρ0(x), p+) dp+

)
dx+O((dx)2),

and the new value of ρ0 following the jump is selected with probability density proportional
to p+ 7→ f 0(ρ0(x), p+).

We largely resolve a conjecture of Menon and Srinivasan [MS], and extend our own results
[KR] in the case without drift (b = 0), verifying that the process x 7→ ρ(x, t) (for fixed t > 0)
is again a PDMP, with generator

(1.4)
(
Atψ

)
(p) = b(p, t)ψ′(p) +

∫ ∞
p

(
ψ(p+)− ψ(p)

)
f(p, p+, t) dp+.

Here b(p, t) and f(p−, p+, t) are obtained from their initial (t = 0) conditions

(1.5) b(p, 0) = b0(p), f(p−, p+, 0) = f 0(p−, p+),

by solving an ODE with parameter,

(1.6) bt(p, t) = H ′′(p)b(p, t)2,

and a kinetic (integro-)PDE

(1.7) ft = Q(f, f) + C(f),

where Q(f, f) = Q+(f, f)−Q−(f, f) is a coagulation-like collision operator and C is a linear
first order differential operator. More precisely,

(i) The quadratic operator Q+ is defined as

Q+(f, f)(ρ−, ρ+) :=

∫ ρ+

ρ−

(
H(ρ∗, ρ+)−H(ρ−, ρ∗)

)
f(ρ−, ρ∗)f(ρ∗, ρ+) dρ∗,(1.8)

where

H(p1, p2) =
H(p2)−H(p1)

p2 − p1

.

(ii) The quadratic operator Q− is of the form Q−(f, f) = fLf , for a linear operator L. This
linear operator is defined as

(1.9) (Lf)(ρ−, ρ+) = L(ρ−, ρ+) := A(ρ+)− A(ρ−)−H(ρ−, ρ+)
(
λ(ρ+)− λ(ρ−)

)
,
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where

λ(ρ−) = λ(f)(ρ−) =

∫ ∞
ρ−

f(ρ−, ρ+) dρ+,

A(ρ−) = A(f)(ρ−) =

∫ ∞
ρ−

H(ρ−, ρ+)f(ρ−, ρ+) dρ+.

(iii) Given a C1 kernel f , we define the linear operator C by

(Cf)(ρ−, ρ+) = b(ρ−, t)Hρ−(ρ−, ρ+)f(ρ−, ρ+)

+
[
H(ρ−, ρ+)−H ′(ρ−)

]
b(ρ−, t)fρ−(ρ−, ρ+)(1.10)

+
[(
H(ρ−, ρ+)−H ′(ρ+)

)
b(ρ+, t)f(ρ−, ρ+)

]
ρ+
.

Here and below, by the expression Xa we mean the partial derivative of X with respect to
the variable a. For example the last term on the right-hand side of (1.10) represents the
partial derivative of the expression in brackets with respect to ρ+.

Remark 1.1 As in [MS], we may write the operator C in a more symmetric way:

(Cf)(ρ−, ρ+) =
[
b(ρ−, t)H

′′(ρ−)−
(
H(ρ−, ρ+)−H ′(ρ−)

)
bρ−(ρ−, t)

]
f(ρ−, ρ+)

+
[(
H(ρ−, ρ+)−H ′(ρ−)

)
b(ρ−, t)f(ρ−, ρ+)

]
ρ−

+
[(
H(ρ−, ρ+)−H ′(ρ+)

)
b(ρ+, t)f(ρ−, ρ+)

]
ρ+
.

Though it is the expression (1.10) that will appear more naturally in our calculations as we
derive the equation (1.7). �

1.1 Motivation: Burgers turbulence

In the particular case H(p) = −p2/2, (1.1) reduces to Burgers equation [Bu]. The field
of study concerned with Burgers equation and random initial data or stochastic forcing is
known as Burgers turbulence. Among the motivations for continued investigation in this
area is the desire to confront, in a simpler setting, the delicate interplay between nonlinear
dynamics and statistical structure that arise in genuine turbulence [VF]. Significant recent
advances [DS], [I] on the PDE side underscore the need for continued effort on the statistical
side.

Among those works in the Burgers context, those most closely related to our own are the
following:

• Groeneboom [Gr] determined the statistics of solutions to Burgers equation with white
noise initial data. Burgers equation is not explicitly mentioned—the paper is rather
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concerned with asymptotic behavior of nonparametric estimators, and discusses convex
minorants of Brownian motion with parabolic drift—but these problems are connected
by the Hopf-Lax-Oleinik solution formula and the Legendre transform.

• Sinai [S] and Aurell, Frisch, She [AFS] considered Burgers equation with Brownian
motion initial data, relating the statistics of solutions to convex hulls and addressing
pathwise properties, such as the almost-sure Hausdorff dimension of the set where the
derivative of the convex hull grows. In the same setting, Avellaneda and E [AE] showed
the Markov property (in space) of the initial data is preserved forward in time.

• Carraro and Duchon [CD1-2] considered statistical solutions, which need not coincide
with genuine (entropy) solutions, but realized in this context that Lévy process initial
data (of which Brownian motion is an example) should interact nicely with Burgers
equation. Bertoin [Be] showed this intuition was correct on the level of entropy solu-
tions, arguing in a Lagrangian style and using Getoor’s [Ge] notion of splitting times.

Developing an alternative treatment to that given by Bertoin, which relies less on particulars
of Burgers equation and happens to be more Eulerian, was among the goals of [MS], [KR],
and the present work.

1.2 Motivation: A solvable model in kinetic theory

The operator Q(f, f) in the kinetic equation (1.7) is, as we will see, closely related to the
Smoluchowski coagulation equation, a model for mean-field binary coalesce such as one
observes in aerosols. Indeed, in the case of Burgers equation with Lévy initial data, it
is exactly the Smoluchowski coagulation equation with additive rate which determines the
jump statistics [Be], [MP].

The typical situation, for Smoluchowski [HR] and other kinetic equations [RV], is that we
have some (stochastic or deterministic) dynamics defined on a finite system, and these kinetic
equations emerge upon passage to a scaling limit. The dynamics might not be definable for
the infinite system, and the kinetic equation should describe statistics only approximately
for a large but finite system. In the setting of [Be], [MS], [KR], and the present work, the
kinetic equations give statistics exactly without passage to a rescaled limit. We view this
unusual circumstance as demanding an explanation. Further, our treatment (tracking shocks
as inelastically colliding particles) seems quite at home in the kinetic context.

1.3 Motivation: Integrability

The evolution of the (spatial) generator At implied by (1.6) and (1.7), can be expressed as
a Lax pair

(1.11)
d

dt
At = [At,Bt] = AtBt − BtAt
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where

(1.12) (Btψ)(p) = H ′(p)b(p, t)ψ′(p) +

∫ ∞
p

(
ψ(p+)− ψ(p)

)
H(p, p+)f(p, p+, t) dp+,

where H(p, p+) = (H(p)−H(p+))/(p− p+). In the pure-jump case (drift b = 0), and when
the initial data ρ0(x) is allowed to assume values only in a fixed, finite set of states, the
operators At and Bt in (1.11) can be represented by triangular matrices. The integrability of
this matrix evolution has been investigated by Menon [M2] and Li [Li]. For generic matrices—
where the genericity assumptions unfortunately exclude the triangular case—this evolution
is completely integrable in the Liouville sense. Though the triangular case technically fails
to be Liouville integrable, much can still be said; the evolution is conjugate to straight-line
motion through an appropriate change of variables.

1.4 Main Result

In this section we provide a statistical description of solutions to the scalar conservation law
when the initial condition is a piecewise-deterministic Markov process (PDMP) with drift b0

and jump rate kernel f 0. For this we require some assumptions on the initial rate kernel f 0

and the Hamiltonian H.

Hypothesis 1.1(i) The initial condition ρ0 = ρ0(x) is 0 for x < 0, and is a Markov process
for x ≥ 0 that starts at ρ0(0) = 0. This Markov process has an infinitesimal generator in the
form (1.2) for a drift b0.

(ii) The rate kernel f 0(p−, p+) is C1 and is supported on

{(p−, p+) : P− ≤ p− ≤ p+ ≤ P+},

for some constants P±.

(iii) The Hamiltonian function H : [P−, P+]→ R is C2, convex, has positive right-derivative
at p = P− and finite left-derivative at p = P+.

(iii) The initial drift b0 is C1 and satisfies b0 ≤ 0 with b0(ρ) = 0 whenever ρ /∈ [P−, P+].
�

Our statistical description consists of a one-dimensional marginal, a drift, and a rate
kernel generating the rest of the path. The evolution of the drift and the rate kernel are
given by (1.6) and the kinetic equation (1.7). Evolution of the marginal will be described in
terms of the solutions to these equations. We continue with some definitions.

Definition 1.1(i) We write Bt∗ for the adjoint of the operator Bt that acts on measures.
More precisely, for a probability measure ν, we have(
Bt∗ν

)
(dρ) =

[∫ ρ

−∞
H(ρ∗, ρ)f(ρ∗, ρ) ν(dρ∗)

]
dρ− A(f)(ρ) ν(dρ)− d

dρ

(
H ′(ρ)b(ρ, t)ν(dρ)

)
,
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with the last term is interpreted in weak sense. When the measure ν is absolutely continuous
with respect to the Lebesgue measure with a C1 Radon-Nykodym derivative, then Bt∗ν is
also absolutely continuous with respect to the Lebesgue measure. The action of the operator
Bt∗ on ν can be described in terms of its action on the corresponding Radon-Nykodym
derivative. By slight abuse of notation, we write Bt∗ for the corresponding operator that
now acts on C1 functions. In other words, when ν(dρ) = ν̄(ρ) dρ, then Bt∗ν = (Bt∗ν̄) dρ,
with (

Bt∗ν̄
)
(ρ) =

∫ ρ

−∞
H(ρ∗, ρ)f(ρ∗, ρ)ν̄(ρ∗) dρ∗ − A(f)(ρ)ν̄(ρ)− d

dρ

(
H ′(ρ)b(ρ, t)ν̄(ρ)

)
.

(ii) We writeM for the set of measures andM1 for the set of probability measures. �

Theorem 1.1 Under Hypothesis 1.1, the kinetic equation (1.7) has a unique C1 solution
subject to the initial condition f(p−, p+, 0) = f 0(p−, p+). Moreover, given a C1 rate f , there
exists a unique `c : [0,∞)→M1 such that `c(dρ, 0) = δc(dρ), and

(1.13)
d`c

dt
(dρ, t) =

(
Bt∗`c(·, t)

)
(dρ, t).

The kernels described by Theorem 1.1 are precisely what we need to describe the statistics
of the solution ρ, which brings us to our main result:

Theorem 1.2 When Hypothesis 1.1 holds, the entropy solution ρ to (1.1) for each fixed t > 0
has x = 0 marginal given by `0(dρ0, t) and for 0 < x < ∞ evolves according to a Markov
process with the generator At. Moreover, the process t 7→ ρ(a, t) is an inhomogeneous Markov
process with generator Bt, for every a ≥ 0.

Remark 1.2(i) According to Hypothesis 1.1(ii), the function H is increasing. This restric-
tion on H can be relaxed almost completely. The main role of the condition H ′ > 0 is that all
shock discontinuities of ρ travel with negative velocity so that they cross any fixed location,
say x = a eventually. This allows us to assert that if ρ(a, t) is known, then the law of ρ(x, t)
can be determined uniquely for all x > a. We are doing this for all t > 0. In general, we
may try to determine ρ(x, t) for x > a(t), provided that ρ(a(t), t) is specified. The condition
H ′ > 0, allows us to choose a(t) constant. If instead we can find a negative constant c such
that H ′(ρ) > c, then ρ̂(x, t) := ρ(x− ct, t) satisfies

ρ̂t = Ĥ(ρ̂)x,

for Ĥ(ρ) = H(ρ) − cρ, which is increasing. Hence, the process t 7→ ρ̂(x, t) = ρ(x − ct, t) is
now Markovian with a generator B̂t that we obtain from Bt by replacing H with Ĥ. Even
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an upper bound on H ′ can lead to a result similar to Theorem 1.2. For example if H ′ < 0,
then x 7→ ρ(x, t) is a Markov process but now as we decrease x.

(ii) The condition ρ ∈ [P−, P+] is used only in Theorem 1.1, which guarantees the existence
of a unique classical solution to (1.7).

(iii) If we drop the assumption b ≤ 0, then Theorem 1.2 is still valid so long as b stays finite.

