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Abstract

We prove various decay bounds on solutions (fn : n > 0) of the discrete and con-
tinuous Smoluchowski equations with diffusion. More precisely, we establish pointwise
upper bounds on n`fn in terms of a suitable average of the moments of the initial
data for every positive `. As a consequence, we can formulate sufficient conditions on
the initial data to guarantee the finiteness of Lp(Rd × [0, T ]) norms of the moments
Xa(x, t) :=

∑
m∈Nm

afm(x, t), (
∫∞

0 mafm(x, t)dm in the case of continuous Smolu-
chowski’s equation) for every p ∈ [1,∞]. In previous papers [11] and [5] we proved
similar results for all weak solutions to the Smoluchowski’s equation provided that the
diffusion coefficient d(n) is non-increasing as a function of the mass. In this paper we
apply a new method to treat general diffusion coefficients and our bounds are expressed
in terms of an auxiliary function φ(n) that is closely related to the total increase of the
diffusion coefficient in the interval (0, n].

1 Introduction

The Smoluchowski equation is a system of partial differential equations that describes the
evolving densities of a system of diffusing particles that are prone to coagulate in pairs and
fragment into pairs. A family of functions fn : Rd × [0,∞)→ [0,∞), n ∈ N, is a solution of
the discrete Smoluchowski equation if it satisfies

(1.1)
∂

∂t
fn(x, t) = d(n)∆fn(x, t) +Qn(f)(x, t),
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with Qn = QC
n +QF

n , QC
n = QC,+

n −QC,−
n , QF

n = QF,+
n −QF,−

n , where

QC,+
n (f)(x, t) =

1

2

n−1∑
m=1

α(m,n−m)fm(x, t)fn−m(x, t),

QC,−
n (f)(x, t) =

∞∑
m=1

α(n,m)fn(x, t)fm(x, t),

QF,+
n (f)(x, t) =

∞∑
m=1

β(n,m)fn+m(x, t),

QF,−
n (f)(x, t) =

1

2

n−1∑
m=1

β(m,n−m)fn(x, t).

Here α(·, ·), β(·, ·) ≥ 0, d(·) > 0, and d(·) is bounded. We will interpret this solution in a
weak sense. Namely, we assume that QC,±

n , QF,±
n ∈ L1(Rd × [0, T ]) for each T ∈ [0,∞) and

n ∈ N, and that

(1.2) fn(x, t) = S
d(n)
t f 0

n(x) +

∫ t

0

S
d(n)
t−s Qn(x, s)ds,

where {f 0
n : n ∈ N} denotes the initial data, SDt the semigroup associated with the equation

ut = D∆u, and where Qn(x, s) means Qn(f)(x, s).
In the continuous case, the summations

∑n−1
m=1, and

∑∞
m=1, are replaced with

∫ n
0
dm,

and
∫∞

0
dm, respectively. Similarly, a function f : Rd× (0,∞)× [0,∞)→ [0,∞), fn(x, t) =

f(x, n, t), is a solution to the continuous Smoluchowski equation if fn, Q
C,±
n , QF,±

n ∈ L1(Rd×
[0, T ]), for each T, n ∈ (0,∞), and (1.2) holds.

The existence of solutions to (1.1) under the assumption

(1.3) lim
n→∞

α(n,m)

n
= 0

has been established in Wrzosek [11], [13], Mischler-Rodriguez Ricard [9] and Laurençot–
Mischler [8], and in [7] when the equation (1.1) is formulated in a bounded domain. In this
case one can prove the existence of a solution by first replacing α and β by a suitable cutoff
rates α(N) and β(N), and pass to the limit. More precisely, α(N) and β(N) are defined by

(1.4) α(N)(n,m) =

{
α(n,m) if n and m ≤ N ,

0 otherwise,

(1.5) β(N)(n,m) =

{
β(n,m) if n+m ≤ N ,

0 otherwise.
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It is straight forward to prove the existence of a unique solution f (N) associated with α(N)

and β(N) under a mild assumption on the initial data. We then show that such a sequence
{f (N)}N∈N has a convergent subsequence in L1-sense and that each limit point f is a weak
solution to (1.1). We say a solution f to (1.1) is regular if f is obtained by the above
approximation procedure.

The main goal of this article is to obtain a pointwise and Lp-bounds on weak solutions
of the Smoluchowski’s equation. Such bounds are obtained for all weak solutions of (1.1)
under some regularity assumptions on the initial data and growth conditions on α(·, ·) and
d(·) provided that there is no fragmentation. In the presence of fragmentation, our bounds
are established for regular solutions as described in the previous paragraph.

As a sample of what can be achieved by our approach, we state Lp bounds on solutions
when there is no fragmentation and the diffusion coefficient is uniformly positive. Such Lp

bounds are achieved in two steps: First we obtain a decay bound on solutions provided that
sufficiently large moments of solutions are integrable. We then recall a theorem from [5]
and [11] to give sufficient conditions for integrability of any given moment of solutions. Our
precise assumptions are described in Hypothesis 1.1.
Hypothesis 1.1

• (i) The function d(·) is uniformly positive and uniformly bounded:

0 < d = inf
n
d(n) ≤ d̄ = sup

n
d(n) <∞.

• (ii) The total increase variation of d(·) is finite. By this we mean that the total positive
variation of log d(·) is finite. More precisely,

d̂ :=
∞∏
n=1

max

{
1,
d(n+ 1)

d(n)

}
<∞,

in the discrete setting and

d̂ := sup
ni

∞∏
i=1

max

{
1,
d(ni+1)

d(ni)

}
<∞,

in the continuous setting. Here the supremum is taken over increasing positive se-
quences {ni}.

• (iii) There exists a constant a0 such that α(m,n) ≤ a0mn for all m and n.

�
We also write

Xa = Xa(x, t) =
∑
n

nafn(x, t), X0
a(x) = Xa(x, 0),
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for the moments of f (in the continuous setting, the summation is replaced with an integra-
tion). We next define a set D by

D :=

{
(k, η) : 2 < k ∈ N, η >

d+ 2− 2k−1

2− 4k−1

}
,

when the dimension is at least 2, and by D := {(4, η) : 2η > 5} , when d = 1. We are now
ready to state our first result.

Theorem 1.1 Assume Hypothesis 1.1 and that β ≡ 0. There exists a constant C0 =
C0(d, d̄, d̂; k, η) such that for every (k, η) ∈ D and p ∈ [1,∞],

(1.6) ‖fn(·, t)‖Lp ≤ ‖f 0
n‖Lp + a02`C0 n

−`
(∫ t

0

∫
X`η+1dxds

)η−1 ∥∥X0
1 ∗ ψk

∥∥2−η−1

Lp(2−η−1) ,

where ψk(x) = |x| 2k−d.

As an example of (k, η) ∈ D, we may choose k = 4 and η = d + 2. An immediate
consequence of Theorem 1.1 is the inequality

(1.7) ‖fn(·, t)‖Lp ≤ ‖f 0
n‖Lp + a02`C ′0 n

−`,

provided that the initial condition satisfies

(1.8)
∥∥X0

1 ∗ ψk
∥∥
Lp(2−η−1) =: A0 <∞,

and that X`η+1 is integrable. We now describe a theorem that gives sufficient conditions for
the integrability of moments of f . For this we need another set of condition on α and d(·).
Hypothesis 1.2 The function d(·) is positive and uniformly bounded. Moreover,

lim
n+m→∞

α(n,m)

(n+m)(d(n) + d(m))
= 0.

