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REPRESENTATIONS OF THE ALGEBRA Uq(sl(2)). q~ORTHOGONAL
POLYNOMIALS AND INVARIANTS OF LINKS

A.N.Kirillov, N.Yu. Reshetikhin

Leningrad Branch of Steklov Mathematical Institute,
Fontanka 27, 191011, Leningrad, USSR

INTRODUCTION

This work shows how quantized universal enveloping al-
gebras are connected with other areas of mathematics, using
algebra sl(2) as an example. It is shown that in the rep-
resentation theory of the algebra U_(s1(2)) the g-analo-
gues of 6}-symbols which were introduced by Askey and
Wilson [1] in conmection with g-orthogonal polynomials,
appear naturally. The comnection between the quantized uni-
versal algebras and the theory of invariants of links, dis-
covered in [ 2], is considered in more detail. With the
help of q-anelogues of eﬂ ~3ymbols we propose & new rep-
resentation for the invariants of links, related to
U (s1(2)), which is to a great extend similar to SOS models
og statistical physics. The representation theory of al-
gebra Uq(sl(z)) is closely connected with Temperly-Lieb-
Jones algebra, which emerged in statistical mechanics{jB]
and in the theory of von-Neumann algebras [4]. It happens
that the matrix elements of generators in irreducible
representations of Jones algebras are special values of
q-analogues of 6} -symbols.

Let us make some historical comments. Quantum universal

enveloping algebras appeared as a result of research into
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on algebraic aspects of quantum integrable systenms [5, 6].
The first example of such an algebra was the algebrsa
U,(81(2)) found by Kulish and Reshetikhin [7]. The structu-
re of Hopf algebra on U (s1(2)) was discovered independent-
ly by Sklyanin ES:LDrinIeld [9],Jumbo [ﬁoj]who built the
q-deformation of the universal enveloping algebra for any
simple Lie algebra O} [9, 10). A new approach to Uq(Q})
algebras, which reflects most adequatly their connection
with quantum integrable systems, was proposed by Faddeev,
Reshetikhin and Takhtadjan [11), (see also [12)). Finite
dimensional representationsoof U (81(2)) are described in
[7]. First substantial results in the representation theo-
ry of algebras U ( 0f) were obtained by Lusztig [13] and
Rosso [}4] for simple U} . The g~analogues of the Rakah-
Fock formulae for ,BQ_-symbols were obtained by Vaksman
DS]. Other representation of the g-analogues of fj&--sym-
bolds, as well as the properties of their symmetry were
found by Kirillov [ﬁG].

The connection between universal enveloping algebras
with the link theory was established in [97. We should
also mention that the invariants of links, connected with
tensor representations of U ( Q}-) for classical Lie al-
gebras, can be obtained with the help of cabling (Muraka-
mi [ﬁf]). Cabling invariants correspond in the terminology
of [2]to invariants parsmetrized by the tensor
products of the vector representations of U ( q;). In par-
ticular, the invariants corresponding to finite dimension-
al representations of U _(s1(2)) are built by Akutzu and
Wadati [58:}with help og braid representation using the
results from vertex models of statistical mechanics. The
main results obtained in this direction, are represented
in the review by V.Jones [ 29].

Then studying classical orthogonal polynomials Askey
and Wilson [ 1], proposed g-analogues of 6} -symbols. As
it turns out the g-analogues of Q} -symbols, that occur
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in the representation theory of U_(sl(2)) are proportion~-
al to the ones defined in [1]. The orthogonality of these
polynomials as well as the recurrent relations for them
follows from equalities for ‘L—é& -gymbols in the represen=-
tation theory of the algebra U (s1(2)).

Let us briefly consider the content of this paper.
Section 1 contains the description of the algebra
Uﬁ(sl(z)), of the corresponding universal R-matrix and
also presents some useful formulae. The irreducible rep-

' resentations of Uq(sl(2)) and the g-analog of the Weyl
element are described in Section 2. In the same section
an extension of algebra Uq(sl(z)) by the q-analog of the
Weyl element is introduced.

The decomposition of tensor product of two irreducible
finite-dimensional representation of Uq(sl(2)) is given
in Section 3. It also contains the relations between R-
matrices and Clebsh-Gordan coefficients (CGC). We prove
that the extension of Uq(sl(2)) by the Weyl element is a
Hopf algebra. In Section 4, followinglrz:], a graphical
representation of relations between R-~matrices and GGC is
proposed. In Section 5 the g-analogues of 6} -symbols are
described. It is shown that they are defined by g-hyper-
geometrical function q'f% and the symmetries of them are
found. Note that the q-analogues of CGC and 6} -symbols
-correspond to the function ;¥ end , Pz for such values
of arguments when these functions are polynomials. Graphi-
cal representations for 4§- 66 -gymbols are introduced in
Seoction 6. Relations between ﬂ-—é&-symbols, particularly
their orthogonality, are easily obtained with their help.

In Section 7 a new representation for the invariants
of links connected with U (s1(2)) is built with the help
of q_-éé—symbols. This representation is an exact analogue
of SOS models in statistical mechanics [ 19]. The relation
of SOS models in statistical mechanics to g-analogue of

6}-symbols was recently found also by Pasquier [31].

—
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1. Algebra Uq(sl(2))

The algebra Uq(sl(Z)) E7—10-_] is generated by elements
H ))Qi with the commutation relations

%, -
. G( .
ﬁ}/’- _},2/ (1.1)

EHl=z2x , X% 1=

As a linear algebra U _(s1(2)) space consists of convergent
power series in H and of polynomials in >< « The follow-
ing formulae for the comultiplication, the antipode and
counit on the generators define the structure of a Hopf

algebra on \J;l (s€(2)):

-4
A(Xi>=><i®?%+ﬁ Mox™ a(d= HOL+18H, (1:2)

>"_7‘%V , S(H)=—H, (1.3)

+
g (H) = €(X ) = (1.4)
/ / -1
The maps A=6oA , S = S where & is the permutation
in U (S{(Q))m' y 6(a®4)=4®a also define the struc-
ture of Hopf algebra on Us ($€(2))s Let us denote this

Hopf algebra as by U (s€@)Y o It is evident from (1.2),
(1.3) that

/
U, ey = Upe (69 . a5

’ ]
Comultipllcatlons A\ snd /N  are connected in
OA (s€(2))®* by the following automorphism (9]:

ANy = R ala) R (1.6)
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where R ¢ U ng&))@i and

Q e H H./ n h
P(L-He )g_o [’njl op" | qoet. ()
vy 4 -1
Here [VL] (q '_q i)/q/L /Q>>e=@>(P(‘bTH>X+)
£ = exp(— & H)X:

The element [R is called the universal R-matrix. It
satisfies the relations:

(Ned)R=R, R,5 (1.8)
(dea)R= Ris Rae (1.9)
CS ®C"<>R = Q_i, (1.10)

g3

where the indices show the embeddings of R in'l:oU?_(SaaD.
Formula (1.8) (or (1.9)) imply the Yang-Baxter equa-
tion for R '

R‘Ii R43 Qa_s — Qz; ’?43 Qﬂ, - (1.11)

The center of the algebra U CS@CQ)) is generated
by the ?/ ~analog of Casgimir's elements E8, 10]

H+1 _ F%_’L 2
Li
C, = 1T =1 _— +><_X+ (1.12)

For real 7 one can introduce 3 -antiinvolution

(X* T s sy et e (1413)
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The real form of 1\ Cgecu) corresponding to this X% -
antiinvolution is denoted by \)-CSLKI» The element (1.12)
ig invariant under the action of involution (1.13) end
therefore all finite-dimensional representations of
U (SU (9.,)) are completely reducible.

