
Fast Hermitian Diagonalization with Nearly Optimal Precision

Rikhav Shah

June 2024

Abstract

Algorithms for numerical tasks in finite precision simultaneously seek to minimize the number of
floating point operations performed, and also the number of bits of precision required by each floating
point operation. This paper presents an algorithm for Hermitian diagonalization requiring only lg(1/ε)+
O(log(n)+ log log(1/ε)) bits of precision where n is the size of the input matrix and ε is the target error.
Furthermore, it runs in near matrix multiplication time.

In the general setting, the first complete analysis of the stability of a near matrix multiplication
time algorithm for diagonalization is that of Banks et al [BGVKS20]. They exhibit an algorithm for
diagonalizing an arbitrary matrix up to ε backward error using only O(log4(n/ε) log(n)) bits of precision.
This work focuses on the Hermitian setting, where we determine a dramatically improved bound on the
number of bits needed. In particular, the result is close to providing a practical bound. The exact bit
count depends on the specific implementation of matrix multiplication and QR decomposition one wishes
to use, but if one uses suitable O(n3)-time implementations, then for ε = 10−15, n = 4000, we show 92
bits of precision suffice (and 59 are necessary). By comparison, the same parameters in [BGVKS20] does
not even show that 682, 916, 525, 000 bits suffice.

1 Introduction

This paper considers Hermitian diagonalization in finite arithmetic. Given a Hermitian matrix A and target
accuracy ε, our goal is to compute nearly unitary U and exactly diagonal D such that ∥A− UDU∗∥ ≤ ε ∥A∥
with high probability. An algorithm for such a task can be evaluated on two primary metrics: the number of
floating point operations performed (which we call the runtime) and the number of bits of precision required
for each floating point operation.

Despite the widespread, highly successful use of procedures for this task in practice, the literature long
lacked precise guarantees of their performance in finite arithmetic. It’s common to treat n and ε as formal
variables satisfying the relations poly(n) · ε = ε and ε2 = 0. This dramatically reduces the complexity of
proofs as one only needs to keep track of the existence of a single error term, but introduces the possibility of
subtle mistakes; namely one must be careful that the coefficients appearing in the poly(n) factor are absolute
constants, and one also cannot apply either of those relations more than poly(n) times in the proof. This
approach also precludes the determination of precise, quantitative bounds on stability. In general, the bound
numerical analysts typically aim for is showing that lg(1/ε)+O(log n) bits suffice, or stated another way, that
backward error is poly(n)u where u−# bits of precision is machine precision. For Hermitian diagonalization in
particular, Proposition 1.1 shows that no fewer than lg(1/ε) + 0.5 lg(n)− 2 bits suffice.

Most algorithms used and analyzed fall into two categories: QL/QR-algorithms first introduced by Francis
[Fra61, Fra62] and spectral divide-and-conquer algorithms first introduced by Beavers and Denman [BD73,
BD74, DB76]. These algorithms, as is thematic in this field, are frequently built on top of three essential
primitives: matrix multiplication, QR decomposition, and matrix inversion. And so, the stability and
runtime of algorithms depend on the stability and runtime of the implementations of these primitives. There
is a trade-off among the best algorithms between runtime and stability. On the slow side, implementations
of each of these primitives exist using O(n3) time requiring only lg(1/ε) + lg(n) + O(1) bits to achieve ε
backward error. Faster implementations use the innovations of [DDHK07, DDH07] which show for each

1

η > 0 an implementation of matrix multiplication and QR decomposition using O(nω+η) time requiring only
lg(1/ε)+O(log(n)) bits, where O(nω) is the speed of matrix multiplication in exact arithmetic. It also shows
an implementation of inversion with the same runtime using lg(1/ε) + O(log(n) log(κ(A))) bits to achieve a
forward error of ε.

Unfortunately, all published QL/QR-algorithms use O(n3) time as they require reduction of a matrix to
tridiagonal or Hessenberg form. In exact arithmetic, the first globally convergent QR-algorithm for Hermitian
matrices was proposed by [Wil68]. Both [DT71, HP78] bound the rate of convergence of that algorithm,
resulting in an O(n3 + n2 log(1/ε)) time algorithm. [BGVS23] proposed a more expensive version that
globally converges in the non-Hermitian setting as well. The follow-up work [BGVS22] analyzed it in finite

precision, finding that it uses Õ(n3) operations performed with O(log(n/ε)2 log log(n/ε)) bits of precision

plus Õ(n) operations performed with O(log(n/ε)4 log log(n/ε)2) bits of precision. They also conjecture that
O(log(n/ε)) bits suffice in the Hermitian setting.

Spectral divide-and-conquer algorithms better exploit fast primitives. Many works can be adapted to
form part of the “divide” step. In particular, computing the matrix sign or polar decomposition can both
be used in the Hermitian case. A history up to 1995 of algorithms computing the matrix sign can be found
in Section 1 of [KL95]. Since then, multiple works have appeared, typically assuming the input matrix is
reasonably well conditioned1. We highlight three algorithms for matrix sign / polar decomposition that have
been explicitly incorporated into diagonalization procedures.

Newton iteration: this method involves matrix inversion, and so the overall stability guarantee is substan-
tially worse if one wants a near matrix multiplication time algorithm. Assuming access to stable inversion,
[KZ03] shows a scaled version of Newton Iteration converges stably. [BX08] gives a much shorter argument
to the same effect, but [KZ09] points out a flaw in the proof arising from the “poly(n) · ε = ε” framework.
[NH12] provides a much more compact proof in a way that generalizes to several other algorithms. Finally,
[BGVKS20] provides a complete, unconditional analysis of Newton iteration using fast inversion, and fur-
thermore incorporates that method into a full end-to-end analysis of a divide-and-conquer algorithm. They
show that their diagonalization algorithm runs in near matrix multiplication time and succeeds when using
O(log4(n/ε) log(n)) bits of precision. This was the first concrete bound appearing for any algorithm for di-
agonalization, and remains the best known bound among algorithms running in near-matrix multiplication
time.

QR-based dynamically weighted Halley (QDWH): [NBG10] finds a quickly-converging iterative scheme,
QDWH, for computing the matrix sign built on top of QR decomposition. Unfortunately, the proof of stability
of QDWH appearing in [NH12] (indeed the only known proof) requires a stronger notion of stability of QR
decomposition than what [DDH07] shows can be achieved quickly2. As a consequence, we only know how to
stably perform QDWH in O(n3) time. [NH13] shows how to build a Hermitian eigen-decomposition on top
of QDWH, following the usual divide-and-conquer setup. However, the proof of its stability is incomplete,
with at least a couple limitations. The first limitation is stated explicitly as condition number 2. A crucial
step of divide-and-conquer is computing a basis for the range of a projection matrix. [NH13] assumes this
can be done stably; this paper finally provides that required analysis in Section 3. The second limitation is
choice of the “split points”. [NH13] recommends a couple different techniques for picking the split points,
which determine the size of the sub-problems. But the worst case guarantee is that a problem of size n gets
split into problems of size 1 and n− 1. This means the overall method may take O(n4) time.

Implicit repeated squaring (IRS): [BDD11] improves upon the IRS method of [BDG97] using [DDH07]
thereby giving a stable algorithm for computing an analog3 of the matrix sign in near matrix multiplication
time. [BDD11] also provides finite-arithmetic analysis of the full “divide” step; namely it tightens the analysis
of rank-revealing URV appearing in [DDH07] to show how to convert the approximate spectral projectors
into approximate bases of the invariant subspaces. However, they do not explicitly bound the error of the

1This assumption is satisfied with high probability by adding a random shift to the matrix.
2[NH12] requires a “per-row” backward error guarantee. That is, A,A′ appearing in the leftmost inequality of (3) must be

replaced by e∗jA, e∗jA
′ for every j ∈ [n]. The difference in these guarantees is the most stark when the lengths of the rows of A

are quite different.
3Let P(∗) denote the projection onto the span of the eigenvectors whose eigenvalues satisfy (∗). Then the matrix sign is

P(·)>0 − P(·)<0. [BDD11, BDG97] compute P|·|>1 − P|·|<1

2

computed bases nor the accumulation of error throughout the entire divide-and-conquer algorithm.
The work [SML24] extends a key subroutine of [BGVKS20] to the Hermitian pencil case, but does not

reduce the precision required. Another algorithm of note is that of [ABB+18]. They consider the general
eigenpair problem and find an algorithm using homotopy continuation and running in O(n10/ε2) in general
4. They provide only an informal argument that their method is stable.