(iv) We refer to [R] for more heuristics and discussions about Theorem 1.2. Most notably, it
is shown in [R] that one may arrive at the equation (1.7) by taking an initial condition with
only two jump discontinuities! The reader may take this derivation of (1.7) as a heuristic
explanation for the very form of the operators Q and C in (1.8)-(1.10). �

We continue with an outline of the paper:

(i) In Section 2, we show that the evolution of the PDE (1.1) for piecewise smooth solutions
is equivalent to a particle system in R× [P−, P+]. We restrict this particle system to a large
finite interval [0, L] and introduce a stochastic boundary condition at L. This restriction
allows us to reduce our main result to a finite system; the precise statement can be found in
Theorem 2.1 of Section 2.

(ii) The strategy of the proof of Theorem 2.1 will be described in Section 3. Our strategy
is similar to the one that was utilized in our previous work [KR]: Since we have a candidate
for the generator of the process x 7→ ρ(x, t), we have a candidate measure, say µ(·, t) for the
law of ρ(·, t). We establish Theorem 2.1 by showing that this candidate measure satisfies the
forward equation associated with Markovian dynamics of the underlying particle system (see
the equation (3.4) in Section 3). The particle system has a deterministic evolution inside
the interval and a stochastic (Markovian) dynamics at the right end boundary point.

(iii) The rigorous derivation of the forward equation will be carried out in Section 4.

(iv) Section 5 is devoted to the proof of Theorem 2.1.

(v) In Section 6, we show that the equation (1.7) has a unique classical solution. �

We are now in a position to compare the proof that was carried out in [KR] when b = 0,
with the proof we provide in the present paper:

• When b = 0, the velocity v of the particle configuration is constant and the dynamics
inside the interval [0, L] can be recast as a billiard. The rigorous verification of the
forward equation (3.4) was achieved in [KR] by comparing the billiard domain with its
translation in the direction of the velocity v. Theorem 4.1 in Section 4 offers a more
robust approach for rigorous verification of the forward equation that would work even
when the velocity v in a billiard-type model changes with time, space and density.
This non-constant feature of the velocity is responsible of the emergence of the first
order operator C in (1.7).
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• Theorem 4.1 of Section 4, reduces the proof of the main theorem to an identity, namely
the forward equation (3.4) of Section 3. The verification of this equation when b = 0
is rather straightforward. When b is nonzero, the verification of (3.4) is significantly
more involved and requires various identities related to the integro-differential equation
(1.7) and the flow of the vector field b. These identities are collected in Lemma 2.1.
We also use Proposition 5.1 to organize the left-hand side of the forward equation as
a sum of 9 terms.

2 Particle System

Let us assume that the initial condition ρ0, in the PDE (1.1) is of the following form

• ρ0(x) = 0 for x ≤ 0.

• There exists a discrete set I0 = {xi : i ∈ N}, with 0 < x1 < · · · < xi < . . . such
that for every x > 0 with x /∈ I0, we have ρ0

x(x) = b0(ρ0(x)). Here by ρ0
x denotes the

derivative of ρ0 with respect to its argument x.

• If ρ±i = ρ0(xi±) denote the right and left values of ρ0 at xi, then ρ−i < ρ+
i .

Now if ρ is an entropic solution of (1.1) with initial ρ0, then we may apply the method of
characteristics to show that for each t ≥ 0, the function ρ(·, t) has a similar form. More
precisely, there are pairs q(t) =

(
(xi(t), ρi(t)) : i = 0, 1, . . .

)
, with

0 = x0(t) < x1(t) < · · · < xi(t) < . . . ,

such that ρ(xi(t)+, t) = ρi(t) and that for x > 0 and x 6= xi(t) for i ∈ N, we have

(2.1) ρx(x, t) = b(ρ(x, t), t),

where b is the solution to (1.6), subject to the initial condition b(x, 0) = b0(x). Because of
(2.1), the data q(t) determines ρ(·, t) completely. To explain this, let us write φz(m; t) for
the flow of the ODE (2.1). More precisely, if ρ(x) = φx(m; t), then ρx(x) = b(ρ(x), t), and
ρ(0) = m. Then

(2.2) ρ
(
x, t
)

=
∞∑
i=0

φx−xi(t)
(
ρi(t); t

)
11
(
xi(t) ≤ x < xi+1(t)

)
,

for x ≥ 0. Because of this, we can fully describe the evolution of ρ(·, t) by describing an
evolution of the particle system q(t). Indeed from the PDE (1.1) and celebrated Rankine-
Hugoniot Formula, we have

(2.3) ẋi = −H(ρ̂i−1, ρi), ρ̇0 = H ′(ρ0)b(ρ0, t), ρ̇i =
(
H ′(ρi)−H(ρ̂i−1, ρi)

)
b(ρi, t),
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for i ∈ N, where ρ̂i−1(t) = φxi−xi−1
(ρi−1(t), t). Here by ḟ we mean the time derivative of the

function f with respect to t, and we regard (2.3) as a system of ODEs. We note that (2.3)
gives a complete description of q in an inductive fashion; once (xi−1, ρi−1) is determined,
then we use (2.3) to write a system of two equations for the pair (xi, ρi). Moreover (2.3)
holds so long as x′is do not collide. When there is a collision between xi and xi+1, for some
i = 0, 1, . . . , we remove xi+1 from the system, replace ρi with ρi+1, and relabel (xj, ρj) as
(xj−1, ρj−1) for j > i+ 1.

Proposition 2.1 (i) The function ρ(x, t), defined by equation (2.2), with q(t) evolving as
above, is the unique entropy solution of (1.1) for x, t ≥ 0.

We do not prove Proposition 2.1 because a variant of it will be proved below as Propo-
sition 2.2.

According to Theorem 1.2 if ρ(·, 0) is a PDMP with drift b0 and jump rate f 0, then ρ(·, t)
is also a PDMP with drift b(·, t) and f(·, ·, t). We may translate this as a statement about
the law of our particle system q(t). However, since the dynamics of q are infinite dimensional
(involves infinite number of particles to the right of the origin), we may take advantage of
the finiteness of propagation speed in (1.1) and reduce Theorem 1.2 to an analogous claim
for a finite interval [0, L].

Since H ′ > 0 by Hypothesis 1.1(iii), all particles travel to left. Because of this, we need
to choose appropriate boundary dynamics at the right boundary L only; the shocks and
characteristics only flow outward across x = 0, and any boundary condition we would assign
at x = 0, would thus be irrelevant. The involved analysis will all pertain to the following
result.

Theorem 2.1 Assume Hypothesis 1.1. For any fixed L > 0, consider the scalar conservation
law

(2.4)


ρt = H(ρ)x (x, t) ∈ (0, L)× (0,∞)

ρ = ρ0 x ∈ [0, L]× {t = 0}
ρ = ζ (x, t) ∈ {x = L} × (0,∞)

with initial condition ρ0 (restricted to [0, L]), open boundary at x = 0, and random boundary
ζ at x = L. Suppose the process ζ has ζ(0) = ρ0(L) and evolves according to the time-
dependent rate kernel H(ρ,ρ+)f(ρ,ρ+, t) and drift b(ρ, t)H ′(ρ), independently of ρ0 (given
ρ0(L)). Then for all t > 0 and a ∈ [0, L), the law of

(
ρ(x, t) : x ∈ [a, L]

)
is as follows:

(i) The x = a marginal is `c(dρ0, t), for c = ρ0(a).

(ii) The rest of the path is a PDMP with generator At (rate kernel f(ρ−, ρ+, t) and drift
b(ρ, t)).

9



To prove our main result Theorem 1.2, we can send L → ∞, applying Theorem 2.1 on
each [0, L], and use bounded speed of propagation to limit the respective influences of far
away particles (unbounded system) or truncation with random boundary (bounded system).
The argument is quite short and can be found in [KR].

We prove Theorem 2.1 by showing that the particle system q(t) restricted to the interval
[0, L] has the correct law predicted by this theorem. For this we have two tasks at hand:

(i) Give a precise description for the evolution of q restricted to [0, L].

(ii) Give a precise description of the law of q(t), when the corresponding x 7→ ρ(x, t) is a
Markov process with generator At.

To carry out our first task, let us make some definitions.

Definition 2.1(i) The configuration space for our particle system q, is the set

∆L = ∪∞n=0∆̄L
n ,

where ∆̄L
n is the topological closure of ∆L

n , with ∆L
n denoting the set{

q =
(
(xi, ρi) : i = 0, 1, . . . , n

)
: x0 = 0 < x1 < · · · < xn < xn+1 = L, ρ0, . . . , ρn ∈ R

}
.

We write n(q) for the number of particles i.e., n(q) = n means that q ∈ ∆L
n . What we have

in mind is that ρi(t) = ρ(xi(t)+, t) with x1, . . . , xn denoting the locations of all shocks in
(0, L).

(ii) Given a realization q =
(
0, ρ0, x1, ρ1, . . . , xn, ρn

)
∈ ∆̄L

n , we define

ρ
(
x, t; q

)
= Rt(q)(x) =

n∑
i=0

φx−xi
(
ρi; t
)
11
(
xi ≤ x < xi+1

)
,

ρ̂i−1(t) = ρ(xi(t)−, t; q(t)) = φxi(t)−xi−1(t)(ρi−1(t); t).

(iii) The process q(t) evolves according to the following rules:

(1) So long as xi remains in (xi−1, xi+1), it satisfies

ẋi = −H(ρ̂i−1, ρi).

(2) We have ρ̇0 = H ′(ρ0)b(ρ0, t), and for i > 0,

ρ̇i =
(
H ′(ρi)−H(ρ̂i−1, ρi)

)
b(ρi, t).
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(3) With rate
H(ρ̂n, ρn+1)f

(
ρ̂n, ρn+1, t),

the configuration q gains a new particle (xn+1, ρn+1), with xn+1 = L. This new config-
uration is denoted by q(ρn+1).

(4) When x1 reaches the origin, we relabel particles (xi, ρi), i ≥ 1, as (xi−1, ρi−1).

(5) When xi+1 − xi becomes 0, then q(t) becomes qi(t), that is obtained from q(t) by
omitting (ρi, xi) and relabeling particles to the right of the i-th particle.

�

Remark 2.1(i) Recall that we expect the process t 7→ ρ(L, t) to be an inhomogeneous
Markov process with generator Bt. From the way the boundary dynamics is described in
(3), the process t 7→ ρ(L, t; q(t)) =: m(t) may appear not exactly what we expected because
of its dependence on the particle system to the right of L. Once an explicit construction of
a process t 7→ m̄(t), with generator Bt will be given below, it will be clear that indeed m(t)
is a realization of m̄(t); it may be regarded as as an inhomogeneous Markov process with
infinitesimal generator Bt and initial condition m(0) = ρ0(L).

The process m̄ with generator Bt may be realized with the aid of a sequence of indepen-
dent standard exponential random variables

(
τi : i ∈ N

)
. Let us write βts(a) for the flow

of the ODE associated with speed b̂(m, t) := H ′(m)b(m, t). In other words, if m̄(t) = βts(a),
then

d

dt
m̄(t) = b̂

(
m̄(t), t

)
, m̄(s) = a.

We also set g(ρ−, ρ+, t) = H(ρ−, ρ+)f(ρ−, ρ+, t), and

η(m, t) =

∫ ∞
m

g(m, ρ+, t) dρ+.

Now construct a sequence z =
(
(σi,mi) : i = 0, 1, . . .

)
inductively by the following recipe:

• m0 = ρ0(L), and σ0 = 0.

• Given (σi,mi), we set

σi+1 = min

{
s > σi :

∫ s

σi

η
(
βθσi(mi), θ

)
dθ ≥ τi+1

}
,

m̂i = βσi+1
σi

(mi).

• We select mi+1 randomly according to the probability measure

η
(
m̂i, σi+1

)−1
g
(
m̂i,mi+1, σi+1

)
dmi+1.
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Using our sequence z, we construct m(t) by

m̄(t) =
∞∑
i=0

βtσi(mi)11
(
t ∈ [σi, σi+1)

)
.

By induction on i, we can readily show that if at time σi, there are exactly n particle to the
left of L, then ρ̂n = m̂i−1. This is an immediate consequence of Proposition 2.1, namely, in
between the jumps at x = L, the function ζ(t) = φL−xn(t)(ρn(t); t) satisfies

ζ̇(t) = H ′(ζ(t))b(ζ(t), t).