Let us give now some useful formulae:

L= Lo

A 0.’:— 4 ;ﬂg—ﬂz_ b m...m;

i MR s s o

Of:q,\é..éau_ < m |
N + %—a —(m-a;-a )_.,
® s 1 L -1 ['l
L= (x > 7 ’ CLN-M—)
(1.14)
wt o =T
+ 9% _ - Y > (1.15)

where A\ Uq (st)) —> U:\ (s CQ)) is the compo-

gition of comultiplications and

oty 4, b e
= > Te1
R ST Al

€4+ &y =m,
o, Irreducible Representations Of Uq(su(2)) And Finite
Dimengional R-matrices

All irreducible representations of U CS (,Lta)) are
finite dimensional. It is useful to descrlbe them in the

————————
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weight basis. In this basis the element H is a diagonal
matrix. The irreducible representations of Uq CS %(1)>are
parametrized by integer (or halfinteger) numbers J . The
representation 7T ¢ have dimension ,%i-/-i « The generators
H, Xt act in weight basis e‘,’m_ in the following way:

3 + ej — - b+ 1/2, ¢
T (X)) m (Ed+m][d——“"+ﬂ € otd? (2.1)

. J J
(2.2)

where~}_<_m ej— y Im = QJ CM00(2>. We shall denote by V&
the representation space of the representation %’ . From

(1.1) and (1.2) at m =/} we find the value of the central
element (1.12) in the irreducible representation:

23+4 _ ) 2

i 2.4
S 4 (2.3)
vV [_OHQ] V

The following important formula holds
; %
d ot 9 yral T4+ n+al J
7 ((x7) )em:([‘?“ﬂ‘ [+ n “]'> o (2.4)
[¢Fn—d}! [l / M2

Here the r.h.s. is nonzero only for lYLial_é:}. Let us
consider the matrix [R¥% — (x%g 7)) R acting in
V?*® V%, It is not difficult find the matrix elements

of ]'Q'A" :

i hy Ny 4~q‘i)m =Ny +2n
@ = e

h‘ﬁ"'"";”f"h. [ “jl )
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( ML a0 [a;nm][)i (2.5)
[34' qu"V\]! [J‘,,“"Vh]![c)‘,_+n1—- n]' [),_— )'19_]! :
Define the matrix ¢ acting in /Y with the elements:

S o

| G "
W, =9 T 1) & 17, @8

M m m,=—m )

—_—

where C; —j(J+4) and consider the algebra U, (su(2))
which is the extension of U, (su(2)) by the element with
the value (2.6) in any representation. Let T be the li-
neaxr antiautomorphism of -\](1 (S%(l)) which is the trans-
position in

+ L
T(XT)=x" T ()=H, (2.7)
PROPOSITION 2.7. In O;(Su&))we have:

waw = ¢ S(a) ‘v’aelfq (S(A(z)) . (2.8)

To prove (2.8) it is sufficient to check it in any irre-
aucible U, (Su(z))-module.

From (1.10) and (2.8) we obtain the crossing-symmetry
of universal R-matrix:

~4
(teid )R = (wei)R (w*ed), (2.9)
i
and finite dimensional R-matrices P”Q' s
T _e §
Jida 1 1 4 dg 4
CQR ) > = U, = w4 ' (2.10)

Here ’Eﬁ_‘ is the transposition in the first space in
VRV ** and w4=w"<®1.
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3. g-Analog Of Clebsch~Gordan Coefficients

J
Let us consider the tensor product 31-34@ gtzof two
irreducible representations of U, CSL((i). In accordance
with the complete reduciblllty of representations of
U (su(2)), —y ® 7t is decomposed into the following sum
of 1rreduc:Lble components [1 Oj

J ' —D
v A @VJL —_ Z— \f _ (3.1)
l).r'cjg_fééécjd-{-d'z
2= 2j,+ 2§, (mod 1)

Let em (a,, 39_) be the weight basis in the 1rre,duc1ble compo-
nent /9. The coordinates of the vectors e_ (da Jz>

in the basis e' ®e,a’" , by analogy with ‘1 1 case,
will are called the Clebsch—Gorda.n coefficients (CGC):

da da gy o A
mCd Iy )= Z [lm oy M] e, ®e, . 02

Since jﬂ & are >k -representations of Uﬁ (Su.(lDwe have
also

°i4 32__——"' J4JQ.J |
em ®€mz—2~ Zw,\mlym]e (J JQ)SQAJ‘Q_) (3.21)

)
d;m.

Here ©(didy))=11t [d-d2)< Je Jidy, 2j= 2]+, ({pnd
o (4 d,}) =0 in other cases.
The coefficients in (3.2), (3.2') can be considered
as Cz -analog of CGC for Sbt(i) . The coefficients
[ :‘a dmfij’m can be calculated using the formulae of
Section 2. We shall omit the calculations and present only
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the final formulae:
q-analog of the Majumbar formula [16:[

dp ds. § _ —7(3+<; =3 )(dq—do +d+1 ___‘
m,,mzmj(q'_év 2m7 4:.)(0‘4:12:4 )-4Z a*i

(i) [J ml! [%m]‘[aﬁﬂ_[_a_i_]’ L9311 [244] :
da~ 4—Jl Cdz mij‘ CJ 3 +31\ [31__34"'&]\ [34+31+3 'M]‘%

Z (e d 1 (3.3)
g 0= [G-dg +d+ ]!

> ‘ A
20 Al cwf«q1[a—sz+m4+@'.{a‘4+éz-é-@!

gq~analog of the Rakah-Fock formula [15]:

indg ] - j‘fM‘ ?74 (4 (), (4'4+1)—3(J+4)>+M‘;_“‘+9

My M, M m+m ,n

{M L3014 (aym dd! [d+iy=30) [2]44] }%,

La+me) (At m )L (93t ] [, - 31+3]\ [dy+dp ti+1]! ol

e
%t (nti ) Ld,tmy 1] [dy +5—m,- ]!