�
We also set

τ0(x) =


|x|2−d if d ≥ 3,

− 1
2π

log |x| 11(|x| ≤ 1) if d = 2,
1
2
(1− |x|) 11(2|x| ≤ 1) if d = 1.

We now recall a result on the L1 bounds that will be needed in this paper and its proof can
be found in [5].
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Theorem 1.2 Assume Hypotheses 1.2 and that β ≡ 0. Then for every a ≥ 2 and positive
A and T , there exists a constant C1 = C1(a,A, T ) such that, if f is a solution and

(1.9)

∫∫
X0
a(X0

1 ∗ τ0)dx ≤ A, ess sup(X0
a +X0

0 ) ∗ τ0 ≤ A,

∫
(X0

a +X0
0 )dx ≤ A,

then

sup
t∈[0,T ]

∫
Xa(x, t)dx ≤ C1.

Moreover, when d ≥ 3, the constant C1 can be chosen to be independent of T .

Combining Theorems 1.1 and 1.2 yields the following corollary.

Corollary 1.1 Assume Hypotheses 1.1 and 1.2 and that β ≡ 0. There exists a constant

C2 = C2(d, d̄, d̂; k, η;A0, A, T ),

such that if (k, η) ∈ D and the initial condition f 0 satisfies (1.9) for a = η` + 1and (1.8),
then

(1.10) ‖fn(·, t)‖Lp ≤ ‖f 0
n‖Lp + a02`C2 n

−`,

for every p ∈ [1,∞] and t ∈ [0, T ].

Remark 1.1.

• (i) We note that Hypothesis 1.2 implies Hypothesis 1.1(iii) for sufficiently large a0.

• (ii) The choice of (k, η) ∈ D only affects the constant C2 and the nature of bounds we
need to assume on the initial data. This is because our assumption (1.8) depends on
k via ψk and our choice of a = η`+ 1 in (1.9) depends on η.

• (iii) In Hammond–Rezakhanlou [6], [7], Rezakhanlou [12] and, Yaghouti–Rezakhanlou–
Hammond [16] the equation (1.1) was derived from a microscopic model of coagulating
Brownian particles (β ≡ 0). In these articles the macroscopic coagulation rate α does
satisfy Hypothesis 1.2. In the model studied in [12], each particle has a mass m and
radius r and the relationship between the mass and radius is given by r = r(m) = mχ

for a nonnegative parameter χ. In terms of this parameter,

α(m,n) ≤ c0(d(m) + d(n))(r(m) + r(n))d−2,

for a suitable positive constant c0 and whenever d > 2. As it was discussed in [6] and
[12], the condition χ > (d− 2)−1 is equivalent to the “instantaneous” formation of gels
and must be excluded for the validity of the macroscopic equation (1.1). In fact the
equation (1.1) was derived in [12] under the assumption χ < (d−2)−1, which is exactly
what is needed in order to satisfy Hypothesis 1.2.
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• (iv) In [5] and [11] we also showed

(1.11)

∫ T

0

∫ ∑
n,m

(na−1m+ma−1n)α(n,m)(fnfm)(x, t)dxdt <∞,

under the assumptions of Theorem 1.2. As it was shown in [5] and [11], (1.11) implies
the conservation of mass when a = 2. We also refer to [4] where a different approach
is utilized to treat the mass conservation.

• (v) When β ≡ 0, there is a unique weak solution of (1.1) on the interval [0, T ] among
those satisfying X2 ∈ L∞(Rd × [0, T ]). This is a generalization of the uniqueness
theorem of Ball and Carr [3], and was shown in [5]. On account of Corollary 1.1, we
have X2 ∈ L∞ if the same is true initially and the conditions (1.9) and (1.8) are true
for some ` > 3 and some (k, η) ∈ D.

�
We now turn to the case of a diffusion coefficient d(·) that is not uniformly positive.

When d(·) is not uniformly positive, (1.6) takes a more complicated form that depends on a
choice of an auxiliary function φ. In the discrete setting we define φ by setting φ(1) = 1 and

(1.12) φ(n) =
n−1∏
m=1

min

{
1,

d(m)

d(m+ 1)

}
,

for n > 1. The Hypothesis 1.1 in this case is replaced with a set of assumptions that are
formulated for a given fixed integer k satisfying kd > 2.

Hypothesis 1.3(k)

• (i) The function d(·) is positive and d̄ = supn d(n) <∞.

• (ii) There exist constants a0, e0 ≥ 0, such that α(n,m) ≤ a0(ne0−1 +me0−1)γk(n)γk(m),

where γk(m) = md(m)d/2φ(m)
kd
2
−1.

�
The moments Xa in (1.6) will be replaced with more complicated expressions involving

φ:

X̂a(x, t) = X̂a;k,φ(x, t) =
∑
n

na−1γk(n)fn(x, t), X̂0
a(x) = X̂a(x, 0)(1.13)

X̄a(x, t) = X̄a;k,φ(x, t) =
∑
n

na−1d(n)−
1
kγk(n)fn(x, t). X̄0

a(x) = X̄a(x, 0),

We are now ready to state our generalization of Theorem 1.1 in the discrete setting.
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Theorem 1.3 Assume that β ≡ 0 and that Hypothesis 1.3(k) holds for some k ∈ N. Pick η
so that (k, η) ∈ D. There exists a constant C3 = C3(d̄; k, η) such that for every p ∈ [1,∞],

‖fn(·, t)‖Lp ≤‖f 0
n‖Lp

+ a02`C3 d(n)−R(k,η) n−`
(∫ t

0

∫
X̂(`+e0−1)η+1dxds

)η−1 ∥∥X̄0
1 ∗ ψk

∥∥2−η−1

Lp(2−η−1) ,(1.14)

where ψk(x) = |x| 2k−d and R(k, η) = 1− 2k−1 − (1− k−1)η−1.

For the analog of Corollary 1.1, we need to make sure that the term d(n)−R(k,η) does not
annul our polynomial decay term n−`. A polynomial decay lower bound on the diffusion
coefficient would do the job.

Corollary 1.2 Assume Hypotheses 1.3(k) and 1.2, and that β ≡ 0. We also assume that
there exist constants r1 > 0 and b1 ≥ 0 such that

(1.15) d(n) ≥ r1n
−b1 .

Then there exists a constant

C4 = C4(d̄; r1; k, η;A0, A, T ),

such that if (k, η) ∈ D and the initial condition f 0 satisfies∥∥X̄0
1 ∗ ψk

∥∥
Lp(2−η−1) ≤ A0,

and (1.9) for
a = (`+ e0 − 1)η + 1,

then

(1.16) ‖fn(·, t)‖Lp ≤ ‖f 0
n‖Lp + a02`C4 n

−`+b1R(k,η),

for every p ∈ [1,∞].

Remark 1.2.

• (i) Observe that φ has the following two properties:

(1.17) φ(·) is nonincreasing and d(·)φ(·) is nonincreasing.

In fact φ is uniquely determined as the largest function satisfying (1.17) and the nor-
malization condition φ(1) = 1.
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• (ii) Observe that the total increase variation of d(·) is finite if and only if φ is uniformly
positive (simply because φ(∞) = d̂−1). From this we learn that if Parts (i) and (ii)
of Hypothesis 1.1 are satisfied then Hypothesis 1.1(iii) is equivalent to Hypothesis
1.3(k)(ii) for the choice of e0 = 1, and that Theorem 1.3 and Corollary 1.2 are equivalent
to Theorem 1.1 and Corollary 1.1 respectively. (In Corollary 1.2, we simply choose
b1 = 0.)

