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Abstract

1 Introduction

The primary goal of these notes is to give an overview of the statistical properties of solutions
to the Cauchy problem for the Hamilton-Jacobi Equation

ut = H(x, t, ux) in Rd × (0,∞)(1.1)

u = u0 on Rd × {t = 0},
or, the scalar conservation law

ρt = H(x, t, ρ)x in R× (0,∞)(1.2)

ρ = ρ0 on R× {t = 0},
where either H or ρ0 = ρ0(x) is random. Note that if u satisfies (1.1) and d = 1, then ρ = ux
satisfies (1.2). As is well-known, the PDE (1.1) or (1.2) does not possess classical solutions
even when the initial data is smooth. In the case of equation (1.1), we may consider viscosity
solutions to guarantee the uniqueness under some standard assumptions on the initial data
and H. In the case of (1.2) with d = 1, we consider the so-called entropy solutions .

We will be mostly concerned with the following two scenarios:

(1) d = 1, H(x, t, p) = H(p) is convex in p and independent of (x, t), with initial data ρ0

that is either a white noise, or a Markov process.

(2) d ≥ 1, and H(x, t, p) is a stationary ergodic process in (x, t).

Our aim is to give an overview of various classical and recent results and formulate a number
of open problems.

∗This work is supported in part by NSF grant DMS-1407723
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2 Scalar Conservation Law with Random Initial data

We first recall the following important features of the solutions to (1.2) when d = 1,
H(x, t, p) = H(p) is convex in p, and independent of (x, t):

(i) If a discontinuity of ρ occurs at x = x(t), and ρ± = ρ(x(t)±, t), then for a weak solution
of (1.2) we must have the Rankin-Hugoniot Equation:

dx

dt
= −H[ρ−, ρ+] =: −H(ρ+)−H(ρ−)

ρ+ − ρ−
.

(ii) By an entropy solution, we mean a week solution for which the entropy condition is
satisfied. In the case of convexH, the entropy condition is equivalent to the requirement

ρ− < ρ+.

(iii) If ρ0 has a discontinuity with ρ− > ρ+, then such a discontinuity disappears instanta-
neously by inserting a rarefaction wave between between ρ− and ρ+. That is a solution
of the form

G

(
x− c
t

)
,

where G = (H ′)−1.

We next state three results.

(i) (Burgers Equation with Lévy Initial Data)

When H(p) = 1
2
p2, (1.2) is the well-known inviscid Burgers’ equation, which has often

been considered with random initial data. Burgers studied (1.2) in his investigation of
turbulence [Bu]. Carraro and Duchon [CD] defined a notion of statistical solution to Burgers’
equation and realized that it was natural to consider Lévy process initial data. In fact any
(random) entropy solution is also a statistical solution, but the converse is not true in general.
In 1998, Bertoin [Be] proved a closure theorem for Lévy initial data.

Theorem 2.1 Consider Burgers’ equation with initial data ρ0(x) which is a Lévy process
without negative jumps for x ≥ 0, and ρ0(x) = 0 for x < 0. Assume that the expected value of
ρ0(1) is non-positive, Eρ0(1) ≤ 0. Then, for each fixed t > 0, the process x 7→ ρ(x, t)−ρ(0, t)
is also a Lévy process with

E exp
(
− s(ρ(x, t)− ρ(0, t))

)
= exp(xψ(s, t)),

where the exponent ψ solves the following equation:

(2.1) ψt + ψψs = 0.
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Remark 2.1 The requirement Eρ0(1) ≤ 0 can be relaxed with minor modifications to the
theorem, in light of the following elementary fact. Suppose that ρ0(x) and ρ̂0(x) are two
different initial conditions for Burgers’ equation, which are related by ρ̂0(x) = ρ0(x) + cx. It
is easy to check that the corresponding solutions ρ(x, t) and ρ̂(x, t) are related for t > 0 by

ρ̂(x, t) =
1

1 + ct

[
ρ

(
x

1 + ct
,

t

1 + ct

)
+ cx

]
.

Using this we can adjust a statistical description for a case where E0 to cover the case of a
Lévy process with general mean drift. �

(ii) (Burgers Equation with white noise initial data)
Groeneboom [Gr] considers the white noise initial data. In other words, take two in-

dependent Brownian motions B±, and take a two sided Brownian motion for the initial
data

(2.2) u0(x) =

{
B+(x) if x ≥ 0

B−(x) if x ≤ 0,

Theorem 2.2 Let ρ = ux, where u is a viscosity solution of the PDE ut = 1
2
u2
x, subject to

the initial condition u(x, 0) = u0(x), with u0 given as in (2.2). Then the process x 7→ ρ(x, t)
is a Markov jump process with drift −t−1 and a suitable jump measure ν(t, ρ−, ρ+) dρ+.

(iii) A different particular case,

−H(p) =

{
0 if |p| ≤ 1,

∞ otherwise.

corresponds to the problem of determining Lipschitz minorants, and has been investigated
by Abramson and Evans [AE].
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3 Menon-Srinivasan Conjecture

In 2007 Menon and Pego [MP] used the Lévy-Khintchine representation for the Laplace
exponent and observed that the evolution according to Burgers’ equation in (2.1) corresponds
to a Smoluchowski coagulation equation [A], with additive collision kernel, for the jump
measure of the Lévy process ν(·, t). The jumps of ν(·, t) correspond to shocks in the solution
ρ(·, t). Regarding the sizes of the jumps as the usual masses in the Smoluchowski equation,
it is plausible that Smoluchowski equation with additive kernel should be relevant.

It is natural to wonder whether this evolution through Markov processes with simple
statistical descriptions is specific to the Burgers-Lévy case, or an instance of a more general
phenomenon. The biggest step toward understanding the problem for a wide class of H
is found in a 2010 paper of Menon and Srinivasan [MS]. Here it is shown that when the
initial condition ρ0 is a strong Markov process with positive jumps only, the solution ρ(·, t)
remains Markov for fixed t > 0. The argument is adapted from that of [Be] and both
[MS] and [Be] use the notion of splitting times (due to Getoor [Ge]) to verify the Markov
property according to its bare definition. In the Burgers-Lévy case, the independence and
homogeneity of the increments can be shown to survive, from which additional regularity is
immediate using standard results about Lévy processes. As [MS] points out, without these
properties it is not clear whether a Feller process initial condition leads to a Feller process in
x at later times. Nonetheless, [MS] presents a very interesting conjecture for the evolution
of the generator of ρ(·, t), which has a remarkably nice form.

To prepare for the statement of Menon-Srinivasan Conjecture, we first examine the fol-
lowing simple scenario for the solutions of the PDE

(3.1) ρt = H(ρ)x = H ′(ρ)ρx.

Imagine that the initial data ρ0 satisfies an ODE of the form

(3.2)
dρ0

dx
(x) = b0

(
ρ0(x)

)
,

for some C1 function b0 : R→ R. We may wonder whether or not this feature of ρ0 survives
at later times. That is, for some function b(ρ, t), we also have

(3.3) ρx(x, t) = b
(
ρ(x, t), t

)
,

for t > 0. For (3.3) to be consistent with (3.1), observe

ρt = H ′(ρ)ρx = H ′(ρ)b(ρ, t),

and as we calculate mixed derivatives, we arrive at

ρxt = bρ(ρ, t)ρt + bt(ρ, t) = bρ(ρ, t)H
′(ρ)b(ρ, t) + bt(ρ, t),

ρtx = H ′′(ρ)b(ρ, t)ρx +H ′(ρ)bρ(ρ, t)ρx = H ′′(ρ)b2(ρ, t) +H ′(ρ)bρ(ρ, t)b(ρ, t).
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As a result b must satisfy

(3.4) bt(ρ, t) = H ′′(ρ)b2(ρ, t).

For a classical solution, all we need to do is solving the ODE (3.3) for the initial data
b(ρ, 0) = b0(ρ) for each ρ. When H is convex, the solution may blow up in finite time. More
precisely,

• If b0(ρ) ≤ 0, then b0(ρ) ≤ b(ρ, t) ≤ 0 for all t and there would be no blow-up.

• If b0(ρ) > 0, then there exists some finite T (ρ) > 0 such that b(ρ, t) is finite in the
interval [0, T (ρ)), and b(ρ, T (ρ)) =∞.

In fact the equation (3.3) is really “the method of characteristics” in disguise, and the blow-
up of solutions is equivalent to the occurrence of shock discontinuity.

To go beyond what (3.4) offers, we now take a jump kernel f 0(ρ, dρ∗) and assume that
ρ0(x) is a realization of a Markov process with infinitesimal generator

L0h(ρ) = b0(ρ)h′(ρ) +

∫ ∞
ρ

(
h(ρ∗)− h(ρ)

)
f 0(ρ, dρ∗).