S ) 9

20 Nal D-MJLJI. [34’”‘4“”‘]! [31"3 +M’4+1‘L]E | |

I—
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q-analog of the Van der Waerder formulae{167:

[J4J1J

I AR S LSO
_ =t g+ )+ L 2 4
M, mzml\ ——%/“ﬁ'”hm A(Mi} ) ? 4 ) 2

{(:34*”4]![34’”"4]! [éf”‘z]! [‘ji—mi]! [J+m]J. Lj-m ]! [ﬁjd]}yi

Hon i i e
) C—D% 1 kS H“‘HD. (3.5)

>0

4

?

ENCH [34 +<}9.—<‘}JL]! [é4—m4— "tjl [39_*”1‘ #L]QD‘J'Z’* M4+"-]![J*J4 +4~ Mg]' -=
where

(3.6)

A(m@c)z{[‘" a+6+c]l [a-6+c]l [a+é—c]| gﬂé
Ca+8+c +4]! T3
The proofs of these formulae are given in [16].

The following relations between CGC reflect c}1;]:19
completness and the orthogonality of the basis € (], Jg}

in [THQ V%
J“iig] [J,,J,LJ'] -
— 0 i1 (307)
Mng: [W My M g My My 9 4’ gy/wm/ S(JMLJ’).

L |
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Z [J4 dg. 4 [34 dy J} ¢
- | My My m q mﬂ’mjm g - m,'M: M2”1-2/.(3"8)
i |24 drHda

imle

+
Applying operators A (X ) to both sides of (3.2) we

obtain the following recurrence relations for q-553 ~Sym-
bols

e Im][é:tmij}%' [J4 o J 1{ =

My Mg Mt 4
m

My % - g
::-CIL {@4:‘:”’14][4’11“]‘4-‘_1]}2[ df da a‘] .

MI1 m, wm
ax T (3.61)

W ? , : .
Z . : 2
+ 9 {[J,_-szj[dl’;' W[,j-ﬂ} [ 9 ¢a F
My Mé_‘__‘i m
It is interesting that there is & simple relation

betwsen 4—3) ~-symbols and Hahn ( -polynomials. Let us
remind that Hahn polynomials (3, (%) and dual Hahn poly-
nomiels R, (X)are defined by the following expressions

(u,NeZ, neN):

-~ 511/

,_T"’L g hq
Qn(x):=Q, (x; Q>g)"/[7>=3501 ( ol
a9,

9
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X+
=R, | 1) = "‘“f”’)@
g, 9 d

-X +4
where /'(X)= 9 +q€7x o For 0< x , = N we have:

R (050,68 )=Q, (177 a,4,7[9),
and Qv\ (x)(or R, (}4 (,x))) is the polynomial of degree
. of the variable x (or /((X) Do
These polynomials satisfy the following orthogonality
rela.t:.ons

ZQ (17)R (9 )f(x)— i o(:“

X=0

b

N
Z Rm(/”*))Rn(/”X))fO‘): S m o(:v ,
X=0

where P(X) and o n. are weight and norm of Hahn poli-
nomials.

(ac\')Q)x (gq31)x <acf>

(r):=0(%;0,4,N|q)=
f JO ) HH)X (459 )n-x ’

-V n
a6 )(“@‘lzﬂ)u (29) (-aq)
o( 0{ 0 - (4 1

ca 89, abq™**; con, , qm
(aq,a€q,qN:q),

for Hahn polynomials Qu ()(>’and
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L a@qéx+1)<aﬁ abq Q_N;C])x .
C éﬂ)@ M CTN+.Q )

Fx): —f{x a,8,N| ﬂ>

F(-aqY " j”x—<9“>,

= dE o )= B8150), caeq Dn
[_@q q)N (a? c; ) <?> (a@?>

for dusl Halm polynomisls K . ( /“CX)>.
From the Racah-Fock representation (3.4) we obtain
the relation between 1—'55 ~symbols and Hahn polynomials$

1 ‘jijj] _ d My {f(%f
9

My g M

Q, (14,4 [><3.8_'>

39__3 +My J/l ’d'z i .

where M:(}_m/, a=7 N g: ’ X:OL,,—*M,’ [
N=/j +d9—m, (0ex,n é,\/> and the relation between
q~3<} -gymbols and dual Hahn polynomials

[J,, }ij] =JY; a,m {()@;
y

R (F¥);a,6, u/) 3.8

~dgtm
where n , X 5 N arethesameasm(BB)QC}az i

()= m4+/9v(7(}4+/g g 3&). Here Q(x)and J,, are

weight and norm of Hahn polynomials.,

The orthogonality relations for Hahn polynomials and
dual Hahn polynomials follows immediately from (3.8),
(3.8"), The recurrence relations (3, ¢’) for 7—3} ~-gym=-
bols imply the recurrence relations for Hahn and dual

Hahn polynomialse.
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THEOREM 3.1. There are the following relations bet-

ween CGC:
SR [ -
my My [ M m] 7"
M, my | o (3.9)
_ gy GGG [ ‘2 JJ
7 My m, M 9 ’

[aa Jza'] ='C~i)€j"mﬂ _%-{ [ 244+4] iy d dy
My M m L 17 gy ["u,-m, mg) 34110
7

where the numbers C; and CVL:] defined in (2.6), (1.7).
The proof of this theorem follows from the represen-~
tations (3.3) -(3.5) (see also [27).

THEOREM 3. 2.
Z <[RJJ'3) [ J4 JzoL ] E T [dln C},l J’
b g M'IMIM/‘?_HMM MMQM?
2 3
SN V4 4 i 3 g
C{Q‘}M}@,) 1 M3 ( /R‘J'z "LS)MQ/ “4; _ iy
My Mo

M2 m}’/

To prove this formule it is sufficient to gonsider
relation (1.8) in the representation 3—33
(for more details see [2]).

1@
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From (1.11) it follows thet the matrices [R% 9% sa-
tisfy the Yang-Baxter relation:
dad . Jz 0‘3 I 33 ¢ JZ

°‘4<’2 R"193 R p /}Z\) (3.13)
13 14 -

Here all matrices act in |/ J”@ vdz®v s and the indi-
ces show how these matrices are acting in the product

space.

To conclud this section let us prove that the exten-
sion of \%(suc&))by the Weyl element W/ is a Hopf al-
gebra.

THEOREM 3.3. Formulae

N(w) = F\’-i(w®w> g(W)=4 (3.14)

define the structure of a Hopf algebra on U ( ) ucz))

PROOF. Let us check (3.14) in all :ereducible repre-
gentations. In accordance with the definition of CGC we
have:

@fj'wxdi)élw)m’mz =Z [ I J‘”J ) [&4 “4d (3.15)
m;m; ' Wl4 m2 m q MMM/ M.‘/m: HI .
d,m,m’ 1

The symmetries of CGC imply the identity

aa 3 g& i T iyl h(c-¢j-¢
m’»f,m] E (JR“ ) /L”"‘ Lt) g )
Nl 1

Compa:r:Lng this identity with (3.15) we obtain the
equality (3.14) in the representatlon

(rh e 7™ Y avr = (R** )" wg w,

Pormulae (1.8) and (1.9) imply thecoassociativity of
the action (3.14).
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Let A(a)=S af@ a; . The Hopf axiom for the
antipode is S@i)&; — a'S) =g(@)d .+ To define the ac-
tion of the antipode on "\J we need the following lemma.