1.1 Contributions

The main result of this paper is Theorem 4.2. It presents an algorithm for Hermitian diagonalization
running in near matrix multiplication time and shows it requires only lg(1/ε) +O(log(n) + log log(1/ε)) bits
of precision—near the optimal dependence on ε and linear in the optimal dependence on n. This paper offers
several contributions.

Proposition 1.1 states a concrete lower bound on required bits of precision; in particular, it shows the
existence of two matrices with far apart true diagonalizations that would get rounded to the same matrix
without at least lg(1/ε) + 0.5 lg(n)− 2 bits of precision.

Section 2 provides a rigorous quantitative analysis of the stability of Newton-Schulz iteration for com-
puting the matrix sign function in the Hermitian setting. This iteration has been considered [BD93, NH12]
but quantitative bounds on it’s stability have not appeared. We show it to be significantly more stable than
Newton iteration for matrix sign, which is used by [BGVKS20], though it only succeeds in the Hermitian
setting. Section 2.1 discusses this difference in stability in depth—the improvements are owed both to the or-
thgonality of eigenvectors in this setting and to the fact Newton-Schulz is inverse-free. This analysis enables
the algorithmic improvement of replacing Newton with Newton-Schulz, resulting in a significant reduction
in the precision’s dependence on ε—namely 2 · lg(1/ε) compared to O(lg(1/ε)4) of [BGVKS20].

The next contribution, in Section 3, is a streamlined version of the deflation algorithm appearing in
[BGVKS20], along with a much tighter analysis. This strengthened analysis reduces the bit dependence on ε
from 2 · lg(1/ε) to 1 · lg(1/ε) and saves several lg(n) terms, and therefore brings us to near-optimal precision.

Finally, in Section 4 we highlight two additional differences between our spectral bisection method and
that of [BGVKS20]. The first difference—discussed in Remark 8—is an adaptive setting of parameters used
by spectral bisection. The most straightforward approach, used by [BGVKS20], geometrically decreases ε in
recursive calls. But smaller ε leads to both a longer runtime and a higher bit requirement. We manage to
decrease ε more slowly. The key to enabling this is tracking the depth of recursion and decreasing ε depending
on the current depth. This again significantly reduces our bit requirement. The second difference—discussed
in Remark 9—is the elimination of spectral shattering, which played a central role in the algorithm of
[BGVKS20]. Instead of shattering, we implement the suggestions in [BDD11]: picking shifts randomly (as
opposed to using binary search to find a good split point) and adding an additional base case (rather than
just the n = 1 case).

The rest of the introduction is dedicated to background and preliminaties. Section 2 addresses the
primary bottleneck of [BGVKS20], which is the computation of the matrix sign function. Section 3 provides
stronger analysis of deflate which allows us to achieve near-optimal dependence on ε. Section 4 puts these
pieces together into a spectral bisection method for Hermitian diagonalization.

1.2 Model of computation

We adopt the standard model of floating point arithmetic. Numbers which are stored exactly are called
floating point numbers. For each z ∈ C, there exists a floating point number fl(z) satisfying

|fl(z)− z| ≤ u|z|.

For each operation ◦ ∈ {+,−,×} and pair of floating point numbers x, y, the result of computing x ◦ y in
floating point arithmetic yields

|fl(x ◦ y)− x ◦ y| ≤ u|x ◦ y|. (1)

4The result is stated as n9/σ2 where σ is the standard deviation of an normalized Gaussian perturbation, which must be
order ε/

√
n for the desired error.

3

Additionally, division by two can be done exactly. That is, fl(x/2) = fl(x)/2. All nonzero values used in our
algorithm are polynomial in n, ε−1, so we can avoid underflow and overflow errors by using lg lg(n/ε) +O(1)
bits to store the exponent.

Remark 1 (Double-double precision). One may simulate precision u2 by approximating a real (or complex)
x by the sum y + z where y = fl(x) and z = fl(x− y). This suggests a natural trade-off between precision
and runtime: by increasing the number of floating point operations by a constant factor, one can get away
with a constant factor reduction in the number of bits used. Though theoretically sound, this technique has
serious drawbacks in practice. Namely, hardware implementations of various matrix operations assume that
each entry of an input fits into a single machine word. That is, each entry of an input matrix is a single
floating point number and isn’t abstractly expressed as the sum of two values. Because of this, we build our
algorithm on top of subroutines that don’t allow inputs to be formatted like this. Throughout this paper,
every real or complex number is approximated by a single floating point number. With this constraint, it is
possible to obtain a lower bound on the precision required; see Proposition 1.1.

Proposition 1.1 (Lower bound). Any method that computes U,D for a given symmetric A satisfying
∥A− UDU∗∥ ≤ ε ∥A∥ requires lg(1/u) ≥ lg(1/ε) + 0.5 lg(n)− 2 bits of precision.

Proof. Let A be an n × n Hadamard matrix, i.e. |aij | = 1 and ∥A∥ =
√
n. Let (U,D) be the result of

diagonalizing A. Consider the number of positive versus negative entries of the residual A−UDU∗. If there
are more positive entries, set B to be the all ones matrix, otherwise set it to be the all minus one matrix.
Note A′ := A+ (u/2)B will be stored exactly as A in floating point arithmetic, so the result of diagonalizing
A′ will again be (U,D). Thus the residual of diagonizing A′ is A′ − UDU∗ = A− UDU∗ + (u/2)B. But by
construction of B, at least half the entries of this residual have absolute value at least u/2. In particular,
it’s norm is at least un/4, which we desire to be at most

√
nε. So we need u ≤ 4ε/

√
n.

1.3 Subroutines

The algorithm of this paper is built on top of several essential primitives. We assume black-box access to
the following four methods.

Definition 1.1 (From [DDHK07]). MM is an algorithm for matrix multiplication using TMM(n) floating point
operations satisfying

∥MM(A, B)−AB∥ ≤ µMM(n)u · ∥A∥ · ∥B∥ . (2)

µMM(n) is a low-degree polynomial in n. If A = BT , then MM(A,B) will be exactly Hermitian. For simplicity
of many bounds we assume µMM(n) ≥ 10. We also assume TMM(n) is convex.

Definition 1.2 (From [DDH07]). [Q,R] = QR(A) is an algorithm for matrix multiplication using TQR(n)
floating point operations satisfying for some matrix A′ and unitary matrix Q′,

(Q′)∗A′ = R is upper triangular & ∥Q−Q′∥ ≤ µQR(n)u & ∥A−A′∥ ≤ µQR(n)u · ∥A∥ . (3)

µQR(n) is a low-degree polynomial in n. We assume TQR(n) is convex.

Definition 1.3. Unif is a method for computing approximately uniform random samples from symmetric
intervals. It should use only a constant TUnif number of operations and satisfy the following. If c′ is a random
variable distributed uniformly on the real interval [−s, s], there exists a coupling of Unif(s) and c′ such that
Unif(s) ∈ [−s, s] & |Unif(s)− c′| ≤ su with probability 1.

Definition 1.4. Normal is a method for computing approximately normal random samples. It should use
only a constant TN number of operations. Let z be a complex Gaussian where Re(z) and Im(z) are i.i.d.
Gaussian samples with mean 0 and variance 1/2. Then for a constant cN, there exists a coupling of Normal()
and z such that |Normal()− z| ≤ |z|cNu with probability 1.