In words, ρ0 solves the ODE (3.3), with some occasional random jumps with rate f 0. We
are assuming that the jumps are all positive to avoid rarefaction waves. We may wonder
whether the same picture is valid at later times. That is, for fixed t > 0, the solution ρ(x, t),
as a function of x is a Markov process with the generator

(3.5) Lth(ρ) = b(ρ, t)h′(ρ) +

∫ ∞
ρ

(
h(ρ)− h(ρ)

)
f(ρ, dρ∗, t).

Menon-Srinivasan Conjecture roughly suggests that if H is convex, and we start with a
Markov process with generator L0, then we have a Markov process at a later time with a
generator of the form Lt. Moreover, the drift of the generator satisfies (3.4), and the jump
kernel f(ρ, dρ∗, t) solves an integral equation. Before we derive an equation for the evolution
of f , observe that when we assert that ρ(x, t) is a Markov process in x, we are specifying
a direction for x. More precisely, we are asserting that if ρ(a, t) is known, then the law
of ρ(x, t) can be determined uniquely for all x > a. We are doing this for all t > 0. In
practice, we may try to determine ρ(x, t) for x > a(t), provided that ρ(a(t), t) is specified.
For example, we may wonder whether or not we can determine the law of ρ(x, t) with the
aid of the following procedure:

• The process t 7→ ρ(a(t), t) is a Markov process and its generator can be determined.
Using this Markov process, we take a realization of ρ(a(t), t), with some initial choice
for ρ(a(0), 0).
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• Once ρ(a(t), t) is selected, we use the generator Lt, to produce a realization of ρ(x, t)
for x ≥ a(t).

To materialize the above procedure, we need to make sure that for some choice of a(t), the
process ρ(a(t), t) is Markovian with a generator that can be described. For a start, we may
wonder whether or not we can even choose a(t) = a a constant function. Put it differently,
not only x 7→ ρ(x, t) is a Markov process for fixed t ≥ 0, the process t 7→ ρ(x, t) is a Markov
process for fixed x. As it turns out, this is the case if H is also increasing. In general, if we
can find a negative constant c such that H ′(ρ) > c, then ρ̂(x, t) := ρ(x− ct, t) satisfies

ρ̂t = Ĥ(ρ̂)x,

for Ĥ(ρ) = H(ρ) − cρ, which is increasing. Hence, the process t 7→ ρ̂(x, t) = ρ(x − ct, t) is
expected to be Markovian. In summary

• If H is increasing in the range of ρ, then ρ is also Markovian on vertical lines x =
constant.

• If H ′ is bounded below by a negative constant c, then ρ is Markovian on straight lines
that are titled to the right with the slope −c.

To simplify the matter, from now on, we make two assumptions on H:

(3.6) H ′ > 0, H ′′ ≥ 0.

The main consequences of these two assumptions are

• All the jump discontinuities are positive i.e. ρ− < ρ+.

• The speed of shocks are always negative.

We now argue that in fact the process t 7→ ρ(x, t) is a Markov process with a generator
M that is independent of x because the PDE (3.1) is homogeneous (i.e. H is independent
of x). Indeed

(3.7) Mh(ρ) = H ′(ρ)b(ρ, t)h′(ρ) +

∫ ∞
ρ

(
h(ρ∗)− h(ρ)

)
H[ρ, ρ∗]f(ρ, dρ∗, t).

To explain the form ofM heuristically, observe that the ODE dρ
dx

= b(ρ, t) leads to the ODE

dρ

dt
= H ′(ρ)b(ρ, t).

On the other hand, if we fix x, then ρ(x, t) experiences a jump discontinuity when a shock
on the right of x crosses x. Given any t > 0, a shock would occur at some s > t because all
shock speeds are negative; it is just a matter of time for a shock on the right of x to cross
x. We can also calculate the rate at which this happens because we have the law of the first
shock on the right of x, and its speed. Observe
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• The process x 7→ ρ(x, t) is a homogeneous Markov process with a generator that
changes with time.

• The process t 7→ ρ(x, t) is an inhomogeneous Markov process with a generator that
does not depend on x. It is only the initial data ρ(x, 0) that is responsible for the
changes of the statistics of ρ(x, t), as x varies.

We are now in a position to derive formally an evolution equation for the generator Lt,
under the assumption (3.6). Indeed if we define

w(x, t; ρ) = Eρ(0,0)=ρh(ρ(x, t)),

then we expect
wt =Mw, wx = Ltw.

differentiating these equations yields

wtx =Mwx =MLtw, wxt =
dLt

dt
w + Ltwt =

dLt

dt
w + LtMw.

As a result

(3.8)
dLt

dt
=MLt − LtM.

As we match the drift parts of both sides of (3.8), we simply get (3.4). Matching the jump
parts yields a kinetic-type equation of the form

(3.9) ft = Q(f, f) + Cf,

for a quadratic operator Q and a linear operator C. The operator Q is independent of b and
is given by

Q(f, f)(ρ−, dρ+) =

∫ ρ+

ρ−

(
H[ρ∗, ρ+]−H[ρ−, ρ∗]

)
f(ρ−, dρ∗)f(ρ∗, dρ+)

+

∫ ∞
ρ+

(
H[ρ+, ρ∗]−H[ρ−, ρ+]

)
f(ρ+, dρ∗)f(ρ−, dρ+)

+

∫ ∞
ρ−

(
H[ρ−, ρ+]−H[ρ−, ρ∗]

)
f(ρ−, dρ∗)f(ρ−, dρ+).

If we set

λ(ρ−) = λ(f)(ρ−) =

∫ ∞
ρ−

f(ρ−, dρ+) dρ+,

A(ρ−) = A(f)(ρ−) =

∫ ∞
ρ−

H[ρ−, ρ+]f(ρ−, dρ+),
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then Q = Q+ −Q−, with

Q+(f, f)(ρ−, dρ+) =

∫ ρ+

ρ−

(
H[ρ∗, ρ+]−H[ρ−, ρ∗]

)
f(ρ−, dρ∗)f(ρ∗, dρ+, t)

Q−(f, f)(ρ−, dρ+) =
{
A(ρ+)− A(ρ−)−H[ρ−, ρ+]

(
λ(ρ+)− λ(ρ−)

)}
f(ρ−, dρ+).(3.10)

To define the operator C we need to assume that f(ρ−, dρ+) = f(ρ−, ρ+)dρ+ has a C1

density. With a slight abuse of notion, we write f(ρ−, ρ+) for the density of the measure
f(ρ−, dρ+), and write C again for the action of the operator C on the density f :

(Cf)(ρ−, ρ+) = b(ρ−, t)f(ρ−, ρ+)
(
H[ρ−, ρ+]

)
ρ−

+
[
H[ρ−, ρ+]−H ′(ρ−)

]
b(ρ−, t)fρ−(ρ−, ρ+, t)

+
[(
H[ρ−, ρ+]−H ′(ρ+)

)
b(ρ−, t)f(ρ−, ρ+, t)

]
ρ+
.

Menon-Srinivasan Conjecture has been established in [KR1] and [KR2]:

Theorem 3.1 Assume H is a C2 function that satisfies (3.6) and ρ is an entropic solution
of (3.1) in the first quadrant. Assume that b and f satisfy (3.4) and (3.9) respectively. If
x 7→ ρ(x, 0) and t 7→ ρ(0, t) are Markov processes with generators L0 and M with initial
condition ρ(0, 0) = ρ0, then x 7→ ρ(x, t) is a Markov process with generator Lt for t > 0, and
t 7→ ρ(x, t) is a Markov process with generator M for x > 0.
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4 Heuristics for the Proof of Theorem 3.1

Let us write xi(t) for the location of the i-th shock and ρi(t) = ρ(xi(t)+, t). We also write
φx(m0; t) for the flow associated with the velocity b; the function m(x) = φx(m0; t) satisfies

m′(x) = b(m(x), t), m(0) = m0.

We can readily find the evolution q = (xi, ρi : i ∈ Z), and q̂ = (zi, ρi : i ∈ Z), with
zi = xi+1 − xi:

•
ẋi = −vi := −H[ρ̂i−1, ρi], żi = −(vi+1 − vi),

where ρ̂i−1(t) = φzi−1
(ρi−1(t), t).

•
ρ̇i = wi :=

(
H ′(ρi)−H[ρ̂i−1, ρi]

)
b(ρi, t).

• When zi becomes 0, the pair (ρi, zi) is omitted from q̂(t). The outcome after a relabeling
is denoted by q̂i(t).

Write
∆ =

{
(zi, ρi : i ∈ Z) : zi ≥ 0, ρi ∈ R for all i ∈ Z

}
.