LEMMA. Let A Dbe the quasitriangle Hopf algebra (see
[97[2][3¢] and R =g;®¢€" is the universal R-matrix;
then _ .
1. The element U= = S(€)€ is invertible and

u74== :%léf Ef(ei)-
2. Slra)= wo Lt for any achA.
We do not give here the proof of this lemma, because
it would have demanded the description of many auxiliary
constructions. The proof of this lemma for arbitrary
quasitriangle Hopf algebra was given by V.G.Drinfeld [36]
and for quasitriangle algebras of
special structure (for dubles of Hopf algebras ) by one
of the authors (N.R. u published). Let us check now the
property of the antipode in U(s%(&)). From (3.14) we
obtain (SS’COUAHJ' = S(w) S%&)@Q-bw’ and therefore
we must have

Sw)SHe)ew = g(w)d | (3.16)

- 2 !
. Lemma 1 implies that S (W 1)___5 (e;)eb . Comparing
with (3.16) we get

S(w)w = W)U,

Further, the equalities

) Sw)Uu= S(w)u= S(w) wh=

- Sww-wslw) , swu=u S

prove the relation

w S (W)= gw)sS).
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Using this relation we have:
s (w)ei'= £(w)e; S(%)@dz gw)S (u) 5(“—1)=
::¢Sfuf>gi_

S0, the conditions o0f the axiom for an antipode in
ij;(SL4(1)> are satisfied. To calculate & (W ) we sub-
stitute W 'into (2.8). Since T3 idwe obtain

Sw)= T w).

Therefore in every irreducible representation we have
U : . : ;
J d J dy, WE d
(W) W = )Ty, w W) ) T5W),
Comparing this formula with (2.6) we get

3 G+Ha S !
- — % .
elW)=1, wTu)=9 , o SW)= 19
4. Graphical Representation of R-matrices And
q-Glebsch-Gordan Coefficients

The relations (3.7)-(3.13) between CGC and R-matrices
can be represented graphically [27.

Let us represent the R-matrices and CGC by graphs
with strings colored by numbers ;} and with states {mik
on the end of strings:

(4.1)
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(4.3)

(4.4)

m

J i SWM/'(4.5)

M/

The multiplication of matrices correspond to the
joining of graphs of these matr:l.ces ’cogether. For example
it the metrix A acts trom V¥®.. ®\J% _  iato >
Vd*ﬁ?) ®V N, the matrix R acts from \f‘j*(ga @] M
to V‘“ ® . ®'V‘df-. and they are represented by graphs:

M4 vn,_-..M”
Jdl h JJx /

then the product B A is represented by the joining of

strings J d:. connected with B with stringsj/. ()/_‘

connected with A o The joining means the summa.t:.on over
the states corresponding to the ends of the jolning

strings:
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Mg -,
4 {}a,;
171’1

Tk

M/ I/I'hq - - WIL'

= & Y IR
[ B |

: N4
merw

m? a«ﬁ

The relations (3.7)-(3.13) and (2.10) aq.ré“represented
by the following graphical equalities:

gy 7% 4\ 7"'3
/> il \ (4.6)
/X /
' % ¢
/l// . (4.7)

—— ] dz
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(4.9)

(4.10)

(4.11)

The relations (4.11), (4.8), (4.9), (4.7), (4.6) represent
the formulae (3.7)-(3.13) respectively and (4.10) repre-
sents the crossing-symmetry (2.10) of R-matrices. In the
relation (4.8) the value <\ O is very important for the
further application to links theory. In this case:

id o hfi my % G
[ My m:_011 {[13_‘_4]?& J\{ [2“1}}

\J/ (4.12)
A

and therefore from (4.8) with J O it follows that

- G (4.13)
/JQ (ﬂﬁ/\ 9(4) _
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5. The g-Analogs Of The Wigner-Rekeh 6] -Symbols

Let us consider now the g-analog of 6(} -symbols and the

properties of these ‘T‘— éa —symbols..For th j.s purpose let
[V %

us congider tensor product '\ ® ®V of three
irreducible representations of U (s LLUL)) There are two
gymplest ways to obtain :ereduclble components in this
representat:.on. One is to decompose first V‘h ®Vdi
= Z V"’li and then to take irreducible submodules in

d d
V«ha@ Vds « The other is Jto decompose flrstv 2V
ZEJVJB and then qu ®1/ %3 . These two ways give two
cdfiblete orthogonal bases in vd4 -\]"1@\/“3

P —— [ di dsd dqda d

o 1 (daly l<§3>= 2_ [ iz > ] [ 1 42]'
Moy P2 M3 g Ly Mg M42lg

€u, By, @ €, (5.1)

Jz ‘:_ . '
3 (J I 33> Z_ L o 32.3 ] {J 43 dpz . |
1

My Mg Wy iy Mgy W1 PN, WA
Jd Ja J'b (5-2)
emll e emz ® ems

The matrix elements of the matrix, connecting these bases
will be celled q— 6f -symbols :

ey In da b)) i
€ (dndelis)= Z ){ Js 4 dys Tem (34[6',,43 (5.3)

—
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In the case 9= { we have

{34 d g E B dehiioa, [ dr da Ju}
iooom —_ - Y 5 3 ;2,{. ey
Js 4 dyy Oty {C2det [ 2 ]% ¢1) L
where { g e } is Racah-Wigner 63 -symbol.

d < ¢

For ‘1#1 we shall also use Racah-Wigner normalization:

.« . . RW : ;
dqda 341} ¥ Itdymd-is 2, b dy J
' . o 9_’ . a3 2- 122 12
é J3 4 JZ3 c‘ {E J4’~+4] [2323 +1] E Ci) {JS c} J“zgj?.

If we use the graphical technique of the previous section
the definition (5.3) of <1- 63 -symbols will have the form

Z {J,, dy ‘j'w.

dgg 33 d Jzz

(5.4)

Using the orthogonality (4.11) of CGC we obtain an expres-
sion of q- 6(1' -gymbols in terms of CGC:

{ I 51 342_ } . ]:J4 313 J -4 dg dz a3
33 9 442 9 my Wyz M Z My W3 Mog
1 My, Mz 9
Matmy = m-M, (5.5)

[Jﬂ. 333] J'l Ji 341
Mig M4 W q My Mg m,, g )

or




(5+6)

THEOREM 5.1.

a 4 e )RW
{ ol c_f}‘j — A(dge)A(ac_ﬁ)A(ceo{)ACO{Q:€>.

zZ Ehy [2+4]] g [2-a-¢-e]l [2~a-c-£]!

