
Probabilistic Counting, Adding, and Dividing

rikhav.shah@berkeley.edu

October 2020

1 Introduction

The problem of approximate counting requires a data structure D which supports the following
methods:

D.init ():

initialize n to 0

D.update ():

update n← n+ 1

D.query ():

return an estimate n

It is not difficult to show that if we require D.query() = n exactly, then D will need log n bits.
Traditionally, this problem has been studied in the setting where D.query() = n is required to have
fixed ε relative error with fixed probability 1− δ. The optimal data structure in that setting is the
Morris counter, and is equivalent to the following: let a = O(ε2/ log(1/δ)) and define the sequence

si =

{
i i ≤ 1/a

(1 + a)si−1 o.w.
.

Then the data structure methods are implemented as

D.init ():

initialize i to 0

D.update ():

update i← i+ 1 with probability (si+1 − si)−1

D.query ():

return si

The number of bits needed by D at any point in time is simply log i, which in this case is the
minimum of log n and log log n + log(1/a). It can be shown that this the optimal number of bits
up to a constant factor.

We extend this counter in three ways. First, we provide a generic way to construct a counter
satisfying whatever kind of error bounds the user desires, not just fixed relative error. Second, a

1

user may want to increase the counter by a large number all at once rather than repeatedly calling
the update function; the structure should support this in O(1) time. Third, there is a limited sense
in which decrements will be supported.

We tackle the first challenge first. Our data structure closely resembles the Morris counter; the
only change is in the choice of si. We call the structure a ‘probabilistic counter with range si’.

Intuitively, if si is fast growing, then si can reach n even for small i, so the bit requirement is
small. On the other hand, the variance in number of updates before the data structure increments
from i to i+ 1 is (si+1 − si)2, which is large when si is fast growing, so the variance of D.query()
will be larger.

We will show for arbitrary si that D.query() is an unbiased estimator of n, and we will further-
more give conditions on si under which D.query() is close to correct with high probability.

2 Preliminaries

We will make use of the following tail bound.

Lemma 1. Let X be the sum of independent (but not necessarily identically distributed) geometric
random variables with finite means. Let m be the largest of those means. Let E[X] = µ. Then for
any ε ≥ 0 we have

Pr [X ≤ λµ] ≤ exp
(
− µ
m

(λ− 1− log λ)
)
.

for λ ≤ 1 and

Pr [X ≥ λµ] ≤ exp
(
− µ
m

(λ− 1− log λ)
)
.

for λ ≥ 1.

Proof. Combine theorems 2.1 and 3.1 here http://www2.math.uu.se/~svante/papers/sj328.

pdf.

The following observations will make it easier to get a handle on the exponent µ
m (λ− 1− log λ)

in the context of this problem.

Observation 2. For constants C1 < C2, the functions f1, f2 given by

f1(x) = (C2 − x)

(
C1

C2 − x
− 1− log

(
C1

C2 − x

))
,

f2(x) = (C1 + x)

(
C2

C1 + x
− 1− log

(
C2

C1 + x

))
are strictly decreasing on [0, C2 − C1) and lower bounded by the linear functions

f1(x) ≥ − log(C2/C1)x+ (C1 − C2 + C2 log(C2/C1)),

f2(x) ≥ − log(C2/C1)x+ (C2 − C1 + C1 log(C2/C1)),

2

http://www2.math.uu.se/~svante/papers/sj328.pdf
http://www2.math.uu.se/~svante/papers/sj328.pdf

Proof. The first two derivatives of f1, f2 are

f ′1(x) = − log

(
C2 − x
C1

)
and f ′′1 (x) =

1

C2 − x
,

f ′2(x) = − log

(
C2

C1 + x

)
and f ′′2 (x) =

1

C1 + x
,

so f1, f2 are convex and strictly decreasing for x < C2 − C1. So, f1, f2 are lower bounded by the
linear functions tangent to them at 0.