We think of q̂(t) as a deterministic process that has an infinitesimal generator

AG =
∑
i∈Z

(
wiGρi − (vi+1 − vi)Gzi

)
,

in the interior of ∆. We only take those G such that on the boundary face of ∆ with zi = 0,
we have G

(
q̂
)

= G
(
q̂i
)
. This stems from the fact that we are interested in the function

ρ(x) = ρ(x; q̂) associated with q̂ (or q) that is defined by∑
i

φzi(xi;x− xi)11
(
x ∈ [xi, xi+1)

)
.

Note that ρ(x; q̂) = ρ(x; q̂i) whenever zi = 0.
We make an ansatz that the law of q̂(t) is of the form:

µ
(
t, dq̂

)
=

∞∏
i=−∞

e−
∫ zi
0 λ(φy(ρi;t),t)dy f

(
φzi(ρi; t), ρi+1, t) dzidρi+1.

For this to be the correct candidate we need

(4.1) µ̇ = A∗µ.
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This equation should determine f and λ if our ansatz is correct. To determine A∗, we take a
test function G and carry out the following calculation: After some integration by parts,we
formally have∫

G dA∗µ =

∫
AG dµ =

∫
G
∑
i

[
wiΩ1

i − wiρi + (vi+1 − vi)Ω2
i + vi+1

zi
− Ω3

i

]
dµ,

where

Ω1
i =

∫ zi

0

[
λ
(
φy(ρi; t), t

)]
ρi
dy −

[
f
(
ρ̂i, ρi+1, t

)]
ρi

f
(
ρ̂i, ρi+1, t

) −
fρ+
(
ρ̂i−1, ρi, t

)
f
(
ρ̂i−1, ρi, t

) ,
Ω2
i = −λ

(
ρ̂i, t
)

+

[
f
(
ρ̂i, ρi+1, t

)]
zi

f
(
ρ̂i−1, ρi+1, t

) ,
Ω3
i =

∫ ρi
ρ̂i−1

H
(
ρ̂i−1, ρ∗, ρi

)
f
(
ρ̂i−1, ρ∗, t

)
f
(
φzi−1

(ρ∗; t), ρi, t
)
dρ∗

f
(
ρ̂i−1, ρi, t)

) ,

where Ω3
i represents the boundary contribution associated with zi = 0, and

H(a, b, c) := H[b, c]−H[a, b].

On the other hand

µ̇ =
∑
i

[
Γ1
i + Γ2

i

]
µ =

∑
i

{[
f
(
φzi(ρi; t), ρi+1, t

)]
t

f
(
φzi(ρi; t), ρi+1, t

) − ∫ zi

0

[
λ
(
φy(ρi; t), t

)]
t
dy

}
µ.

To make the above formal calculation rigorous, we would like to switch from the infinite
sum to a finite sum. For this, we restrict the dynamics to an interval, say [0, L]. The
configuration now belongs to

∆L = ∪∞n=0∆L
n ,

with ∆L
n denoting the set{

q =
(
(xi, ρi) : i = 0, 1, . . . , n

)
: x0 = 0 < x1 < · · · < xn < xn+1 = L, ρ0, . . . , ρn ∈ R

}
.

Again, what we have in mind is that ρi(t) = ρ(xi(t)+, t) with x1, . . . , xn denoting the location
of all shocks in (0, L). We wish to define a measure µ(t, dq) on ∆L. The restriction of µ to
∆n
L is denoted by µn and is given by

`(t, dρ0) exp

{
−

n∑
i=0

∫ xi+1−xi

0

λ(φy(ρi; t), t)dy

}
n−1∏
i=0

f
(
φxi+1−xi(ρi; t), ρi+1, t) dxi+1dρi+1,
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where f solves (3.9) and ` is the law of ρ(0, t), which is a Markov process with generatorM:

(4.2) ˙̀ =M∗`.

To simplify the presentation, we assume

`(t, dρ0) = `(t, ρ0) dρ0.

As for the dynamics of q, we have the following rules:

(i) So long as xi remains in (xi−1, xi+1), it satisfies

ẋi = −vi := −H[ρ̂i−1, ρi],

where ρ̂i−1(t) = φzi−1
(ρi−1(t), t).

(ii) We have ρ̇0 = w0 := H ′(ρ0)b(ρ0, t) and for i > 0,

ρ̇i = wi :=
(
H ′(ρi)−H[ρ̂i−1, ρi]

)
b(ρi, t).

(iii) When zi = xi+1 − xi becomes 0, then q(t) becomes qi(t), that is obtained from q(t)
by omitting (ρi, xi).

(iv) With rate
H[ρ̂n, ρn+1]f

(
ρ̂n, ρn+1, t) dρn+1,

the configuration q gains a new particle (xn+1, ρn+1), with xn+1 = L. This new config-
uration is denoted by q(ρn+1).

We note that since H is increasing, all velocities are negative. Moreover, when the first
particle of location x1 crosses the origin, a particle is lost.

We wish to establish (4.1). We write Gn for the restriction of a smooth function G :
∆L → R to ∆L

n . Recall that we only consider those test functions G that cannot differentiate
between q and qi (respectively q(ρn+1)) , when xi = xi+1 (respectively xn+1 = L). We need
to verify

(4.3) µ̇n =
(
A∗µ

)n
,

for all n ≥ 0. Recall we write νn for the restriction of the measure ν to ∆L
n . Also, given

H : ∆L → R, we write Hn for the restriction of the function H to the set ∆L
n . To verify

(4.3), we verify

(4.4)

∫
Gn dµ̇n =

∫ (
AG
)n
dµn,
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for every C1 function G. It is instructive to see why (4.3) (or its integrated version (4.4))
is true when n = 0 and 1 before treating the general case. As we will see below, the cases
n = 0, 1 are already equivalent to the equation (3.9). As a warm-up, we first assume that
n = 0 and b = 0. In this case the equation (4.3) is equivalent to the fact that the law ` of
ρ(0, ·) is governed by a Markov process with generator M. The case n = 0 and general b
leads to the general form of M for the evolution of ρ(0, ·), and an equation for λ that is a
consequence of (3.9). The full equation (3.9) shows up when we consider the case n = 1.

�

The case n = 0 and b = 0. As it turns out, the function λ(ρ, t) = λ(ρ) is independent of
time when b = 0. We simply have

(4.5) µ0(t, dρ0) = e−Lλ(ρ0)`(t, dρ0), µ0
t (t, dρ0) = e−λ(ρ0)L`t(t, dρ0).

On the other hand, the right-hand side of (4.4) is of the form Ω1
0 + Ω2

0, where Ω1
0 comes from

rule (i), and Ω2
0 comes from the stochastic boundary dynamics. Indeed

Ω1
0 =

∫
H[ρ0, ρ1]G0(0, ρ1)e−λ(ρ1)Lf(ρ0, ρ1, t) dρ1 `(t, dρ0)(4.6)

−
∫
H[ρ0, ρ1]G1(0, ρ0, L, ρ1)e−λ(ρ0)Lf(ρ0, ρ1, t) dρ1 `(t, dρ0),

which we get it from the boundary terms when we apply an integration by parts to the
integral

−
∫
H[ρ0, ρ1]G1

x1
(0, ρ0, x1, ρ1) e−λ(ρ0)x1−λ(ρ1)(L−x1)f(ρ0, ρ1, t) dρ1 `(t, dρ0).

Moreover,

Ω2
0 =

∫
H[ρ0, ρ1]f(ρ0, ρ1, t)

(
G1(0, ρ0, L, ρ1)−G0(0, ρ0)

)
e−λ(ρ0)L dρ1 `(t, dρ0).

From this and (4.6) we learn

Ω1
0 + Ω2

0 =

∫
H[ρ0, ρ1]G0(0, ρ1)e−λ(ρ1)Lf(ρ0, ρ1, t) dρ1 `(t, dρ0)

−
∫
H[ρ0, ρ1]f(ρ0, ρ1, t)G

0(0, ρ0)e−λ(ρ0)L dρ1 `(t, dρ0)

=

∫
H[ρ1, ρ0]G0(0, ρ0)e−λ(ρ0)Lf(ρ1, ρ0, t) dρ0 `(t, dρ1)

−
∫
H[ρ0, ρ1]f(ρ0, ρ1, t)G

0(0, ρ0)e−λ(ρ0)L dρ1 `(t, dρ0)

=

∫
G0(0, ρ0)e−λ(ρ0)L

(
M∗`

)
(t, dρ0) =

∫
G0(0, ρ0)e−λ(ρ0)L `t(t, dρ0),

12



as desired. �

The case n = 0 and general b. To ease the notation, we write

Γ(ρ, x, t) =

∫ x

0

λ(φy(ρ; t), t) dy.

