
In fact we can extend the root system D4 ⊂ B4 to a bigger root system
called F4 by adding in these 16 norm 1 roots. We will see later that this is the
root system of an exceptional Lie group. We have essentially worked out the
Weyl group of F4: it is the same as the automorphism group of the root system
D4 and so has order 23.4!.6 = 27.32.

There is another way to extend Dm to a bigger root system. If we put
m = 8 then the vectors (±1/2,±1/2, ..., ) happen to have norm 2, and all norm
2 vectors of an integral lattice are roots (meaning that their reflections act on
the lattice). So if we add one of these cosets to D8 we get an integral lat-
tice E8 with 112 + 27 = 240 vectors of norm 2. In other words the roots
are the vectors (· · · ,±1, · · · ,±1, · · · ) with two non-zero entries and the vec-
tors (±1/2,±1/2, ..., ) with even sum. This root system also corresponds to an
exceptional Lie algebra of dimension 8 + 240 = 248.

Exercise 182 Define the root systems E7 and E6 to be the roots of E8 whose
first 2 or 3 coordinates are equal. Show that E7 has 126 roots and E6 has
72 roots. (These will turn out to correspond to Lie algebras of dimensions
126 + 7 = 133 and 72 + 6 = 78.)

The lattice E8 is the smallest example of a unimodular integral positive
definite lattice that is not a sum of copies of Z. We can form similar unimodular
lattices D+

m from Dm whenever m is divisible by 4; they are even lattices if m
is divisible by 8. However if m > 8 they have the same roots as Dm so do not
give new Lie algebras or root systems.

The lattice for m = 16 was used by Milnor to give a negative answer the
question “can you hear the shape of a drum”, in other words is a compact Rie-
mannian manifold determined by the spectrum of its Laplacian. The spectrum
of a toroidal drum is given by the number of vectors of various norms of the
corresponding lattice. The lattices E8+E8 and D+

16 are distinct, and the theory
of modular forms shows that they have the same theta function, in other words
the same number of vectors of every norm, so the corresponding tori are not
isomorphic but have the same spectrums.

Exercise 183 Show that the root systems E8 + E8 and D16 in R
16 have the

same number of roots but are not isomorphic.

14 Clifford algebras

With Lie algebras of small dimensions, we have seen that there are numerous
accidental isomorphisms. Almost all of these can be explained with Clifford
algebras and Spin groups.

Motivational examples that we’d like to explain:

1. SO2(R) = S1: S1 can double cover S1 itself.

2. SO3(R): has a simply connected double cover S3.

3. SO4(R): has a simply connected double cover S3 × S3.

4. SO5(C): Look at Sp4(C), which acts on C
4 and on Λ2(C4), which is 6

dimensional, and decomposes as 5 ⊕ 1. Λ2(C4) has a symmetric bilinear
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form given by Λ2(C4)⊗Λ2(C4) → Λ4(C4) ≃ C, and Sp4(C) preserves this
form. You get that Sp4(C) acts on C

5, preserving a symmetric bilinear
form, so it maps to SO5(C). You can check that the kernel is ±1. So
Sp4(C) is a double cover of SO5(C).

5. SO5(C): SL4(C) acts on C
4, and we still have our 6 dimensional Λ2(C4),

with a symmetric bilinear form. So you get a homomorphism SL4(C) →
SO6(C), which you can check is surjective, with kernel ±1.

So we have double covers S1, S3, S3 × S3, Sp4(C), SL4(C) of the orthogonal
groups in dimensions 2,3,4,5, and 6, respectively. All of these look completely
unrelated. We will give a uniform construction of double covers of all orthogonal
groups using Clifford algebras.

Example 184 We have not yet defined Clifford algebras, but to motivate the
definition here are some examples of Clifford algebras over R.

• C is generated by R, together with i, with i2 = −1

• H is generated by R, together with i, j, each squaring to −1, with ij+ji =
0.

• Dirac wanted a square root for the operator ∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 − ∂2

∂t2

(the wave operator in 4 dimensions). He supposed that the square root is
of the form A = γ1

∂
∂x

+ γ2
∂
∂y

+ γ3
∂
∂z

+ γ4
∂
∂t

and compared coefficients in

the equation A2 = ∇. Doing this yields γ2
1 = γ2

2 = γ2
3 = 1, γ2

4 = −1, and
γiγj + γjγi = 0 for i 6= j.

Dirac solved this by taking the γi to be 4×4 complex matrices. A operates
on vector-valued functions on space-time.