4

2 Matrix sign function

2.1 Insufficiency of Newton iteration

The bottleneck in the algorithm of [BGVKS20] is in the estimation of the matrix sign function. The iterative
scheme used is the same one initially proposed by [BD73]:

A0 = A & Ak+1 =
Ak + A−1

k

2
. (4)

In exact arithmetic, this is equivalent to running Newton iteration for the system λ2 − 1 = 0, which enjoys
quadratic convergence to ±1 everywhere except for Re(λ) = 0. So for matrices with no eigenvalues on
the imaginary axis, we have Ak → sign(A) as k → ∞. In finite arithmetic, a crucial step in the proof of
convergence is showing that the pseudospectrum of Ak does not grow too quickly with k. This becomes
more and more difficult the closer the eigenvalues of Ak get to each other, so represents an obstacle for
any iterative scheme, not just (4). In the bounds of [BGVKS20], the bit complexity required to handle this
growth depends exponentially in the number of iterations used. They show at most

lg(1/(1− α0)) + 3 lg lg(1/(1− α0)) + lg lg((1/βε0)) + O(1)

iterations are needed, where for the purposes of this discussion you can think of 1/(1− α), β, ε0 as all being
polynomials in n, ε−1. Each 1 · lg lg(x) term contributes another factor of lg(x) to the bit complexity. But
since these are not the dominate terms in the expression, shaving off the logs from the bit complexity of this
algorithm, if possible, requires much care. The Hermitian setting completely sidesteps this issue since the
pseudospectra of Hermitian matrices are always well-behaved.

The secondary source of instability relates to this particular iterative scheme. Specifically, to the compu-
tation of A−1

k . If one had a “backward-stable” algorithm INV for computing inverses such that for every A
there existed a small E satisfying INV(A) = (A+ ∥A∥E)−1, some algebra reveals that one would also obtain
the “forward error” bound ∥∥A−1 − INV(A)

∥∥ ≤ O(∥E∥) · κ(A).

Unfortunately, no such algorithm running in near matrix multiplication time is known. The closest we have is
the work of [DDH07], which finds a logarithmically stable algorithm, i.e. one satisfying the weaker guarantee
that ∥∥A−1 − INV(A)

∥∥ ≤ O(∥E∥) · κ(A)O(logn).

So [BGVKS20] must perform everything with enough precision to promise that ∥E∥ ≪ κ(A)−O(logn). This
necessitates another factor of O(log κ(A) · log(n)) bits of precision. For this reason, an ‘inverse-free’ method
that does not use inversion (even well-conditioned inversion) is desirable. This motivates the iterative scheme

A0 = A & Ak+1 =
3Ak −A3

k

2
=

1

2
·Ak · (3I −A2

k) (5)

corresponding to Newton-Schultz iteration, which in this instance is equivalent to Newton iteration for the
system λ−2−1 = 0. This system has been considered [BD93, NH12] but quantitative bounds on it’s stability
have not appeared. Each iteration uses only two calls to a method for multiplying matrices and no other
expensive primitives. This method is insufficient for the non-Hermitian problem as it does not converge for
many complex starting points z; for instance it does not converge when |Im(z)| ≥ 2|Re(z)|. Figure 2.1 shows
the regions of convergence for the two methods. Fortunately, it converges on the interval (−

√
5,
√

5) in the
real line, which is enough for Hermitian diagonalization.

Remark 2 (Polar decomposition). For Hermitian matrices, computing the polar decomposition recovers
the matrix sign since A = sign(A)(A∗A)1/2 is the unique factorization of A into the product of a unitary
matrix sign(A) and a positive definite matrix (A∗A)1/2.

5

Figure 1: Convergence plots for Newton iteration (left) and Newton-Schulz iteration (right). The color
denotes the number of iterations k until

∣∣z2k − 1
∣∣ < 10−15. The lightest shade of yellow is one iteration and

each ring denotes one additional iteration. Purple denotes “does not converge”.

Remark 3 (Faster iterative algorithms). As we will see later, the number of iterations required for this
method to converge depends on the condition number of the input matrix. This paper is mostly concerned
with the precision required, which in the Hermitian setting depends only mildly on the number of iterations
required. Additionally, random shifts are employed to ensure the condition number is never too large. So
analysis of faster iterative schemes is left to future work. Nevertheless it’s worth discussing some candidates.
QDWH of Nakatsukasa and Higham [NBG10] for polar decomposition was shown to be stable in [NH12],
and experimentally was found to converge in just 6 iterations for ε = 10−15 regardless of n and κ. However,
the proof of stability requires QR-decomposition with a per-row backward error. That is, each row of the
input matrix may receive a multiplicative norm-wise perturbation, irrespective of the norms of the other
rows. This can be accomplished via Householder reflections with pivoting in O(n3) time, but no reduction
to matrix multiplication is known. Their scheme is a ‘weighted’ version of Ak+1 = (3Ak + A3

k)(1 + 3A2
k)−1

which adaptively changes the coefficients of the iterates as the method is run. An even higher degree rational
function is used by the method Zolo-pd of Nakatsukasa and Freund, which experimentally converges in just
2 iterations [NF16], though no proof of stability is known. Several more morally similar variants of that
and (4), (5) can be found in [KL95, CCNS14, NBG10, Gan90]. These methods frequently require some
additional knowledge about the matrix (e.g. QDWH) requires a crude upper estimate on the condition
number) which can typically be computed in matrix multiplication time. These methods present good
candidates for replacing (5), but require complete analysis of stability and runtime in finite precision.

2.2 Analysis of Newton-Schulz iteration

As motivated in the previous subsection, we use Newton-Schulz iteration to approximate the matrix sign
function. Fix

g(x) =
3x− x3

2
=

1

2
· x · (3− x2)

6

and implement it using MM by

g(A) =
1

2
MM(A, (3I − MM(A,A))). (6)

In exact arithmetic, by the functional calculus applying (5) to a Hermitian matrix is equivalent to applying
(5) to it’s eigenvalues. We need to argue that this equivalence does not break too much in the presence
of round-off error. We also need to analyze the convergence of (5) in the presence of error when applied
to scalars. The next two lemmas accomplish the first task. We start by bounding the forward error of
computing a single iteration.

Lemma 2.1 (One step error bound). Assume u ≤ min(1/3, µMM(n)−1). Then g specified in (6) satisfies

∥g(A)− g(A)∥ ≤ µg(n, ∥A∥)u

for

µg(n, a) :=
1

2

(
7 + (6 + µMM(n))a2

)
a.

Furthermore, such an implementation requires only

Tg(n) = 2TMM(n) + n2 + n

floating point operations.

Proof. We can numerically compute g as In this proof, Ek denote matrices with ∥Ek∥ ≤ u. Let MM(A,A) =

A2 + ∥A∥2 µMM(n)E1. Let B be the result of numerically subtracting MM(A,A) from 3I. This subtraction
incurs an entry-wise multiplicative (1 + u) error along the diagonal only. In particular, because the error is
diagonal the entry-wise absolute value bound is upgraded to a matrix norm bound for free. In particular,

B = 3I − MM(A,A) + ∥3I − MM(A,A)∥E2

= 3I −A2 − ∥A∥2 µMM(n)E1 +
∥∥∥(3I −A2 − ∥A∥2 µMM(n)E1

)∥∥∥E2

so the forward error of computing B is at most

∥A∥2 µMM(n)u +
(

3 + ∥A∥2 + ∥A∥2 µMM(n)u
)
u ≤

(
3 + (2 + µMM(n)) ∥A∥2

)
u

Let µB = 3 + (2 + µMM(n)) ∥A∥2 so B = 3I −A2 + µBE3. Then

MM(A,B)− 2g(A) = AB − 2g(A) + ∥A∥ ∥B∥E4

= µBAE3 + ∥A∥ ∥B∥E4.