When n = 0, the right-hand side of (4.4) equals∫
G0(0, ρ0)

[
H ′(ρ0)b(ρ0, t)`(t, ρ0)Γρ(ρ0, L, t)−

(
H ′(ρ0)b(ρ0, t)`(t, ρ0)

)
ρ0

]
e−Γ(ρ0,L,t) dρ0

+

∫
H[ρ0, ρ1]G0(0, ρ1)e−Γ(ρ1,L,t)f(ρ0, ρ1, t) dρ1 `(t, dρ0)

−
∫
H
[
φL(ρ0; t), ρ1

]
f
(
φL(ρ0; t), ρ1, t

)
G1(0, ρ0, L, ρ1)e−Γ(ρ0,L,t) dρ1 `(t, dρ0)

+

∫
H
[
φL(ρ0; t), ρ1

]
f
(
φL(ρ0; t), ρ1, t

)(
G1(0, ρ0, L, ρ1)−G0(0, ρ0)

)
e−Γ(ρ0,L,t) dρ1 `(t, dρ0)

This simplifies to∫
G0(0, ρ0)

[
H ′(ρ0)b(ρ0, t)`(t, ρ0)Γρ(ρ0, L, t)−

(
H ′(ρ0)b(ρ0, t)`(t, ρ0)

)
ρ0

]
e−Γ(ρ0,L,t) dρ0

+

∫
H[ρ∗, ρ0]G0(0, ρ0)e−Γ(ρ0,L,t)f(ρ∗, ρ0, t) dρ0 `(t, dρ∗)

−
∫
H
[
φL(ρ0; t), ρ1

]
f
(
φL(ρ0; t), ρ1, t

)
G0(0, ρ0)e−Γ(ρ0,L,t) dρ1 `(t, dρ0)

=

∫
G0(0, ρ0)Λ(ρ0, t) e

−Γ(ρ0,L,t) dρ0,

where Λ(ρ0, t) equals

H ′(ρ0)b(ρ0, t)`(t, ρ0)Γρ(ρ0, L, t)−
(
H ′(ρ0)b(ρ0, t)`(t, ρ0)

)
ρ0

+

∫
H[ρ∗, ρ0]f(ρ∗, ρ0, t) `(t, dρ∗)−

∫
H
[
φL(ρ0; t), ρ1

]
f
(
φL(ρ0; t), ρ1, t

)
dρ1 `(t, ρ0).

We need to match Λ(ρ0, t) with the corresponding term on left-hand side of (4.4), which, by
(4.2) takes the form

−Γt(ρ0, L, t) `(t, ρ0)−
(
H ′(ρ0)b(ρ0, t)`(t, ρ0)

)
ρ0

+

∫
H[ρ∗, ρ0]f(ρ∗, ρ0, t) `(t, dρ∗)− A(ρ0, t) `(t, ρ0),
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where

A(ρ0, t) =

∫
H[ρ0, ρ∗]f(ρ0, ρ∗, t) dρ∗.

We are done if we can verify

(4.7) Γt(ρ0, L, t) +H ′(ρ0)b(ρ0, t)Γρ(ρ0, L, t) = A
(
φL(ρ0; t), t

)
− A(ρ0, t).

Equivalently∫ L

0

[
λ(φy(ρ0; t), t)

]
t
dy +H ′(ρ0)b(ρ0, t)

∫ L

0

[
λ(φy(ρ0; t), t)

]
ρ0
dy =

∫ L

0

[
A
(
φy(ρ0; t), t

)]
y
dy.

For this, it suffices to check[
λ(φy(ρ0; t), t)

]
t
+H ′(ρ0)b(ρ0, t)

[
λ(φy(ρ0; t), t)

]
ρ0

=
[
A
(
φy(ρ0; t), t

)]
y
.

Note that if u(y, ρ) = A
(
φy(ρ; t), t

)
, then

uy(y, ρ0) = b(ρ0, t)uρ(y, ρ0).

Hence for (4.7), it suffices to show

(4.8)
[
λ(φy(ρ0; t), t)

]
t
+H ′(ρ0)b(ρ0, t)

[
λ(φy(ρ0; t), t)

]
ρ0

= b(ρ0, t)
[
A
(
φy(ρ0; t), t

)]
ρ0
.

This for y = 0 takes the form

(4.9) λt(t, ρ0) +H ′(ρ0)b(ρ0, t)λρ(t, ρ0) = b(ρ0, t)Aρ(ρ0, t).

It turns out that if we choose

(4.10) λ(t, ρ−) =

∫ ∞
ρ−

f(ρ−, ρ+, t) dρ+,

then (4.9) follows from (3.9) after integrating both sides of (3.9) with respect to ρ−. The
verification of (4.8) requires some additional work.

Let us write Tyh(m) = h(φy(m; t)). The family of operators {Ty : y ∈ R}, is a group in
y. Moreover, if (Bh)(m) = b(m, t)h′(m), then

(4.11)
dTy
dy

= BTy = TyB.

Using this, we may rewrite (4.8) as

(4.12)
[
λ(φy(ρ0; t), t)

]
t
+H ′(ρ0)b(φy(ρ0; t), t)λρ(φy(ρ0; t), t) = b(φy(ρ0; t), t)Aρ

(
φy(ρ0; t), t

)
.

14



On account of (4.9), the claim (4.12) would follow if we can show

(4.13) X(ρ0, y, t) :=
[
φy(ρ0; t)

]
t
−
[
H ′(φy(ρ0; t))−H ′(ρ0)

]
b(φy(ρ0; t), t) = 0.

This is true for y = 0. Differentiating with respect to y yields

Xy(ρ0, y, t) =
[
b(φy(ρ0; t), t)

]
t
−
[
H ′(φy(ρ0; t))

]
y
b(φy(ρ0; t), t)

−
[
H ′(φy(ρ0; t))−H ′(ρ0)

][
b(φy(ρ0; t), t)

]
y

= bt(φy(ρ0; t), t) + bρ(φy(ρ0; t), t)
[
φy(ρ0; t)

]
t
−H ′′(φy(ρ0; t))b2(φy(ρ0; t), t)

−
[
H ′(φy(ρ0; t))−H ′(ρ0)

]
(bbρ)(φy(ρ0; t), t)

= bρ(φy(ρ0; t), t)
[
φy(ρ0; t)

]
t
−
[
H ′(φy(ρ0; t))−H ′(ρ0)

]
(bbρ)(φy(ρ0; t), t)

= bρ(φy(ρ0; t), t)X(ρ0, y, t),

where we used (3.4) for the third equality. As a result.

X(ρ0, y, t) = X(ρ0, 0, t) exp

[∫ y

0

bρ(φz(ρ0; t), t) dz

]
= 0.

This completes the proof of (4.2), when n = 0. �

As we have seen so far, the case n = 0 is valid if an equation for λ is true and this would
follow from the kinetic equation. On the other hand the case n = 1 is equivalent to the
kinetic equation. Before embarking on the verification of (4.3) for n = 1, let us make some
compact notions for some of the expressions that come into the proof. Given a realization
q =

(
0, ρ0, x1, ρ1, . . . , xn, ρn

)
∈ ∆L

n , we define

ρ
(
x, t;q

)
=

n∑
i=0

φx−xi
(
ρi; t
)
11
(
xi ≤ x < xi+1

)
,

Γ(q, t) =

∫ L

0

λ
(
ρ
(
y, t;q

))
dy =

n∑
i=0

Γ(ρi−1, xi − xi−1, t),

ρ̂i−1 = ρ(xi−, t;q) = φxi−xi−1
(ρi−1; t).

Note that by (4.13),

(4.14)
dρ̂i
dt

=
[
H ′(ρ̂i)−H ′(ρi)

]
b(ρ̂i, t).

The case n = 1. We have µ̇1 = X1µ
1, where

X1(q, t) = −Γt(q, t) +
`t(t, ρ0)

`(t, ρ0)
+

[
f
(
ρ̂0, ρ1, t)

]
t

f
(
ρ̂0, ρ1, t)

.
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On the other hand (A∗µ)1 = Y1µ
1, with

Y1(q, t) =
7∑
j=1

Y1j(q, t) =
7∑
j=1

Y1j,

where

Y11 = H ′(ρ0)b(ρ0, t)

[
Γρ(ρ0, x1, t)−

[
f
(
ρ̂0, ρ1, t

)]
ρ0

f
(
ρ̂0, ρ1, t

) ]
−

(
H ′(ρ0)b(ρ0, t)`(t, ρ0)

)
ρ0

`(t, ρ0)

Y12 =
(
H ′(ρ1)−H[ρ̂0, ρ1]

)
b(ρ1, t)Γρ(ρ1, L− x1, t)

Y13 =

[(
H[ρ̂0, ρ1]−H ′(ρ1)

)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

f
(
ρ̂0, ρ1, t

)
Y14 =

(
H
[
ρ̂0, ρ1

]
f
(
ρ̂0, ρ1, t

))
x1

f
(
ρ̂0, ρ1, t

) +H
[
ρ̂0, ρ1

] [
λ
(
φL−x1(ρ1; t), t

)
− λ
(
ρ̂0, t

)]
Y15 =

∫
H(ρ∗, ρ0)f(ρ∗, ρ0, t) `(t, dρ∗)

`(t, ρ0)

Y16 = −
∫
H
[
φL−x1(ρ1; t), ρ∗

]
f
(
φL−x1(ρ1; t), ρ∗, t

)
dρ∗ = −A

(
φL−x1(ρ1; t), t

)
Y17 =

∫ (
H[ρ∗, ρ1]−H

[
ρ̂0, ρ∗

])
f
(
ρ̂0, ρ∗, t

)
f(ρ∗, ρ1, t) dρ∗

f
(
ρ̂0, ρ1, t

) .

