1 By using the Euclidean algorithm find the greatest common divisor of
(a) 7469 and 2464
(b) 2689 and 4001.
2 Find the g.c.d \(g \) of the numbers 1819 and 3587, then find integers \(x \) and \(y \) to satisfy
\[1819x + 3587y = g \]

3 Find values of \(x \) and \(y \) to satisfy
(c) \(43x + 64y = 1 \)
(d) \(93x - 81y = 3 \)
(e) \(6x + 10y + 15z = 1 \)
4 Find the least common multiple of (a) 482 and 1687, (b) 60 and 61.
6 Prove that the product of three consecutive integers is divisible by 6; of 4 consecutive integers by 24. .
11 Prove that 4 does not divide \(n^2 + 2 \) for any integer \(n \).
13 Prove that \(n^2 - n \) is divisible by 2 for every integer \(n \); that \(n^3 - n \) is divisible by 6; that \(n^5 - n \) is divisible by 30.
14 Prove that if \(n \) is odd then \(n^2 - 1 \) is divisible by 8.
27 Find positive integers \(a \) and \(b \) such that \((a, b) = 10\) and the least common multiple of \(a \) and \(b \) is 100. Find all solutions.
53 Show that \((n! + 1, (n + 1)! + 1) = 1\).