• (iii) We note that if for positive constants r1 and r2, and nonnegative constants b1 and
b2, we have

(1.18) d(n) ≥ r1n
−b1 , φ(n) ≥ r2n

−b2 ,

for all n, then Hypothesis 1.3(k)(ii) is satisfied provided that for some constant a′0,

(1.19) α(m,n) ≤ a′0
(
ne0−1 +me0−1

)
(nm)−b3 ,

for

b3 =
db1

2
+

(
kd

2
− 1

)
b2 − 1.

For example, if α(m,n) ≤ a0nm, then (1.19) is true for any e0 ≥ 2b3 + 3.

• (iii) We note that we can use the bound X̂a;k,φ ≤ c(k)Xa and Theorem 1.2 to bound

X̂a;k,φ in terms of the moments of the initial data. Also note that if we have a decay
bound for d(·) and φ(·) (in case any of these two functions converge to 0), we may
use X̂a,k ≤ c′(k)Xa′ instead for a suitably a′ < a to use lower moments to bound the
right-hand side of (1.14).

�
To extend Theorem 1.3 to the continuous setting, we need a candidate for our auxiliary

function φ. For our arguments to work, we only need a function φ that satisfies the conditions
of (1.17). To this end, let us set A(d(·)) to be the set of continuous functions φ : (0,∞)→
(0,∞) such that both φ(·) and φ(·)d(·) are non-increasing. Given φ ∈ A(d(·)), we define X̂
and X̄ by replacing n-summations in (1.13) with

∫∞
0

-integrations.

Theorem 1.4 For a given φ ∈ A(d(·)), the conclusions of Theorem 1.3 and Corollary 1.2
are true under the assumptions of Theorem 1.3 and Corollary 1.2 respectively.

We address the question of the existence of φ in the next Proposition.

Proposition 1.1 • (i) Suppose that the function log d(·) has a finite positive variation
in every interval (0, n] with n > 0. Then there exists a positive continuous function
φ ∈ A(d(·)).

8



• (ii) If the function log d(·) has a finite positive variation in (0,∞), then we can find
φ ∈ A(d(·)) that is uniformly positive.

• (iii) If the function log d(·) has a finite positive variation in (0,∞) and d(·) is uniformly
bounded and positive near 0, then we can find a bounded φ ∈ A(d(·)).

We skip the proof of Proposition 1.1 because Part (i) is exactly Lemma 3.2 of [16] and
Parts (ii) and (iii) can be established in a similar way.

We finally turn to the case of nonzero β. As is evident from Corollary 1.2, we can bound
Lp norms of moments of solutions in terms of various moments of initial data provided
that β ≡ 0 and we have suitable growth bounds on the diffusion coefficient d(·) and the
coagulation rate α. Unfortunately our results in the presence of fragmentation are not as
satisfactory and only reduce L∞ bounds to an appropriate Lr bounds of certain moments of
solutions.

We assume

• φ ∈ A(d(·)) and φ is bounded in the continuous setting.

• φ is defined by (1.12) in the discrete setting.

Given such φ and a positive integer k, the relevant assumption on the fragmentation rate
takes the following form.

Hypothesis 1.4(k) There exist constants a1, e1 ≥ 0, such that

β(m,n) ≤ a1(m+ n)e1−1γk(m+ n).

�

Remark 1.3. What we have in mind is that if for example we are in discrete setting and
there exist positive constants r1, r2 and a0, and nonnegative constants b2 and b1 such that,

r1n
−b1 ≤ d(n), r2n

−b2 ≤ φ(n), α(m,n) ≤ a0nm, β(m,n) ≤ a1(m+ n)e2 ,

for every m,n > 0, then we may choose e0 and e1 sufficiently large so that Part (ii) of
Hypothesis 1.3(k) and Hypothesis 1.4(k) are valid for a given k. �

We set χk(n) = γk(n) max{d(n)−1/k, ne1+1} and define

(1.20) X̃(x, t) =
∑
n

χk(n)fn(x, t).
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Theorem 1.5 Assume Hypotheses 1.3(k) and 1.4(k). Pick η so that (k, η) ∈ D. We also
pick r > kd/2 and set b = r

r−1
(1 − 2

kd
). There exist constants C5 = C5(d̄; k, η, ζ;A) and

C6 = C6(d̄; k, η, ζ;A) such that if

(1.21) sup
s∈[0,t]

∫ (
X̂(`+e0−1)η+1 + X̂(`+e1−1)η+1 + X̃

)
(x, s) dx,

∥∥X̄0
1 ∗ ψk

∥∥
L∞
≤ A,

then

(1.22) ‖fn(·, t)‖L∞ ≤ ‖f 0
n‖L∞ + (a0 + a1)2` d(n)−R

′(k,η) n−`
(
C5 + C6Y

b(2−η)
)
,

where ψk(x) is as in Theorem 1.3, R′(k, ζ) = (1− k−1)(1− η−1), and

Y = esssupx esssups∈[0,t] ‖X̃(·, t)‖Lr(B1(x)),

with B1(x) denoting the ball of radius 1 and center x.

Theorem 1.6 below would allow us to bound the first expression on the left-hand side
of (1.21) in terms of various moments of the initial data. However we do not know how to
control Y in terms of initial data. Unfortunately the exponent b(2 − η) > 1 even though
b < 1. This prevents us to to obtain a bound for Y by multiplying both sides of (1.22) by
χk(n) and summing over n.

We now describe a theorem that gives sufficient conditions for the integrability of mo-
ments of f . Its proof can be found in [11].

Theorem 1.6 Assume Hypotheses 1.2 and that for every ` > 0, there exists a constant c(`)
such that for every m and n with m ≤ `,

β(n,m) ≤ c(`)n.

Then for every a ≥ 2 and positive A and T , there exists a constant C ′1 = C ′1(a,A, T ) such
that, if f is a regular solution and (1.9) is true, then and

sup
t∈[0,T ]

∫
Xa(x, t)dx ≤ C ′1.

In summary, the main results of this article are Theorems 1.1 and 1.3, in which we obtain
Lp-bounds for solutions of (1.1) in terms of L1 norm of various moments of the solution and
appropriate bounds of initial data. We then apply Theorems 1.2 to bound L1 norms of
various moments under suitable assumptions of the parameters of our PDE (1.1) and the
initial data.

We obtain our Lp-bounds on the solutions from analogous pointwise bounds that are
more technical to state and are left for Sections 2 and 4. In fact the main results of this
paper are achieved in three steps:
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• (i) Pointwise bounds on the total mass X1 :=
∑

n nfn when β ≡ 0 and the diffusion
coefficient d(·) satisfies Hypothesis 1.1(i)-(ii). If d(n) goes to 0 in large n limit, pointwise
bounds are established for a suitable variant of the total mass X1.

• (ii) We use (i) to find pointwise polynomial decay bounds on fn as n→∞.

• (iii) We use (ii) to bound ‖fn‖Lp for p ∈ [1,∞].

These three steps are carried out as follows.