Finally, division by 2 can be done exactly by decrementing the exponent. So the forward error of computing
g(A) is at most

1

2

(
µB ∥A∥u + ∥A∥

(
3 + ∥A∥2 + µBu

)
u
)

=
1

2

(
µB + 3 + ∥A∥2 + µBu

)
∥A∥u

=
1

2

(
7 + (3 + µMM(n)) ∥A∥2 + (2 + µMM(n)) ∥A∥2 u

)
∥A∥u

=
1

2

(
7 + (6 + µMM(n)) ∥A∥2

)
∥A∥u

as required.

7

Remark 4. The work [NH12] considers an alternate implementation of g, namely

g(A) =
3A− MM(A, MM(A,A))

2
.

It shows that this implementation is stable, but only gives a qualitative analysis. In particular, as far as this
author can tell, this implementation suffers from an extra factor of n in the error bound. This comes since
the addition is dense and therefore incurs u error in every entry, as opposed to merely the diagonal as in the
implementation (6).

The next lemma shows adding noise does not change the value of sign by too much.

Lemma 2.2. Let A,B, ε be such that 0 is not in the interior of Λε(A) and ∥A−B∥ < ε. Then

∥sign(A)− sign(B)∥ ≤ n · ∥A−B∥
ε− ∥A−B∥

.

Proof. Let γ be the boundary of a connected component of Λε(A). Say it encloses k eigenvalues. Then∥∥∥∥ 1

2π

∮
γ

[
(z −A)

−1 − (z −B)
−1
]∥∥∥∥ =

∥∥∥∥ 1

2π

∮
γ

[
(z −B)

−1
(A−B)(z −A)

−1
]∥∥∥∥

≤ 1

2π
· length(γ) · ∥A−B∥ · 1

ε− ∥A−B∥
· 1

ε

≤ k · ∥A−B∥ · 1

ε− ∥A−B∥
.

By the assumption, none of these components cross the imaginary axis. So we may sum over the appropriate
components to form the spectral projector onto all the positive or negative eigenvalues. This gives the desired
bound.

We now tackle converge for scalars. One notices that x = −1, 0, 1 are fixed points of g and that g′(−1) =
g′(1) = 0, which is needed for quadratic convergence. Unfortunately, the iterations do not converge to ±1
for x = 0 (where it stays at 0) and for x ≥

√
5 (where it does not converge at all). Additionally, which fixed

point it converges to for x ∈ ±[
√

3,
√

5) is difficult to control. We start by showing monotone convergence,
even in the presence of error.

Lemma 2.3 (Monotone convergence). Fix u ∈ (0, 3/16] and |ξ| ≤ u. Then

sign(x) = sign(g(x) + ξ) ∀x ∈ ±
(
u,
√

3− (
√

3− 1)u
)
,

|x| ≤ |g(x) + ξ| ≤ 1 + u ∀x ∈ [(8/3)u, 1− (8/3)u].

Proof. We prove the statements for x ≥ 0 and the results for x ≤ 0 follow symmetrically by noting that g is
odd. g(x) is concave on [0,

√
3] so is lower bounded by its linear spline with nodes [0, 1,

√
3]. Namely,

g(x) ≥

{
x 0 ≤ x ≤ 1√

3/(
√

3− 1)− x/(
√

3− 1) 1 ≤ x ≤
√

3

which is larger than u for x ∈ (u,
√

3 − (
√

3 − 1)u). This implies sign(g(x) + ξ) = 1 establishing the first
claim. Now note the polynomial g(x)−x = (x−x3)/2 is concave on the region [0, 1] and so is lower bounded
by its linear spline with nodes [0, 1/2, 1]. Namely,

g(x) ≥

{
(3/8)x 0 ≤ x ≤ 1/2

(3/8)(1− x) 1/2 ≤ x ≤ 1

which is at least u for x ∈ [(8/3)u, 1 − (8/3)u]. This implies g(x) − u ≥ x establishing the second claim.
Finally by the triangle inequality |g(x) + ξ| ≤ |g(x)|+ |ξ| ≤ 1 + u.

8

In exact arithmetic, this iteration enjoys quadratic convergence. In finite precision, we have quadratic
convergence for a large range of values. We will analyze the convergence of the iterations using the potential
function m(x) =

∣∣1− x2
∣∣.

Lemma 2.4 (Quadratic convergence). When 20|ξ| ≤ |x| ≤ 1−
√

10|ξ|, one has

m(x)2 ≥ m(g(x) + ξ).

When |x| ≤
√

2 and |ξ| ≤ 1, one has

m(x)2 + 4|ξ| ≥ m(g(x) + ξ).

Proof. Note g is odd and m is even, and that the condition on ξ is symmetric in x. So it suffices to prove
the statement for x ≥ 0. Fix any s ∈ [−1, 1]. Simple algebraic manipulations reveal that

|x| ≤ 0.5 =⇒ |x| ≤

√
180−

√
1802 − 4 · 100 · 41

200

=⇒ 41− 180x2 + 100x4 ≥ 0

=⇒ (30− 10x2 − 1)2 ≥ 202 · (2− x2)

=⇒ 30− 10x2 − 1 ≥ 20
√

2− x2

=⇒ 3− x2

2
−
√

2− x2 ≥ s/20

=⇒ g(x)−
√

2x2 − x4 ≥ s/20

=⇒ g(x)− sx/20 ≥
√

2x2 − x4

=⇒ (g(x)− sx/20)2 − 1 ≥ 2x2 − x4 − 1

=⇒
∣∣(g(x)− sx/20)2 − 1

∣∣ ≤ ∣∣1− x2
∣∣2

=⇒ m(g(x)− sx/20) ≤ m(x)2.

By the Descartes rule of signs, the polynomial 25x4 + 60x3 + 26x2 − 32x+ 1 has at most two positive roots,
and changes sign at the points 0, 1/4, 1/2. So the polynomial is positive for x > 1/2. In the below, assume
x ≤
√

2.

x ≥ 0.5 =⇒ (x− 1)
2(

25x4 + 60x3 + 26x2 − 32x + 1
)
≥ 0

=⇒
(
15x− 5x3 − (x− 1)2

)2 ≥ 100x2
(
2− x2

)
=⇒ 15x− 5x3 − (x− 1)2 ≥ 10x

√
2− x2

=⇒ g(x)−
√

2x2 − x4 ≥ (x− 1)2/10

=⇒ (g(x)− s(x− 1)2/10)2 ≥ 2x2 − x4

=⇒ (g(x)− s(x− 1)2/10)2 − 1 ≥ −1 + 2x2 − x4

=⇒ m(g(x)− s(x− 1)2/10) ≤ m(x)2.

Note

min
(
x/20, (x− 1)2/10

)
=

{
x/20 x ≤ 0.5

(x− 1)2/10 x ≥ 0.5
,

so whenever |ξ| ≤ min
(
x/20, (x− 1)2/10

)
for x ∈ [0,

√
2] we have m(g(x) + ξ) ≤ m(x)2. Solving for x in

terms of |ξ| yields the desired result. One may take ξ = 0 for any x so m(g(x)) ≤ m(x)2 for all |x| ≤
√

2.
The derivative of m is bounded by 4 on the interval [−2, 2], and g(x) + ξ ∈ [−1, 1] for |x| ≤

√
2, |ξ| ≤ 1. So

m(g(x) + ξ) ≤ m(g(x)) + 4|ξ| ≤ m(x)2 + 4|ξ| establishing the second claim.

9

Lemma 2.5 (Overall scalar convergence). Fix a precision u and tolerance ε so that 10u ≤ ε ≤ 3/80. Let
x0 ∈ ±[20u, 1.5] and xk+1 = g(xk) + ξk for adversarial |ξk| ≤ u. Then for

N ≥ NSCALAR(x0, ε) := 2.5 + 2 lg min(|x0|, 0.5)−1 + lg lg(1/ε)

one has ∣∣1− x2
N

∣∣ ≤ ε.