Here,

• The term Y11 comes from an integration by parts with respect to the variable ρ0. The
dynamics of ρ0 as in rule (ii) is responsible for this contribution.

• The terms Y12 and Y13 come from an integration by parts with respect to the variable
ρ1. The dynamics of ρ1 as in rule (ii) is responsible for these two contributions.

• The term Y14 comes from an integration by parts with respect to the variable x1. The
dynamics of x1 as in rule (i) is responsible for this contribution.

• The term Y15 comes from the boundary term x1 = 0 in the integration by parts with
respect to the variable x1.

• The term Y16 comes from the boundary term x1 = L in the integration by parts with
respect to the variable x1, and the stochastic boundary dynamics as in the rule (iv).
The boundary term x1 = L cancels part of the contribution of the boundary dynamics
as we have already seen in our calculation in the case n = 0.
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• The rule (iii) is responsible for the term Y17. When n = 2, the particles at x1 and x2

travel towards each other with speed H[ρ2, ρ̂1] −H[ρ1, ρ̂0]. As x2 catches up with x1,
the particle x2 disappears and its density ρ1 = ρ̂2 is renamed ρ∗, and is integrated out.

We wish to show that X1 = Y1. After some cancellation, this simplifies to

X ′1 = Y ′1 := Y ′11 + Y12 + Y13 + Y14 + Y16 + Y17,

where

X ′1 = −Γt(q, t)− A(ρ0, t) +

[
f(ρ̂0, ρ1, t)

]
t

f(ρ̂0, ρ1, t)
,

Y ′11 = H ′(ρ0)b(ρ0, t)

[
Γρ(ρ0, x1, t)−

[
f(ρ̂0, ρ1, t)

]
ρ0

f(ρ̂0, ρ1, t)

]
.

(The same cancellation led to the equation (4.7).) Observe that Γ(q, t) = Γ(ρ0, x1, t) +
Γ(ρ1, L− x1, t). Moreover, by (4.7),

Γt(ρ0, x1, t) +H ′(ρ0)b(ρ0, t)Γρ(ρ0, x1, t) = A(ρ̂0, t)− A(ρ0, t)

Γt(ρ1, L− x1, t) +H ′(ρ1)b(ρ1, t)Γρ(ρ1, L− x1, t) = A
(
φL−x1(ρ1; t), t

)
− A(ρ1, t).

As a result,

−Γt(q, t)− A(ρ0, t) = H ′(ρ0)b(ρ0, t)Γρ(ρ0, x1, t) +H ′(ρ1)b(ρ1, t)Γρ(ρ1, L− x1, t)

− A
(
φL−x1(ρ1; t), t

)
+ A(ρ1, t)− A(ρ̂0, t

)
.

Using this, we learn that the equality X ′1 = Y ′1 is equivalent to the identity[
f
(
ρ̂0, ρ1, t)

]
t

= H
[
ρ̂0, ρ1

] [
λ
(
φL−x1(ρ1; t), t

)
− λ
(
ρ̂0, t

)]
f
(
ρ̂0, ρ1, t

)
+
[
A
(
ρ̂0, t

)
− A(ρ1, t)

]
f
(
ρ̂0, ρ1, t

)
+

∫ (
H[ρ∗, ρ1]−H

[
ρ̂0, ρ∗

])
f
(
ρ̂0, ρ∗, t

)
f(ρ∗, ρ1, t) dρ∗

+
[(
H[ρ̂0, ρ1]−H ′(ρ1)

)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

−H ′(ρ0)b(ρ0, t)
[
f
(
ρ̂0, ρ1, t)

]
ρ0
−H[ρ̂0, ρ1]b(ρ1, t)Γρ(ρ1, L− x1, t)f

(
ρ̂0, ρ1, t

)
+
(
H
[
ρ̂0, ρ1

]
f
(
ρ̂0, ρ1, t

))
x1
.

By the semigroup property (4.11), we can assert that for any C1 function h,[
h(ρ̂0)

]
x1

= b(ρ̂0, t)h
′(ρ̂0) = b(ρ0)

[
h(ρ̂0)

]
ρ0
.
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We use this and the definition of the quadratic operator Q in (3.10) to deduce that X ′1 = Y ′1
is equivalent to the identity[
f(ρ̂0, ρ1, t)

]
t

= Q(f, f)(ρ̂0, ρ1, t) +H
[
ρ̂0, ρ1

] [
λ
(
φL−x1(ρ1; t), t

)
− λ
(
ρ1, t

)]
f
(
ρ̂0, ρ1, t

)
+
[(
H[ρ̂0, ρ1]−H ′(ρ1)

)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

−H ′(ρ0)b(ρ̂0, t)fρ−
(
ρ̂0, ρ1, t)−H[ρ̂0, ρ1]b(ρ1, t)Γρ(ρ1, L− x1, t)f

(
ρ̂0, ρ1, t

)
+ b(ρ̂0, t)H[ρ̂0, ρ1]fρ−(ρ̂0, ρ1, t) + b(ρ̂0, t)Hρ− [ρ̂0, ρ1]f(ρ̂0, ρ1, t).

Here we are acting the quadratic operator Q on functions because we are assuming that
f(ρ,dρ+, t) = f(ρ,ρ+, t) dρ+, is absolutely continuous with respect to the Lebesgue measure.
We now use (4.13) to rewrite X ′1 = Y ′1 as

ft(ρ̂0, ρ1, t) = Q(f, f)(ρ̂0, ρ1, t) + b(ρ̂0, t)Hρ− [ρ̂0, ρ1]f(ρ̂0, ρ1, t)

+H
[
ρ̂0, ρ1

] [
λ
(
φL−x1(ρ1; t), t

)
− λ
(
ρ1, t

)]
f
(
ρ̂0, ρ1, t

)
+
[
H[ρ̂0, ρ1]−H ′(ρ̂0)

]
b(ρ̂0, t)fρ−

(
ρ̂0, ρ1, t)

+
[(
H[ρ̂0, ρ1]−H ′(ρ1)

)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

−H[ρ̂0, ρ1]b(ρ1, t)Γρ(ρ1, L− x1, t)f
(
ρ̂0, ρ1, t

)
.

On the other hand, by the definition of Γ,

b(ρ1, t)Γρ(ρ1, L− x1, t) =

∫ L−x1

0

b(ρ1, t)
[
λ
(
φy(ρ1; t), t

)]
ρ1
dy

=

∫ L−x1

0

[
λ
(
φy(ρ1; t), t

)]
y
dy(4.15)

= λ
(
φL−x1(ρ1; t), t

)
− λ(ρ1, t),

where we used the semigroup property (4.11) for the second equality. This leads to

ft(ρ̂0, ρ1, t) =Q(f, f)(ρ̂0, ρ1, t) + b(ρ̂0, t)f(ρ̂0, ρ1, t)Hρ− [ρ̂0, ρ1]

+
[
H[ρ̂0, ρ1]−H ′(ρ̂0)

]
b(ρ̂0, t)fρ−(ρ̂0, ρ1, t)

+
[(
H[ρ̂0, ρ1]−H ′(ρ1)

)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1
.

This is exactly our kinetic equation! �

The calculation for the general case n is similar but more tedious than the case n = 1,
but does not pose any additional challenge. We refer to [KR2] for details
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5 Homogenizations for Hamiltonian ODEs

The Hamilton-Jacobi PDE may be used to model the growth of an interface that is described
as a graph of a height function. More precisely, the graph of a solution

u : Rd × [0,∞)→ R,

of the Hamilton-Jacobi equation

(5.1) ut +H(x, ux) = 0,

describes an interface at time t in microscopic coordinates. If the ratio of micro to macro
scale is a large number n, then

un(x, t) =
1

n
u(nx, nt),

is the corresponding macroscopic height function. In practice n is large and we may obtain
a simpler description of our model if the large n limit of un exists and satisfies a simple
equation. Indeed un satisfies

unt +H
(
nx, unx

)
= 0,

and this equation must be solved for an initial condition of the form un(x, 0) = g(x), where
g represents the initial macroscopic height function. Let us define

(Γng)(x) = ng
(x
n

)
;

the job of the operator Γn is to turn a macroscopic height function to its associated micro-
scopic height function. We also write Tt = THt for the semigroup associated with the PDE
(5.1). More precisely, Ttu

0(x) = u(x, t) means

(5.2)

{
ut +H(x, ux) = 0, t > 0,

u(x, t) = u0(x),

In terms of the operators Tt and Γn, we simply have un =
(
Γ−1
n ◦Tnt◦Γn

)
(g). Put it differently,

(5.3) TH◦γnt = Γ−1
n ◦ THnt ◦ Γn,

where γn(x, p) = (nx, p). If we write T (H) for TH1 , then in particular we have

T (H ◦ γn) = Γ−1
n ◦ T (H)n ◦ Γn.