- (5.7)
[2~4-d-4 ] {:Z——o(—c~e][ [a+4+ced—2]!

-4
[a+a(+e+£ 21l Jé+c+e +f— 2]{}

Here the sum is taken only over Z with nonnegative ar-
guments in square brackets, (o N=4 »

The proof of this stheorem is given in .

REMARK 1. The sum (5.7) can be expressed through the
generalized hypergeometric function 4% (see [1]):

@+ 8+c+d

-4) [atc +&+d+4]]

———————————

[a+€-edI[a+c-£7| [ced-e]! [€+d~£1! [e+$—c_é]! [€+_f-a-ol:“
-0~ €+e -a c+4 —Cc-d4e  _~€-d+§
kF ( —a- ¢~c~cl~ ’ 67 ? 77)

qe+=f—-c~€+4 7€+{i—a —d+4 )
Here we use the follow:l.ng notatlon

—
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a o0

@ 1aees Spey _ (QM""QPM”)K .

peaipl €. ¢ 2% 2 L.z
¢ K=°(4""ng’)q5q)x

where

(1), =TT (1-49°),

(—T'e]

P
(e 2p30) =TT (aj59),

J=1

Let us suppose that one of the numbers 9z , ‘16&

or qc is equal to § . Then iy '
-n n+| X+1
17, 976,97,9 od

R OMX)5 ajﬁ,C;o(’Cf)::qk%( aq , 849, ¢ 54,9

igs the polynomial of degree K. on N (X)) = q"x.‘_qxﬂc .
These polynomials are called the Racah g-polynomials. The
Racah~Wilson polynomials correspond to O:cf”— and are

denoted by W, (X):
n 1 =X XM
, aé‘] 9, ¢9 7)

>0,
—M
“‘1 ;“l ) @C‘l
h=0,4,... M . This is a polynomial of degree . 1in
MOy= a[-x_l_chx_M,and Wi (.XJ.&'g'D)MH>=

= Qu(q7"; a,4,M419).
From the theorem 5.1 we have

a € e %
{4 cgty= 120w oo vpampe),

&
Wi (X): =Wy (X;a,8,¢,m[q)= q\Pz(

where N = a+€-e , X= c_.*_,,(\e_, M= a+€d+c+el+i,
-—a— —a-€—C 4o- o +4
OL:CT a 0(4€+£ ; P:ﬂ A-€-C +o-4 , X*-_____ qq"‘e +4-ol + 5

J(x) end o(n_ are the weight and norm of the Racah-Wilson
polynomials:
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PUxYe= P65 AP, M [9)=

(=D T o1
CEEERPICHN AN (T AT ’

2
o(n‘.:o(i'(oz)/b)b/)/\/{'q}:

_ (=apg (P17 28T 51 ) (85,
(=3P £4, 24, POG T D (0, SF 1L
(Y9
The symmetries of 9— €j-symbols follow from (A.18)
RW RW

1.{55551 ={2i§§q
o @RV L ge RV
& {o( ﬁc}a, - 14 cii
OLC;K Rw ae@Rw
> {0‘ “”Eﬁ :g"‘ﬁc—%q

4. g-Regge symmetry. Let
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Sy= @-&e;@— , 8, = eu—o{;e+£ o a+fcad
237 ’
o

then the following equalities hold
a s=C s-f E ] a e b E
0( S’l_ é S’l -€ 9 { 0( :g C

So—o 4 Sy-1 g

Sl—OLCS’z_eo[ {,,( Q‘ﬁ‘f

Rw

9

Se—o Si~0 Q%RW RW

{ a 4 e
. { A ¢ fi
S=d Sy—e Si—4 i o € e RW
SQ—OL Ss~g S,—¢€ N { d ¢ ‘£ g

1

RW !
N-—M ) @)M—M /Z g? 0()
A N, £ [24+1] Mg wy Mg,

N— 00 )

83-& S_,,—g _£

My +tm, =m |
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The symmetries 1-3 of q— 65 ~symbols have a simple
graphical interpretation. To describe it let us write
9q— 63 _symbol as the following trace:

{J’l (}2_ 341 - 4 3‘1 ) :
o e J 5.8)
d3 ¥ dan a [23"’@ ‘

e

The symmetries 1-3 of q- 64 ~symbols correspond to

roteting of thetraedrom formed by the edges ( 34 s do
s 1 dga? daz? } ) in accordance with rules (4.6)-(4.10).

For example we have:
a e
% _ [22,4—41 .
c C2a+i] C (509)
7N
¢ ! c—1;+£'c—4&:@ﬂ % o
[.:\C'i-’f] [2C+4][_20L+'{] | .

o
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To conclude this section we give two important formulae
with 0[—-6(}’ ~-gymbols

6. Graphical Representation Of 9\— 6;}-Symbols

To give a graphical tehcnique for representing 9- 6J-
symbols let us rewrite the relations (5.5), (5.11) and
(5.12) in the following form:

(6.1)
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Here a wave line divides the plane into two parts. In the
upper part the strings are colored by the numbers J , the
ends of these strings are marked by the states {_‘m}
and vertices represent the R-matrices and CGC according
to the rules (461)=(4+5)s In the lower part the numbers

4 color the strings and the sectors placed between the
strings. The colors of the sirings are not changed after

#
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crossing the wave line, The points of intersections of
two strings and the triple vertices correspond to the
following ‘t——%’-symbols:

J.L\\ 4
N / i . p .
A da tyg a4 KlC+e, ¢ —¢; ) (6.4
- N & 2 1 N diz di -
3'7/’\\\ ‘—3(0 ? J’3 3?%43
. N\
// 3,3 N J,Q_ oL 6)4 7
J% J /93
“ 12 / V. a
N / . 7?&(3"‘ i 93 ¢4 di3
.\\ y _s}“)faa‘a,,_%? e G d4> -
/ \\ (605)
/ N
AL ¥ \\
e diz N
daz
\
{
\
{ a' J J
\ | A 2L A/\
ool — { e
// \\\ J3 d 323 ﬂ (6.6)
/// \\\
e 341 T




}2_\ : / J_g
N 942 /
\\\ // ; '
\\\\// ; = { I3 92 "£3§ (6.7)
4 [] 2 d./| J c}»j.ﬁ q
|
{
|
1
|
da3

The points of intersections of strings with the wave

line correspond to CGC:

3/ i LJ Sa g L

m, mg M,q

(6.8)
Jodag W
Mg
The joining of the fragments (6.8) by the wave line
correspond to the summation over the states of the joining

ends:
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Let us call the lower part side of the plane "the
shadows world". The rules (6.4)-(6.7) represent ﬂ-—ég -
gybols in the shadows world. To find the weights, corres-
ponding to the extremal fragments consider the relations
which follow from (4.3), (4.11), (4.12)