The following definition will help in the application of Lemma 1.

Definition 1. Given an increasing sequence si of numbers, define their max-gap to be the monotone
function

g(n) = max(max
si≤n

si − si−1, min
si≤n

n− si).

3 Probabilistic Counter

In the following statements, let in be the value of i in an instance of D after n updates. Note that
in is a random variable and that sin is the result of calling D.query() at that point in time.

Proposition 3 (Correct expectation).
E[sin] = n.

Proof. Note that si0 = s0 = 0 exactly. Inductively,

E[sin] =

∞∑
j=0

Pr[in−1 = j]E[sin | in−1 = j]

=

∞∑
j=0

Pr[in−1 = j]

((
1− 1

sj+1 − sj

)
sj +

1

sj+1 − sj
sj+1

)

=

∞∑
j=0

Pr[in−1 = j] (sj + 1)

= E[sin−1
] + 1.

Thus E[sin] = n as desired.

Theorem 4 (Concentration). Given a natural number n and an arbitrary interval [nlo, nhi] con-
taining n, if the max-gap of si satisfies

g(nhi) < nmin

(
(nhi/n) log (nhi/n)− nhi/n+ 1

log(2/δ) + log(nhi/n)
, nhi/n− 1

)
and

g(n) < nmin

(
(nlo/n) log(nlo/n)− nlo/n+ 1

log(2/δ) + log(n/nlo)
, 1− nlo/n

)
then sin ∈ [nlo, nhi] with probability 1− δ.

3

Proof. Since g(nhi) < nhi − n and g(n) < n− nlo, we are guaranteed for some i, j that si ∈ [nlo, n)
and sj ∈ (n, nhi]. Let ihi be the largest index such that sihi ≤ nhi and ilo the smallest index such
that nlo ≤ silo . We have

nlo ≤ silo ≤ nlo + g(n) < n < nhi − g(nhi) ≤ sihi ≤ nhi.

Let N(i) be the smallest n′ for which in′ ≥ i. Note the event sin ≥ si is equivalent to the event
N(i) ≤ n. Also note that N(i) is a sum of geometric random variables. Specifically, N(i+1)−N(i)
is the number of updates before the counter increments from i to i + 1, so is a geometric random
variable with mean si+1 − si. By linearity of expectation, we have E[N(i)] = si. The largest mean
of any of the geometric random variables comprising N(ihi) is g(sihi), which is upper bounded by
g(nhi). Similarly the largest mean of any of the geometric random variables comprising N(ilo) is
g(silo), which is upper bounded by g(n). Lemma 1 allows us to conclude N(i) is highly concentrated.
We apply the bound for the upper and lower tails separately using Lemma 1 for each tail, and using
Observation 2 twice for each tail.

Pr[sin ≥ nhi] ≤ Pr[sin ≥ sihi]
= Pr[N(ihi) ≤ n]

= Pr[N(ihi) ≤
n

sihi
sihi]

≤ exp

(
− sihi
g(nhi)

(
n

sihi
− 1− log

n

sihi

))
≤ exp

(
−nhi − g(nhi)

g(nhi)

(
n

nhi − g(nhi)
− 1− log

n

nhi − g(nhi)

))
≤ exp

(
log(nhi/n)− (nhi/n) log (nhi/n)− nhi/n+ 1

g(nhi)
n

)
≤ δ/2

Pr[sin ≤ nlo] ≤ Pr[sin ≤ silo]

= Pr[N(ilo) ≥ n]

= Pr[N(ilo) ≥ n

silo
silo]

≤ exp

(
− silo
g(n)

(
n

silo
− 1− log

n

silo

))
≤ exp

(
−nlo + g(n)

g(n)

(
n

nlo + g(n)
− 1− log

n

nlo + g(n)

))
≤ exp

(
log (n/nlo)− (nlo/n) log(nlo/n)− nlo/n+ 1

g(n)
n

)
≤ δ/2.