Proof. Note

m(xk) ≤ ε =⇒ m(xk+1) ≤ m(xk)2 + 4u ≤ ε2 + 4u ≤ (ε + 2/5)ε ≤ ε

so it suffices to argue m(xk) ≤ ε for some k ≤ N := NSCALAR(x0, ε). We first claim |xk| ≤ 1 + u for all k > 0.
The range of g on the domain [−1.5, 1.5] is [−1, 1], so xk ∈ [−1.5, 1.5] =⇒ xk+1 ∈ [−1−u, 1+u] ⊂ [−1.5, 1.5].
Then note x0 ∈ [−1.5, 1.5] by assumption so the claim follows by induction. Thus if |xk| ≥ 1, we’d have
m(xk) ≤ (1 + u)2 − 1 = 2u + u2 ≤ ε, so we may assume |xk| ≤ 1 for k = 1, · · · , N .

Let S = [20u, 1 −
√
ε]. Let M be the lowest positive index such that |xM | ̸∈ S. If M ≤ N − 2, then

|xM | ∈ (1−
√
ε, 1] and m(xM) ≤ 1− (1−

√
ε)2 = 2

√
ε so

m(xM+1) ≤ m(xM)2 + 4u ≤ (2
√
ε)2 + 4u = 4ε + 4u ≤ 4.4ε,

m(xM+2) ≤ m(xM+1)2 + 4u ≤ (4.4ε)2 + 4u = 4.42ε2 + 0.4ε ≤ ε,

which would establish the claim. Let us now bound M . If x1 ̸∈ S, then M = 1. Otherwise, x1 ∈
S ⊂ [(8/3)u, 1 − (8/3)u], Lemma 2.3 implies xk is monotonically increasing in k while in S so in fact
x1, · · · , xM−1 ∈ S. Since 1−

√
ε ≤ 1−

√
10u, Lemma 2.4 implies quadratic convergence for k ≤M ,

m(xk) ≤ m(xk−1)2 ≤ m(xk−2)2
2

≤ · · · ≤ m(x1)2
k−1

.

Since xM−1 ∈ S, we have m(xM−1) ≥ 1− (1−
√
ε)2 = 2

√
ε− ε ≥

√
ε. Taking logs gives

√
ε ≤ (1− x2

1)2
M−2

=⇒ 1

2
lg ε ≤ 2M−2 lg(1− x2

1) ≤ −2M−2 · 1

log 2
· x2

0

=⇒ log 2

2x2
1

lg (1/ε) ≥ 2M−2

=⇒ lg

(
log 2

2x2
1

)
+ lg lg (1/ε) ≥M − 2

=⇒ lg(2 log 2) + 2 lg(1/|x1|) + lg lg (1/ε) ≥M.

Note |x1| ≥ |x0| or else |x0| ∈ [1− (8/3)u, 1.5] implying |x1| ≥ 0.5. So lg(1/|x1|) ≤ lg min(|x0|, 0.5)−1. Then
lg(2 log 2) < 0.5. Combining those together yields M ≤ N − 2 as required.

We’re now ready to state and analyze the algorithm for approximating sign(A). In the below, g is defined
by (6).

Algorithm 1 SIGN(A, ε, b)

Require: Nonsingular Hermitian matrix A with ∥A∥ ≤ b, desired accuracy ε.
Ensure: ∥SIGN(A, ε, b)− sign(A)∥ ≤ ε.
1: A0 ← A/b
2: k ← 0
3: repeat
4: Ak+1 ← g(Ak)
5: k ← k + 1
6: until ∥I − MM(Ak, Ak)∥max ≤ ε/(4n)
7: return Ak

10

Theorem 2.6 (Main guarantee for SIGN). Let

N := NSIGN(A, ε, n) := NSCALAR

(
1

∥A−1∥ · b
,

ε

8n

)
.

Algorithm 1 has the advertised properties when run with

u ≤ uSIGN(ε, b,
∥∥A−1

∥∥) :=
1

∥A−1∥ · b
· 1

4 max
(
N · nµg(n, 1.1), n2

) · ε
using

3N · TMM(n) + O(Nn2)

floating point operations.

Proof. Let a =
∥∥A−1

∥∥−1
so that the spectrum of A/b is contained in [−1,−a/b] ∪ [a/b, 1]. Then by Lemma

2.2,

∥sign(A0)− sign(A/b)∥ ≤ n · ∥A0 −A/b∥
a/b− ∥A0 −A/b∥

≤ n · nu

a/b− nu
≤ 2n2

a/b
u.

Lemma 2.1 implies one can express

Ak+1 = g(Ak) + Ek, ∥Ek∥ ≤ µg(n, ∥Ak∥)u.

We claim that ∥Ak∥ ≤ 1.1 for all k. It’s clearly true k = 0. Then inductively,

∥Ak+1∥ ≤ 1 + µg(n, ∥Ak∥)u ≤ 1 + µg(n, 1.1)u ≤ 1.1

for our selection of u ≤ 0.1 · µg(n, 1.1)−1. As a consequence, ∥Ek∥ ≤ µg(n, 1.1)u. In particular, each
eigenvalue of Ak+1 is contained in the µg(n, 1.1)u pseudospectrum of g(Ak), i.e. can be expressed as g(λ)+ξ
where λ is an eigenvalue of Ak and |ξ| ≤ µg(n, 1.1)u. Therefore, Lemma 2.5 means for our selection of N
that that each eigenvalue of AN satisfies

∣∣1− λj(AN)2
∣∣ ≤ ε/(8n). In particular,

∥I − MM(AN , AN)∥max ≤ ∥I − MM(AN , AN)∥ ≤ 2
∥∥I −A2

N

∥∥ = 2 sup
j

∣∣1− λj(AN)2
∣∣ ≤ ε/(4n)

so the algorithm terminates no later than iteration N . On the other hand, say M is the iteration on which
the algorithm terminates. Then

ε

4n
≥ ∥I − MM(AN , AN)∥max ≥

1

2

∥∥I −A2
N

∥∥
max
≥ 1

2n

∥∥I −A2
N

∥∥ ≥ 1

2n
sup
j

∣∣1− λj(AN)2
∣∣

Therefore since AM and sign(AM) are simultaneously unitarily diagonalizable, we have

∥AM − sign(AM)∥ ≤ max
j
|λj(AM)− sign(λj(AM))| ≤ max

j

∣∣λj(AM)2 − 1
∣∣ ≤ ε/2.

Note sign ◦ g = sign on the domain [−
√

3,
√

3] so

∥sign(Ak+1)− sign(Ak)∥ = ∥sign(Ak+1)− sign(g(Ak))∥
= ∥sign(Ak+1)− sign(Ak+1 − Ek)∥

≤ n · ∥Ek∥
a/b− ∥Ek∥

≤ n ·
µg(n, 1.1)u

a/b− µg(n, 1.1)u

≤
2nµg(n, 1.1)

a/b
u

11

where the third step is by Lemma 2.2 and last is a rearrangement of the requirement on u. By the triangle
inequality,

∥AM − sign(A)∥ = ∥AM − sign(A0)∥+ ∥sign(A0)− sign(A)∥

≤ ∥AM − sign(AM)∥+

M∑
j=1

∥sign(Ak)− sign(Ak−1)∥+ ∥sign(A0)− sign(A/b)∥ .

≤ ε

2
+

(
N ·

2nµg(n, 1.1)

a/b
+

2n2

a/b

)
u

≤ ε

2
+

ε

2
= ε

as required. The number of floating point operations used is N · (Tg(n) + TMM(n) + n2) + n2. Using Tg(n) ≤
2TMM(n) + O(n2) from Lemma 2.1 gives the final result.