• Step (i) was achieved in [5] and [11] provided that the diffusion coefficient is a non-
increasing function of the mass size n. One of the main contribution of this work
(Theorems 2.1 and 2.2 of Section 2) is a new approach that would allow us to achieve
Step (i) for general diffusion coefficients with no monotonicity restriction. However,
instead of the full (x, t) pointwise bound on the mass density, we only achieve a point-
wise bound on

∫∞
0
Xk

1 (x, t) dt, k ≥ 1, in terms of the initial data. ( As is demonstrated
in Remark 2.1 (iii), this bound in turn implies a pointwise bound on ess suptX1(x, t)
if d(·) is also non-increasing. )

• Step (ii) is achieved in Theorems 4.1 and 4.2 of Section 4.

• Step (iii) will be achieved by simply taking the Lp norm of both sides of the pointwise
bounds we obtain in Step (ii).

As we mentioned earlier, in the presence of fragmentation, our bounds are valid for regular
solutions and not all weak solutions. This restriction however applies to L1 bounds and our
results concerning with Steps (i-iii) are valid for all weak solutions.

For some related works, we refer to Amann [1], Amann and Walker [2] (local existence
and uniqueness), Wrzosek [13]-[15] (existence, uniqueness and mass conservation for almost
constant diffusion coefficient), Laurençot and Mischler [9]-[10] (existence and regularity of
solutions), Mischler and M. Rodriguez Ricard [10] (existence of solutions) and Canizo et al
[4] (conservation of mass in bounded domains).

We only present our proofs in the discrete case because the continuous case can be treated
by verbatim arguments. The organization of the paper is as follows.

• In Section 2, we state several pointwise bounds on solutions as we described in Step
(i) above.

• Section 3 is devoted to the proof of the results of Section 2.

• In Section 4, we state several pointwise bounds on solutions as we discussed in Step
(ii) above.

• Section 5 is devoted to the proofs of pointwise bounds we state in Section 4.
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• In Section 6 we show how the results of Sections 2 and 4 imply Theorems 1.3 and 1.5.
(Recall that by Remark 1.2(ii), Theorem 1.3 implies Theorem 1.1.)

2 Pointwise Bounds I

In this section we learn how to bound the first moment (or its variant when d(·) does not
satisfy Hypothesis 1.1(i,ii)) in terms of the initial data. Ultimately we need an inequality
that works in general. However the form of such inequality is rather complicated and for
motivational purposes we would rather start from the simplest case, namely when β ≡ 0 and
d(·) satisfies conditions (i) and (ii) of Hypothesis 1.1. Recall X1 =

∑
n nfn and set

(2.1) Zk(x) =

[∫ ∞
0

X1(x, t)kdt

]1/k

.

Theorem 2.1 Assume β ≡ 0 and that the diffusion coefficient d(·) satisfies conditions (i)
and (ii) of Hypothesis 1.1. Then there exists a constant C7 = C7(d̄, d̂, k) such that every
weak solution of the discrete Smoluchowski’s equation (1.1) satisfies

(2.2) Zk(x) ≤ C7

∫
Rd
|z − x|

2
k
−d
∑
n

nfn(z, 0)dz = C7 (ψk ∗X1) (x, 0).

for almost all x.

When d(·) is not uniformly positive, (2.2) takes a more complicated form that depends on
our auxiliary function φ. For general d(·), we need to replace Zk in (2.2) with the following
variant of the first moment:

(2.3) ZT,φ
k (x) :=

[∫ T

0

X̂k
1 dt

] 1
k

=

∫ T

0

(∑
n

γk(n)fn(x, t)

)k

dt

 1
k

, Zφ
k := Z∞,φk ,

where γk(m) = md(m)d/2φ(m)
kd
2
−1.

We are now ready to state our generalization of Theorem 2.1. Recall the definition of X̄,
X̂ and X̃ that were given in (1.13) and (1.20).

Theorem 2.2 Assume Hypothesis 1.4(k) for some integer k > max{2/d, d/2}. Recall

ψk(x) = |x| 2k−d and let φ ∈ A(d(·)). Then for almost all x,

ZT,φ
k (x)k ≤c0(k, d)k

(
X̄1 ∗ ψk

)k
(x, 0)(2.4)

+ kc0(k, d)kc1(kd)a1

∫ T

0

(
X̃1 ∗ ψk

)k
(x, t)dt.

12



Here c1 is a suitable constant and c0(k, d) = c0(kd)
1
k (k!)

1
k2−

d
2k , where c0(kd) = (kd−2)−1ω−1

kd ,
with ωkd denoting the surface area of the unit sphere in Rkd.

Remark 2.1.

• (i) In the presence of fragmentation, we will not be able to get a pointwise bound on
ZT,φ
k in terms of initial data as in Theorem 2.1 because the right-hand side of (2.4)

involves moments of the solution.

• (ii) When β ≡ 0, or equivalently a1 = 0 in Hypothesis 1.4(k), we may send T →∞ to
obtain

(2.5) Zφ
k (x) ≤ c0(k, d)

(
X̄1 ∗ ψk

)
(x, 0).

On the other hand, under the assumptions of Theorem 2.1, we can find a bounded
uniformly positive φ ∈ A(d(·)) (see Proposition 1.1). If we use such φ, then we can
readily deduce that Theorem 2.2 implies Theorem 2.1 by sending k to infinity. This
is because the constant c0(k, d) is bounded in k (See (2.7) below), and the expression
d(n)−1/k is bounded in (k, n).

• (iii) When d(·) is non-increasing, we may choose φ ≡ 1 in Theorem 2.2. If we also
assume that β ≡ 0 (equivalently a1 = 0), we may send k to infinity on both sides of
(2.4) to deduce

(2.6) sup
t

∑
n

nd(n)d/2fn(x, t) ≤ C1

∫
Rd
|z − x|−d

∑
n

nd(n)d/2fn(z, 0)dz,

for almost all x and a constant C1. The constant C1 can be readily calculated with
the aid of Stirling’s formula:

(2.7) logC1 = lim
k→∞

k−1 log
(
c0(kd)(k!)

1
k
− d

2

)
=
d

2
log

d

2π
.

In particular, if the right-hand side of (2.6) is in Lp, p ∈ [1,∞], then the expression
supt X̂1 = supt

∑
n nd(n)d/2fn is in Lp.

• (iv) The boundedness of X̂1 was established in [5] and [11] using a different argument.
In these references, what we really used was the elementary fact that the operator
Dd/2SDt has a Gaussian kernel that is increasing in the diffusion coefficient D. This

means that the operator d(n)d/2S
d(n)
t is non-increasing as a function of the mass size n.

In the present article we switch to the time averages so that ultimately we are dealing
with the operator

d(n)d/2−1∆−1 =

∫ ∞
0

d(n)d/2S
d(n)
t dt,

13



which is a negative operator when d ≥ 3. Though for higher k > 1 we are really dealing
with the operator Ak = d(n1)∆x1 + · · · + d(nk)∆xk and its inverse A−1

k . In this case,
we need to introduce the auxiliary function φ to preserve certain monotonicity of the
operator A−1

k . We refer the reader to the proof of Theorem 2.2 in Section 3 for more
details.