By union bound, the probability sin misses [nhi, nlo] is thus at most δ, as desired.

Corollary 5. For small ε, the standard Morris counter with a = ε2/ log(2/δ)
2+ε satisfies for every n

that |sin − n| ≤ εn with probability 1− δ.

4

Proof. Note that D is deterministically correct for n ≤ 1/a, and si satisfies the hypothesis of
Theorem 4 with nlo = (1− ε)n and nhi = (1 + ε)n for every n ≥ 1/a.

Corollary 6. The probabilistic counter implemented by Redis, for particular parameters, satisfies
for every n that |sin−n| ≤ cn0.75 with probability 1−δ. It uses (0.5+o(1))(log n+log log(1/δ)−log c)
bits.

Proof. Redis takes

si =
a

2
(i2 + i),

which gives a max-gap of
g(n) = O(

√
2an).

We can therefore take nlo = n(1 − cn−0.25) and nhi = n(1 + cn−0.25), and set the parameter
a = c4/(8 log2(2/δ)). These choices satisfies the hypothesis of Theorem 4. Note that taking logs of
i ≈

√
2n/a gives the bit requirement.

Remark 7. Experimentally, the bounds in the above two corollaries appear to be tight up to a
constant factor in the sense that if theory guarantees |sin/n− 1| < ε with probability 1− δ, then for
some C we will have |sin/n − 1| > C ε with probability at least δ in practice. With a very limited
memory budget of 8 bits, Morris provides decent error on a huge range of n (roughly from n = 210 to
n = 223) at the expense of worse ‘peak’ performance on a narrower range of n. Redis, for carefully
selected parameter a, gives about twice as good relative error as Morris for a small range of n, (like
2k to 2k+2), and absolutely atrocious error elsewhere.

4 Beyond counting

Say one wants to support large increments. One possibility is on increment by U , to simulate U
steps of the standard probabilistic counter. However, this will take O(U) time, which is huge. We
can support O(1) time.

Let D be the probabilistic counter with range si that satisfies the bound sin ∈ [n−l(n), n+u(n)]
with probability 1−δ for some monotonically increasing functions l, u. We construct D′ supporting
large updates that satisfies the same bound, where now n is the total value of the sum, not the
number of increments. We require that the bound is satisfied for any sequence of updates summing
to n, for any n.

D′.update(U):
Pick j to be the largest index such that sj − si ≤ U .

Let U1 = sj − si and U2 = U − U1. Update i← j.

If U2 = 0, end.

Else sample a geometric random variable r with parameter (si+1 − si)−1.

If r > U2 end.

Else update i← i+ 1 and call D′.update(U2 − r).

5

Theorem 8. The above update method satisfies the desired bound.

Proof. Say the current state of the data structure is i. Say we are given an update U which
happens to be U = sj − si for some j ≥ i. Then since si ∈ [n − l(n), n + u(n)], we automatically
have sj ∈ [n+U−l(n), n+U+u(n)] ⊂ [n+U−l(n+U), n+U+u(n+U)], so we can simply increase
i to j. For U ≤ si+1 − si, we sample a geometric random variable r with mean si+1 − si. The
sequence of r-s sampled in each recursive call mimic the N(i+ 1)−N(i) in the proof of Theorem
4, so correctness follows from the correctness of D.

An alternative formulation of this problem is this: given a stream of positive numbers, approx-
imate their sum. The standard solution to that problem is to use floats. An float f is represented
as three non-negative integers b < 21, e < 28, F < 223 with

f = (−1)b · 2e−127 ·
(

1 +
F

223

)
.