(See the proof of Proposition 2.2(i) below.) Hence the recipe we gave in (3) above is
compatible with our expectation: the process ρ(L, t) is a Markov process with generator Bt.

(ii) A similar recipe may be used to construct a realization of a process generated byAt. Such
a construction allows us to write down an explicit formula for the law of the corresponding
process as we will see in Definition 2.2(ii) below. �

The following variant of Proposition 2.1 provides us with a stability of solutions to (2.4).

Proposition 2.2 (i) The function ρ(x, t) = ρ(x, t; q(t)), with q(t) evolving as above, is the
unique entropy solution of (2.4), with the boundary condition ρ(L, t) = m(t).

(ii) If ρ and ρ′ are entropy solutions of (1.1) in the interval [0, L], and s < t, then∫ L

0

|ρ′(x, t)− ρ(x, t)| dx ≤
∫ L

0

|ρ′(x, s)− ρ(x, s)| dx

+

∫ t

s

∣∣H(ρ′(L, θ))−H(ρ(L, θ))
∣∣ dθ.(2.5)

The proof of Proposition 2.2 will be given at the end of this section. We now turn to our
second task, namely a precise description for the PDMP ρ(·, t) in terms of q(t).

Definition 2.2(i) We set

Γ(ρ, x, t) =

∫ x

0

λ(φy(ρ; t), t)dy

Γ(q, t) =

∫ L

0

λ
(
ρ
(
y, t; q

))
dy =

n∑
i=0

Γ(ρi, xi+1 − xi, t),

12



(ii) We define a measure µ(dq, t) on the set ∆L that is our candidate for the law of q(t).
The restriction of µ to ∆L

n is denoted by µn(dq, t). This measure is explicitly given by

`(dρ0, t) exp {−Γ(q, t)}
n∏
i=1

f
(
φxi−xi−1

(ρi−1; t), ρi, t) dxidρi,

where f solves (1.7) and ` solves (1.13).

(iii) When the kernel f depends on t, we write λ(ρ−, t), A(ρ−, t), L(ρ−, ρ+, t), Q(f, f)(ρ−, ρ+, t),
Q±(f, f)(ρ−, ρ+, t),, and (Cf)(ρ−, ρ+, t), for the resulting λ, A, L, Q, Q±, and C. �

There are several identities that we will need for the proof of Proposition 2.2 and Theo-
rem 2.1. We prove them in the following Lemma.

Lemma 2.1 Let us write Txh(ρ) = h(φx(ρ; t)) and (Dh)(ρ) = b(ρ, t)h′(ρ), then

(2.6)
dTx
dx

= DTx = TxD.

Moreover

b(ρ, t)Γρ(ρ, x, t) = λ
(
φx(ρ; t), t

)
− λ(ρ, t),(2.7) [

φx(ρ; t)
]
t

=
[
H ′(φx(ρ; t))−H ′(ρ)

]
b(φx(ρ; t), t),(2.8)

λt(ρ, t) +H ′(ρ)b(ρ, t)λρ(ρ, t) = b(ρ, t)Aρ(ρ, t),(2.9)

Γt(ρ, x, t) = A
(
φx(ρ; t), t

)
− A(ρ, t)−H ′(ρ)

(
λ
(
φx(ρ; t), t

)
− λ(ρ, t)

)
,(2.10) [

φx(ρ; t)
]
ρ
b(ρ, t) = b(φx(ρ; t), t).(2.11)

Proof The family of operators {Tx : x ∈ R}, is a group in x. The equation (2.6) is an

immediate consequence of

Tx+zh = Tx
(
h ◦ φz(·; t)

)
= Tx

(
h+ zDh+ o(z)

)
= Txh+ zTxDh+ o(z),

Tx+zh = Tz
(
Txh
)

=
(
Txh
)
◦ φz(·; t) = Txh+ zD

(
Txh
)

+ o(z).

For the proof of (2.7) use the definition of Γ to write,

b(ρ, t)Γρ(ρ, x, t) =

∫ x

0

b(ρ, t)
[
λ
(
φy(ρ; t), t

)]
ρ
dy =

∫ x

0

[
λ
(
φy(ρ; t), t

)]
y
dy

= λ
(
φx(ρ; t), t

)
− λ(ρ, t),

where we used (2.6) for the second equality. This completes the proof of (2.7).
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Set
X(ρ, x, t) :=

[
φx(ρ; t)

]
t
−
[
H ′(φx(ρ; t))−H ′(ρ)

]
b(φx(ρ; t), t).

We wish to show that X(ρ, x, t) = 0 for all (ρ, x, t). This is true for x = 0. Differentiating
with respect to x yields

Xx(ρ, x, t) =
[
b(φx(ρ; t), t)

]
t
−
[
H ′(φx(ρ; t))

]
x
b(φx(ρ; t), t)

−
[
H ′(φx(ρ; t))−H ′(ρ)

][
b(φx(ρ; t), t)

]
x

= bt(φx(ρ; t), t) + bρ(φx(ρ; t), t)
[
φx(ρ; t)

]
t
−H ′′(φx(ρ; t))b2(φx(ρ; t), t)

−
[
H ′(φx(ρ; t))−H ′(ρ)

]
(bbρ)(φx(ρ; t), t)

= bρ(φx(ρ; t), t)
[
φx(ρ; t)

]
t
−
[
H ′(φx(ρ; t))−H ′(ρ)

]
(bbρ)(φx(ρ; t), t)

= bρ(φx(ρ; t), t)X(ρ, x, t),

where we used (1.6) for the third equality. As a result.

X(ρ, x, t) = X(ρ, 0, t) exp

[∫ x

0

bρ(φz(ρ; t), t) dz

]
= 0.

This completes the proof of (2.8).

For (2.9), we integrate both sides of (1.7) with respect to ρ+ to assert

λt(ρ, t) =

∫ [
Q(f, f)(ρ, ρ+, t) + (Cf)(ρ, ρ+, t)

]
dρ+

=

∫∫
11
(
ρ ≤ ρ∗ ≤ ρ+

)(
H(ρ∗, ρ+)−H(ρ, ρ∗)

)
f(ρ, ρ∗, t)f(ρ∗, ρ+, t) dρ∗dρ+

−
∫ ∞
ρ

[
A(ρ+, t)− A(ρ, t)−H(ρ, ρ+)

(
λ(ρ+, t)− λ(ρ, t)

)]
f(ρ, ρ+, t) dρ+

+ b(ρ, t)

∫ ∞
ρ

{
Hρ(ρ, ρ+)f(ρ, ρ+, t) +

[
H(ρ, ρ+)−H ′(ρ)

]
fρ(ρ, ρ+, t)

}
dρ+

+

∫ ∞
ρ

[(
H(ρ, ρ+)−H ′(ρ+)

)
b(ρ+, t)f(ρ, ρ+, t)

]
ρ+

dρ+

=

∫ ∞
ρ

(
A(ρ∗, t)−H(ρ, ρ∗)λ(ρ∗, t)

)
f(ρ, ρ∗, t) dρ∗

−
∫ ∞
ρ

[
A(ρ+, t)− A(ρ, t)−H(ρ, ρ+)

(
λ(ρ+, t)− λ(ρ, t)

)]
f(ρ, ρ+, t) dρ+

+ b(ρ, t)Aρ(ρ, t)−H ′(ρ)b(ρ, t)λρ(ρ, t)

= b(ρ, t)Aρ(ρ, t)−H ′(ρ)b(ρ, t)λρ(ρ, t),
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as desired. Here we have used the fact that f(ρ, ρ+, t) = 0 for ρ+ > P+, and

lim
ρ+→ρ

H(ρ, ρ+) = H ′(ρ),

for replacing the integral on the fifth line with 0.

We now turn to the proof of (2.10). With the aid of (2.7), we may rewrite (2.10) as∫ x

0

[
λ(φy(ρ; t), t)

]
t
dy +H ′(ρ)b(ρ, t)

∫ x

0

[
λ(φy(ρ; t), t)

]
ρ
dy =

∫ x

0

[
A
(
φy(ρ; t), t

)]
y
dy.

For this, it suffices to check

(2.12)
[
λ(φx(ρ; t), t)

]
t
+H ′(ρ)b(ρ, t)

[
λ(φx(ρ; t), t)

]
ρ

=
[
A
(
φx(ρ; t), t

)]
x
,

for every x. Note that by (2.6)

b(ρ, t)
[
λ(φx(ρ; t), t)

]
ρ

= b(φx(ρ; t), t)λρ(φx(ρ; t), t),[
A
(
φx(ρ; t), t

)]
x

= b(φx(ρ; t), t)Aρ
(
φx(ρ; t), t

)
.

Hence (2.12) is equivalent to

(2.13)
[
λ(φx(ρ; t), t)

]
t
+H ′(ρ)b(φx(ρ; t), t)λρ(φx(ρ; t), t) = b(φx(ρ; t), t)Aρ

(
φx(ρ; t), t

)
.

We carry out the time differentiation of the first term and use (2.8) to rewrite (2.13) as

(2.14) λt(φx(ρ; t), t) +H ′(φx(ρ; t))b(φx(ρ; t), t)λρ(φx(ρ; t), t) = b(φx(ρ; t), t)Aρ
(
φx(ρ; t), t

)
.

But (2.14) is an immediate consequence of (2.9). This completes the proof of (2.10).

We finally turn to the proof of (2.11). Set

Y (x) = Y (x, ρ, t) = b(φx(ρ; t), t)−
[
φx(ρ; t)

]
ρ
b(ρ, t).

Evidently, Y (0) = 0. On the other hand

Y ′(x) = bρ
(
φx(ρ; t), t

)
b
(
φx(ρ; t), t

)
−
[
b
(
φx(ρ; t), t

)]
ρ
b(ρ, t)

= bρ
(
φx(ρ; t), t

)
b
(
φx(ρ; t), t

)
− bρ

(
φx(ρ; t), t

)[
φx(ρ; t)

]
ρ
b(ρ, t)

= bρ
(
φx(ρ; t), t

)
Y (x).

As a result,

Y (x) = Y (0) exp

(∫ x

0

bρ
(
φy(ρ; t), t

)
dy

)
= 0,
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as desired. �

Remark 2.2 As an immediate consequence of (2.8) and (2.11), we have

dρ̂i
dt

=
[
H ′(ρ̂i)−H(ρ̂i, ρi+1)

]
b(ρ̂i, t),

because
ρ̂i(t) = φxi+1(t)−xi(t)

(
ρi(t); t

)
.

However, if we do not vary (xi, xi+1, ρi) with time, and set

ρ̂′i(t) = φxi+1−xi
(
ρi; t
)
,

then instead we have the following formula that will be used in the proof of Theorem 2.1,

(2.15)
dρ̂′i
dt

=
[
H ′(ρ̂′i)−H(ρi)

]
b(ρ̂′i, t),

by (2.8). �

We are now ready to establish Proposition 2.2.

Proof of Proposition 2.2(i) We first show that ρ solves (1.1) classically away from the
shock curves. For this, take a point (x, t) such that x ∈

(
xi(t), xi+1(t)

)
, for some nonnegative

integer i. Let us write φ̂x(ρ; t) for
[
φx(ρ; t)

]
ρ
. Then

ρt(x, t) =
(
φx−xi(t)(ρi(t); t)

)
t

=
[
H ′(ρ(x, t))−H ′(ρi(t))

]
b(ρ(x, t), t) + b(ρ(x, t), t)H

(
ρ̂i−1(t), ρi(t)

)
+ φ̂x−xi(t)(ρi(t); t)

[
H ′(ρi(t))−H(ρ̂i−1(t), ρi(t))

]
b(ρi(t), t)

=
[
H ′(ρ(x, t))−H ′(ρi(t))

]
b(ρ(x, t), t) + b(ρ(x, t), t)H

(
ρ̂i−1(t), ρi(t)

)
+
[
H ′(ρi(t))−H(ρ̂i−1(t), ρi(t))

]
b(ρ(x, t), t)

=H ′(ρ(x, t))b(ρ(x, t), t) = H ′(ρ(x, t))ρx(x, t),

as desired. Here we used (2.8) and (2.11) for the second and third equalities respectively.
Since Rankine-Hugoniot Formula is valid at shock curves and (1.1) holds classically away
from the shock curves, we deduce that ρ is a weak solution of (1.1). On the other hand,
since initially ρ(xi(0)−, 0) < ρ(xi(0)+, 0), and this inequality persists at later times by the
way the dynamics of q(t) is defined, we deduce that ρ is an entropy solution. We are done if
we can show that there is at most one entropy solution for given initial data and boundary
condition. This is an immediate consequence of the second part.
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(ii) The proof of (2.5) with no boundary condition can be found in Lax [La]. We only sketch
the proof of (2.5) because it is straightforward adaptation of the proof of Theorem 3.4 in
[La].