• (v) Note that the right-hand sides of (2.2), and (2.4) involve expressions of the form
h ∗ ψk with h a suitable moment of the initial data. It is straight forward to bound
‖h ∗ψk‖Lp for every p ∈ [1,∞] in terms of h. Let us write ‖h‖r1,r2 for ‖h‖Lr1 + ‖h‖Lr2 .
Now using Young’s inequality and the fact that ψk11(|x| ≤ 1) ∈ Lr1 , ψk11(|x| ≥ 1) ∈ Lr2
whenever r−1

2 < 1− 2(kd)−1 < r−1
1 , we learn that if

1 + p−1 = r−1
1 + s−1

1 = r−1
2 + s−1

2 ,

then
‖h ∗ ψk‖Lp ≤ c(p, k, r1, r2)‖h‖s1,s2 ,

with c(p, k, r1, r2) a finite constant. Hence, if (p, k, s1, s2) satisfies s−1
1 < p−1+2(dk)−1 <

s−1
2 , then

‖h ∗ ψk‖Lp ≤ c′(p, k, s1, s2)‖h‖r1,r2 .

• (vi) A microscopic analog of (2.4) was established in [16] in order to control the corre-
lation among particles in the particle system studied in this reference.

�
As we mentioned in Remark 2.1 (ii) Theorem 2.2 implies Theorem 2.1. Theorem 2.2 will

be established in the next section.

3 Proof of Theorem 2.2

Step1. To ease the notation, let us write x,n for (x1, . . . , xk) and (n1, . . . , nk) respectively,
and define ΛnK(x) to be

c0(kd)

∫ (
|x1 − z1|2

d(n1)
+ · · ·+ |xk − zk|

2

d(nk)

)1− kd
2

K(z1, . . . , zk)
k∏
r=1

d(nr)
−d/2 dzr.

The operator Λn is defined so that ∆nΛnK = −K, for

∆n = d(n1)∆x1 + · · ·+ d(nk)∆xk .

14



Pick a positive integer ` and a bounded non-negative smooth function K : (Rd)k → R, and
set

G(t) =

∫
Rd
. . .

∫
Rd

∑
n

ΛnK
(
x
) k∏
r=1

γ`k
(
nr
)
fnr(xr, t)dxr.

where γ`r(n) = γr(n)11(n ≤ `). We wish to calculate dG/dt. For this we use ∆nΛnK = −K
and the identity∑

n

anQn =
∑
n,m

(
α(m,n)fnfm − β(m,n)fm+n

)
(am+n − am − am).

As a result, if (fn : n ∈ N) is a solution to (1.1), then we have

(3.1)
dG

dt
(t) = −Ω1(t) +

k∑
j=1

ΩC
2,j(t)−

k∑
j=1

ΩF
2,j(t),

where

Ω1(t) =

∫
Rd
. . .

∫
Rd
K
(
x
)∑

n

k∏
r=1

γ`k
(
nr
)
fnr(xr, t)dxr,

ΩC
2,j(t) =

∫
Rd
. . .

∫
Rd

∑
nj ,n′j ,n

′′
j

ΓC(x,nj, n
′
j, n
′′
j )α(n′j, n

′′
j )dxj

∏
r 6=j

γ`k
(
nr
)
fnr(xr, t)dxr,

ΩF
2,j(t) =

∫
Rd
. . .

∫
Rd

∑
nj ,n′j ,n

′′
j

ΓF (x,nj, n
′
j, n
′′
j )β(n′j, n

′′
j )dxj

∏
r 6=j

γ`k
(
nr
)
fnr(xr, t)dxr,

where

ΓC(x,nj, n
′
j, n
′′
j ) = Γ(x,nj, n

′
j, n
′′
j )fn′j(xj, t)fn′′j (xj, t),

ΓF (x,nj, n
′
j, n
′′
j ) = Γ(x,nj, n

′
j, n
′′
j )fn′j+n′′j (xj, t).

with

Γ(x,nj, n
′
j, n
′′
j ) = Λnj(n′j+n

′′
j )K

(
x
)
γ`k(n

′
j + n′′j )− Λnj(n′j)K

(
x
)
γ`k(n

′
j)− Λnj(n′′j )K

(
x
)
γ`k(n

′′
j ),

By nj(m) we mean that the j-th component nj of n is replaced with m and by nj we mean
that the j-th component nj of n is dropped. We now claim that ΩC

2,j ≤ 0. This would follow
provided that we can show Γ(x,nj, n

′
j, n
′′
j ) ≤ 0. Since n′j + n′′j ≤ ` implies that n′j ≤ ` and

n′′j ≤ `, and since K ≥ 0, it suffices to show

(m+ n)φ(m+ n)
kd
2
−1

(
A

d(m+ n)
+B

)1− kd
2

≤mφ(m)
kd
2
−1

(
A

d(m)
+B

)1− kd
2

+ nφ(n)
kd
2
−1

(
A

d(n)
+B

)1− kd
2

,
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for every pair of positive numbers A and B. This would be the case if we can show

φ(m+ n)
kd
2
−1

(
A

d(m+ n)
+B

)1− kd
2

≤ φ(m)
kd
2
−1

(
A

d(m)
+B

)1− kd
2

,

for every pairs of positive numbers (A,B) and (m,n). For this, it suffices to show that for
any pair of positive numbers A′ and B,

φ(m+ n)
kd
2
−1

(
A′

d(m)

d(m+ n)
+B

)1− kd
2

≤ φ(m)
kd
2
−1(A′ +B)1− kd

2 ,

or equivalently,

(3.2) φ(m+ n)(A′ +B) ≤ φ(m)

(
A′

d(m)

d(m+ n)
+B

)
.

We are done because the assertion (3.2) for fixed m,n and all positive A′ and B is equivalent
to the inequalities

φ(m)d(m) ≥ φ
(
m+ n

)
d
(
m+ n

)
,

and
φ(m) ≥ φ(m+ n),

both being satisfied, and these are true for all choices of m and n because φ ∈ A(d(·)) (see
(1.17)). From ΩC

2,j ≤ 0 and (3.1) we deduce

∫ T

0

∫
Rd
. . .

∫
Rd

∑
n

K(x)
k∏
r=1

γ`k
(
nr
)
fnr(xr, t)dxr dt

≤
∫
Rd
. . .

∫
Rd

∑
n

ΛnK(x)
k∏
r=1

γ`k
(
nr
)
fnr(xr, 0)dxr

+ 2

∫ T

0

∫
Rd
. . .

∫
Rd

∑
j

∑
nj ,n′j ,n

′′
j

fn′j+n′′j (xj, t)Λ
nj(n′j)K

(
x
)
γ`k(n

′
j)β(n′j, n

′′
j )dxj(3.3)

·
∏
r 6=j

γ`k
(
nr
)
fnr(xr, t)dxr dt,

because
−Γ(x,nj, n

′
j, n
′′
j ) ≤ Λnj(n′j)K

(
x
)
γ`k(n

′
j) + Λnj(n′′j )K

(
x
)
γ`k(n

′′
j ).

Step 2. By choosing K to approximate the measure δx(dx1)δx(dx2) . . . δx(dxk) in (2.3) and
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sending `→∞, we obtain that for almost all x, the expression∫ T

0

(∑
n

γk(n)fn(x, t)

)k

dt,

is bounded above by

∑
n

∫
Rd
. . .

∫
Rd

∫
λn(x1 − x, . . . , xk − x)

k∏
r=1

γk
(
nr
)
fnr(xr, 0)dxr

+ 2

∫ T

0

∫
Rd
. . .