. o 1 '
ds de"d4 "2 [26'42.1]_4])/’” dq Uai

1) Sfirdedn) [ )=
[?Jﬂ+{}

(6.11)

We see that one can rewrite these relations in the form
similar to (6.1)-(6.3)

(6.12)
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L.
; d
////ié = ' < (6.13)
. 34 ’
3

if we sssociate the following weights with extremal frag-
ments in the shadows world

aﬁ 4y = 9; zﬁ. g
PSRN ~ [ ¥y dyg /[ 641*0 E[G; o d
// 3 \\ ~_1_) AR 1 94 944
-’ a"ﬂ. \\\ [9‘34 +1] (6-14)
dg ‘
\éi 1
\ i 2
\\ 341 2 s ch*«h_’dﬁ [ 942“] 8( i 0
" G1) 02 4y +1] (6.15)

So, using the relations (6.1)-(6.15) we can transpose
every picture representing the combinations of R-matrices
and CGC in into the shadows world. Using this process we
can obtain the relations between 9- 6(; ~-symbols from the
coY responding relations for R-matrices and CGC.

THEOREM 6.1, The following relations between 94—&j -
bymbols hold:
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Z% éz. 343 % %33 éd Aé} 8
R A ey ©o (6.16
3 3335309 (dy dgd e )

Z (~’l)d‘3 0]‘ z Gy {&-3 3 dvn i {&3 d2 Jz3§ _
1

=T da JJ/)Q <§4 <) 3\3

‘_(_ 3"*()\‘*’&2_‘*(]3"3?_ 3237%(009_3-{-0& 01 JZ C *(‘>

) (6.17)
33 do 23
{ d/l J d/jif
R TR R I &
1Ldfclygla ed],
_ { 313 a ez { 33 32, 313%
Jq ¥g c‘ £ :g c - (6.18)
a-§- 7(C¢L Cg— ¢
> 1) gﬁﬂz v -ﬁ%uz 3} 54396} {JBO‘ _
3 W& Lgyd clylipey(

zgzc_oo(—c@-eﬁ%_(crC‘C‘C@-Pe)g%Sgg}{ ¢ A 1; {dlz _Eejz(é.w)

dg A g4

dgde X 41 961,
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_eer)
Z(_,,)Cc’ e écg} (2e+1]
c job [26+1] (6.20)

4284 _—Cr4C,-4C
/{)‘) ﬁ J € " Z -4

= C__

The relation (6.16) is called the orthogonality rela-
tion between 4—6j -symbols. The relation (6.17) is the g-
analog of the Racah identity, the relation (6.18) is the
q-analog of the Bidenharn-Elliot identity.

PROOF. Let us rewrite the relations (6.16)-(6.20) in
the graphical representation:

4 \ /ég, . .
4 \\ A / J
\\ Z(/, a/l\\ Z( // JZ.
% N N . \ / g
| S . \ .
4 & d)‘\ % I3 | | 95 d4 96
7 \\ / \
N el % (6.161)
e Ty ,
I L
} ' 4
d ‘}42» 4 32-\ ‘}41 // B
\\,\' 2 \ V3 ’ . L o |
e Y \\\// d2td3 7433 %.(Ca,_; CJL_Q<13>
de( "}43/ ¢ = a :‘ X C—-i)
; \I"l 4 | J
daz | |
'JZ3 A (6.171")




SNSRI FT |
s
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1 \ / \Jll { C
A / , \ 7 [ -}
N C /J- N\ V- 3
N yd 3 \ /r'
a / \\ 2 e N ) Va (6018'§
/ \ r/ - ck N 4
0( / d//\ f \\ £
//// \ // N\
J \ e T2 BN
/ 423 '
ol
%93 ) ,
J‘ d;\ ai\ = ’ 63
; y . \ ,
J"\\ e/, i N 33 \\ g /\
p p S\ ;0N
N C / \ y \ o(

4
\ \ o N 7
j \ 3 5, \\ 9 ’/_f /\\ (6.19")
/ Fd
/\\ e N\ 2 e N
J
- € //J 24 = //
Z (/C‘ [ & = C-Jl) C’ ¢ (\ a
C \- hY \\
| - (6.201)
N N o
g — (= {
Z (S Pyt TG e eglia
C . \
\
~N

Now we see that these relations follow from (4.11), (4.8),
(47), (4.13) and (4.6) respectively if we transpose the

.f‘ | .
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latter into the shadows world. It seems that this is the
simplest proof of the identities (6.18)-(6.20).

REMARK 1. The relations (6.16) are equivalent to the
orthogonality relations for the Racah-Wilson polynomials
(see (1] formulae ( 4.4 )). The relations (6.17) and

(6.18) give identities between the Racah-Wigner polynomi-
als which seems to be new.

REMARK 2, Substituting the special values ( 6.21) of
ﬂ—-@j-symbols we obtain the recurrence relations:

R
Cac+4) [2d] [24+4]{ T '
y

d cf = {[@w@f][oue-c]

R

Eg-l—ﬂ cf—M][(‘_—&-e 0(+1])—:0\+C+f+2]%;’é{ 4 e E
ol -

% c+ % KA

081 L] (8 -de) [ -] solse s ] ase- 4o p- M}
’3, o g o ERUJ
Ho et ol At Loy

[evd-e][erdietq] [C+f~4j[q+c+¥+’l]}y

A € e Rw
{ob- AR ]p%} L { [0(+f-@J [€+@(+£+1] [d+e-c]

R
9 )

0{- % C"% £-%
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Rw/

a+8+e+4 % [a+é+e+d] [6+e _;HG}}./Q

a 6 e
{é7&yz;@+%_% (—/’> [264’2—:‘ E26+1j ’

0"

a 6 e Rw
{ :% a+éie(aif-e][a+e-6+ 1] 7/1
{- (6.21)

hoerly 8-t [ =)
1 [2e+2] [26+(] )

a € e Rw )
{ Xn et TRt a8
W 9.9 f2e] [28+40] :

Rw
o =g Corbrent i eseal 119
Yo e-Vy €1 |4 C2e [24+1]

From (5.7), (5.7'), (5.7") it follows that these rela-

tions are equivalent to the recurrence relation fox WV\
given in | 1](formulae (4.6)).

REMARK 3. Identity (6.19) is the face form of Yang-
Baxter equation [20 | for constant R-matrices. _

REMARK 4. In a similar way ome can define q-—Jj -
aymbols. These symbols are connected with C? -ortogonal
polynomials depending on two variables. The details will
be given in separate publication.

7. The Invariants Of Links Associated With Uq(su(z))

Using the q-analog of 6& -gymbols we give here a new
model for the invariants corresponding to higher represen-
tations ot U (Su(),(2, 17, 18]. This model is based on
the graphical representation (6.4), (6.5) for G]—éj ~gym-
bols and is obtained from the model based on R-matrices
[27] by transposing the latter into the shadow world in
accordance with the rules of the section 6.