Take a sequence

0 = y0(t) < y1(t) < · · · < yn(t) < yn+1(t) = L,

such that on each interval (yi(t), yi+1(t)), either ρ′(·, t)−ρ(·, t) is positive or negative. Without
loss of generality, we may assume that ρ′(x, t) − ρ(x, t) > 0 for x ∈ (0, y1(t)). Then we can
write ∫ L

0

|ρ′(x, t)− ρ(x, t)| dx =
n∑
i=0

(−1)i
∫ yi+1(t)

yi(t)

(
ρ′(x, t)− ρ(x, t)

)
dx

As in [La], we can readily show that in between the jumps of ρ or ρ′, the expression

d

dt

∫ L

0

|ρ′(x, t)− ρ(x, t)| dx

equals to

n∑
i=0

(−1)i

[∫ yi+1(t)

yi(t)

(
ρ′t − ρt

)
(x, t) dx+

(
ρ′ − ρ

)
(yi+1(t)−, t)dyi+1

dt
(t)−

(
ρ′ − ρ

)
(yi(t)+, t)

dyi
dt

(t)

]

=
n∑
i=0

(−1)i
[(
H(ρ′)−H(ρ)

)
(yi+1(t)−, t)−

(
H(ρ′)−H(ρ)

)
(yi(t)+, t)

]
+

n∑
i=0

(−1)i
[(
ρ′ − ρ

)
(yi+1(t), t)

dyi+1

dt
(t)−

(
ρ′ − ρ

)
(yi(t), t)

dyi
dt

(t)

]
.

From the convexity of H and the entropy condition it follows that each summand associated
with yi, for i = 1, . . . , n contributes non-positively. The proof of this is exactly as in [La]
and is omitted. On the other hand, the contribution of the y0 term is exactly H(ρ(0, t)) −
H(ρ′(0, t) which is nonpositive because ρ(0, t) ≤ ρ′(0, t), and H is increasing. As a result,

d

dt

∫ L

0

|ρ′(x, t)− ρ(x, t)| dx ≤
∣∣H(ρ′(L, t))−H(ρ(L, t))

∣∣,(2.16)

provided that no jump occurs for either ρ or ρ′ at (L, t). If the jumps of ρ or ρ′ at L occur
at s1, . . . , sk with s = s0 < s1 < · · · < sk < sk+1 = t, then we integrate (2.16) over intervals
(si, si+1), i = 0, . . . , k and add up over i to obtain (2.5). �
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3 Main Strategy and Some Preliminaries

We first explain our strategy for establishing Theorem 2.1. Without loss of generality, we
may assume that a = 0. Let us write Γ for the set of piecewise C1 functions ρ : [0, L]→ R,
and regard Γ as Banach space with total variation norm. We also write Stρ0(x) = ρ(x, t)
for the solution in (2.4). Because of the stochastic boundary condition, the operator St is
random, and we write E for the corresponding expected value. According to Theorem 2.1,
we have a candidate for the law of the solution ρ(·, t) ∈ Γ whenever the assumptions of
Theorem 2.1 are met. Let us write ν

(
dρ(·), t

)
for this candidate, which is a probability

measure on Γ. (The measure ν is the measure µ of Definition 2.2, expressed in terms of ρ
instead of q.) Theorem 2.1 is equivalent to the claim

(3.1)

∫
F
(
ρ(·)
)
ν
(
dρ(·), t

)
= E

∫
F
(
Stρ0(·)

)
ν
(
dρ0(·), 0

)
,

for every bounded continuous function F : Γ→ R. For this, it suffices to establish (3.1) for
F of the form

(3.2) F (ρ) = exp

[∫ L

0

J(x)ρ(x) dx

]
,

where J is a continuous function.
As we have seen in Proposition 2.2, there is a simple recipe for building a density ρ ∈ Γ

from a configuration q ∈ ∆L
n , namely the function Rt : ∆L → Γ defined by

Rt(q)(x) =

n(q)∑
i=0

φx−xi(ρi; t)11
(
xi ≤ x < xi+1

)
.

If we set F̂ (q, t) = F
(
Rt(q)

)
, then (3.1) reads as∫

F̂
(
q, t
)
µ
(
dq, t

)
= E

∫
F̂
(
Ψt

0q, t
)
µ(dq, 0

)
,

where Ψt
0q denotes q(t) with the initial condition q(0) = q. To ease the notation, we set

G(q) = F̂ (q, t). Observe that the function G : ∆L → R satisfies the following conditions:
For every q =

(
(x0, ρ0), . . . , (xn, ρn)

)
∈ ∆L,

(i) G(q) = G(qi), whenever xi+1 = xi;

(ii) G(q) = G
(
q(ρn+1)

)
.
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This is an immediate consequence of the fact thatG is a function of the expression
∫ L

0
JRt(q) dx.

We wish to show

(3.3)

∫
G
(
q
)
µ
(
dq, t

)
= E

∫
G
(
Ψt

0q
)
µ(dq, 0

)
.

In fact formally q(t) has a generator L = L∗ that is a sum of first order operators (coming
from the deterministic motion of particles inside the interval (0, L)), and a pure jump part
(coming from the stochastic dynamics at the boundary x = L). We establish (3.3) by
verifying that the time derivatives of both sides of (3.3) match: a variant of the equality

(3.4) µ̇n =
(
L∗µ

)n
,

for all n ≥ 0, where L∗ is the adjoint of the operator L. Here and below, we write νn for the
restriction of a measure ν to ∆L

n . Also, given G : ∆L → R, we write Gn for the restriction
of the function G to the set ∆L

n . To verify (3.3) or (3.4), we show

(3.5)

∫
Gn dµ̇n =

∫ (
LG
)n
dµn,

for every C1 admissible function G. This is achieved in three steps.

(i) We differentiate µn with respect to time and derive an explicit formula for this deriva-
tive in the form µ̇n = Xnµn. We regard Xn as the Radon-Nykodym derivative of µ̇n

with respect to µn.

(ii) We differentiate the expected value of G(q(t)), that can be expressed as the expected
value of LG(q(t)). This step is more challenging to carry out because the deterministic
part of the dynamics is discontinuous at collision times.

(iii) We use (i) and (ii) to match both sides of (3.5).

To prepare for Step (ii), we introduce some notation for the particle dynamics

Definition 3.1(i) For 0 ≤ s ≤ t and q ∈ ∆L, we write ψtsq for the deterministic evolution
from time s to t of the configuration q according to the annihilating particle dynamics for
the PDE, without random entry dynamics at x = L.

(ii) Given a configuration q =
(
(x0, ρ0), . . . , (xn, ρn)

)
and ρ+ ∈ R, write ερ+q for the config-

uration
(
(x0, ρ0), . . . , (xn, ρn), (L, ρ+)

)
.

(iii) Write Ψt
sq for the random evolution of the configuration according to deterministic

particle dynamics interrupted with random entries at x = L according to the boundary
process as in (3) in Section 2, where the latter has been started at time s with value
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φL−xn(ρn; s). In particular, if the jumps between times s and t occur at times τ1 < · · · < τk
with values m1, · · · ,mk, then

(3.6) Ψt
sq = ψtτkεmk

ψτkτk−1
εmk−1

· · ·ψτ2τ1 εm1ψ
τ1
s q.

(iv) For n ≥ 1, and i ∈ {0, . . . , n − 1}, we write ∂i∆
L
n for the portion of the boundary ∆L

n

such that xi = xi+1. Note that q(t) reaches the boundary set ∂0∆L
n at time τ if at this time

x1(τ) = 0. For time t immediately after τ , the configuration q(t) belongs to ∆L
n−1 with ρ0

taking new value. Similarly q(t) reaches the boundary set ∂iD
L
n for some i > 0 at time τ

if at this time xi+1 collides with xi. For time t immediately after τ , the configuration q(t)
belongs to ∆L

n−1.

(v) We write ∂n+1∆L
n+1 for the set of points q ∈ ∆L

n+1 with xn+1 = L. When q ∈ ∆L
n , and a

new particle is created at L at time τ by the stochastic boundary dynamics, the configuration
q(τ+) is regarded as a boundary point in ∂n+1∆L

n+1.

(vi) We write L for the generator of the process q(t). This generator can be expressed
as L = L0 + Lb, where L0 is the generator of the deterministic part of dynamics, and Lb
represents the Markovian boundary dynamics. The deterministic dynamics restricted to ∆L

n

has a generator that is denoted by L0n. While q(t) remains in ∆L
n , its evolution is governed

by an ODE of the form
dq

dt
(t) = b

(
q(t), t

)
,

with b = bn : ∆L
n → R2n+1, that can be easily described with the aid of rules (1) and (2)

of Definition 2.1(iii). Given this vector field, the generator L0n is given by

L0nF = b · ∇F,

where ∇F is the full gradient of F with respect to variables
(
ρ0, x1, ρ1, . . . , xn, ρn

)
. We also

write L∗0n for the adjoint of L0n with respect to the Lebesgue measure:

L∗0nµ = ∇ · (µb).

�

Proposition 3.1 For any s,q, the process Ψt
sq is strong Markov.

This assertion follows after recognizing Ψt
sq as a piecewise-deterministic Markov process

described in some generality by Davis [Da].
Clearly (3.3) would follow if we can show

(3.7)
d

ds

∫
E G(Ψt

sq)µ(dq, s) = 0
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for 0 < s < t. The differentiation of µ(dq, s) can be carried out directly and poses no
difficulty. As for the contribution of G(Ψt

sq) to the s-derivative, we need to show

(3.8)
d

ds
E G(Ψt

sq) = −E LG(Ψt
sq),

where L is the infinitesimal generator of q(·). Since the deterministic part of the evolution
is discontinuous in time, the justification of (3.8) requires some work and will be carried out
in Section 4. We end this section with a lemma that will be used for the proof of (3.8). Note
that for the differentiation in (3.8) we will need to compare E G(Ψt

sq) and E G(Ψt
s′q) for

0 < s′ < s ≤ t. As a warm-up we verify the Lipschitzness of the function s 7→ E G(Ψt
sq).

Lemma 3.1 Fix t > 0. There exists a constant C0 = C0(P−, P+, J, f
0) such that the function

G(q, s) = E G(Ψt
sq) satisfies

(3.9) |G(q, s′)−G(q, s)| ≤ C0(n+ 1)|s′ − s|,

for all q ∈ ∆L
n and s, s′ ∈ [0, t].

Proof (Step 1.) The proof follows from the L1-stability (2.5) and a coupling argument for
the stochastic boundary dynamics. Let us write

ρ(x, t) = Rt

(
Ψt
sq
)
(x), ρ′(x, t) = Rt

(
Ψt
s′q
)
(x).

Since ρ takes value in a bounded interval [P−, P+], and G = F ◦ Rt for F given by (3.2),
(3.9) would follow if we can find a constant c1 = c1(P−, P+, f

0), such that

(3.10) E
∫ L

0

∣∣ρ′(x, t)− ρ(x, t)
∣∣ dx ≤ c1(n+ 1)|s′ − s|,

for all q ∈ ∆L
n and s, s′ ∈ [0, t]. On account of (2.5), it suffices to find constants c2 =

c2(P−, P+, f
0) and c3 = c3(P−, P+, f

0) such that

E
∫ L

0

∣∣ρ′(x, s)− ρ(x, s)
∣∣ dx ≤ c2(n+ 1)|s′ − s|,(3.11)

E
∫ t

s

∣∣ρ′(L, θ)− ρ(L, θ)
∣∣ dθ ≤ c3|s′ − s|,(3.12)

for all q ∈ ∆L
n and s, s′ ∈ [0, t].