∫
Rd

∑
j

∑
nj ,n′j ,n

′′
j

fn′j+n′′j (xj, t)λ
nj(n′j)(x1 − x, . . . , xk − x)γk(n

′
j)β(n′j, n

′′
j )dxj

·
∏
r 6=j

γk
(
nr
)
fnr(xr, t)dxr dt,

where

λn(z1, . . . , zk) = c0(kd)

(
k∏
r=1

d(nr)
− d

2

)(
|z1|2

d(n1)
+ · · ·+ |zk|

2

d(nk)

)1− kd
2

From the elementary inequality k!a2
1 . . . a

2
k ≤ (a2

1 + · · ·+ a2
k)
k, we deduce

λn(z1, . . . , zk) ≤ c0(kd)(k!)
1
k
− d

2

k∏
r=1

|zr|
2
k
−dd(nr)

− 1
k .

This implies that ZT,φ
k (x)k is bounded above by

c0(k, d)k

[∫
Rd
|z − x|

2
k
−d
∑
n

nd(n)
d
2
− 1
kφ(n)

kd
2
−1fn(z, 0)dz

]k

+ 2kc0(k, d)k
∫ T

0

[∫
Rd
|z − x|

2
k
−d
∑
n

nd(n)
d
2
− 1
kφ(n)

kd
2
−1fn(z, t)dz

]k−1

X(x, t)dt,

=
(
c0(k, d)

(
X̄1 ∗ ψk

)
(x, 0)

)k
+ 2kc0(k, d)k

∫ T

0

((
X̄1 ∗ ψk

)
(x, t)

)k−1
X(x, t)dt,(3.4)

where

X(x, t) =

∫
Rd
|z − x|

2
k
−d
∑
n

(
n−1∑
m=1

md(m)
d
2
− 1
kφ(m)

kd
2
−1β(m,n−m)

)
fn(z, t)dz

17



It remains to bound X. From φ ∈ A(d(·)) and Hypothesis 1.4(k) we deduce

n−1∑
m=1

md(m)
2
d
− 1
kφ(m)

kd
2
−1β(m,n−m) ≤ c1a1n

e1+1γk(n),

where c1 = max
{

(supn d(n) + 1)2/d, supn φ(n)(kd)/2−1
}
. Hence

X ≤ c1a1

(
X̂e1+2 ∗ ψk

)
.

This and (3.4) imply (2.4) because X̂1, X̄1 ≤ X̃ by the definition of X̃. �

4 Pointwise Bounds II

This section is devoted to Step (ii) of our strategy. More precisely we state pointwise bounds
on the solution as a preparation for the proof of our Lp bounds. Since we already know how
to bound Zk or Zφ

k by Theorems 2.1 and 2.2, we find a pointwise bound on a solution fn
in terms of L1 bounds of moments (Xa or its variant X̂a of (1.13)) and a convolution of Zk
with a suitable kernel. Let us define a set D′ that is related to the set D of Theorems 1.1
and 1.3, but happen to be larger: When dimension d ≥ 2, we set

D′ :=
{

(k, η) : 2 < k, η > 1 + (k − 2)−1
}
,

and when d = 1, D′ = D′1 ∪D′2, where

D′1 :=
{

(k, η) : 2 < k ≤ 4, η > 1 + (k − 2)−1
}
,

D′2 :=
{

(k, η) : 4 < k, 2 + 6(k − 4)−1 > η > 1 + (k − 2)−1
}
.

For simplicity, we first discuss the case β ≡ 0. Recall R(k, η) that was defined in Theorem
1.3. Also recall d̄ = supn d(n).

Theorem 4.1 Assume that β ≡ 0 and that for some constant a0, we have α(n,m) ≤ a0nm.
Pick any pair (k, η) ∈ D′. Then there exists a constant C8 = C8(k, η) such that every weak
solution f of (1.1) satisfies

fn(x, t) ≤
(
S
d(n)
t f 0

)
(x)(4.1)

+ C8a02`n−`d(n)−R(k,η)

[∫ t

0

∫
X`η+1dyds

]η−1 (
Z

1+ η
η−1

k ∗ ξtd̄k,η(x)
)1−η−1

,
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for almost all x and every t. Here ` > 0 and

(4.2) ξak,η(y) = |y|θ(k,η) exp

(
−|y|2

8a(1− η−1)

)
,

with

θ(k, η) =
2R(k, η)− d

1− η−1
.

Remark 4.1. We note that ξak,η ∈ L1 if and only if θ(k, η) + d > 0. This is equivalent to
assuming

d+ 2− 2k−1

2− 4k−1
< η.

This is exactly the condition we used for the definition of D right before the statement of
Theorem 1.1. �

In fact Theorem 4.1 can be easily used to establish Theorem 1.1. To treat Theorems 1.3
and 1.5, we need to formulate a pointwise bound involving modified moments X̂a and Zφ

k .

Recall R(k, η) and R′(k, η) of Theorem 1.5 and to ease the notation, we write Ẑk for Zt,φ
k .

Theorem 4.2 Assume Hypotheses 1.3(k) and 1.4(k). Let (k, η, ζ) be any triple such that
both (k, η), (k, ζ) ∈ D′. Then there exists a constant C9 = C9(k, η, ζ) such that every weak
solution f of (1.1) satisfies

fn(x, t) ≤
(
S
d(n)
t f 0

)
(x)

+ C9a02`n−`d(n)−R(k,η)

[∫ t

0

∫
X̂(`+e0−1)η+1dyds

]η−1 (
Ẑ

1+ η
η−1

k ∗ ξtd̄k,η(x)
)1−η−1

+ C9a12`n−`d(n)−R
′(k,ζ)

[∫ t

0

∫
X̂(`+e1−1)ζ+1dyds

]ζ−1 (
Ẑk ∗ ξ̂td̄k,ζ(x)

)1−ζ−1

,(4.3)

for every t, ` > 0 and almost all x. Here ξak,η is as in Theorem 4.1, and

ξ̂ak,ζ(y) = |y|θ′(k,ζ) exp

(
−|y|2

8a(1− ζ−1)

)
,

with
θ′(k, ζ) = 2

(
1− k−1

)
− d

(
1− ζ−1

)−1
.
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5 Proofs of Theorems 4.1 and 4.2

Proof of Theorem 4.1. We certainly have

(5.1) fn(x, t) = (S
d(n)
t f 0

n)(x) + (pd(n) ∗QC
n )(x, t) ≤ (S

d(n)
t f 0

n)(x) + (pd(n) ∗QC,+
n )(x, t),

where the convolution is in (x, t) variable and

pD(x, t) = (4πtD)−d/2 exp

(
− |x|

2

4tD

)
11(t > 0).

On the other hand, since α(n1, n2) ≤ a0n1n2,

QC,+
n =

∑
n1+n2=n

α(n1, n2)fn1fn2

≤
∑
n1,n2

11
(
n1 ≥

n

2
or n2 ≥

n

2

)
α(n1, n2)fn1fn2(5.2)

≤ 2a0X1(1)X1

(n
2

)
≤ 2a02`n−`X1(1)X`+1

(n
2

)
≤ 2a02`n−`X1X`+1.

where Xa(r) =
∑

n≥r n
afn (recall that we simply write Xa for Xa(1).) To bound X1X`+1,

observe that for η > 1,

(5.3) X`+1 = X1

(∑
n

n`
nfn
X1

)ηη−1

≤ X1

(∑
n

n`η
nfn
X1

)η−1

= Xη−1

`η+1 X
1−η−1

1 .

