
32 Symmetric functions and representations of

symmetric groups

Schur-Weyl duality gives a correspondence between representations of symmet-
ric and general linear groups. So in order to understand representations of
general linear groups we would like to know the representations of symmetric
groups. We will describe these using symmetric functions.

32.1 The ring of symmetric functions

Recall that conjugacy classes of symmetric groups Sn correspond to partitions
of n. The irreducible representations can also be indexed by partitions. (Al-
though finite groups have the same number of conjugacy classes and irreducible
representations, it is not in general true that there is a natural correspondence
between them: symmetric groups are unusual in that they do have such a nat-
ural correspondence.) We will describe the representation theory in terms of
symmetric functions. More precisely, the conjugacy classes of Sn will corre-
spond to Newton’s symmetric functions of degree n, irreducible representations
of Sn will correspond to Schur polynomials of degree n, and the character table
of Sn is just the matrix for expressing Schur functions as linear combinations of
Newton’s functions.

The symmetric functions of n variables x1, . . . , xn are the polynomials in
the elementary symmetric functions e1 =

∑
xi, e2 =

∑
i<j xixj , ...., en =

∏
xi.

It is convenient to take a sort of limit as n tends to infinity and define the
ring of symmetric functions to be polynomials in an infinite number of variables
e1, e2, . . .. The point is that formulas involving symmetric functions tend to be
independent of the number of variables xi provided this number is sufficiently
large.

The ring of symmetric functions has a lot of structure:

• A commutative product

• A cocommutative coproduct

• An antipode (or involution)

• A partial ordered

• A symmetric bilinear form

• Several different natural bases

The ring of symmetric functions has several useful sets of generators and
bases.

• The elementary symmetric functions en =
∑

i1<i2<···<in
xi1xi2 · · ·xin form

a generating set. The symmetric functions eλ for λ a partition form a base.
We put E(x) =

∑
eix

i =
∏
(1 + xix), so it is a power series that formally

has roots −1/xi.

• The complete symmetric functions hn =
∑

i1≤i2≤···≤in
xi1xi2 · · ·xin form

a generating set. We have H(x) =
∑

hix
i =

∏
(1− xxi)

−1 = 1/E(−x).
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• Newton’s symmetric functions pn =
∑

i>0 x
n
i form a generating set over

the rationals, but not over the integers. We have P (x) =
∑

n>0 pnx
n =∑

i xix/(1− xix) = x d
dx

log(H(x) = xH ′(x)/H(x).

• The Schur functions sλ (see later)

• The monomial functions mλ.

• The forgotten monomial functions

Exercise 354 Show that E(−x)P (x) = −xE′(−x) and use this to prove New-
ton’s identities giving recursive formulas for the sums pi of the powers of roots
of a polynomial xn − e1x

n−1 + · · · in terms of its coefficients.

This gives at least 6 natural bases for the vector space of symmetric func-
tions. Mathematicians working on symmetric functions spend many happy
hours expressing writing the various basis elements as linear combinations or
polynomials of other basis elements.

The ring of symmetric functions has a bilinear form 〈, 〉 defined by the prop-
erty that the symmetric functions pλ form an orthogonal base or norm zλ where
zλ is the order of the centralizer of a permutation of shape λ. The reason for this
will appear later: when homogeneous symmetric functions are identified with
class functions, this inner product becomes the usual inner product of class
functions.

Exercise 355 Show that if a permutation has shape 1n12n2 · · · then zλ =
1n1n1!2

n2n2! · · · .

Recall that if V is a finite dimensional vector space with a symmetric non-
degenerate inner product, then

∑
aia

′
i ∈ S2V summed over a basis ai (with a′i

the dual basis) is independent of the choice of basis. We would like to do this
for the space Λ but run into the problem that Λ is infinite dimensional. This
is easy to fix because Λ is graded with finite-dimensional piece, so we just use∑

aia
′
it
deg ai ∈ S2V [[t]] instead. This element is independent of the choice of

homogeneous basis.

Lemma 356 For any homogeneous basis of Λ, we have

∑
aia

′
it
deg ai =

∏

i,j

(1− txiyj)
−1

Proof We only need to check this for one choice of basis, since the left hand
side is independent of the choice of basis. Of course we use the basis ai = pλ,
a′i = pλ/zλ. The right hand side is given by

exp(
∑

i,j

∑

n>0

tnxn
i y

n
j /n) = exp(

∑

n

tnpn(x)pn(y)/n)

The coefficient of tm on the right is

∑

|λ|=m

pλ(x)
pλ(y)

zλ
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which proves the lemma as by definition pλ/zλ is a dual basis to pλ. �

The ring of symmetric functions is a Hopf algebra. The Hopf algebra struc-
ture is defined by making E(x) =

∑
eix

i grouplike (with e0 = 1), or in other
words

∆(en) =
∑

ei ⊗ en−i.

Exercise 357 Show that over the rationals, the primitive elements of this Hopf
algebra are the linear combinations of pi, and that the Hopf algebra is the
universal enveloping algebra of the abelian Lie algebra spanned by the pi.

We know that commutative Hopf algebras should be thought of as group
schemes, so we can ask what the group scheme corresponding to the Hopf algebra
of symmetric functions looks like.

Exercise 358 Show that if G is the group scheme corresponding to the ring
of symmetric functions, then for a commutative ring R, G(R) can be identified
with the multiplicative group of power series with leading coefficient 1 and
coefficients in R.

The antipode of this Hopf algebra is given by e∗n = (−1)nhn. This is slightly
different from the involution often used on the ring of symmetric functions taking
en to hn. The two involutions differ on homogeneous elements of degree n by a
factor of (−1)n.

The ring of symmetric functions also turns up in other areas of mathematics
in different guises. Here are a few apparently unrelated objects all of which are
really the same ring, or rather Hopf algebra.

• The ring of symmetric functions

• Representations of symmetric groups

• Representations of general linear groups

• The homology of BU , the classifying space of the infinite unitary group.
(It also turns up in several other related generalized homology rings of
spectra.)

• Cohomology of Grassmannians (“Schubert calculus”)

• The universal commutative λ-ring on one generator e1

• The coordinate ring of the group scheme of power series with leading
coefficient 1 under multiplication

• The Hall algebra of finite abelian p-groups, specialized to p = 1.

• It is the underlying space of a bosonic vertex algebra on 1 variable.

• It is the ring of polynomial functors on vector spaces.
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