The hope is that under some assumptions on H, the large n-limit of un exists and the
limit ū provides a reduced and simpler description of the growth model under the study. For
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example, when H is 1-periodic in x-variable, the high oscillations of H ◦ γn, may result in
the convergence of un to a function ū, that solves the homogenized equation

(5.4) ūt + H̄(ūx) = 0.

When this happens, we write A(H) = H̄.
More generally, write H for the space of all C1 Hamiltonian functions and define the

natural translation operator
τaH(x, p) = H(x+ a, p),

for every a ∈ Rd. We then take a probability measure P on H that is translation invariant
and ergodic. We wish to take advantage of the ergodicity to assert that TH◦γnt → T H̄t , P-
almost surely, as n → ∞. If this happens for a deterministic function H̄, then we write
A(P) = H̄. We note

• If P is supported on the set

A :=
{
τaH

0 : a ∈ Rd
}
,

for some 1-periodic Hamiltonian functionH0, then A is isomorphic to the d-dimensional
torus and we are back to the periodic scenario.

• If P is supported on the topological closure (with respect to the uniform norm), of the
set

A :=
{
τaH

0 : a ∈ Rd
}
,

for some Hamiltonian function H0, and this closure is a compact set, then H0 is
almost periodic and the homogenization would allow us to find the large n-limit of
TH◦γnt → T H̄t , for almost all choices of H in the compact support of P. In this case Ā
has the structure of a Lie group and P is the corresponding Haar measure.

To explore the homogenization question further, we discuss the connection between
Hamiltonian ODE and Hamilton-Jacobi PDE. For a classical solution, the method of char-
acteristics suggests that at least for short times, we can solve (5.2) in terms of the flow of
the Hamiltonian ODE

ẋ = Hp(x, p),(5.5)

ṗ = −Hx(x, p).

Equivalently we write ż = J∇H(z), where z = (x, p), and

J =

[
0 I
−I 0

]
,
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with I denoting the d× d identity matrix. Writing φt = φHt for the flow of (5.5), we have

(5.6) φHt
{(
x,∇u0(x)

)
: x ∈ Rd

}
=
{(
x, ux(x, t)

)
: x ∈ Rd

}
,

provided that the left-hand side remains a graph of a function. As we mentioned earlier, the
equation (5.2) does not possess C1 solutions in general. This has to do with the fact that if
φt folds the graph of ∇u0, then the left-hand side of (5.6) is no longer a graph of a function
and (5.6) has no chance to be true. One possibility is that we trim the left-hand side (5.6)
and hope for

(5.7) φHt
{(
x,∇u0(x)

)
: x ∈ Rd

}
⊇
{(
x, ux(x, t)

)
: x ∈ Rd

}
,

For this to work, we have to give-up the differentiability of u. This geometric and rather
naive idea does not suggest how the trimming should be carried out.

Alternatively, we may add a small viscosity term of the form ε∆u to the right-hand
side of (5.1) to guarantee the existence of a unique classical solution, and pass to the limit
ε→ 0. The outcome is known as a viscosity solution. As it turns out, under some coercivity
assumption on H, we can guarantee the existence of a solution that is differentiable almost
every where. We can now modify the right-hand side of (5.7) accordingly and wonder whether
or not

(5.8) φHt
{(
x,∇u0(x)

)
: x ∈ Rd

}
⊇
{(
x, ux(x, t)

)
: x ∈ Rd, ux(x, t) exists

}
,

is true. The answer is affirmative if H is convex in p. However (5.8) may fail if we drop the
convexity assumption. To explain this in the case of piecewise smooth solutions, we recall
that if H is convex in p, the only discontinuity we can have is a shock discontinuity. In
this case, at every point (a, t), with t > 0, we can find a solution (x(s), p(s) : s ∈ [0, t])
(the so-called backward characteristic) such that x(t) = a. If ρ = ux is continuous at a,
this backward characteristic is unique and p(t) = ρ(a, t). If ρ is discontinuous at (a, t), then
ρ(a, t) is multi-valued and for each possible value p of ρ(a, t), there will a solution to the
Hamiltonian ODE with (x(t), p(t)) = (a, p). In both cases, we still have (5.8).

The situation is far more complex when H is not convex. What may cause the violation
of (5.8) is the occurrence of a rare-faction type solutions. To explain this, let us assume that
d = 1, and H depends on p only. There are three momenta (or densities) a1 < a2 < a3 such
that

• The graph of H is convex and below its cord in [a1, a2].

• The graph of H is concave and above its cord in [a2, a3].

• The graph of H is below its cord in the interval [a1, a3].

Now imagine that we have two discontinuities at x(t) and y(t) with x(t) < y(t), and both
are shock discontinuities. Assume
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• The left and right values of ρ at x(t) are a′2(t) < a′3(t).

• The left and right values of ρ at y(t) are a′3(t) > a′1(t).

• These two shock discontinuities meet at some instant t0 with a′i(t0) = ai.

As a result, at the moment t0 the two shock discontinuities are replaced with a rarefaction
wave. Now if we take a point (x, t) inside the fan of this rarefaction wave (for which neces-
sarily t > t0), then at such (x, t) the connection with the initial data is lost and (x, ux(x, t))
does not belong to the left-hand side of (5.8).

Motivated by the failure of (5.8) for viscosity solutions, we formulate a question.

Question 5.1: Is there a notion of generalized solution for (5.1) for which (5.8) is always
true?

Using some ideas from topology and symplectic geometry the notion of geometric solution
has been developed by Chaperon, Sikarov and Viterbo. The main features of this solution
is as follows:

(i) The geometric solution satisfies (5.8) always.

(ii) The geometric solution satisfies (5.2) at every differentiability point of u.

(iii) The geometric solution coincides with the viscosity solution when H is convex in p.

(iv) Writing T̂tu
0 for the geometric solution of (5.2) with the initial condition u0, we do

not have T̂t ◦ T̂s = T̂t+s.

Needless to say the last feature of the geometric solution is a serious flaw and does not
provide a satisfactory answer for Question 5.1. Nonetheless the geometric solution provides
a useful notion that helps us to connect the equation (5.2) to the Hamiltonian ODEs.

Because of the intimate relation between the Hamilton-Jacobi Equation and the Hamil-
tonian ODE, we may wonder whether a homogenization phenomenon occurs for the latter.
More precisely, does the high-n limit of

φH◦γnt = γ−1
n ◦ φHnt ◦ γn,

exist in a suitable sense? Note that H ◦ γn has no pointwise limit and the existence of
pointwise limit of φH◦γnt is not expected either. Writing φH for φH1 , we may wonder in what
sense, if any, the sequence φH◦γn has a limit. We note

φH◦γn = γ−1
n ◦ φnH ◦ γn =: Sn(φH).
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We now discuss the existence of some interesting metric on the space H that is weaker than
uniform norm and is closely related to the flow properties of the Hamiltonian ODEs. More
importantly, there is a chance that H ◦ γn converges with respect to such metrics.

There are two metrics on H that are well-suited for our purposes. These metrics were
defined by Hofer and Viterbo; the proofs of non-triviality of these metrics are highly non-
trivial. Let us write down a wish-list for what our metric should satisfy.

Let us write D for the space of maps ϕ such that ϕ = φH for some smooth Hamiltonian
function H : R2d × [0, 1] → R. (Any such map is symplectic as we will see later.) Assume
that there exists a function E : D → [0,∞) with the following properties: For ϕ, ψ, τ ∈ D,

(i) E(ϕ) = E(ϕ−1).

(ii) E(ϕ) = E
(
τ−1ϕτ).

(iii) E(ϕψ) ≤ E(ϕ) + E(ψ).

(iv) E(ϕ) = 0 if and only if ϕ = id.

(v) E
(
ρ−1
` ϕρ`

)
= `−1E(ϕ), where ρ`(x, p) = (`x, p) and ` ∈ (0,∞).

Here and below we simply write ϕψ for ϕ ◦ψ and think of D as a group with multiplication
given by the map composition.

From E, we build a metric D on D by D(ϕ, ψ) = E
(
ϕψ−1

)
. This metric has the following

properties:

Proposition 5.1 (i) D(ϕτ, ψτ) = D(τϕ, τϕ) = D(ϕ, ψ) for ϕ, ψ, τ ∈ D.

