5.1a This is the tacnode. The singular points are the points with \(x^2 = x^4 + y^4, 2x = 4x^3, \) and \(4y^3 = 0, \) so (at least in characteristic 0) the only singular point is \((0,0)\).

5.1b This is the node; singular point is \((0,0)\).

5.1c This is the cusp; singular point is \((0,0)\).

5.1d This is the triple point; singular point is \((0,0)\).

5.2 The singular points of \(f(x,y,z) = 0 \) are given by \(f = 0, \frac{\partial f}{\partial x} = 0, \frac{\partial f}{\partial y} = 0, \) and \(\frac{\partial f}{\partial z} = 0. \)

5.2a This is the pinch point; singular points are where \(xy = z^2, y^2 = 0, 2xy = 0, \) and \(2z = 0, \) which is the line \(y = z = 0. \)

5.2b This is the conical double point; singular points are where \(x^2 + y^2 = z^2, 2x = 0, 2y = 0, \) and \(2z = 0, \) which is the point \((0,0,0)\).

5.2c This is the double line; singular points are where \(xy + x^3 + y^3 = 0, y + 3x^2 = 0, x + 3y^2 = 0, \) and \(0 = 0, \) which is the line \(x = y = 0. \)

5.3a If \(P \) is a point on \(Y \) then \(P \) is a nonsingular point of \(Y \) is equivalent to saying that one of \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \) are nonzero at \(P, \) which is equivalent to saying that \(f \) has a term of degree 1 in \(x \) and \(y, \) which is equivalent to saying that \(\mu_P(Y) = 1. \)

5.3b The singularities in 1a, 1b, and 1c have multiplicity 2, and 1d has multiplicity 3.

5.4a \(f \) and \(g \) both vanish at only a finite number of points, so we can find a polynomial \(h(y) \) which vanishes whenever \(f \) and \(g \) both vanish, so \(h^n \in (f,g) \) for some \(n, \) so we can assume \(n = 1. \) The submodules of \(O_P/(f,g) \) correspond to ideals of \(O_P \) containing \(f \) and \(g, \) so it is sufficient to show that \(k[x,y]/(f,g) \) is finite dimensional (as its dimension is at least the length of \(O_P/(f,g) \)). But if we have polynomials \(h_1(x) \) and \(h_2(y) \) of degrees \(m \) and \(n \) in \((f,g) \) then \(k[x,y]/(f,g) \) has dimension at most that of \(k[x,y]/(h_1,h_2) \) which is \(mn \) which is finite.

5.4b Put \(P = (0,0) \) and take any line \(L \) not in the tangent cone of \(Y. \) We can assume that \(L \) is the line \(y = 0, \) so the terms of lowest degree in \(f \) contain \(x^m \) (where \(m \) is the multiplicity of \(Y \) at \(P. \) Then \(O_P/(f,g) = O_P/(y,x^m + \cdots) = O_Q/(x^m + \cdots) \) which has length \(m \) (where \(O_Q \) is the local ring of \(Q = 0 \) in \(A^1). \)

5.4c We can assume that \(L \) is \(y = 0. \) If \(z \neq 0, \) the equation of the curve \(Y \) is \(f(x) + y(*) = 0 \) where \(f \) if a polynomial in \(x \) of some degree \(n. \) Then if \(x \) is a root of \(f \) of multiplicity \(m, \) we have \((L.Y)(x,0) = m, \) so the sums of the intersection multiplicities along the \(x \) axis is the number of roots of \(f \) which is \(n. \) On the other hand, at the point \((0:1:0)\) the intersection multiplicity is \(d - n \) as the equation for \(f \) is locally \(z^{d-n} + \cdots + x(*) = 0. \) So the sum of all intersection multiplicities is \(n + d - n = d. \)

5.5 If the characteristic \(p \) does not divide \(d \) we can use \(x^d + y^d + z^d = 0 \) Otherwise we can use \(xy^{d-1} + yz^{d-1} + zx^{d-1} = 0. \)