
Fast Hermitian Diagonalization in Near Optimal
Precision

Rikhav Shah

UC Berkeley

January 2025



Outline

1 Introduction

2 Divide-and-conquer algorithms

3 Open problems



Motivation

1. SVD is an important tool in the physical and data sciences.

2. O(n3) and O(nω) algorithms have existed for a long time
(Beavers and Denman ’73, Francis ’61, ’62, Wilkinson ’68) as
has exact arithmetic analysis (Dekker and Traub ’71,
Hoffmann and Parlett ’78)

3. Fast software implementations for floating point arithmetic are
widely used (Matlab/Fortran libraries).
▶ QR named “top 10 alg” by Dongarra and Sullivan ’00
▶ Spectral bisection benchmarked by Demmel, Dongarra, Petitet,

Robinson, Stanley ’97

4. No one has actually determined how many bits of precision
one needs in the worst case!
In fact, until recently, not even an asymtotic bound had
appeared (Banks, Garza-Vargas, Kulkarni, Srivastava 2022).



Motivation

1. SVD is an important tool in the physical and data sciences.

2. O(n3) and O(nω) algorithms have existed for a long time
(Beavers and Denman ’73, Francis ’61, ’62, Wilkinson ’68) as
has exact arithmetic analysis (Dekker and Traub ’71,
Hoffmann and Parlett ’78)

3. Fast software implementations for floating point arithmetic are
widely used (Matlab/Fortran libraries).
▶ QR named “top 10 alg” by Dongarra and Sullivan ’00
▶ Spectral bisection benchmarked by Demmel, Dongarra, Petitet,

Robinson, Stanley ’97

4. No one has actually determined how many bits of precision
one needs in the worst case!
In fact, until recently, not even an asymtotic bound had
appeared (Banks, Garza-Vargas, Kulkarni, Srivastava 2022).



How is this possible?

When doing theory: precise definition of “stability” differs work to
work, making reliance on sub-routines tricky. It can be tempting to
make “mild” assumptions. (e.g. Nakatsukasa and Higham ’13 and
dependencies).

When doing applications: one just numerically computes the error
of the method on a test suite given a particular precision.

Twofold goals of our worst case analysis:

1. Obtain tight asymptotic bound for how many bits of precision
are needed.

2. Determine a concrete, reasonable, number of bits for realistic
problem instances.



How is this possible?

When doing theory: precise definition of “stability” differs work to
work, making reliance on sub-routines tricky. It can be tempting to
make “mild” assumptions. (e.g. Nakatsukasa and Higham ’13 and
dependencies).

When doing applications: one just numerically computes the error
of the method on a test suite given a particular precision.

Twofold goals of our worst case analysis:

1. Obtain tight asymptotic bound for how many bits of precision
are needed.

2. Determine a concrete, reasonable, number of bits for realistic
problem instances.



Approximate diagonalization

Floating point model: numbers are rounded to u relative error.

[D,U] = eigh(A)

is backward stable to level ε if UDU∗ is exactly a diagonalization
of a nearby matrix, i.e.

∥A− UDU∗∥ ≤ ε∥A∥ & ∥I − U∗U∥ ≤ ε

NLA: Given your hardware supports precision u, what’s the
smallest value of ε a fast algorithm for diagonalization can
achieve?

Typically one aims for ε = poly(n)u

Seminal work of Demmel, Dumitriu, Holtz ’07 and Demmel,
Dumitriu, Holtz, and Kleinberg ’07 show how to do matrix
multiplication and QR-decomposition stably in near O(nω) time.



Approximate diagonalization

Floating point model: numbers are rounded to u relative error.

[D,U] = eigh(A)

is backward stable to level ε if UDU∗ is exactly a diagonalization
of a nearby matrix, i.e.

∥A− UDU∗∥ ≤ ε∥A∥ & ∥I − U∗U∥ ≤ ε

TCS: Given a target error ε, how many bits of precision
lg(1/u) do you need?
.

Typically one aims for lg(1/u) = lg(1/ε) + O(log n)

Seminal work of Demmel, Dumitriu, Holtz ’07 and Demmel,
Dumitriu, Holtz, and Kleinberg ’07 show how to do matrix
multiplication and QR-decomposition stably in near O(nω) time.



Approximate diagonalization

Floating point model: numbers are rounded to u relative error.

[D,U] = eigh(A)

is backward stable to level ε if UDU∗ is exactly a diagonalization
of a nearby matrix, i.e.

∥A− UDU∗∥ ≤ ε∥A∥ & ∥I − U∗U∥ ≤ ε

TCS: Given a target error ε, how many bits of precision
lg(1/u) do you need?
.

Typically one aims for lg(1/u) = lg(1/ε) + O(log n)

Seminal work of Demmel, Dumitriu, Holtz ’07 and Demmel,
Dumitriu, Holtz, and Kleinberg ’07 show how to do matrix
multiplication and QR-decomposition stably in near O(nω) time.



Comparison of bounds

BGVKS’22, Pseudospectral Shattering, the Sign Function, and
Diagonalization in Nearly Matrix Multiplication Time.
Upper bound:

O
(
log4(n/ε) log(n)

)
bits

For n = 4000 and ε = 10−15, this is more than 682,916,525,000.