Furthermore, the expression

(5.4)
(
pd(n) ∗ (X1X`+1)

)
(x, t),

is equal to∫ ∫ t

0

pd(n)(x− y, t− s) (X1X`+1) (y, s) dsdy

≤
∫ ∫ t

0

pd(n)(x− y, t− s)
(
Xη−1

`η+1 X
2−η−1

1

)
(y, s) dsdy

≤
∫ [∫ t

0

(4π(t− s)d(n))−dr1/2 exp

(
− r1|x− y|2

4(t− s)d(n)

)
ds

] 1
r1
[∫ t

0

X`η+1(y, s)ds

]η−1

·
[∫ t

0

X1(y, s)(2−η−1)r2ds

] 1
r2

dy.
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Here (r1, r2) is any pair satisfying r1, r2 > 1 and 1
r1

+ 1
r2

+ 1
η

= 1. Choose r2 so that

(2− η−1)r2 = k. As a result

r−1
1 = 1− 2k−1 −

(
1− k−1

)
η−1 =: R(k, η).

Such r1 exists because the right-hand side is positive by our assumptions on k and η. Observe,∫ t

0

(4πθd(n))−dr1/2 exp

(
− r1a

2

4θd(n)

)
dθ = d(n)−1

(
r1a

2
)1− dr1

2

∫ td(n)

r1a
2

0

(4πθ)−dr1/2e−
1
4θ dθ

≤ d(n)−1
(
r1a

2
)1− dr1

2

∫ td̄
r1a

2

0

(4πθ)−dr1/2e−
1
4θ dθ

=: d(n)−1
(
r1a

2
)1− dr1

2 φr1

(
r1a

2

td̄

)
.(5.5)

On the other hand,

φr1(z) =

∫ z−1

0

(4πθ)−dr1/2e−
1
4θ dθ ≤ e−

z
8

∫ z−1

0

(4πθ)−dr1/2e−
1
8θ dθ

≤ e−
z
8

∫ ∞
0

(4πθ)−dr1/2e−
1
8θ dθ ≤ c1(r1)e−

z
8 ,

for a constant c1(r1) <∞. For the finiteness of c1(r1), we are using the fact that dr1/2 > 1,
which is obvious when d ≥ 2, and is a consequence of our assumption on (k, η) when d = 1.
(The set D′ is defined so that the condition dr1 > 1 holds in all dimensions.) Hence, we may
use (5.5) and Hölder Inequality to assert that the expression (5.4) is bounded above by

c2(r1)d(n)−r1
−1

∫
Zk(y)2−η−1

[∫ t

0

X`η+1(y, s) ds

]η−1

|x− y|
2
r1
−d

exp

(
−|x− y|

2

8td̄

)
dy

≤ c2(r1)d(n)−r1
−1

[∫ ∫ t

0

X`η+1(y, s) dsdy

]η−1

·
[∫

Zk(y)
2−η−1

1−η−1 |x− y|
2r1
−1−d

1−η−1 exp

(
− |x− y|2

8td̄(1− η−1)

)
dy

]1−η−1

,

This, (5.1) and (5.2) imply (4.1). �

Proof of Theorem 4.2. The proof is very similar to the proof of Theorem 4.1 and we
only explain the differences. We certainly have

(5.6) fn(x, t) = (S
d(n)
t f 0

n)(x) + (pd(n) ∗Qn)(x, t) ≤ (S
d(n)
t f 0

n)(x) + (pd(n) ∗Q+
n )(x, t),
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with Q+
n = QC,+

n +QF,+
n . We first bound QC,+

n ; by Hypothesis 1.2,

QC,+
n =

∑
n1+n2=n

α(n1, n2)fn1fn2 ≤
∑
n1,n2

11
(
n1 ≥

n

2
or n2 ≥

n

2

)
α(n1, n2)fn1fn2

≤ 4a0

∑
n1,n2

11
(
n1 ≥

n

2

)
ne0−1

1 γk(n1)γk(n2)fn1fn2(5.7)

≤ 4a0X̂e0

(n
2

)
X̂1(1) ≤ 4a02`n−`X̂e0+`

(n
2

)
X̂1(1)

≤ 4a02`n−`X̂e0+`X̂1.

where X̂a(r) =
∑

n≥r n
a−1γk(n)fn and by definition, X̂a(1) = X̂a. As for QF,+

n , we use
Hypothesis 1.4(k) to assert

QF,+
n =

∞∑
m=1

β(n,m)fn+m ≤ a1

∞∑
m=1

(n+m)e1−1γk(n+m)fn+m

= a1X̂e1(n+ 1) ≤ a1n
−` X̂e1+`.

From this, (5.6) and (5.7) we deduce

fn(x, t) ≤(S
d(n)
t f 0

n)(x) + a1n
−`
(
pd(n) ∗ X̂e1+`

)
(x, t)

+ 4a02`n−`
(
pd(n) ∗

(
X̂1X̂e0+`

))
(x, t),(5.8)

We wish to show that the three terms appearing on the right-hand side of (5.8) are bounded
above by the three terms appearing on the right-hand side of (4.3). To bound X̂, observe
that as in (5.3)

X̂r+1 ≤ X̂η−1

rη+1 X̂
1−η−1

1 ,

for η > 1. Hence

(5.9) X̂1X̂e0+` ≤ X̂η−1

(`+e0−1)η+1X̂
2−η−1

1 , X̂e1+` ≤ X̂ζ−1

(`+e1−1)ζ+1X̂
1−ζ−1

1 .

We then repeat the proof of Theorem 4.1 after (5.3) and use (5.9) to assert that the expression

4a02`n−`
(
pd(n) ∗

(
X̂1X̂e0+`

))
(x, t),

is bounded above by the third term on the right-hand side of (4.3). Similarly, we can show
that the expression

a1n
−`
(
pd(n) ∗ X̂e1+`

)
(x, t),
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is bounded above by

a1n
−`c2(r1)d(n)−r1

−1

∫
Ẑk(y)1−ζ−1

[∫ t

0

X̂`ζ+1(y, s) ds

]ζ−1

|x− y|
2
r1
−d

exp

(
−|x− y|

2

8td̄

)
dy

≤ a1n
−`c2(r1)d(n)−r1

−1

[∫ ∫ t

0

X̂`ζ+1(y, s) dsdy

]ζ−1

·
[∫

Ẑk(y)|x− y|
2r1
−1−d

1−ζ−1 exp

(
− |x− y|2

8td̄(1− η−1)

)
dy

]1−ζ−1

,

where this time r1 is given by r−1
1 = (1− k−1) (1− ζ−1) = R′(k, ζ). This expression is

exactly the second term on the right-hand side of (4.3), and this complete the proof. �

6 Proofs of Theorems 1.3 and 1.5

Proof of Theorem 1.3. This is a straight forward consequence of Theorem 4.2. To
simplify the notation, write `′ = (`+ e0 − 1)η + 1 and

(6.1) Ah =

∫ T

0

∫
X̂h+1dyds.