(Step 2.) By definition, (3.11) means

(3.13) E
∫ L

0

∣∣Rs

(
Ψs
s′q
)
(x)−Rs(q)(x)

∣∣ dx ≤ c2(n+ 1)|s′ − s|.
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Let us write E0 for the event that no jump occurs at x = L in (s′, s), and E1 for the
complement of E0. Since the jump rate at x = L is H(ρ−, ρ+)f(ρ−, ρ+, t) with f bounded
by a constant that depends on P± and f 0, we can assert

(3.14) P
(
E1

)
≤ c4|s′ − s|,

for a constant c4 = c4(P−, P+, f
0). Hence, (3.13) would follow if we can find a constant

c5 = c5(P−, P+) such that

(3.15)

∫ L

0

∣∣Rs

(
ψss′q

)
(x)−Rs(q)(x)

∣∣ dx ≤ c5(n+ 1)|s′ − s|,

for all q ∈ ∆L
n and s, s′ ∈ [0, t]. Since ρ′(x, s) = Rs

(
ψss′q

)
(x), s > s′ solves the first equation

in (2.4) in the interval [0, L], we may use the method of characteristic to express

ρ′(x, s) = ρ
(
y(x, s− s′), s′

)
,

where y(x, s− s′) is the location of a backward characteristic at time s′ that emanates from
x at time s. For c0 = H ′(P+), we have |y(x, s − s′) − x| ≤ c0|s − s′| =: δ. Note that if
q ∈ ∆L

n , and ψss′(q) ∈ ∆L
n′ , then n′ ≤ n. Let x1, . . . , xn′ be the locations of the particles

(shock discontinuities) at time s, and for each i with xi + δ < xi+1 − δ, set

Ii :=
(
xi + δ, xi+1 − δ

)
.

We write I for the union of such intervals. Note that |I| ≤ 2δn′ ≤ 2δn. If x /∈ I, then there
is no jump discontinuity between x and y(x, s− s′) at time s′. Hence

|ρ′(x, s)− ρ′(x, s′)| =
∣∣ρ′(y(x, s− s′), s′

)
− ρ′(x, s′)

∣∣ ≤ max |b(·, s′)| |y(x, s− s′)− x|
≤ max |b(·, s′)| c0|s− s′|.

From this and |I| ≤ 2c0n|s− s′|, we deduce∫ L

0

|ρ′(x, s)− ρ′(x, s′)| dx ≤ c5(n+ 1)|s− s′|.

Hence (3.15) would follow if we can show∫ L

0

|ρ(x, s)− ρ′(x, s′)| dx =

∫ L

0

∣∣Rs

(
q
)
(x)−Rs′(q)(x)

∣∣ dx ≤ c6(n+ 1)|s′ − s|,

for a constant c6. The existence of finite c6 is an immediate consequence of the Lipschitz
regularity of b(x, s) with respect to s. This completes the proof of (3.13).
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(Step 3.) For (3.12), recall that by Remark 2.1(i), the processes θ 7→ m(θ) := ρ(L, θ) and
θ 7→ m′(θ) := ρ′(L, θ) are Markov processes with generator Bθ in the interval [s, t]. Observe
m(s) = Rs(q)(L) and m′(s) = Rs

(
Ψs
s′q
)
(L). We first claim that there exists a constant c0

such that

(3.16) E|m′(s)−m(s)| ≤ c7|s− s′|.

The bound (3.16) is an immediate consequence of (3.14) and the elementary fact that in E0,

|m(s′)−m(s)| ≤ c8|s− s′|,

for
c8 = sup

[P−,P+]×[0,t]

|b̂|,

with b̂(ρ, t) = H ′(ρ)b(ρ, t). Next we define a coupling for the pair (m,m′). Recall

g(ρ−, ρ+, θ) = H(ρ−, ρ+)f(ρ−, ρ+, θ), η(ρ−, θ) =

∫ ∞
ρ−

g(ρ−, ρ+, θ) dρ+.

The generator of the coupled process (m,m′) is given by

B̃θF (m,m′) =b̂(m, θ)Fm(m,m′) + b̂(m′, θ)Fm′(m,m
′)

+ 11(m < m′)

∫ m′

m

g(m,m+, θ)
(
F (m+,m

′)− F (m,m′)
)
dm+

+ 11(m′ < m)

∫ m

m′
g(m,m+, θ)

(
F (m,m+)− F (m,m′)

)
dm+

+

∫ ∞
m∨m′

ĝ(m,m′,m+, θ)
(
F (m+,m+)− F (m,m′)

)
dm+

+

∫ ∞
m∨m′

[
g(m′,m+, θ)− ĝ(m,m′,m+, θ)

](
F (m,m+)− F (m,m′)

)
dm+

+

∫ ∞
m∨m′

[
g(m,m+, θ)− ĝ(m,m′,m+, θ)

](
F (m+,m

′)− F (m,m′)
)
dm+

where ĝ(m,m′,m+, θ) = g(m,m+, θ) ∧ g(m′,m+, θ). Since both f(ρ−, ρ+, t) and H(ρ−, ρ+)
are bounded Lipschitz functions in ρ± ∈ [P−, P+], we can find a constant c9 such that

(3.17)
∣∣g(m,m+, θ)− ĝ(m,m′,m+, θ)

∣∣ ≤ c8|m′ −m|.

We then use the identity

d

dθ
E F

(
m(θ),m′(θ)

)
= E

(
B̃θF

)(
m(θ),m′(θ)

)
,
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for F (m,m′) = |m−m′|. From (3.17) and the Lipschitzness of b̂ we deduce

d

dθ
E |m′(θ)−m(θ)| ≤ c10E |m′(θ)−m(θ)|,

for a constant c10. This and (3.16) imply (3.12). �

4 Forward Equation

This section is devoted to the rigorous verification of a variant of the forward equation (3.4).

Theorem 4.1 For G(q, s) = E G
(
Ψt
s(q)

)
, we have

(4.1) lim
s′↑s

(s− s′)−1

∫ (
G(q, s)−G(q, s′)

)
µ(dq, s) = −

∫
(LG)(q, s) µ(dq, s).

Proof (Step 1.) Let 0 < s′ < s ≤ t. To facilitate the calculation of the derivative, we show
that we can separate the deterministic and stochastic portions of the dynamics over the time
interval [s′, s], when the s − s′ is small. Write τ = τ(q, s′) for the first time a jump occurs
at x = L after the time s′, and let E1 denote the event that τ ∈ (s′, s). We claim that there
exists a constant C1 = C1(P−, P+, J, f

0) so that for q ∈ ∆L
n ,

G(q, s′) =(s− s′)
∫ (

E
[
G
(
ερ+ψ

τ
s′q
) ∣∣ E1

]
−G(q, s)

)
H(ρn, ρ+)f(ρn, ρ+, s) dρ+

+G
(
ψss′q, s

)
+ (s− s′)2R(q, s′, s),(4.2)

with
∣∣R(q, s′, s)

∣∣ ≤ C1(n+ 1), and ρ̂n = Rs(q)(L). Note that by the Markov property of the
random flow Ψ,

G(q, s′) = E G
(
Ψt
sΨ

s
s′q
)

= E G
(
Ψs
s′q, s

)
.

Let q =
(
(0, ρ0), (x1, ρ1), . . . , (xn, ρn)

)
be fixed, and write ρ̂′n :=

(
Rs′q

)
(L). Let E0 be the

event that there is no jump at x = L in (s′, s), and recall that E1 is the complement of E0.
Observe that on E0 we see only the deterministic flow ψ over the time interval (s′, s):

E G
(
Ψs
s′q, s

)
11E0 = G

(
ψss′q, s

)
P
(
E0

)
= G

(
ψss′q, s

)
−G

(
ψss′q, s

)
P
(
E1

)
.(4.3)

On the other hand, using the Lipschitz regularity of η (which is the consequence of the
Lipschitz regularity of f),

(4.4) P
(
E1

)
=

∫ s

s′
η
(
βθs′(ρ̂

′
n), θ

)
dθ +O((s− s′)2) = (s− s′)η

(
ρ̂n, s

)
+O((s− s′)2),
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with both errors bounded uniformly over q. From this and (4.3) we learn

E G
(
Ψs
s′q, s

)
11E0 = G

(
ψss′q, s

)
− (s− s′)G

(
ψss′q, s

)
η
(
ρ̂n, s

)
+O((s− s′)2)

= G
(
ψss′q, s

)
− (s− s′)G

(
ψss′q, s

) ∫
g(ρ̂n, ρ+, s) dρ+ +O((s− s′)2).(4.5)

In E1, recall that τ ∈ (s′, s) is the first time a random entry occurs for Ψs
s′ , and ρ+ for the

new boundary value. We have

G
(
Ψs
s′q, s)11E1 = G

(
Ψs
τ ερ+ψ

τ
s′q, s

)
11E1 .

Using the strong Markov property for the random boundary at the stopping time τ ,

(4.6) E G
(
Ψs
s′q, s)11E1 = E G

(
Ψs
τερ+ψ

τ
s′q, s

)
11E1 = E G

(
ερ+ψ

τ
s′q, τ

)
11E1 .

Since P(E1) = O(s− s′), we can afford to make o(1) modifications to this by (3.9):

(4.7)
∣∣E G

(
ερ+ψ

τ
s′q, τ

)
11E1 − E G

(
ερ+ψ

τ
s′q, s

)
11E1

∣∣ ≤ C0(n+ 1)P(E1)(s− s′).

Next we modify the distribution from which ρ+ is selected; at present, ρ+ is selected
according to a random measure with density

ĝ
(
ρ̃n, ρ+, τ

)
:= η

(
ρ̃n, τ

)−1
g
(
ρ̃n, ρ+, τ

)
,

where ρ̃n := βτs′(ρ̂
′
n). From the Lipshitzness of b(x, s) in s, it is not hard to show that there

exists a constant c1 such that

(4.8)
∣∣ρ̂′n − ρ̂n∣∣ ≤ c1|s′ − s|,

∣∣ρ̂′n − ρ̃n∣∣ ≤ c1|s′ − s|.

Let us write ρ̂+ for an independent random variable distributed as ĝ(ρ̂n, ρ+, s) dρ+. Observe

η(m, θ) =

∫ ∞
m

H(m, ρ+)f(m, ρ+, θ) dρ+ ≥ H ′(P−)

∫ ∞
m

f(m, ρ+, θ) dρ+ = H ′(P−)λ(m, θ).

According to Theorem 1.1, ρ+ 7→ f(m, ρ+, θ) is a non-zero continuous kernel. As a result,
λ(m, θ) is uniformly positive in [P−, P+] × [0, T ]. From this, (4.8), and the Lipschitzness of
f we can readily show

(4.9)
∣∣ĝ(ρ̂n, ρ+, s)− ĝ

(
ρ̃n, ρ+, τ

)∣∣ ≤ c2|s′ − s|,

for a constant c2 that depends on P± only. We then use (4.8) and (4.9) to assert that there
exists a constant c3 such that that the expression∣∣E [

G
(
ερ+ψ

τ
s′q, s

)
−G

(
ερ̂+ψ

τ
s′q, s

)]
11E1

∣∣ ,
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is bounded above by∣∣∣∣E 11E1

∫ ∞
ρ̃n∨ρ̂n

G
(
ερ+ψ

τ
s′q, s

)(
ĝ
(
ρ̃n, ρ+, τ

)
− ĝ(ρ̂n, ρ+, s)

)
dρ+

∣∣∣∣
+

∣∣∣∣E 11E1

∫ ρ̃n

ρ̂n

G
(
ερ+ψ

τ
s′q, s

)
ĝ
(
ρ̃n, ρ+, τ

)
dρ+

∣∣∣∣ ≤ c3(s′ − s)P(E1).

Here we used ρ̃n ≥ ρ̂n, which follows from b ≤ 0 and τ ∈ (s′, s). From this, (4.6), (4.7), and
(4.4) we learn

E G
(
Ψs
s′q, s)11E1 =E

[
G
(
ερ̂+ψ

τ
s′q, s

) ∣∣ E1

]
P(E1) + (s− s′)2R1

=E
[∫

G
(
ερ+ψ

τ
s′q, s

)
g(ρ̂n, ρ+, s) dρ+

∣∣ E1

]
η(ρ̂n, s)

−1 P(E1) + (s− s′)2R1

=(s− s′)
∫

E
[
G
(
ερ+ψ

τ
s′q, s

)
g(ρ̂n, ρ+, s)

∣∣ E1

]
dρ+ + (s− s′)2R2.

where R1 and R2 are bounded by a constant multiple of n+ 1. This and (4.5) complete the
proof of (4.2).

(Step 2.) We wish to calculate the left-hand side of (4.1). (4.2) allows us to separate the
deterministic dynamics from the stochastic boundary dynamics. For the deterministic part,
we wish to evaluate

(4.10) lim
s′↑s

(s− s′)−1

∫ (
G
(
ψts(q)

)
−G

(
ψts′(q)

))
µ(dq, s).