This work
Upper bound:

lg(1/ε) + O(log(n) + log log(1/ε)) bits (≈ 92)

Lower bound:

lg(1/ε) + 0.5 lg(n)− 2 bits (≈ 59)



Outline

1 Introduction

2 Divide-and-conquer algorithms

3 Open problems



Divide-and-conquer

Recursive block diagonalization (Beavers and Denman ’73)

A = U

[
A+

A−

]
U∗

= U

U+

[
A++

A+−

]
U∗
+

U−

[
A−+

A−−

]
U∗
−

U∗

= U

[
U+

U−

]
A++

A+−
A−+

A−−

[
U+

U−

]∗
U∗



Matrix sign function

Define the function

sign(x) =

{
1 x > 0

−1 x < 0
.

Apply to a Hermitian matrix via the functional calculus:

A = λ1v1v
∗
1 + · · ·+ λnvnv

∗
n

sign(A) = sign(λ1)v1v
∗
1 + · · ·+ sign(λn)vnv

∗
n

Survey of works in Kenney and Laub ’95.
Newton: Beavers and Denman ’73, Banks et al ’22
Newton-Schulz: Bai, Demmel ’93, Nakatsukasa, Higham ’12.
Weighted versions: Chen, Chow ’14, Nakatsukasa, Bai, Gygi ’10,
Gander ’90



Matrix sign: Newton-Schulz iteration

The function g(x) = 3x−x3

2 has fixed points at ±1, and
g ′(±1) = 0.

Plot is g(x) and g (16)(x). Convergence is slow near 0.



Matrix sign: Newton-Schulz iteration

The function g(x) = 3x−x3

2 has fixed points at ±1, and
g ′(±1) = 0.

Convergence plot for C. Left is for Newton-Schulz, right is for
Newton g(z) = z+z−1

2 .



How does computing sign help you?

Note that

sign(A) =

 ∑
j :λj>0

vjv
∗
j

−

 ∑
j :λj<0

vjv
∗
j


= P+ − P−

where

P+ = projection onto positive eigenspace

P− = projection onto negative eigenspace

If A has no eigenvalue at 0,

I = P+ + P− =⇒ P± =
I ± sign(A)

2



Deflation

Given an orthogonal projection matrix P, set

V = deflate(P)

then the columns of V should be an orthonormal basis for
range(P). Set

V± = deflate(P±)

Then there exists A± such that

AV± = V±A±.

This gives the desired block diagonalization for U =
[
V+ V−

]
,

A =
[
V+ V−

] [A+

A−

] [
V ∗
+

V ∗
−

]
= U

[
A+

A−

]
U∗.



Deflation

Goal of deflate is to produce a basis V for a projection matrix P.

Algorithm: output the first rank(P) = tr(P) columns of the QR
decomposition of PG where G is a random matrix.

▶ RURV: Demmel, Dumitriu, Holtz ’07, Demmel, Dumitriu,
Rusciano ’19

▶ Deflate: Banks et al. ’22

▶ Single iteration SI: Nakatsukasa and Higham ’13

Weakness of existing analysis: if V̂ is a true basis and V is the
computed basis, then ∥∥∥V̂ ∗V − I

∥∥∥ ≤ ε

only implies ∥∥∥V̂ − V
∥∥∥ = O(

√
ε).



Recursing

We now have a stable block diagonalization:

A = U

[
A+

A−

]
U∗.

If one computed sign(A) and deflate(P±) correctly, A+ will
contain all the positive eigenvalues of A and A− the negative
eigenvalues. Need to shift before recursing.

eigh(A+ − zI ) & eigh(A− + zI )

You make more progress if the split point is near the center of the
spectrum.

Need to decrease ε in the recursive calls.



Shifting procedure

To avoid non-convergence of Newton-Schulz iteration: add some
randomness (Ballard, Demmel, Dumitriu ’11)

Pick recursive split points ±∥A∥
2 . So the recursive calls are

eigh

(
A+ − ∥A∥

2
I

)
& eigh

(
A− +

∥A∥
2

I

)
So the sub-matrices are half the norm of the original. Stop when
∥A∥ ≤ ε.

Other ideas:
Shift by the median diagonal entry, this guarantees one eigenvalue
on each side (Nakatsukasa and Higham ’13).
Use binary search until tr sign(A− zI ) is small, this guarantees
Θ(n) eigenvalues on each side (Banks et al ’22).



Runtime analysis

Cost trade-off: binary search requires many calls to sign each
iteration but guarantees sub-instances are smaller. This approach
requires 1 call to sign, but the sub-instances might not be smaller.

Two key ideas in the runtime analysis:

1. The depth is bounded by lg(1/ε).

2. The sum of the problem sizes within each layer is n. If
n1 + · · ·+ nk = n are the problem sizes, by convexity the cost
at each layer is

nω1 + · · ·+ nωk ≤ nω.



Outline

1 Introduction

2 Divide-and-conquer algorithms

3 Open problems



Open problems

1. Efficient and effective shifting strategy? (e.g. analyze the
median-of-diagonal method of Nakatsukasa and Higham ’13)

2. Bit requirement of general diagonalization? (i.e. improve
upon the O(log4(n/ε) log(n)) bound of Banks et al. ’22)

3. Analysis of the QR algorithm? (i.e. improve upon or specialize
the O(log4(n/ε)(log log(n/ε)2)) bound of Banks et al ’22,
’23)

4. Do all of this in Lean?


	Introduction
	Divide-and-conquer algorithms
	Open problems