Floats satisfy the bound that if a + b = c exactly, then a + b according to float arithmetic will
be c rounded to the nearest float, which is at most a factor of 1 ± 2−23 off of the true value. As
a consequence, the data structure that simply adds a stream of floats to an accumulating sum can
have relative error as high as T/223 where T is the number of items in the steam. Our probabilistic
counter can remove the dependence on T . Note that

2127+23f = 223+e + 2eF

is an integer ranging from 223 (for e = F = 0) to 223+255 +2255(223−1) = 2279−2255 (for e = 28−1
and F = 223 − 1). We thus set

si =

{
i i ≤ 223

2150fi−223 o.w.

where fi is the ith smallest positive float. The max-gap satisfies

g(n) ≤ max(1, n/223).

Our structure can scale inputs by 2150, perform an update, then scale the output of query by
2−150. As a consequence, the probabilistic counter with range si will have < 0.1% error with
probability > 99.9%. This will be true regardless of n or T . Contrast this with standard floating-
point arithmetic. There, the accuracy degrades linearly with the number of operations performed.
Machine precision is 2−23 for floats, so after roughly 223 additions, the error may be huge.

5 Application to Caching

If one wants to implement a least-frequently-used (LFU) caching policy for a particular database,
then one needs to estimate how frequently each item in the database is requested. We can use a
probabilistic counter to do this with very little extra memory. We consider two models of requests.
In the first model, we are given a stream of random requests, and the probability that each request
is for a particular item obeys a fixed power-law distribution. In the second model, requests arrive
as a Poisson point process whose rate may change over time. In both cases, one needs to figure out
the distribution on the item that the next request will be for; the first model serves as kind of a
warm-up, and the second model seems more realistic in practice.

6

5.1 Model one

Say we have U items in a database and the probability of querying the xth item is proportional to
1/x. An ideal cache of size k+1 stores first k, giving a cache hit rate of approximately log(k)/ log(U).
In practice, the probabilities may not be known in advance. So we must estimate them using
empirical frequency. If the system correctly identifies the top k0.9 items and keeps them in cache,
then the hit rate will be at least 0.9 log(k)/ log(U). So the system need to differentiate between items
that occur with probability more than 1/k0.9 versus less than 1/k. For this task, a probabilistic
counter can tolerate huge (k0.1) relative error and still be successful. If one lets si = (log k)i, then
one only needs log log n− log log log k bits.

Unfortunately, it’s unclear if this model is very realistic. In reality, the probability of querying
each item can change over time.

5.2 Model two

Requests for a particular item come in as a Poisson point process with rate λ, which can depend on
t, time. If one makes some assumption about how quickly λ can change, then it may be reasonable
to estimate λ based on the the number of requests made in the last T seconds, for some parameter
T . One can do the following with a deterministic counter:

1. Count the requests made in the first T + 1 seconds.

2. Scale that number down by T
T+1

3. Add the number of requests made in the next second and go to step 2.

If xt is the value after step 2 after t seconds, then we have the recurrence

xt+1 =
T

T + 1
(xt + bt)

where bt, the number of items observed during [t, t+ 1), is a Poisson random variable with rate λ.
Rearranging gives

xt+1 − λT =
T

T + 1
(xt − λT) + (bt − λ).

Note that bt − λ has mean zero and variance λ, so with high probability |xt/T − λ| should expo-
nentially quickly decrease to below O(

√
λ/T).

Translating each of these steps to their probabilistic versions, steps 1 and 3 are fine. What about
2? If we use a Morris counter and it happens to be that (T + 1)/T = (1 + a)d for some d, then one
can decrement i ← i − d. Then si ∈ [(1 − ε)n, (1 + ε)n] =⇒ si−d ∈ [(1 − ε)n T

T+1 , (1 + ε)n T
T+1]

deterministically. If not, one can perturb the value of T slightly so that (T + 1)/T = (1 + a)d

exactly for some d. Because we only care about estimating λ, the exact value of T can be adjusted
and xt/T will still quickly approximate λ.

7

	Introduction
	Preliminaries
	Probabilistic Counter
	Beyond counting
	Application to Caching
	Model one
	Model two