Let us define H(q, s) = G
(
ψts(q)

)
. By the group property of the flow ψ, we may write

G
(
ψts′(q)

)
= G

(
ψtsψ

s
s′(q)

)
= H

(
ψss′(q), s

)
.

In terms of H, (4.10) can be written as

(4.11) − lim
s′↑s

(s− s′)−1

∫ (
H
(
ψss′(q), s

)
−H(q, s)

)
µ(dq, s).

If we simply write K(q) for H(q, s), then (4.11) reads as

(4.12) − lim
s′↑s

∫
(s− s′)−1

(
K
(
ψss′(q)

)
−K(q)

)
µ(dq, s).

Recall that the restriction of a function K to ∆L
n is denoted by Kn, and that the measure

µ(dq, s) restricted to ∆L
n has a density µn(q, s) with respect to the Lebesgue measure. For

(4.12), we need to evaluate

(4.13) − lim
s′↑s

∫
(s− s′)−1

(
Kn
(
ψss′(q)

)
−Kn(q)

)
µn(q, s) dq.
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Here we are using the fact that if q ∈ ∆L
n and s− s′ is sufficiently small, then ψss′(q) ∈ ∆L

n .
Note that if K : ∆L

n → R were differentiable, then we would have had a simple candidate
for the limit in (4.13), namely

(4.14) −
∫
L0nK(q) µn(q, s) dq.

To show that this is indded the limit, we need to examine the set in which K is C1. For
this, let us take any q ∈ ∆L

n , and define σ1(q) < σ2(q) < · · · < σn′(q), n′ = n′(q) to be the
times after s at which a collision between two particles occur. Evidently n′ ≤ n. Set

Λn = Λn(s, t) =
{
q ∈ ∆L

n : σi(q) = t for some i ∈ {1, . . . , n′(q)}
}
.

It is not hard to show that the set Λn(s) is a C1-subset of ∆L
n of codimension one, and K is

C1 in ∆L
n \ Λn. By Lemma 3.1(i), we know that the function

(s− s′)−1
(
Kn
(
ψss′(q)

)
−Kn(q)

)
,

is uniformly bounded in the set ∆L
n . As a result, we may use Bounded Convergence Theorem

to assert

(4.15) lim
s′↑s

(s− s′)−1

∫ (
Kn
(
ψss′(q)

)
−Kn(q)

)
µn(q, s) dq =

∫
L0nK(q) µn(q, s) dq.

(Step 3.) We now turn our attention to the first term on the right-hand side of (4.2). On
account of (4.15), our claim (4.1) would follow if we can show

(4.16) lim
s′↑s

∣∣∣∣∫ E
[
G
(
ερ+ψ

τ
s′q
)
−G

(
ερ+q

)∣∣ E1

]
g(ρ̂n, ρ+, s) dρ+ µ(dq, s)

∣∣∣∣ = 0,

simply because
E
[
G
(
ερ+q

)∣∣ E1

]
= G

(
ερ+q

)
.

Here we are using the fact that the event E1 depends only on the stochastic boundary that
is independent from the law of ρ+.

It remains to verify (4.16). Let us we write σ(q, s′) for the first time σ > s′ at which
ψσs′q experiences a collision between particles of q. Recall that n(q) denotes the number of
particles of q. We can readily show

(4.17)

∫
11
(
σ(q, s′) ≤ s

)
µ(dq, s) ≤ c0(s− s′)

∫
n(q) µ(dq, s) ≤ c1(s− s′),

with c0 = H ′(P+) which is an upper bound on the speed of particles. The bound (4.17) is
an immediate consequence of the following two facts:
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• If σ(q, s′) ≤ s, then for some i, we have |xi − xi+1| ≤ c0|s − s′|, where x1 < · · · < xn
denote the locations of the particles in q.

• If we choose δ0 so that λ(ρ−, s) ≥ δ0 for all ρ−, then there exists a Poisson random
variable Nδ0 of intensity δ0L such that n(q) ≤ Nδ0 almost surely.

Because of (4.17), the claim (4.16) is equivalent to

(4.18) lim
s′↑s

∣∣X(s′)
∣∣ = 0,

where X(s′) is the expression

∞∑
n=0

∫
∆L

n

∫
E
[
G
(
ερ+ψ

τ
s′q
)
−G

(
ερ+q

)
| E1

]
11
(
σ(q, s′) > s

)
g(ρ̂n, ρ+, s) dρ+ µn(q, s) dq.

On account of (4.4), the claim (4.18) would follow if we can show

(4.19) lim
s′↑s

(s− s′)−1
∣∣Y (s′)

∣∣ = 0,

where Y (s′) = Y+(s′)− Y−(s′), with

Y+(s′) =
∞∑
n=0

∫
∆L

n

∫
E G

(
ερ+ψ

τ
s′q
)
11
(
σ(q, s′) > s > τ(q, s′)

)
g(ρ̂n, ρ+, s) dρ+ µn(q, s) dq,

Y−(s′) =
∞∑
n=0

∫
∆L

n

∫
E G

(
ερ+q

)
11
(
σ(q, s′) > s > τ(q, s′)

)
g(ρ̂n, ρ+, s) dρ+ µn(q, s) dq.

(Final Step.) The expected value in the definition of Y± is for the random variable τ =
τ(q, s′). As was explained in Remark 2.1(i), the variable τ can be expressed in terms of ρ̂n
and a standard exponential random variable. More precisely,

τ = τ(q, s′) = `(r, ρ̂n, s
′),

with r > 0 a random variable with distribution e−r dr, and `(r, ρ̂n, s
′) denoting the inverse

of the map

τ 7→ r =

∫ τ

s′
η
(
βθs′(ρ̂n), θ

)
dθ, τ ∈ (s′,∞).

Note we may replace the expected values in (4.19) with an integration with respect to e−r dr.
On the other hand,

11(r > 0) e−r dr = 11(τ > s′) e−rη
(
βτs′(ρ̂n), τ

)
dτ = 11(τ > s′)

(
η
(
ρ̂n, s

′)+O(τ − s′)
)
dτ
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Because of this, for (4.19), it suffices to show

(4.20) lim
s′↑s

(s− s′)−1
∣∣Z(s′)

∣∣ = 0,

where Z(s′) = Z+(s′)− Z−(s′), with

Z+(s′) =
∞∑
n=0

∫
∆L

n

∫ ∫ s

s′
G
(
ερ+ψ

τ
s′q
)
11
(
σ(q, s′) > s

)
η
(
ρ̂n, s

′)g(ρ̂n, ρ+, s)µ
n(q, s) dτdρ+dq,

Z−(s′) =
∞∑
n=0

∫
∆L

n

∫ ∫ s

s′
G
(
ερ+q

)
11
(
σ(q, s′) > s

)
η
(
ρ̂n, s

′)g(ρ̂n, ρ+, s)µ
n(q, s) dτdρ+dq.

To prove (4.20), we carry out dq integration. Fix τ > 0 and ρ+, and make a change
of variables q′ = ψτs′q for this integration. Recall the vector field b, that was defined in
Definition 3.1(vi). Since the map q 7→ ψτs′q is the flow of the ODE associated with vector
field b, its Jacobian has the expansion

1 + (τ − s′)div(b) + n(q) o(τ − s′).

Since div(b) = O(n(q)), a change of variable q′ = ψτs′q causes a Jacobian factor of the form

1 + n(q)O(τ − s′) = 1 + n(q)O(s− s′).

Moreover, we can readily show,

η
(
ρ̂n, s

′)g(ρ̂n, ρ+, s)µ
n(q, s) = η

(
ρ̂′n, s

′)g(ρ̂′n, ρ+, s)µ
n(q′, s)

(
1 + n(q)O(s− s′)

)
.

From all this we deduce That Z+(s′) = Ẑ+(s′) + Err, where

Ẑ+(s′) =
∞∑
n=0

∫
∆L

n

∫ ∫ s

s′
G
(
ερ+q′

)
11
(
σ(ψs

′

τ q′, s′) > s
)
η
(
ρ̂′n, s

′)g(ρ̂n, ρ
′
+, s)µ

n(q′, s) dτdρ+dq
′.

and the Err is an error term that satisfies

|Err| ≤ c2(s− s′)2

∫
n(q)2 µ(dq, s) = c3(s− s′)2.

By ψs
′
τ we mean the inverse of ψτs′ . Renaming q′ as q and comparing Ẑ+(s′) with Z−(s′)

leads to

Ẑ+(s′)− Z−(s′) =
∞∑
n=0

∫
∆L

n

∫ ∫ s

s′
G
(
ερ+q

)
χ(q; s′, τ, s)η

(
ρ̂n, s

′)g(ρ̂n, ρ+, s)µ
n(q, s) dτdρ+dq,
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where χ(q; s′, τ, s) = 11
(
σ(ψs

′
τ q, s′) > s

)
− 11

(
σ(q, s′) > s

)
. After replacing G with an upper

bound, and carrying out the ρ+ integration, we obtain∣∣Ẑ+(s′)− Z−(s′)
∣∣ ≤ c4

∫ s

s′

∫
χ(q; s′, τ, s) µ(dq, s)dτ.

Finally, since χ(q; s, s) = 0, we can show

lim
s′↑s

(s− s′)−1
(
Ẑ+(s′)− Z−(s′)

)
= 0,

completing the proof of (4.20), that in turn completes the proof of Theorem. �

5 Proof of Theorem 2.1

Without loss of generality, we may assume that a = 0. The proof of Theorem 2.1 is carried
out in three steps that were described right after (3.5). For the first step, we calculate the
time derivative our candidate measure µn = µn(s) that was defined in Definition 2.2(ii). To
simplify our presentation, we assume that ` = `0 has a density with respect to the Lebesgue
measure. With a slight abuse of notation, we write `(ρ, s) for this density: `(dρ, s) =
`(ρ, s) dρ.
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Proposition 5.1 We have that µ̇n = Xnµn, for Xn =
∑9

i=1X
n
i , where

Xn
1 = X1 =

∫
H(ρ∗, ρ0)f(ρ∗, ρ0, s) `(dρ∗, s)

`(ρ0, s)

Xn
2 = X2 = −

(
H ′(ρ0)b(ρ0, s)`(ρ0, s)

)
ρ0

`(ρ0, s)

Xn
3 =

n∑
i=1

Q+(f, f)(ρ̂i−1, ρi, s)

f(ρ̂i−1, ρi, s)

Xn
4 = H ′(ρ0)

(
λ(ρ̂0, s)− λ(ρ0, s)

)
− A(ρ̂n, s)

Xn
5 =

n∑
i=1

(
H ′(ρi)−H(ρ̂i−1, ρi)

)(
λ(ρ̂i, s)− λ(ρi, s)

)
Xn

6 =
n∑
i=1

H(ρ̂i−1, ρi)
(
λ(ρ̂i, s)− λ(ρ̂i−1, s)

)
Xn

7 =
n∑
i=1

[(
H(ρ̂i−1, ρi)−H ′(ρi)

)
b(ρi, s)f(ρ̂i−1, ρi, s)

]
ρi

f(ρ̂i−1, ρi, s
)

Xn
8 =

n∑
i=1

b(ρ̂i−1, s)Hρ−(ρ̂i−1, ρi)

Xn
9 =

n∑
i=1

[
H(ρ̂i−1, ρi)−H ′(ρi−1)

]
b(ρ̂i−1, s)

fρ−(ρ̂i−1, ρi, s)

f(ρ̂i−1, ρi, s)
.

Proof Direct differentiation yields

(5.1) Xn = −Γs(q, s) +
`s(ρ0, s)

`(ρ0, s)
+

n∑
i=1

[
f(ρ̂i−1, ρi, s)]s

f(ρ̂i−1, ρi, s)
.

Moreover, from (1.13), we can readily show

(5.2)
`s
`

= X1 +X2 − A(ρ0, s).

On the other hand,

Γs(q, s) =
n∑
i=0

{(
A(ρ̂i, s)− A(ρi, s)

)
−H ′(ρi)

(
λ(ρ̂i, s)− λ(ρi, s)

)}
,
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by (2.10). From this, (5.1), (5.2), and (2.15) we deduce

Xn =
n∑
i=0

{(
A(ρi, s)− A(ρ̂i, s)

)
+H ′(ρi)

(
λ(ρ̂i, s)− λ(ρi, s)

)}
+X1 +X2 − A(ρ0, s) +

n∑
i=1

fs(ρ̂i−1, ρi, s)

f(ρ̂i−1, ρi, s)
+ Zn,

where

Zn =
n∑
i=1

[
H ′(ρ̂i−1)−H ′(ρi−1)

]
b(ρ̂i−1, s)

fρ−(ρ̂i−1, ρi, s)

f(ρ̂i−1, ρi, s)
.