Observe that if β ≡ 0, then a1 = 0, and if we take the Lp norm of both sides (4.3), we obtain

(6.2) ‖fn(·, t)‖Lp ≤ ‖f 0
n‖Lp + C9a02`n−`d(n)−R(k,η)Aη

−1

`′

∥∥∥Ẑ1+ η
η−1

k ∗ ξtd̄k,η(x)
∥∥∥1−η−1

Lp(1−η−1)

for p ∈ [1,∞]. Here we write Lr for Lr(Rd). Since (k, η) ∈ D, we have that ξtd̄k,η ∈ L1 by
Remark 4.1. From (6.2) and Young’s inequality,

‖fn(·, t)‖Lp ≤ ‖f 0
n‖Lp + C ′9a02`n−`d(n)−R(k,η)Aη

−1

`′

∥∥∥Ẑ1+ η
η−1

k

∥∥∥1−η−1

Lp(1−η−1)

= ‖f 0
n‖Lp + C ′9a02`n−`d(n)−R(k,η)Aη

−1

`′

∥∥∥Ẑk∥∥∥2−η−1

Lp(2−η−1)
,(6.3)

where C ′9 is a constant that depends on (k, η) and d̄ only. Now (1.14) is an immediate
consequence of Theorem 2.2 with a1 = 0, and (6.3). �

The proof of Theorem 1.5 is more involved because when a1 is not zero, the right-hand
side of (2.4) now depends on the solution (f(·, t); t ∈ [0, T ]). Fortunately the second term on
the right-hand side is a convolution and as a preparation, let us learn how to take advantage
of this.
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Lemma 6.1 Under the assumptions of Theorem 2.2, we can find a constant C10 = C10(k, r)
such that for every r > kd/2,

Ẑk(x) ≤c0(k, d)(X̄0
1 ∗ ψk)(x)(6.4)

+ C10 sup
t∈[0,T ]

[
‖X̃(·, t)‖1−b

L1(Rd)
‖X̃(·, t)‖bLr(B1(x)) + ‖X̃(·, t)‖L1(Rd)

]
,

where b = r
r−1

(1− 2
kd

) ∈ (1− 2
kd
, 1) and B1(x) denotes the ball of radius 1 and center x.

Proof. Pick δ ∈ (0, 1] and write ψk = ψ̂k+ψ̄k, where ψ̂k(x) = ψk(x)11(|x| ≤ δ). We certainly

have ψ̄k ≤ δ
2
k
−d. From this we learn

(6.5) (X̃(·, t) ∗ ψ̄k)(x) ≤ δ
2
k
−d‖X̃(·, t)‖L1(Rd).

On the other hand, if r′ satisfies r′−1 + r−1 = 1, with r > kd/2, then (2k−1− d) + dr′−1 > 0,
and

‖ψ̂k‖Lr′ (Bδ(0)) =
(
r′
(
2k−1 − d

)
+ d
)−1

δ(2k−1−d)+dr′−1

=
(
r′
(
2k−1 − d

)
+ d
)−1

δ2k−1−dr−1

.

From this and Hölder Inequality we deduce

(X̃(·, t) ∗ ψ̂k)(x) ≤
(
r′
(
2k−1 − d

)
+ d
)−1

δ2k−1−dr−1‖X̃(·, t)‖Lr(Bδ(x)).

From this and (6.5) we learn

(X̃ ∗ ψk)(x) ≤δ
2
k
−d‖X̃(·, t)‖L1(Rd)(6.6)

+
(
r′
(
2k−1 − d

)
+ d
)−1

δ2k−1−dr−1‖X̃(·, t)‖Lr(B1(x)).

To ease the notation, write

θ1 = d− 2k−1, θ2 = (2k−1 − d) + dr′−1, A =
(
r′
(
2k−1 − d

)
+ d
)−1

.

We now optimize the bound (6.6) over δ ∈ (0, 1]. Either

(6.7) Aθ2‖X̃(·, t)‖Lr(B1(x)) ≤ θ1‖X̃(·, t)‖L1(Rd),

is true or the opposite inequality. If the latter case occurs, then the inequality (6.6) is
optimized for some δ ∈ (0, 1) and we deduce that for some constant c = c(θ1, θ2, A),

(6.8) (X̃ ∗ ψk)(x) ≤ c
∥∥∥X̃(·, t)

∥∥∥ θ2
θ1+θ2

L1(Rd)

∥∥∥X̃(·, t)
∥∥∥ θ1
θ1+θ2

Lr(B1(x))
.
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If (6.7) occurs instead, then the inequality (6.6) is optimized for δ = 1 and we deduce that
for some constant c′ = c′(θ1, θ2, A),

(6.9) (X̃ ∗ ψk)(x) ≤ c′
∥∥∥X̃(·, t)

∥∥∥
L1(Rd)

.

We now use (6.8) and (6.9) to bound X̃ ∗ ψk in (2.4) and conclude (6.4). �

Proof of Theorem 1.5. Recall that by Remark 1.2, θ(k, ζ) + d > 0 because (k, ζ) ∈ D.
On the other hand, we can readily check that θ′(k, ζ) > θ(k, ζ), which in turn implies that
θ′(k, ζ) + d > 0 and ξT d̄k,η, ξ̂

T d̄
k,ζ ∈ L1. Also, ξtd̄k,η ≤ ξT d̄k,η and ξ̂td̄k,ζ ≤ ξ̂T d̄k,ζ for t ∈ [0, T ]. As a result,

for some constant c1 = c1(k, η, ζ, T ),(
Ẑ

1+ η
η−1

k ∗ ξtd̄k,η
)1−η−1

(x) ≤ c1

∥∥∥Ẑ1+ η
η−1

k

∥∥∥1−η−1

L∞
= c1

∥∥∥Ẑk∥∥∥2−η−1

L∞
,(6.10) (

Ẑk ∗ ξ̂td̄k,ζ
)1−ζ−1

(x) ≤ c1

∥∥∥Ẑk∥∥∥1−ζ−1

L∞
,

for every t ∈ [0, T ] and every x . Recall that by (6.1), we write Ah for the L1-norm of X̂h.
To ease the notion, we set `′ = (`+ e0 − 1)η + 1, and `′′ = (`+ e1 − 1)ζ + 1. From Theorem
4.2, Lemma 6.1 and (6.10) we learn

(6.11) ‖fn(·, t)‖L∞ ≤ ‖f 0‖L∞ + c2(Ω1 + Ω2 + Ω3 + Ω4),

for a constant c2 = c2(k, η, ζ, T ) and every t ∈ [0, T ], where

Ω1 =a12`n−`d(n)−R
′(k,ζ)Aζ

−1

`′′ sup
t∈[0,T ]

∥∥∥X̃(·, t)
∥∥∥(1−b)(1−ζ−1)

L1(Rd)
Y b(1−ζ−1),

Ω2 =a02`n−`d(n)−R(k,η)Aη
−1

`′ sup
t∈[0,T ]

∥∥∥X̃(·, t)
∥∥∥(1−b)(2−η−1)

L1(Rd)
Y b(2−η−1),

Ω3 =2`n−`
[
a0d(n)−R(k,η)Aη

−1

`′

∥∥X̄0
1 ∗ ψk

∥∥2−η−1

L∞
+ a1d(n)−R

′(k,ζ)Aζ
−1

`′′

∥∥X̄0
1 ∗ ψk

∥∥1−ζ−1

L∞

]
,

Ω4 =2`n−`
[
a0d(n)−R(k,η)Aη

−1

`′ sup
t

∥∥∥X̃(·, t)
∥∥∥2−η−1

L1(Rd)
+ a1d(n)−R

′(k,ζ)Aζ
−1

`′′ sup
t

∥∥∥X̃(·, t)
∥∥∥1−ζ−1

L1(Rd)

]
.

We finally choose ζ = η and observe that R′(k, η) > R(k, η). This allows us to deduce (1.22)
from (6.11).

�
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