(ii) For ϕ1, ψ1 . . . , ϕk, ψk, we have

D(ϕ1 . . . ϕk, ψ1 . . . ψk) ≤
k∑
i=1

D(ϕi, ψi).

(iii) For Sn(ϕ) = ρ−1
n ◦ ϕn ◦ ρn, we have

D
(
Sn(ϕ), Sn(ψ)

)
≤ D(ϕ, ψ).

In the case of a homogenization, we expect Sn(ϕ)→ ϕ̄, where ϕ̄ = φH̄ , for a Hamiltonian
function H̄ that is independent of x. Write D0 for the space of such ϕ̄. We note that
Sn(ϕ̄) = ϕ̄. As a result, for any ϕ̄ ∈ D0,

(5.9) D
(
Sn(ϕ), ϕ̄

)
= D

(
Sn(ϕ), Sn(ϕ̄)

)
≤ D

(
ϕ, ϕ̄

)
,
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by Proposition 5.1(iii). As was noted by Viterbo [V], (5.9) implies that the set of limit
points of the sequence (Sn(ϕ) : n ∈ N) is unique: If ϕ̄ and ψ̄ are two limit points, then given
δ > 0, we find n,m ∈ N such that

D(Sn(ϕ), ϕ̄) ≤ δ, D(Sm(ϕ), ψ̄) ≤ δ.

From this and (5.9) we learn,

D(Snm(ϕ), ϕ̄) ≤ δ, D(Snm(ϕ), ψ̄) ≤ δ,

because Snm = Sn ◦ Sm. Hence D(ϕ̄, ψ̄) ≤ 2δ. By sending δ → 0 we deduce that ϕ̄ = ψ̄.
A natural question is whether we have homogenization with respect to such a metric.

Question 5.2: Given ϕ ∈ D, does the large n limit of the sequence
{
Sn(ϕ)

}
exist with

respect to a metric D as above? �
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6 Lagrangian Manifolds and Viterbo’s Metric

The Question 5.2 has been answered affirmatively by Viterbo [V] when the Hamiltonian H
is periodic in x and the metric D is the Viterbo’s metric. We continue with a brief discussion
of Viterbo’s metric.

To simplify our presentation, let us assume that H is 1-periodic in x. We may also regard
u(·, t) as a function on the d-dimensional torus Td.

To examine the left-hand side of (5.8), assume that the initially the solution of the ODE
(5.5) satisfies the relationship p = ∇u0(x), for some smooth function u0. Whenever (5.6) is
true, then at time t we have a similar relationship between the components of φt(x, p). Let
us write M t := φt(M

0), where

M0 =
{

(x,∇u0(x)) : x ∈ Td
}
.

To get a feel for M t = φHt (M0), observe that M0 is a graph of a an exact derivative. Let us
refer to such manifolds as an exact Lagrangian. In general if

M =
{

(x,X(x)) : x ∈ Td
}
,

then vectors of the form

â :=

[
a

(DX)(x)a

]
,

are tangents to M at x. What makes M exact is that if X = ∇u, then the matrix A =
DX = D2u is symmetric. To state this directly in terms of the tangent vectors, observe

Aa · b− a · Ab =

[
Aa
−a

]
·
[
b
Ab

]
= Jâ · b̂ =: ω̄(â, b̂).

Hence the symmetry of A is equivalent to ω̄ �M= 0 identically. (Here ω̄ is the standard 2-
form of R2d.) Motivated by this we call a manifold M Lagrangian if the restriction of ω̄ to M
is identically 0. The point of this definition is that if M0 is the graph of an exact derivative,
then ϕ(M0) may not be a graph of a function. However, when ϕ preserves the form ω̄,
then ϕ(M0) is always a (possibly nonexact) Lagrangian. We say a map ϕ is symplectic if it
preserves ω̄ in the following sense:

ω̄
(
(Dϕ)(x)a, (Dϕ)(x)b

)
= ω̄(a, b),

for every x ∈ Td and every pair of vectors a, b ∈ R2d.

It is well-known that the correct topology for the viscosity solution comes from the
uniform norm; this has to do with the fact the viscous approximation of Hamilton-Jacobi
Equation satisfies a maximum principle that survives as we send the viscous term to 0. Since
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we are now interested in Hamiltonian ODE, we may try to define some kind of metrics on
Lagrangian manifolds of the form φHt

(
M0
)
, where M0 is an exact Lagrangian. Let us write

L0 for the set of exact Lagrangian, and define

H0 =
{
H : Td × Rd × [0, 1]→ R : H is C1 and 1-periodic in x

}
L =

{
φH(M) : H ∈ H0, M ∈ L0

}
When M is the graph of ∇u, for some C1 function u : Td → R, we refer to u as the generating
function of M . When this is the case, we write G(M) = u. We also write

L(u) :=
{

(x,∇u(x)) : x ∈ Td
}
.

Viterbo defines a metric on L that is a generalization of the L∞-metric on its generating
function. In other words, the metric D is defined in such way that if M0 and M1 are two
exact Lagrangians, then

D
(
M,M ′) = ‖G(M)− G(M ′)‖∞,

where by ‖ · ‖∞ we really mean the total oscillation:

‖u‖∞ = maxu−minu.

This is quiet natural because L(u) = L(u+ c), for any constant c.
To guess how to extend the definition of this metric to non-exact Lagrangian, we need to

develop a better understanding of the Hamiltonian ODEs. First, we claim that there exists
a functional I = IH on the space of the paths z(·) = (x, p)(·), such that ż = J∇H(z, t) if
and only if z(·) is a critical point of I. Writing the Hamiltonian ODE as Jż+∇H(z, t) = 0,
it is not hard to come up an example for I; we use a quadratic term to produce the linear
part Jż, and H to produce ∇H. The following function I : C1([0, 1];Td × Rd) → R, is the
integral of the celebrated Cartan-Poincaré form:

I(z) =

∫ 1

0

[p(t) · ẋ(t)−H(z(t), t)] dt.

Formally, ∂I(z) = −Jż −∇H(z, t). More precisely, if η : [0, 1] → Td × Rd, satisfies η(0) =
η(1) = 0, then ψ(δ) = I(z + δη) satisfies

ψ̇(0) = −
∫ 1

0

(
Jż(t) +∇H(z(t), t)

)
· η(t) dt.

We now use this to come up with a generating-like function for M1 = φHM
0, where M0 =

G(u0). To this end, let us define

Γ :=
{
z : [0, 1]→ Td × Rd : z ∈ C1

}
, Γ(a) =

{
z = (x, p) ∈ Γ : x(1) = a

}
.
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In words, Γ(a) consists of position/momentum paths with the position component reaching
a at time 1. We note that if z ∈ Γ(a) and η ∈ Γ(0), then z + δη ∈ Γ(a) for all δ ∈ R. We
then define Î : Γ(a)→ R by

Î(z) = u0(x(0)) + I(z) = u0(x(0)) +

∫ 1

0

[p(t) · ẋ(t)−H(z(t), t)] dt.

Since we want to use Î to build a generating function for M1, observe that Γ(0) is an infinite
dimensional vector space and any z ∈ Γ(a) can be written as

z(t) = (a, 0) + ξ(t),

with ξ ∈ Γ(0). If M1 is still a graph of function and has a generating function u1, then what
is happening is that we have a solution z satisfying ż = J∇H(z, t) with

z(0) =
(
x(0),∇u0(x(0))

)
, z(1) =

(
x(1),∇u1(x(1))

)
.

Moreover, if u solves (1.1), then u1(x) = u(x, 1). Note that if w(t) = u(x(t), t), then
ẇ = p · ẋ−H(z, t), or

u1(x(1)) = u0(x(0)) +

∫ 1

0

[p(t) · q̇(t)−H(z(t), t)] dt.

To separate x(1) from the rest of information in the path z(·), we define J : Td×Γ(0)→ R,
by

J (a; ξ) = I
(
(a, 0) + ξ

)
.

In other words, if z = (a, 0) + ξ = (x, p), and ξ = (x′, p), then x′(t) = x(t)− x(1) = x(t)− a.
Now, if we set

ψ̂(δ) = Î(z + δη) = J (a; ξ + δη),

for z ∈ Γ(a), and η = (x̂, p̂) ∈ Γ(0), then

dψ̂

dδ
(0) =

(
∇u0(x(0))− p(0)

)
· x̂(0)−

∫ 1

0

(
Jż(t) +∇H(z(t), t)

)
· η(t) dt.

We can now assert

∂ξJ (a; ξ) = 0 ⇐⇒ p(0) = ∇u0(x(0)), and z = (a, 0) + ξ satisfies ż = J∇H(z, t).