DEFINITION 7.1. Let 7D, be the disgram of the link L,

a) to each component oflwe associate a numberJoL( o nume-
rates the components of /5 ), which we call the colour of
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the component.

b) let us paint the plane on which the diagram is lo-
cated into different colours (numerated by j < %Z+ )
following the rules described below:
~ to the extremal part of the plane we associate the num-
ber =0 .

-~ to those parts of the plane which can be reached from
the extremal part by crossing only one string, we associag-
te the colour of this string (these are parts neighbouring
to the extremal one).
—- other internal parts of the diagram are pointed according
to the following inductive rule: let @K be a part which
can be reached from the exter:.our by crossing a minimum
of K strings and let @ be the neighbours of this
part which can be reached by crossing (k-1) -strings;
let be the colour of @K-, parts, then the colour &K of
the part (OK must satisfy the inequalities [Jk- — e, Al
< dee 4t +QKJK’] for any o/ ; here Z.:EK_ is the co-
1our of the string dividing ©, and O, , . We shall call
each set of colours satisfying these inequalities state
on the diagram.

¢) let the diagram ZDL be in a general position.

d) for each state on ;DL let us associate a weight to
each intersecting and each extremal fragment following
the rules (6.4), (6.5), (6.14), (6.15). Then we multiply
all of these weights and sum up the product over all pos-
gible states.

The obtained functional is denoted by Zj, ;. CQL) |
where K 1s the number of the components of L and J,, |
)JK are the colours of these components.

1).-.
An example of the calculation of the functional

234 - dw (9’—> *
Let 9),_ be the diagram given in Fig,1. The numbers

34 and 32, are the colours of the components of L , The
states on <D are given in Fig.1. For colours K and d

—
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we have the following restric-

tions: oskéi‘j,, ; |
accordance with Definition .1 -
for the functional Q)Jujz (2)

we obtain the following expres-

sions
34 Z X+,
05K92J1
lc}\\-éz\é;}ej,\—réi
-€. +2C . R
K _T 4 e —
T %J" ° 24% C—1)K 2"41%9"“1— da K 4y g
da K da 2y 4 0dr S
K-2 —26,+Cx o
1) H S 34 J/\ o) d+d=d — —— )Z_
1 \ 1) L
J/\ dd K q ¢
Ja dq 4 Sitipmy  S=%9 7S
: ~1 9 2 4 dy O
da d2 O ]
ﬁ JL JZ (/ g}

_ “Zdy [Q,L/,M:(
= { [14+1]g szﬂ [%m] ==

K 4e. —2¢Ck +9¢:—9c¢:
‘:—TZ ﬂ ( P} K < CJL){J;OJ,}'

J) K d
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{J\ K &4E {34 J,\ O JZ da J} 6‘4 J/( ®,
44 0 41 Sq dq 44 K q da d2 O 9 jé‘

da dg d
. %. .
{ZKVI] );2()4+4:\ [,2&\2"’11 —

— Jé(éqw—-BCK+2g—2qi>
— —4‘\- ‘7 '
[?94+7] .
0Lk
“;A—éeléé < éz\“"dﬁ

e

K
.+ (1) [zn+1][2d'+.’l] & Z[‘Lﬂ—].

In [2 |with the help of the matrices (2.4) and (2.6)
e functional, analogous to the one described was defined.
Let us remind the reader this definition.

DEFINITION 7.2.

a) let the diagram be in the general position

b) to each component of L we associate the number
Jde%—2+ (colour of the components)

c) divide the diagram into elementary fragments

d) to each edge connecting elementary fragments we
associate the states (m|< j,, 2ms= 2jy (mod ) were |,
is the colour of the component.

e) to each elementary fragments we associate the

weights using the rules (4.1), (4.2) (4.4), (4.5) of the
section 4.
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g) multiplying the matrix elements corresponding to
the elementary fragment over all fragments and taking the
sum of resulting product over all states on D, we obtain
the functional Zz:---d'x (D > .

An example of calculation of the functional %’(.’AL)

Let Q)L is the diagram given in Fig.1l. In accordance
with the definition of ZJ] ;, (Do) we bave:

/ ./
—:1>M4 My

%‘,51621-):{2: U:jm (( }RJI;J4>
mY .

dz
M4 M3 MS M‘_!

Mz M

Spdy - A mg I d S 4 J
((U? 3) (R* ™), wl, w,

m‘i ml h'"l] Mi s W3

T IM/ / S v . i
(R D (RN e,
M,{M m’/ w.é’ My M”‘“g

9c

The states { m } on the
diagram @L are given in
Fig.2.

m7

Let us introduce an orientation on L and define the
numbers

W (D)= N, (D) =N ()

£ +
where N; (Q)L) are the numbers of positive (N ) and

g opp. -
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negative ( N-) selfintersections on the component

N e

It is easy to see that the numbers W, (2, )do not depend
on the orientation of the component o .
THEOREM T.1. 1) The functionals Z (Q)L> and

?JA v (D) coincide,
ii) the functional

K CJA ZJ& w:([gL)
LPJ‘4...;K(%L)=E(C? 1) > 234“_JK(9L>(7.1)

is the invariant of the link L

PROOF. i) Consider the functional 2 (2L)
a8 the product of the matrices correspending %o the ele-
mentary fra,gments and the matrix J[°' 2 Néd i ( 3L> act-
ing in /7 ( T’ is & unit matriz). In aceordance with
the graphical rules this matrix is represented by the
diagram :I)L_ gituated in the upper side of the wave line
which correspond to the space VJ « Using the rules of
gsection 6 we can transpose (see Fig.3) this diagram to
the shadow world. Prom the rules (6.4)-(6.7) and (6.14),
(6.15) we obtain 1 a new representation for calculating
the funectional ZJ e (DL) + From the definition of
this procedure it follows that wthe value of Z .- (@L)
calculated in the shadow world do not depend on J y and
therefore we can put J O after that we obtain the

rules for calculating 2 d (zL > .
L3
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Figo 3

The part ii) of the theorem was proved in [2] (see

also (18, 29]). The main idea is that the invariance of

%’(CZ)L) under regular isotopies follows from the rela-
tiong (4.6), (4.10) and the invariance under singular iso-
topies follows from (4.12) and from the structure of the
multiplier before in (7.1).

Let us give a representation for the invariant kp in
the case when L is given in the closed braid form. Con-
sider the case 44_—:4’1:... =Jx =4 .

We should remind that the braid group 8/\/ [35] is ge~
nerated by the elements S;  (=4,... ,N-4 with the
following relations

S¢ S St = Sg4q Si S

SiS;=Sise L, |i—ji>4 .

