Math 1A Final 2009-12-18 12:30-3:30pm

You are allowed 1 sheet of notes. Calculators are not allowed. Each question is worth 3 marks, which will only be given for correct working and a clear and correct answer in simplified form. Write the final answer to each question on the cover-sheet, and attach the cover-sheet to your bluebook.

- 1. Evaluate the limit $\lim_{x \to -4} \frac{\sqrt{x^2+9}-5}{x+4}$.
- 2. Differentiate $e^x / \sin(x)$.
- 3. Find the derivative of the function $y = \ln(\ln(\ln(x)))$.
- 4. Find dy/dx if $x \sin(y^2) = y \sin(x^2)$.
- 5. A bacteria culture initially contains 1000 cells, and grows at a rate proportional to its size. After 1 hour the population is 1100 cells. Find an expression for the approximate number of cells after t hours.
- 6. Find $\lim_{x\to\infty} xe^{1/x} x$.
- 7. Sketch the graph of $y = \sin(x^2)$.
- 8. Explain why Newton's method does not converge to the root -1 of $2x^3 x^2 + 3 = 0$ if the initial approximation is chosen to be $x_1 = 1$.
- 9. Find the most general anti-derivative of $(2 + x^2)/(1 + x^2)$.
- 10. A stone is dropped off a cliff and hits the ground after 2 seconds. What is the height of the cliff, assuming that acceleration due to gravity is $10ms^{-2}$. 11. Use the midpoint rule for 3 points to approximate the integral $\int_0^6 x^2 dx$.
- 12. Evaluate the integral $\int_{-3}^{3} \sqrt{9 x^2} dx$ by interpreting it as an area.
- 13. Find the derivative of the function g(x) = ∫_x¹ e^{-t²} dt.
 14. The Fresnel integral is given by S(x) = ∫₀^x sin(πt²/2)dt. Sketch its graph, and find the values of x at which it has local maximum values.
 15. Evaluate the integral ∫₀^{3π/2} | sin(x)|dx.
- 16. Find the area of the finite region bounded by the lines $x = 0, y = 1, y = x^{1/4}$
- 17. Prove that if n is a positive integer then $1 + 1/2 + 1/3 + \cdots + 1/n > \ln(n)$.
- 18. Evaluate the indefinite integral $\int_{0}^{\infty} \frac{\cos(\ln(x))}{x} dx$. 19. Evaluate the definite integral $\int_{0}^{2} (x-1)^{10} dx$.
- 20. Evaluate the indefinite integral $\int \tan(x) dx$.
- 21. Find the volume of the region obtained by rotating the region bounded by the curves $y = x^3$, y = 0, x = 1, about the x-axis.