Let us set

W n =
n∑
i=1

(Cf)(ρ̂i−1, ρi, s)

f(ρ̂i−1, ρi, s)
.

We now use the kinetic equation and the form of Q− to obtain

Xn = Xn
1 +Xn

2 +Xn
3 +Xn

4 + Zn +W n

+
n∑
i=1

{
H ′(ρi)

(
λ(ρ̂i, s)− λ(ρi, s)

)
+H(ρ̂i−1, ρi)

(
λ(ρi, s)− λ(ρ̂i−1, s)

)}
= Xn

1 +Xn
2 +Xn

3 +Xn
4 +Xn

5 +Xn
6 + Zn +W n.

To simplify this further, we use the definition of the operator C to write

W n = Xn
7 +Xn

8 +
n∑
i=1

[
H(ρ̂i−1, ρi)−H ′(ρ̂i−1)

]
b(ρ̂i−1, s)

fρ−(ρ̂i−1, ρi, s)

f(ρ̂i−1, ρi, s)
.

We are done because the last term plus Zn is exactly Xn
9 . �

Armed with Theorem 4.1 and Proposition 5.1, we are now ready to present the proof of
our main result:

Proof of Theorem 2.1 As we demonstrated in Section 3, we only need to establish (3.7).
Recall that we write G(q, s) for E G

(
Ψt
sq
)
. Evidently,

(5.3) (s− s′)−1

[∫
G(q, s) µ(dq, s)−

∫
G(q, s′) µ(dq, s′)

]
= Ω1(s′) + Ω2(s′)− Ω3(s′),
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where

Ω1(s′) = (s− s′)−1

∫ (
G(q, s)−G(q, s′)

)
µ(dq, s)

Ω2(s′) = (s− s′)−1

∫
G(q, s)

(
µ(dq, s)− µ(dq, s′)

)
Ω3(s′) = (s− s′)−1

∫ (
G(q, s)−G(q, s′)

) (
µ(dq, s)− µ(dq, s′)

)
.

With the aid of Lemma 3.1 and Proposition 5.1, we can show

lim sup
s′↑s

(s− s′)−1
∣∣Ω3(s′)

∣∣ ≤ C0

∫ (
n(q) + 1

)
(s− s′)−1

∣∣(µ(dq, s)− µ(dq, s′)
)∣∣

≤ c1C0(s− s′)
∫ (

n(q) + 1
)
n(q) µ(dq, s) ≤ c2,

for constants c1 and c2. (For example, c1 is a uniform bound on Xn of Proposition 5.1.) As
a result,

(5.4) lim
s′↑s

∣∣Ω3(s′)
∣∣ = 0.

By Proposition 5.1, we also know

(5.5) lim
s′↓s

Ω2(s′) =
9∑
i=1

∫
G(q, s)Xn

i (q) µn(dq, s).

On the other hand, by Theorem 4.1,

(5.6) lim
s′↓s

Ω1(s′) = −
∞∑
n=0

∫ (
L0G+ LbG

)
(q, s) µ(dq, s) =: −(Y0 + Yb).

Observe

Yb =
∞∑
n=0

∫ ∫
H(ρ̂n, ρ+)f(ρ̂n, ρ+, s)

(
Gn+1

(
ερ+q, s

)
−Gn(q, s)

)
µn(q, s) dq dρ+

=
∞∑
n=1

Y n
b,+ −

∞∑
n=0

Y n
b,−,(5.7)

where

Y n
b,+ =

∫ ∫
H(ρ̂n−1, ρ+)f(ρ̂n−1, ρ+, s)G

n
(
ερ+q, s

)
µn−1(q, s) dq dρ+

Y n
b,− =

∫
A(ρ̂n, s)G

n(q, s)µn(q, s) dq.
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We now concentrate on Y0. We wish to integrate by parts and apply L∗0 on µ. Recall the
function G(q, s) is only piecewise C1; it is continuously differentiable in the complement of
a finite union of C1 manifolds of codimension 1. This union, denoted by Λ = Λ(s, t), is
exactly the set of points q for which a collision occurs at time t. However, since G(q, s) is
continuous, there will be no boundary contribution coming from the non-differentiability set
Λ. Because of this, the only boundary contributions come from the boundary of the set ∆L

n .
In other words, if we write

(5.8) Y0 =
∞∑
n=0

Y n
0 :=

∞∑
n=0

∫
∆L

n

(
L0,nG

)n
(q, s) µn(q, s) dq,

then

Y n
0 = Y n

01 + Y n
02 :=

∫
∆L

n

Gn(q, s) L∗0,nµn(q, s) dq +
n∑
i=0

Y n
02i + Ŷ n

02,(5.9)

where Y n
0i is the boundary contribution coming from the condition xi = xi+1, and Ŷ n

02 is
the boundary contribution coming from the condition xn = L. Note carefully that Y n

0i , for
i = 0, . . . , n, comes from boundary terms as integrate by parts with respect to an integration
over ∆L

n+1 with configurations of n + 1 particles
(
x0, ρ0), . . . , (xn+1, ρn+1

)
, so that when

xi = xi+1 for some i ∈ {0, 1, . . . , n}, then we obtain a configuration in ∆L
n . However, for

Ŷ n
02 we integrate by parts with respect to an integration over ∆L

n with configurations of n
particles

(
x0, ρ0), . . . , (xn, ρn

)
; when xn = L we still regard this configuration as a member

of ∆̄L
n .

Indeed L∗0,nµn = Znµn, with

(5.10) Zn = Z11 + Z12 + Z13 + Zn
21 + Zn

22 + Zn
23 + Zn

31 + Zn
32,
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where

Z11 = H ′(ρ0)b(ρ0, t)Γρ(ρ0, x1, t) = H ′(ρ0)
(
λ(ρ̂0, t)− λ(ρ0, t)

)
Z12 = −H ′(ρ0)b(ρ0, t)

[
f
(
ρ̂0, ρ1, t

)]
ρ0

f
(
ρ̂0, ρ1, t

)
Z13 = −

(
H ′(ρ0)b(ρ0, t)`(ρ0, t)

)
ρ0

`(ρ0, t)

Zn
21 =

n∑
i=1

(
H ′(ρi)−H(ρ̂i−1, ρi)

)
b(ρi, t)Γρ(ρi, xi+1 − xi, t)

=
n∑
i=1

(
H ′(ρi)−H(ρ̂i−1, ρi)

)(
λ(ρ̂i, t)− λ(ρi, t)

)
,

Zn
22 =

n−1∑
i=1

[(
H(ρ̂i−1, ρi)−H ′(ρi)

)
b(ρi, t)f(ρ̂i−1, ρi, t)f(ρ̂i, ρi+1, t)

]
ρi

f(ρ̂i−1, ρi, t
)
f(ρ̂i, ρi+1, t)

Zn
23 =

[(
H(ρ̂n−1, ρn)−H ′(ρn)

)
b(ρn, t)f(ρ̂n−1, ρn, t)

]
ρn

f(ρ̂n−1, ρn, t)
,

Zn
31 =

n−1∑
i=1

[
H
(
ρ̂i−1, ρi

)
f
(
ρ̂i−1, ρi, t

)
f
(
ρ̂i, ρi+1, t

)]
xi

f
(
ρ̂i−1, ρi, t

)
f
(
ρ̂i, ρi+1, t

) +

[
H
(
ρ̂n−1, ρn

)
f
(
ρ̂n−1, ρn, t

)]
xn

f
(
ρ̂n−1, ρn, t

) ,

Zn
32 =

n∑
i=1

H
(
ρ̂i−1, ρi

) (
λ
(
ρ̂i, t
)
− λ
(
ρ̂i−1, t

))
.

Here,

• The sum Z11 + Z12 + Z13 comes from an integration by parts with respect to the
variable ρ0. The dynamics of ρ0 as in rule (2) of Definition 2.1(iii) is responsible for
this contribution. We have used (2.7) for the second equality on the first line.

• The i-terms in Zn
21, Zn

22 and Zn
23 come from an integration by parts with respect to the

variable ρi. The dynamics of ρi as in rule (2) of Definition 2.1(iii) is responsible for
these three contributions. The equality on line 5 is a consequence of (2.7).

• The i-th terms in Zn
31 and Zn

32 come from an integration by parts with respect to the
variable xi. The dynamics of xi as in rule (1) of Definition 2.1(iii) is responsible for
this contribution.

On the other hand, for i = 0, . . . , n

(5.11) Y n
02i =

∫
∆L

n

Gn(q, s)W n
i (q, s)µn(q, s) dq,
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where

W n
0 = W0 =

∫
H(ρ∗, ρ0)f(ρ∗, ρ0, s) `(dρ∗, s)

`(ρ0, s)
, W n

i =
Q+(f, f)

(
ρ̂i−1, ρi, t)

f
(
ρ̂i−1, ρi, t

) ,

for i = 1, . . . , n. Here,

• The term W n
0 comes from the boundary term x1 = 0 in the integration by parts with

respect to the variable x1. This boundary condition represents the event that x1 has
reached the origin after which ρ0 becomes ρ1, and (xi, ρi) is relabeled as (xi−1, ρi−1) for
i ≥ 2.

• The term W n
i comes from the boundary term xi = xi+1 . The relative distance xi+1−xi

travels with speed
−
[
H(ρ̂i, ρi+1)−H(ρ̂i−1, ρi)

]
,

As xi+1 catches up with xi, the particle xi disappears and its density ρi = ρ̂i is renamed
ρ∗, and is integrated out. (The resulting integral is Q+(f, f)

(
ρ̂i−1, ρi, t).) We then

relabel (xj, ρj), j > i, as (xj−1, ρj−1).

As for Ŷ n
02, we simply have

(5.12) Ŷ n
02 = −Y n

b,+,

where Y n
b,+ was defined by (5.7).

Recall that we wish to establish (3.7). From (5.3)-(5.12), we learn that for (3.7) it suffices
to verify the equality

(5.13)
9∑
i=1

Xn
i = Z11 + Z12 + Z13 + Zn

21 + Zn
22 + Zn

23 + Zn
31 + Zn

32 − A(ρ̂n, s) +W0 +W n,

where

W n =
n∑
i=1

W n
i .

Since

X1 = W0, X2 = Z13, Xn
3 = W n, Xn

4 = Z11 − A(ρ̂n, s), Xn
5 = Zn

21, Xn
6 = Zn

32,

the equality (5.13) is equivalent to the equality

(5.14) Xn
7 +Xn

8 +Xn
9 = Z12 + Zn

22 + Zn
23 + Zn

31.
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Observe that Zn
22 + Zn

23 = Ẑn
22 + Ẑn

23, and Zn
31 = Zn

311 + Zn
312 + Zn

313, where

Ẑn
22 =

n∑
i=1

[(
H(ρ̂i−1, ρi)−H ′(ρi)

)
b(ρi, t)f(ρ̂i−1, ρi, t)

]
ρi

f(ρ̂i−1, ρi, t
) ,

Ẑn
23 =

n−1∑
i=1

(
H(ρ̂i−1, ρi)−H ′(ρi)

)
b(ρi, t)

[
f(ρ̂i, ρi+1, t)

]
ρi

f(ρ̂i, ρi+1, t)
,

Zn
311 =

n∑
i=1

[
H
(
ρ̂i−1, ρi

)]
xi

=
n∑
i=1

b(ρ̂i−1, t)Hρ−

(
ρ̂i−1, ρi

)
,

Zn
312 =

n∑
i=1

H
(
ρ̂i−1, ρi

)[f(ρ̂i−1, ρi, t
)]
xi

f
(
ρ̂i−1, ρi, t

) ,

Zn
313 =

n−1∑
i=1

H
(
ρ̂i−1, ρi

)[f(ρ̂i, ρi+1, t
)]
xi

f
(
ρ̂i, ρi+1, t

) .

Since Xn
7 = Ẑn

22 and Xn
8 = Zn

311, the equality (5.14) is equivalent to Xn
9 = Ẑn, for

Ẑn := Z12 + Ẑn
23 + Zn

312 + Zn
313.

By the group property (2.6),(
h(ρ̂i−1)

)
xi

= b(ρi−1, t)
(
h(ρ̂i−1)

)
ρi−1

,
(
h(ρ̂i)

)
xi

= −b(ρi, t)
(
h(ρ̂i)

)
ρi
.