One can define a _ representation " of the braid
group in the space (v )®N

¥
'®

Ll

T(s): =9 = 10---8P, R ®4 (7.2)

where Py is the permutation matrix.
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It is well known that for J= ﬂ/ this representation
is the representation of the bra:.d group in the Temperley~
Lieb~Jones algebra. Indeed, in this case

L i L
T(s:)= 18- @4%(e;(4+9) - 9% o6l

(7.3)

where the elements @; form T.L.d. algebra:

e‘ e ¥ e(: = 'C‘ e s e Z

t (+1 ¢ = e‘:

e[+4 eC QC-M = T e('-‘l'i (7.4)
-2
&*q"
Representations (7.2) for J> can be obtained

from one for c;-é‘i— by the fus:l.on—procedure L,SZ.:] Let us

define the following matrices acting in (V )@W

1. i
q) (h+ ;h+2-‘;2 , % 2j- 204 -(ZJ‘—ZC"H))‘L
=g

d
¢=1
St JTe, 0
¢ ¥ (R .. p% )
€4 £y = ii h+i h+2]
€2 g, E2
( R hed 7 Rn»«z‘}-i R hfi
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®Y)
]Rn - <Rn+23 Rn+4j—1>(Rn+z)-i

R”*“J‘Z> (Rma.‘“ Rmzd') (7.6)

L 4

R.=1€-8F,R —®-~®1

LeHd

SRR,

= A 2N R
THEOREM T.2. The map 77 BN —> Enol ((V - > 9 |
defined by the following formula
ﬁzD=R("l’ = q)(zé':*if"’2‘*’(“1))@.(23(“0%)‘"J2d'(£+f?) (7.7)
C s R J)
d d 2jc
is the representation of the braid-group B y end this
representation is isomorphic to the representation (7.2)e
PROOF. Let us glve graphical prove of this theoremn.
The representation JT can be written as the following pic-

ture;é %y 25 2y

L.
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Using the relations (4.6) and (4.7) we can transform
this picture in the form

<y Y

This picture represent the action (7.2) of braid
group. S50, the theorem is proved.

The fusion-procedure can be applied to the construc-
tion of links invariants corresponding to higher represen-
tations starting from the invariants that correspond to
the vector representation. This procedure was independent-
1y considered in | 1% | under the name of cabling procedu-
re,.

The representation (7.2) is reducible. To obtain its
irreducible components let us congider the decomposition

of (\V 'j) N ity U‘f ( 3&) -irreducible components:
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(v = 5 (w V)

where We ®V are prime components, dimWp = multiplicity
of \/ C\/‘* )8 « From (1.6) it follows that the mat-

rices QL (+4 commute with the action of U"l (€3 ) in
(\/‘4) . Therefore they act in the spaces W, .
Let us choose the following basis in the space We

E(weel, Z Lot ]

;

a a ay ‘ J
14 zx [,}J X e;’l@“, & e’ (7.8)

m_ ny V2 hq N2 Ny N

The elements of this basis are numerated by the sequ-
=7y v A
ences (A )= (J yRg e )'a“_1 , L ) of numbers Q¢ 2--Z/__'_
satisfying the following conditions O<a,<lj,.... ,
lqk —d \ éqk+q = ar."'a. 9 veey a.ys-e‘
Let us define the following action of the braid group
in the space We:

7 (s0) ( E@) ®e. ) )= (75 )Ee(a)>®e(7 9)

PROPOSITION,
q'\,ﬂ‘al‘rt
T (S HE (“) Z (‘1) {é At %1}
c‘) A j+eq atl %
+ Ca. C“EH.-CQ-{_ C“'C ¢ ;
C\/ = E: (;))al)" yA¢ 57 )GKN_“C)
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C,. +Cq_ -C !/ = C .
e ”*9: Ao (7.10)
At /
1/ € ((}) Ry ), QCJ“')QN'LJQJ

PROOF. According to the graphical rules of section 4
the vector EQUX)g €€n is represented by the following

picture:

The left hand gide of (7.9) is written as
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The formula (7.9) follows immediately from (5.11).
Now let the link L. be a closure of the braid « . In
this case from the definition Z (L) and Z(L) we have:

iy H W\
Z; )= tf'wg)w ((7 3. ®9 Jtc;cow}:

— 0 (T.11)
= 2> [ae+], ‘(}rwe (T, 60)

where ‘(TIV C ) means the matrix trace over the spaceV.

CONCLUSION

In the present work we considered only the case of
the algebra 001: Se(z). 9= 6J symbols in the general case
may be defined in a similar way. The main idea can be
extracted from f2]. The investigation of q— 66' -anhalogous
of CGC for Uq (S€(n)) will be given in a separate publi-
cation. %
Here we don't consider the dual algebra []q (96(2)) =
= @q (SL(2)) . The algebra (Ea,(SL(i)> appeared in
different contexts in [9, 25]. The algebra G:q (su(e))
appeered in the theory C* algebras in the works of Wo-
ronovich [26],who constructed some elements of harmonic
analysis for this algebra. The corepresentations of

¢‘1 CSQ(}.)> and g-analogue of spherical functions on
SU(2)were studied in [27]{3?] . Using these results
one can obtain the representation for CGC by integrating
over ¢°l (5(/((9-)>the product of three quantum spherical
functions. A similar representation can also be given for
q- 64 -symbols.

As in the case of q:ithe relations between af—-éd' i -
symbols can be organized in the Wigner-Recah algebra ):23].
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n o(e‘t?abls
We do not considerYthe case when 0{ is & root of

unity. In this case one can introduece the calculus of
restricted 4—6j -symbols. These 9—6j -symbols are defined
by the formulas of § 5,but the values of their arguments
are restricted by the additional condition o, € ,cC , d ,
% s Jp_é_ -9 « As in the case of general C] the arguments
of restricted ¢-6] -symbols satisfy also standard ine-
qualities |-e|& a < o+ > {C-_{[saéc-l-:ﬁ ’
[d-£lecb<o+lf , |e-cled < e+c + From the symmetries
of q—6j -symbols it follows that for ng.: 1

a B e B+{-c-e+l+2a _
€ e
= (-1 ) i
{dc{i i (> Sic( c 4 ?-

where a4 — A~1—4 .

It is easy to check that restricted 9-6 -symbols
satisfy all relations (6.16)-(6.19).

There is an interesting application of restricted
q~6j -symbols in conformal field theory. Moore and Seiberg

found the polynomial equations describing operator

algebras of conformal field theories. It is not hard to
check that the relations (6.16)-(6.19) for restricted
q~6J' ~gymbols coincide with polynomiel equ.ation of Moore
and Seiberg, and therefore restricted ‘1" 5J -symbols defi~
ne gome operator algebra. It follows from fgy_] that it is
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the operator algebra of the Wess.Zumino model of level
V-2 with central charge
3 (M-2)

~

C —

and with the anomaleous dimensions AJ = <*£§+7}
i= o0t B
We thank L.Faddeev, V.Bazhanov, M.Semenov-Tian-—

Shanksy, J.Soybelman, L.Takhtajan and L.Veksman for
interesting discussions.
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