Remark 5 (b parameter). If one is not supplied with the value b in the call SIGN(A, ε, b), an acceptable
value can easily be computed in O(n2) or O(TMM(n)) time by taking b = ∥A∥F or b = tr(A2p)1/(2p). In that
case,

∥∥A−1
∥∥ · b would be somewhere in between the condition number and weighted condition number of A.

3 Analysis of deflate

The secondary bottleneck in [BGVKS20] and a main limitation of [NH13] is the computation of DEFLATE.
Deflation is a procedure for recovering from a low rank matrix P (often a projection), an orthonormal basis for
its range. To the author’s knowledge, up to minor variations, the algorithm we reproduce here is the only one
running in near matrix multiplication time5. [BGVKS20] conceives of this algorithm as a slight modification
of the rank-revealing QR-decomposition analyzed by [DDH07]. It turns out to be equivalent to the proposal
by [NH13], which conceives of the algorithm as running a single iteration of subspace iteration. However,
[NH13] glosses over the requirements of the starting matrix, which is a non-trivial part of the analyses of
[BGVKS20, DDH07]. The algorithm is exceedingly simple and is essentially the following: output the QR-
decomposition of the first rank(P) columns of PG where G is the random “starting” matrix. Notice that the
method completely fails if rank(PG) < rank(P), and struggles when the rank(P)th singular value of PG is
small. In order to ensure this value is sufficiently large often enough, one must include an additional factor of
poly(n) in the precision. This factor is unavoidable. However, a much larger issue appearing in [BGVKS20]
can be avoided. Their argument for the correctness of DEFLATE goes through the following argument: if
the input is the projection UU∗ and output is Q, they first show that U∗Q is close to a unitary matrix
W . Then they convert this into a bound on ∥U −QW ∗∥, which is needed by the spectral bisection method.

But this conversion introduces a square-root in the error. To see this, consider Q =
[
cos
√

2ε sin
√

2ε
]∗

and U =
[
1 0

]∗
. In this example, U∗Q ≈ 1 − ε whereas ∥U −Q∥ ≈

√
2ε. According to this analysis, in

order to get the desired accuracy out of DEFLATE, one must double the number of bits used to overcome the
square-root. We strengthen this analysis by removing the square-root, thereby reducing the bit requirement
by a factor of two. The additional insight allowing this is that not only is U∗Q close to unitary, we can show
that (U⊥)∗Q is close to 0 where U⊥ is a basis for an orthogonal complement of the range of U . This turns
out to be sufficient to remove the square-root, giving a tight analysis (up to constants).

This analysis also removes the restriction appearing in [BGVKS20] that the input matrix is close to a
matrix satisfying rank(A2) = rank(A). This restriction wasn’t an issue for our setting since A is an always
an orthogonal projection matrix, but the removal of the restriction may be of independent interest. Our
implementation of DEFLATE is the following.

5One candidate alternative is QR-decomposition with pivoting, which is recommended by [BDG97], but no efficient reduction
to matrix multiplication is known.

12

Algorithm 2 DEFLATE(Ã, r)

Require: There exists A ∈ Cn×n and parameters t, x, β > 0 such that∥∥∥Ã−A
∥∥∥ ≤ β ≤ 1

5
· σr(A)

σ1(A) + 2
· x

(2
√

2 + t)
√
n
≤ 1

and rank(A) = r.

Ensure: For output Ũ , there exists semi-unitary U ∈ Cn×r such that range(U) = range(A) and∥∥∥Ũ − U
∥∥∥ ≤ 6 · σ1(A) + 2

σr(A)
· (2
√

2 + t)
√
n

x
· β

with probability 1− 2e−nt2 − (r/2)x2.

1: G̃ij = Normal() ∀i, j ∈ [n]

2: M = MM(Ã, G̃)
3: (Q,R) = QR(M)
4: return First r columns of Q

A convenient choice of parameters is x =
√
ρ/r and t =

√
log(4/ρ)/n for some ρ ∈ (0, 1). Then for each

0 < η ≤ 6/5, if

β ≤ ρ1/2η√
nr
· σr(A)

σ1(A) + 2
· 1

12
√

2 + 6
√

log(4/ρ)/n

then ∥∥∥Ũ − U
∥∥∥ ≤ η

with probability 1− ρ.

Remark 6. The only difference between our method 2 and the one appearing in [BGVKS20] is that we
take G to be a matrix of Gaussians rather than a Haar unitary matrix. In particular, [BGVKS20] replaces
G with first output of QR(G). However, this requires an additional call to QR that is ultimately not necessary
and in fact introduces some additional error.

In the following two lemmas, G is an n× n matrix with i.i.d. complex Gaussian entries.

Lemma 3.1 (Theorem 3.2 from [Ede88]).

Pr(σn(G) ≤ x) ≤ n

2
x2.

Lemma 3.2 (Lemma 2.2 from [BKMS21]).

Pr
(
∥G∥ > (2

√
2 + t)

√
n
)
≤ 2e−nt2 .

Theorem 3.3. DEFLATE has the advertised guarantee when run with precision

u ≤ uDEFLATE(β, n) =
β

4µQR(n) + 2
√
ncN + 2µMM(n)

.

Furthermore, it uses only
TMM(n) + TQR(n) + TN · n2.

floating point operations.

13

Proof. The runtime is clear the algorithm consists of n2 calls to Normal, one call to MM, and one call to QR

and no additional work. Throughout the proof we use (·)1 to denote the first r columns of a matrix and
use (·)11 to denote the upper-left r × r submatrix. In particular, the output of the algorithm is Q1. By

assumption, we may express A = UΣV ∗ and Ã = A+E for U, V ∈ Cn×r, Σ ∈ Cr×r, and ∥E∥ ≤ β. Our goal

is to bound infunitary W ∥U −Q1W∥. Let Gij be the Gaussian random variable coupled with G̃ij such that

|G̃ij−Gij | ≤ |Gij |cNu. Then ∥G̃−G∥ ≤ ∥G∥
√
ncNu. Let G̃ = G+EG. Then for some ∥F∥ ≤ ∥Ã∥∥G̃∥µMM(n)u,

M = MM(Ã, G̃)

= Ã · G̃ + F

= (UΣV ∗ + E) · (G + EG) + F

= UΣV ∗G + UΣV ∗EG + E · (G + EG) + F.

Set X = UΣV ∗EG + E · (G + EG) + F . Definition 1.2 guarantees that for some ∥EM∥ ≤ ∥M∥µQR(n)u and
∥EQ∥ ≤ µQR(n)u that

(M + EM) = (Q + EQ)R

=⇒M = QR + EQR− EM

=⇒ UΣV ∗G = QR + EQR− EM −X

=⇒ UΣV ∗G1 = Q

[
R11

0

]
+ EQ

[
R11

0

]
− (EM)1 −X1

=⇒ UΣV ∗G1 = Q1R11 + (EQ)1R11 − (EM)1 −X1

=⇒ U = Q1R11(V ∗G1)−1Σ−1 + [(EQ)1R11 − (EM)1 −X1](V ∗G1)−1Σ−1.