Definition 185 A Clifford algebra over R is generated by elements γ1, . . . , γn
such that γ2

i = ±1, and γiγj + γjγi = 0 for i 6= j.

This is a rather clumsy and ad hoc definition. Let’s try again:

Definition 186 (better definition) Suppose V is a vector space over a field
K, with some quadratic form N : V → K. (N is a quadratic form if it is
a homogeneous polynomial of degree 2 in the coefficients with respect to some
basis.) Then the Clifford algebra CV (K) is the associative algebra generated by
the vector space V , with relations v2 = N(v).

Of course this definition also works for quadratic forms on modules over rings,
or sheaves over a space, and so on, and much of the basic theory of Clifford
algebras can be extended to these cases.

We know that N(λv) = λ2N(v) and that the expression (a, b) := N(a+ b)−

N(a)−N(b) is bilinear. If the characteristic of K is not 2, we have N(a) = (a,a)
2 .

Thus, we can work with symmetric bilinear forms instead of quadratic forms so
long as the characteristic of K is not 2. We will use quadratic forms so that
everything works in characteristic 2. (Characteristic 2 is notoriously tricky for
bilinear and quadratic forms and we will not be working in characteristic 2, but
if we can pick up this case for free just by using the right definition we may as
well.)
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Warning 187 Some authors (mainly in index theory) use the opposite sign
convention v2 = −N(v). This is a convention introduced by Atiyah and Bott.

Some people add a factor of 2 somewhare, which usually does not matter,
but is wrong in characteristic 2.

Example 188 Take V = R
2 with basis i, j, and with N(xi+ yj) = −x2 − y2.

Then the relations are (xi + yj)2 = −x2 − y2 are exactly the relations for the
quaternions: i2 = j2 = −1 and (i+ j)2 = i2 + ij + ji+ j2 = −2, so ij + ji = 0.

Remark 189 If the characteristic of K is not 2, a “completing the square”
argument shows that any quadratic form is isomorphic to c1x

2
1+ · · ·+cnx

2
n, and

if one can be obtained from another other by permuting the ci and multiplying
each ci by a non-zero square, the two forms are isomorphic.

It follows that every quadratic form on a vector space over C is isomorphic
to x2

1 + · · · + x2
n, and that every quadratic form on a vector space over R is

isomorphic to x2
1 + · · · + x2

m − x2
m+1 − · · · − x2

m+n (m pluses and n minuses)
for some m and n. Sylvester’s law of inertia shows that these forms over R

are non-isomorphic (proof: look at the largest possible dimension of a positive
definite or negative definite subspace).

We will usually assume that N is non-degenerate (which means that the as-
sociated bilinear form is non-degenerate), but one could study Clifford algebras
arising from degenerate forms. For example, the Clifford algebra of the zero
form is just the exterior algebra.

Remark 190 The tensor algebra TV has a natural Z-grading, and to form the
Clifford algebra CV (K), we quotient by the ideal generated by the even elements
v2 − N(v). Thus, the algebra CV (K) = C0

V (K) ⊕ C1
V (K) is Z/2Z-graded. A

Z/2Z-graded algebra is called a superalgebra.

We now want to solve the following problem: Find the structure of Cm,n(R),
the Clifford algebra over Rn+m with the form x2

1+ · · ·+x2
m−x2

m+1−· · ·−x2
m+n.

Example 191

• C0,0(R) is R.

• C1,0(R) is R[ε]/(ε2 − 1) = R(1 + ε) ⊕ R(1 − ε) = R ⊕ R. Note that the
given basis, this is a direct sum of algebras over R.

• C0,1(R) is R[i]/(i
2 + 1) = C, with i odd.

• C2,0(R) is R[α, β]/(α2 − 1, β2 − 1, αβ + βα). We get a homomorphism
C2,0(R) → M2(R), given by α 7→

(

1 0
0 −1

)

and β 7→ ( 0 1
1 0 ). The homo-

morphism is onto because the two given matrices generate M2(R) as an
algebra. The dimension of M2(R) is 4, and the dimension of C2,0(R) is
at most 4 because it is spanned by 1, α, β, and αβ. So we have that
C2,0(R) ≃ M2(R).

• C1,1(R) is R[α, β]/(α
2−1, β2+1, αβ+βα). Again, we get an isomorphism

with M2(R), given by α 7→
(

1 0
0 −1

)

and β 7→
(

0 1
−1 0

)
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Thus, we’ve computed the Clifford algebras

m\n 0 1 2
0 R C H

1 R⊕ R M2(R)
2 M2(R)
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