This allows us to write

Zn
312 + Zn

313 =
n−1∑
i=1

H
(
ρ̂i−1, ρi

){
b(ρi−1, t)

[
f
(
ρ̂i−1, ρi, t

)]
ρi−1

f
(
ρ̂i−1, ρi, t

) − b(ρi, t)

[
f
(
ρ̂i, ρi+1, t

)]
ρi

f
(
ρ̂i, ρi+1, t

) }

+H
(
ρ̂n−1, ρn

)
b(ρn−1, t)

[
f
(
ρ̂n−1, ρi, t

)]
ρn−1

f
(
ρ̂n−1, ρn, t

) .

Hence

Ẑn = −
n−1∑
i=0

H ′(ρi)b(ρi, t)

[
f(ρ̂i, ρi+1, t)

]
ρi

f(ρ̂i, ρi+1, t)
+

n∑
i=1

H
(
ρ̂i−1, ρi

)
b(ρi−1, t)

[
f
(
ρ̂i−1, ρi, t

)]
ρi−1

f
(
ρ̂i−1, ρi, t

)
=

n∑
i=1

[
H
(
ρ̂i−1, ρi

)
−H ′(ρi−1)

]
b(ρi−1, t)

[
f
(
ρ̂i−1, ρi, t

)]
ρi−1

f
(
ρ̂i−1, ρi, t

)
=

n∑
i=1

[
H
(
ρ̂i−1, ρi

)
−H ′(ρi−1)

]
b(ρ̂i−1, t)

fρ−
(
ρ̂i−1, ρi, t

)
f
(
ρ̂i−1, ρi, t

) = Xn
9 ,

where we have used (2.6) for the third equality. This completes the proof. �
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6 The Kinetic Equation

In this section we develop a well-posedness result for the kinetic equation (1.7) which is
adequate for our present purposes. Consider the following integro-PDE for f(p−, p+, t):

(6.1) ft + V · ∇f = Q(f, f) +M(p−, p+, t)f

where Q is as in Definition 1.1(iii), V =
(
V −, V +

)
, and

M(p−, p+, t) = Hp−(p−, p+)b(p−, t)− V +
p+
,

with

(6.2) V ±(p−, p+, t) =
(
H ′(p±)−H(p−, p+)

)
b(p±, t).

In (6.1) we have chosen to express (6.2) with only transport terms on the left-hand side; the
two are formally equivalent.

6.1 Estimates

For functions (or kernels) f and g we write

Q(f, g) = Q+(f, g)− L(g)f +N(g)f

where

Q+(f, g)(p−, p+) =

∫
(H(p∗, p+)−H(p−, p∗))f(p−, p∗)g(p∗, p+) dp∗

L(g)(p−, p+) =

∫
(H(p+, p∗)−H(p−, p+))g(p+, p∗) dp∗

N(g)(p−, p+) =

∫
(H(p−, p∗)−H(p−, p+))g(p−, p∗) dp∗.

We write also

Qp±(f, g) = Q+
p±(f, g)− Lp±(g)f +Np±(g)f

Q+
p±(f, g) = ±

∫
Hp±(p±, p∗)f(p−, p∗)g(p∗, p+) dp∗

Lp−(g) =

∫
−Hp−(p−, p+)g(p+, p∗) dp∗

Lp+(g) =

∫ (
Hp+(p+, p∗)−Hp+(p−, p+)

)
g(p+, p∗) dp∗

Np−(g) =

∫ (
Hp−(p−, p∗)−Hp−(p−, p+)

)
g(p−, p∗) dp∗

Np+(g) = −
∫
Hp+(p−, p+)g(p−, p∗) dp∗.

38



Lemma 6.1 Suppose that H ′(p) and H ′′(p) are bounded and we have absolutely continuous
kernels determined by functions f(p−, p+) and g(p−, p+). Writing

‖f‖L∞(L1) = ess sup
p−

∫
|f(p−, p+)| dp+,

we have the following estimates.

(i) Components Q+, L,N :

‖Q+(f, g)‖L∞ ≤ ‖H ′‖L∞(L1)‖f‖L∞(L1)‖g‖L∞(L1)

‖Q+(f, g)‖L∞ ≤ ‖H ′‖L∞‖f‖L∞(L1)‖g‖L∞
‖L(g)‖L∞ ≤ ‖H ′‖L∞‖g‖L∞(L1)

‖N(g)‖L∞ ≤ ‖H ′‖L∞‖g‖L∞(L1)

(ii) Q as a whole:

‖Q(f, g)‖L∞(L1) ≤ 3‖H ′‖L∞‖f‖L∞(L1)‖g‖L∞(L1)

‖Q(f, g)‖L∞ ≤ ‖H ′‖L∞
(
‖f‖L∞(L1)‖g‖L∞ + 2‖f‖L∞‖g‖L1(L∞)

)
(iii) Derivative with respect to p−:

‖Q(f, g)p−‖L∞(L1) ≤
3

2
‖H ′′‖L∞‖f‖L∞(L1)‖g‖L∞(L1)

+ ‖H ′‖L∞
(
3‖fp−‖L∞(L1)‖g‖L∞(L1) + ‖f‖L∞(L1)‖gp−‖L∞(L1)

)
‖Q(f, g)p−‖L∞ ≤

1

2
‖H ′′‖L∞

(
‖f‖L∞(L1)‖g‖L∞ + 2‖f‖L∞‖g‖L1(L∞)

)
+ ‖H ′‖L∞

(
‖fp−‖L∞(L1)‖g‖L∞ + 2‖fp−‖L∞‖g‖L1(L∞)

)
+ ‖H ′‖L∞‖f‖L∞‖gp−‖L1(L∞).

(iv) Derivative with respect to p+:

‖Q(f, g)p+‖L∞(L1) ≤
3

2
‖H ′′‖L∞‖f‖L∞(L1)‖g‖L∞(L1)

+ 2‖H ′‖L∞
(
‖f‖L∞(L1)‖gp+‖L∞(L1) + ‖fp+‖L∞(L1)‖g‖L∞(L1)

)
‖Q(f, g)p+‖L∞ ≤

1

2
‖H ′′‖L∞

(
‖f‖L∞(L1)‖g‖L∞ + 2‖f‖L∞‖g‖L1(L∞)

)
+ ‖H ′‖L∞

(
‖f‖L∞(L1)‖gp+‖L∞ + ‖f‖L∞‖gp+‖L∞(L1)

)
+ 2‖H ′‖L∞‖fp+‖L∞‖g‖L∞(L1)
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Proof The proof in (i) is routine and omitted. The proof of (ii) follows from adding the
component estimates in (i). For (iii) and (iv) we observe (formally for now, but see below
the proof of Theorem 6.1) that

Q(f, g)p− = Qp−(f, g) +Q+(fp− , g)− L(g)fp− +N(g)fp− +N(gp−)f

Q(f, g)p+ = Qp+(f, g) +Q+(f, gp+)− L(gp+)f − L(g)fp+ +N(g)fp+ .

Now Qp± , L±, and N±, admit estimates similar to those of Q, L, and N respectively, with
1
2
H ′′ replacing H ′, and in the remaining terms we simply use whichever estimates from (i)

are appropriate. �

6.2 Classical solutions

Now consider the space of functions f(p−, p+)

X = {f ∈ C1
0(R2,R) : f, fp− , fp+ ∈ L∞(L1) ∩ L∞}

equipped with norm

‖f‖X = ‖f‖L∞(L1) + ‖f‖L∞ + ‖fp−‖L∞(L1) + ‖fp−‖L∞ + ‖fp+‖L∞(L1) + ‖fp+‖L∞ .

Lemma 6.2 Concerning the space X, the quadratic operator Q, and the multiplication op-
erator associated with M , we have the following:

(i) (X, ‖ · ‖X) is a Banach space.

(ii) ‖Q(f, f)‖X ≤ C1‖f‖2
X for a constant C1 = C1(‖H ′‖L∞ , ‖H ′′‖L∞).

(iii) ‖M(·, ·, t)f‖X ≤ C2‖f‖X for a constant

C2 = C2(t; ‖H(k)‖∞, k = 0, 1, 2, 3; ‖b(·, t)‖∞; ‖bp(·, t)‖∞),

which admits a uniform bound over bounded interval of time prior to blow-up of b (if
any).

(iv) For given f0 ∈ X there exists T > 0 (depending only on ‖f0‖X and C1, C2 from (ii)
and (iii)) such that there is a unique solution f ∈ C1([0, T ], X) to ft = Q(f, f) +Mf
with f = f0 at t = 0.

Proof (i) It is straightforward to show that Q(f, f) ∈ C1
0(R2,R). The only other issue

is completeness. If a sequence fn is Cauchy in X, it is also Cauchy in the Banach space
C1

0(R2,R) (which corresponds to the L∞ part of the X-norm), and we thereby obtain a limit
f ∈ C1

0(R2,R), including consistency of the limits of fn and the derivatives of fn. We then
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rely on completeness of L∞(L1) separately for each of fn, (fn)p− , and (fn)p+ , to verify the
convergence holds in X.

(ii) This is immediate from the estimates in Lemma 6.1.
(iii) This is obvious.
(iv) The bounds in (ii) and (iii) imply f 7→ Q(f, f) + Mf is locally Lipschitz, and the

standard Picard theorem (in the Banach-valued setting) applies. �

Lemma 6.3 Concerning the local solution f ∈ C1([0, T ], X) constructed in Lemma 6.2:

(i) If the initial kernel f0 ≥ 0, then there exists T+ ∈ (0, T ] such that f ≥ 0 for t ∈ [0, T+).

(ii) For each p−, we have

(6.3) ∂t

∫
f(p−, p+, t) dp+ ≤ ‖M(·, ·, t)‖L∞

∫
|f(p−, p+, t)| dp+.

Proof(i) Set h = L(f) − N(f) + M and c = sup
{
|h(p−, p+, t)| : (p−, p+, t) ∈ R2 × [0, T ]

}
which is a finite constant. Define

k(p−, p+, t) = exp

(∫ t

0

h(p−, p+, s) ds

)
,

and observe that the function f̃ = kf . is the unique solution to the related equation

f̃t = kQ+
(
k−1f̃ , k−1f̃

)
.

Using Lemma 6.1 this admits estimates similar to ft = Q(f, f) (adjusted by a constant factor
e3cT ) and so we can obtain a local solution (possibly over a shorter time interval [0, T+)) using
Picard iteration. Noting that Q+ preserves positivity, we are done.

(ii) Swapping the labels p∗ and p+ in L(f)f we find
∫ (

Q+(f, f) − L(f)f
)
dp+ = 0, and∫

N(f)f dp+ = 0 by symmetry. So the only nonzero contribution to the integral is from∫
Mf dp+, which we bound as in (6.3). �

Theorem 6.1 For any nonnegative initial kernel f 0 ∈ X the problem

ft = Q(f, f) +Mf, f |t=0 = f 0,

has a unique nonnegative classical solution f(p−, p+, t) defined for all t ≥ 0 prior to blow-up
of b (if any), and for each p− we have

λ(p−, t) =

∫
f(p−, p+, t) dp+

growing at most linearly in time.
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Proof Lemma 6.2 gives a classical solution defined locally in time, and using Lemma 6.3
we find (possibly on a shorter time interval) that solution is nonnegative and λ(t, p−) grows
linearly in time. Using both these facts,

‖f(·, ·, t)‖L∞(L1) = ess sup
p−

λ(p−, t)

grows linearly in time. Once this is known, the quadratic estimates for Q(f, f), Q(f, f)p− ,
and Q(f, f)p+ in Lemma 6.1 are effectively linear, which prevents blow-up (as long as b itself
has not done so). �

Theorem 6.2 Assuming f 0 ∈ X, the full kinetic equation

(6.4) ft + V · ∇f = Q(f, f) +Mf

has a unique C1 solution defined for all times where b(p, t) is finite.

Proof Let (P−(p−, p+, t), P+(p−, p+, t)) be the flow corresponding to the vector field V =
V (p−, p+, t). If f(p−, p+, t) is a classical solution of (6.4), we see that

(6.5) f̃(p−, p+, t) = f(P−, P+, t)

solves

(6.6) f̃t = ft + V · ∇f = Q(f, f) +Mf = Q(f̃ , f̃) +Mf̃.

By the invertibility of the flow, uniqueness for f̃ translates to uniqueness for f . Conversely,
if we (classically) solve f̃t = Q(f̃ , f̃) +Mf̃ and then define f by (6.5), we see f is a classical
solution of (6.4). �
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