We bound the first factor of the second term by

∥(EQ)1R11∥ ≤ ∥EQ∥ ∥R∥
≤ µQR(n)u · ∥M + EM∥
≤ µQR(n)u · (1 + µQR(n)u) ∥M∥

≤ µQR(n)u · (1 + µQR(n)u)(1 + µMM(n)u)∥Ã∥∥G̃∥
≤ µQR(n)u · (1 + µQR(n)u)(1 + µMM(n)u)(∥Σ∥+ β)(1 +

√
ncNu) ∥G∥

≤ 2 ∥G∥ (∥Σ∥+ β)µQR(n)u

∥(EM)1∥ ≤ ∥EM∥

≤ µQR(n)u · (1 + µMM(n)u)∥Ã∥∥G̃∥
≤ 2 ∥G∥ (∥Σ∥+ β)µQR(n)u

∥X1∥ ≤ ∥X∥

≤ ∥Σ∥
√
ncNu · ∥G∥+ β · ∥G̃∥+ ∥Ã∥∥G̃∥µMM(n)u

≤ ∥Σ∥
√
ncNu · ∥G∥+ β · (1 +

√
ncNu)∥G∥+ (∥Σ∥+ β)(1 +

√
ncNu)∥G∥µMM(n)u

= ∥G∥ (∥Σ∥+ β)
[
(
√
ncN + µMM(n)) +

√
ncNµMM(n)u

]
u + β∥G∥

≤ 2(
√
ncN + µMM(n)) ∥G∥ (∥Σ∥+ β)u + β∥G∥

14

Altogether, for C = R11(V ∗G1)−1Σ−1 this gives

∥U −Q1C∥ ≤ ∥(EQ)1R11 − (EM)1 −X1∥ ·
∥∥(V ∗G1)−1Σ−1

∥∥
≤
[(

4µQR(n) + 2
√
ncN + 2µMM(n)

)
(∥Σ∥+ β)u + β

]
∥G∥ ·

∥∥(V ∗G1)−1Σ−1
∥∥

≤
[(

4µQR(n) + 2
√
ncN + 2µMM(n)

)(∥A∥+ β

σr(A)

)
u +

β

σr(A)

]
· ∥G∥

∥∥(V ∗G1)−1
∥∥

≤
[
∥A∥+ β + 1

σr(A)

]
· ∥G∥

∥∥(V ∗G1)−1
∥∥ · β

=: m · β

(7)

If C was unitary we’d be nearly done. Unfortunately we have no such guarantee. Instead we derive three
different inequalities from (7).

(7) =⇒ ∥U −Q1C∥ ≤ mβ

=⇒
∣∣ ∥Ux∥ − ∥Q1Cx∥

∣∣ ≤ mβ ∥x∥
=⇒ (1−mβ) ∥x∥ ≤ ∥Q1Cx∥ ≤ (1 + mβ) ∥x∥

=⇒ 1−mβ

1 + µQR(n)u
≤ ∥Cx∥
∥x∥

≤ 1 + mβ

1− µQR(n)u
.

In in particular, that implies bounds on the singular values of C, which we now apply.

(7) =⇒ ∥U∗U − U∗Q1C∥ ≤ mβ

=⇒
∣∣ ∥x∥ − ∥U∗Q1Cx∥

∣∣ ≤ mβ ∥x∥
=⇒ (1−mβ) ∥x∥ ≤ ∥U∗Q1Cx∥ ≤ (1 + mβ) ∥x∥

=⇒ 1−mβ

σ1(C)
∥x∥ ≤ ∥U∗Q1x∥ ≤

1 + mβ

σr(C)
∥x∥

=⇒ (1− µQR(n)u)
1−mβ

1 + mβ
∥x∥ ≤ ∥U∗Q1x∥ ≤

1 + mβ

1−mβ
(1 + µQR(n)u) ∥x∥ .

(7) =⇒
∥∥(U⊥)∗U − (U⊥)∗Q1C

∥∥ ≤ mβ

=⇒
∥∥(U⊥)∗Q1Cx

∥∥ ≤ mβ ∥x∥

=⇒
∥∥(U⊥)∗Q1x

∥∥ ≤ 1

σr(C)
mβ ∥x∥

=⇒
∥∥(U⊥)∗Q1x

∥∥ ≤ 1 + µQR(n)u

1−mβ
mβ ∥x∥

Now consider the quantity we need to bound and apply the two above inequalities

inf
unitary W

∥U −Q1W∥ ≤ inf
unitary W

(
∥I − U∗Q1W∥+

∥∥(U⊥)∗Q1W
∥∥)

= inf
unitary W

∥W ∗ − U∗Q1∥+
∥∥(U⊥)∗Q1

∥∥
= max(σ1(U∗Q1)− 1, 1− σr(U∗Q1)) +

∥∥(U⊥)∗Q1

∥∥
= max

(
1 + mβ

1−mβ
(1 + µQR(n)u)− 1, 1− (1− µQR(n)u)

1−mβ

1 + mβ

)
+

1 + µQR(n)u

1−mβ
mβ

≤ 4mβ + 2mβ

= 6mβ.

For the last inequality, we assumed that mβ ≤ 0.2. We end with a tail estimate on m. Note by rotational
invariance that V ∗G1 is an r × r matrix of complex Gaussian entries. So applying Lemmas 3.1 and 3.2 we

15

have by union bound that

Pr

(
m ≥ σ1(A) + 2

σr(A)
· (2
√

2 + t)
√
n

x

)
≤ e−nt2 +

r

2
x2.

Note the complementary event implies mβ ≤ 0.2 by the requirement of β, so the desired bound holds.

Remark 7. One may notice all we really need for spectral bisection is a basis of an invariant subspace of A
and wonder why we’re bothering with matrix sign and deflate. After all, we have ready-made methods for
computing bases of invariant subspaces: Lanczos and subspace iteration. For instance, consider

X0 = random ∈ Cn×(n/2) [Xk+1, Rk] = QR(AXk).

Then Xk converges to an invariant subspace of dimension n/2. The issue is the rate of convergence. If
λ1 > λ2 > · · · > λn ≥ 0 are the eigenvalues of A, then we only converge after

log(1/ε)

log
(
λn/2+1/λn/2

) ≈ log(1/ε)

1− λn/2+1/λn/2

iterations. This is a polynomial dependence on the relative eigenvalue gap, which is totally unacceptable.
Lanczos offers only a square root improvement over this. Since spectral projectors are square with a functional
calculus, we have ‘repeated squaring’ flavor algorithms which simulate computing something akin to X2k or
even X3k in just k iterations.

4 Spectral bisection

We’re now ready to describe our spectral bisection algorithm, Algorithm 3 EIGH-INTERNAL. As mentioned
in the introduction, this work makes three main changes to the version of spectral bisection appearing in
[BGVKS20]. One is to use Newton-Schulz for sign estimation. The other two are highlighted in Remarks
8 and 9. In the pseudocode, the symbol ← is used to denote floating-point assignment. That is, x ← r
means x = fl(r) is the floating point number closest to r. The “root call” to EIGH-INTERNAL is

[U,D] = EIGH(A, ε, θ) = EIGH-INTERNAL(A, ∥A∥ , ∥A∥ , ε, ⌈lg(1/ε)⌉+ 5, θ/4n).

Remark 8. (Recursive parameters) [BGVKS20] passes 0.8·ε in for ε in the recursive calls. For a computation
tree of O(log(n)) depth, this makes the ε seen by a deep node ε/ poly(n). This contributes to the precision u
required by that node, which itself is is a polynomial in ε. Algorithm 3 passes in (1− 1/ℓ)ε and increments
ℓ. Instead of 0.8k, one ends up with a telescoping product resulting in only a constant factor smaller ε seen
at the leaves.

Remark 9. (Shattering/Split points/Base case) [BGVKS20] uses binary search to find a good value of the
split point c′ that ensures k± are both at least n/5. This ensures that the sub-problems are constant factors
smaller than the original, guaranteeing that recursion halts at depth log5/4(n). [NH13] uses the median of
the diagonal entries to find a split point that ensures k± ≥ 1. In the worst case, this leads to a depth of
n. We pick our split points c′ randomly, as suggested by [BDD11]. In order to avoid having to perturb the
input matrix, the avoidance of binary search and adoption of random split points are both necessary. If we
picked c′ deterministically, an adversarial input may place an eigenvalue exactly at our selection preventing
SIGN from converging. We also cannot assume that our eigenvalues are spaced out. In particular, there may
not even exist a split point with k± ≥ n/5 so binary searching for one would fail. The random split points
are picked close to the midpoint, so they reduce the range of the spectrum by almost a factor of two each
time.