On the other hand, if we set ψ̄(δ) = Î
(
z + (δb, 0)

)
= J (a+ δb; ξ), then

∂aJ (a; ξ) · b =
dψ̄

dδ
(0) = ∇u0(x(0)) · b−

∫ 1

0

Hx(z(t), t) · b dt.
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As a result, if ∂ξJ (a; ξ) = 0, then

∂aJ (a; ξ) = ∇u0(x(0))−
∫ 1

0

Hx(z(t), t) dt = ∇u0(x(0)) +

∫ 1

0

ṗ(t) dt = p(1).

From this we deduce

φHM0 =
{(
a, ∂aJ (a, ξ)

)
: a ∈ Td, ∂ξJ (a, ξ) = 0

}
,

where a = x(1) represents the position at time 1. We think of J (a; ξ) as a generalized
generating function (or in short GG function) of M = M1. The Lagrangian M1 is exact if
for every (a, p) ∈ Td × Rd, there is at most one solution z to the Hamiltonian ODE with
x(1) = a, p(1) = p. Our aim is to associate a nonnegative number E(M) to M ∈ L that in
the case of an exact Lagrangian M = G(u),

E(M) = E+(M)− E−(M),

where E±(M) are two critical values of u, namely the maximum and minimum of u. In
the case of a non-exact M , we may use the functional J = JM to select two critical points
z± = (a±, ξ±) of the functional JM to define

E±(M) = JM(a±, ξ±) = Î(z±).

The main question now is how to select the critical paths z±. The classical theories of Morse
and Lusternik-Schnirelman would provide us with systematic ways of selecting critical values
of a scalar-valued functions on a manifold. These theories are applicable if the underlying
manifold is finite-dimensional and their generalizations to infinite dimensional setting are
highly nontrivial. (Floer Theory is a prime example of such generalization.) However in our
setting it is possible to approximate the functional I or J with a function that is defined on
Td ×RN for a suitable N that depends on H and u0 and could be large. More precisely, we
may try to find a generalized generating (GG) function S : Td × RN → R such that

M =
{

(x, Sx(x, ξ)) : x ∈ Td, ξ ∈ RN , Sξ(x, ξ) = 0
}
,

In fact any manifold of this form is automatically a Lagrangian manifold, simply because the
tangent vectors at a point of the form (x, Sx(x, ξ)) are still of the form

(
v,A(x, ξ)v

)
; v ∈ Rd,

where A = Sxx is a symmetric matrix.
To explain the existence of such finite dimensional GG functions, we need to make another

observation about the flows of Hamiltonian ODEs.
We may regard the symplectic property of ϕ = φH1 , as saying that its graph{

(x, ϕ(x)) : x ∈ Td × Rd
}
,
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is Lagrangian with respect to the 2-form ω⊕(−ω) in R4d. This Lagrangian manifold is exact
when this graph can be expressed as a graph of the gradient of a scalar-valued function, but
now because of the form of the symplectic form ω ⊕ (−ω), must be done in a twisted way.
More precisely, if ϕ(x, p) = (X,P ), then the generating function would depend for example
on (X, p). In the case of an exact symplectic map, we may find a scalar-valued function
S(X, p) such that

ϕ
(
Sp(X, p), p

)
=
(
X,SX(X, p)

)
.

The identity map has the generating function p ·X. This suggest writing S(X, p) = X · p−
w(X, p) with w periodic in X. In terms of w,

ϕ
(
X − wp(X, p), p

)
=
(
X, p− wX(X, p)

)
.

Now imagine that M = ϕ(M0), where both M0 and ϕ are exact with generating functions
u0 and S(X, p) = X · p− w(X, p). Then

Ŝ(X;x, p) = u0(x) + p · (X − x)− w(X, p) =: p · (X − x)− ŵ(X;x, p),

is a GG function for M1: If ξ = (x, p), then

Ŝξ(X; ξ) = 0 ⇐⇒ p = ∇u0(x), x = X − wp(X, p).

As a result
Ŝξ(X; ξ) = 0 =⇒ ϕ(x, p) =

(
X, ŜX(X; ξ)

)
,

because ŜX = p− wX(X, p) = P .
As we mentioned earlier, the identity map has a generating function. Using Implicit

Function Theorem, it is not hard to show that any symplectic map that is C1-close to the
identity also possesses a generating function. Now if ϕ = φH is the time-one map associated
with a smooth Hamiltonian, then we can find δ > 0 sufficiently small, such that the map
ϕ = φHδ is sufficiently close to the identity map and possesses a generating function. In
general, each φH can be expressed as ϕ1 ◦ · · · ◦ ϕN with each ϕi exact symplectic. If each ϕi

has a generating function of the form X · p − wi(X, p), then M = ϕ(M0) has a generating
function of the form

Ŝ
(
xN ; ξ

)
= Ŝ

(
xN ;x0, p0, . . . , xN−1, pN−1

)
:= u0(x0) +

N−1∑
i=0

[
pi · (xi+1 − xi)− wi(xi+1, pi)

]
.

So far we know that our Lagrangian manifolds possess finite-dimensional generating func-
tions. The next question to address is that how we can select appropriate critical values
E±(M) for Ŝ(X; ξ).
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For the rest of this section, we assume that M is a Lagrangian manifold with a generalized
generating (GG) function S(q, ξ). More precisely,

M =
{

(x, Sx(x, ξ)) : x ∈ Td, ξ ∈ RN , Sξ(x, ξ) = 0
}
,

and S(x, ξ) is a nice perturbation of a quadratic function in ξ. By this we mean that there
exists a quadratic function B(ξ) = Aξ · ξ such that A is an invertible symmetric matrix, and

sup
x,ξ
|S(x, ξ)−B(ξ)|, sup

x,ξ
|Sξ(x, ξ)−∇B(ξ)| <∞.

We wish to put a metric on the space L of such Lagrangians. For this, we first wish to define
the size E(M) of a Lagrangian manifold M . If M is an exact Lagrangian with generating
function u, we simply set

E(M) = maxu−minu.

If M has a GG function, E(M) is defined by

E(M) = E+(M)− E−(M),

where E−(M) and E+(M) are two critical values of the GG function that are the analog of
minu and maxu. To explain our strategy for selecting E±(M), first imagine that S(x, ξ) =
u(x) + B(ξ). Then we still have E−(M) = minu = u(x−) and E+(M) = maxu = u(x+),
because both (x±, 0) are critical points of S. After all 0 is a critical value for B. In fact since
B is a non-degenerate quadratic function, 0 could be a saddle point. We may apply Lusternik-
Schnirleman (LS) Theory, to assert that there are two critical points of S that are very much
the analogs of (x±, 0). We now ready to define a metric on the space of Lagrangians. If M
and M ′ are two Lagrangian with generating functions S and S ′ respectively, then we define
a new generating function(

S 	 S ′
)
(x, ξ1, ξ2) = S(x, ξ1)− S ′(x, ξ2).

This new generating function produces a new Lagrangian manifold

M 	M ′ =
{

(x, Sx(x, ξ1)− S ′x(x, ξ2)) : x ∈ Td, ξ ∈ RN , ξ ∈ RN ′ , Sξ(x, ξ) = 0, S ′ξ(x, ξ2) = 0
}

=
{

(x, p− p′) : (x, p) ∈M, (x, p′) ∈M ′}.
This generating function is a bounded perturbation of

(
B 	B′

)
(ξ1, ξ2) = B(ξ1)−B(ξ2).

We set
D(M,M ′) = E

(
S 	 S ′

)
.

We now want to use the above metric to define a metric for Hamiltonian functions or
their corresponding flows that was defined by Viterbo:

D(H,H ′) = sup
{
D
(
φH(M), φH′(M)

)
: M ∈ L

}
.
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Theorem 6.1 (Viterbo [V]) The large n-limit of H ◦ γn exists with respect to the Viterbo
Metric D. Moreover, if the limit is denoted by B(H), then B satisfies the following properties

(i) For every symplectic ϕ ∈ D, we have B(H ◦ ϕ) = B(H).

(ii) If {H,K} := J∇H ·K = 0, then B(H +K) = B(H) + B(K).

This should be compared with the Lions-Papanicolaou-Varadhan [LPV] homogenization
result.

Theorem 6.2 Assume that H(x, p) is a C1, x-periodic Hamiltonian function with

lim
|p|→∞

inf
x
H(x, p) =∞.

Then the large n limit of TH◦γn exists. The limit is of the form T H̄ , for a Hamiltonian
function A(H) := H̄ that is independent of x.

In fact A(H) = B(H) when H is convex in p; otherwise they could be different. More-
over, Theorem 6.2 has been extended to the random ergodic setting when H is convex in
p in Rezakhanlou-Tarver [RT] and Souganidis [S]. A natural question is whether or not
Theorem 6.1 can be extended to random

Question 6.1 Can we extend Viterbo’s metric (or Hofer’s metric) to the random setting
and does the large n limit of H ◦ γn exist for stationary ergodic Hamiltonian H? �
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