16

Algorithm 3 [U,D] = EIGH-INTERNAL(A,R0, R, ε, ℓ, ρ)

Require: Hermitian matrix A with floating point entries. Initial size R0 ≥ ∥A∥. Window size R ≥ ∥A∥.
Target accuracy ε > 0. Integer ℓ ≥ 20. Failure parameter ρ > 0.

Ensure: With some probability, all singular values of U lie in [1−ε/3, 1+ε/3] and ∥UDU∗ −A∥ ≤ ε·(R0+R).
1: if n = 1 then
2: return (

[
1
]
, a11)

3: end if
4: if R ≤ εR0 then
5: return (In×n, 0)
6: end if
7: ε′ ← (1− 1/ℓ)ε
8: R′ ← (1/2 + 2/ℓ)R
9:

δ ← 3

4
· ρ

1/2η

n
· 1

3
· 1

12
√

2 + 6
√

log(4/ρ)/n
where η =

ε′

5ℓ

10: c = Unif(R/ℓ)
11: Ashift ← A− cI
12: B = SIGN(Ashift, δ, 2R)
13: P± ← (I ±B)/2
14: k± = round(trP±)
15: if k± = n then ▷ Note k+ + k− = n so this condition is met for at most one of k+ and k−.
16: A± ← A∓ (R/2)I
17: (U,D) = EIGH-INTERNAL(A±, R0, R

′, ε′, ℓ + 1, ρ)
18: return (U,D ± (R/2)I)
19: end if
20: Q± = DEFLATE(P±, k±)
21: C± = MM(MM(Q∗

±, A), Q±)
22: A± ← C± ∓ (R/2)I
23: (U±, D±) = EIGH-INTERNAL(A±, R0, R

′, ε′, ℓ + 1, ρ)
24: W± = MM(Q±, U±)

25: return

([
W+ W−

]
,

[
D+ + (R/2)I

D− − (R/2)I

])

17

There are four quantities we need to bound for EIGH. 1. Residual error 2. Success probability 3. Precision
requirement 4. Runtime. We do so in two parts. First, we analyze those for quantities within each call to
EIGH-INTERNAL treating the recursive calls as oracle queries; we call this the “local” guarantee. In particular,
applying the local guarantee to the root call ensures the residual error of EIG satisfies desired bound. For
the other three quantities, we need a global analysis. In particular, we apply union bound to obtain the
probability every call to EIGH-INTERNAL succeeds, sum the relevant runtimes, and take the minimum over
all the precisions required.

Lemma 4.1. (Local guarantee) Consider a call to EIGH-INTERNAL with inputs (A,R, ε, ℓ, ρ). Fix any w > 0
and set

t = 12
√

2 + 6
√

log(4/ρ)/n & β =
ρ1/2η

3nt
.

Let c′ be the sample from the real interval [−R/ℓ,R/ℓ] coupled with c = UNIF(R/ℓ) in Step 10 so that
∥c− c′∥ ≤ (R/ℓ)u. When using precision,

u ≤ min

(
uDEFLATE(β, n),uSIGN(β/2, 2R, 2/w),

1

4
· β
n
· w
R

)
if one conditions on

Event I: c′ ̸∈ Λw(A),

Event II: Step 20 succeeds with error at most η, and

Event III: The recursive calls in Step 23 succeed (i.e. produce U±, D± with small residual),

then the values returned in Step 25 have the advertised guarantee. Furthermore Event I occurs with probability
at least 1− wn/R and Event II occurs with probability at least 1− 2ρ.

Proof. Our first task is to quantify ∥Ashift − (A− c′I)∥.

∥Ashift − (A− c′I)∥ ≤ ∥Ashift − (A− cI)∥+ ∥(A− cI)− (A− c′I)∥
≤ ∥(A− cI)∥u + |c− c′|
≤ (R + R/ℓ)u + (R/ℓ)u

≤ (1 + 2/ℓ)Ru.

(8)

Our next task is to quantify
∥∥∥P± − sign(A−c′I)±I

2

∥∥∥∥∥∥∥P± −
sign(A− c′I)± I

2

∥∥∥∥ =

∥∥∥∥P± −
B ± I

2

∥∥∥∥ (9)

+

∥∥∥∥B ± I

2
− sign(Ashift)± I

2

∥∥∥∥ (10)

+

∥∥∥∥ sign(Ashift)± I

2
− sign(A− c′I)± I

2

∥∥∥∥ (11)

We bound each of the three terms starting with (11). Note we may pull out 1
2 and the identity terms cancel.

Then Event I implies that we may apply Lemma 2.2 to bound it by

(11) =
1

2
∥sign(Ashift)− sign(A− c′I)∥ ≤ 1

2
· n · (1 + 2/ℓ)Ru

w − (1 + 2/ℓ)Ru
.

Note incidentally that Λw(A) is a set of measure at most 2nw and c′ is sampled from a density bounded by
ℓ/2R so the probability Event I fails is at most 2nw · ℓ/2R = nw/R. Next we consider (10). Note again we
may pull out 1

2 and the identity terms cancel, so

(10) =
1

2
∥SIGN(Ashift, δ, 2R)− sign(Ashift)∥ .

18

In order to apply Theorem 2.6, we must verify u is small enough given the inputs. First, (8) implies

∥Ashift∥ ≤ ∥Ashift − (A− c′I)∥+ ∥A− c′I∥ ≤ [(1 + 2/ℓ)Ru] + [(1 + 1/ℓ)R] ≤ 2R.

Second, Event I means c′ ̸∈ Λw(A) so∥∥A−1
shift

∥∥ ≤ 1
1

∥(A−c′I)−1∥ − ∥Ashift − (A− c′I)∥
≤ 1

w − (1 + 2/ℓ)Ru
≤ 2

w
.

Our selection of u is bounded by uSIGN(δ, 2R, 2/w), so Theorem 2.6 bounds (10) ≤ δ/2. Finally

(9) ≤ ∥B∥+ 1

2
u ≤ (1 + δ) + 1

2
u ≤ (1 + δ/2)u.

Summing (9)+(10)+(11) gives∥∥∥∥P± −
sign(A− c′I)± I

2

∥∥∥∥ ≤
[
n

2

(1 + 2/ℓ)R
w

1− (1 + 2/ℓ)R
wu

+ 1 +
δ

2

]
u +

δ

2
≤ δ

since u ≤ 1
4 ·

β
n ·

w
R . Note that sign(A−c′I)±I

2 are the true spectral projectors into the the parts of the

spectrum of A above and below c′. Since β+nu≪ 1/2, the estimates k± are the exact ranks of sign(A−cI)±I
2 .

Additionally, we have u ≤ uDEFLATE(n, β). These are exactly the conditions for DEFLATE to succeed with
probability 1− ρ. Applying union bound gives the probability both calls to DEFLATE succeed. Since we are
conditioning on Event II, we have that

∥Q± − V±∥ ≤ η & ∥Q±∥ ≤ 1 + µQR(n)u (12)

for some choice of V± having orthonormal columns with sign(A− c′I) = V+V
∗
+ − V−V

∗
−. We now show

the recursive calls to EIGH-INTERNAL in Step 23 satisfy the input requirements—namely, we must ensure
R′ ≥ ∥A±∥.

∥A±∥ ≤
∥∥∥∥V ∗

±

(
A∓ R

2
I

)
V±

∥∥∥∥ (13)

+

∥∥∥∥A± − V ∗
±

(
A∓ R

2
I

)
V±

∥∥∥∥ . (14)

Since V± are the bases for the upper and lower parts of the spectrum of A, the spectrums of V±AV±
are contained in [c′, R] and [−R, c′] respectively, and so the spectrums of V±

(
A∓ R

2 I
)
V± are contained in

[c−R/2, R/2] and [−R/2, c+R/2] respectively, both of which are contained in [−(1/2+1/ℓ)R, (1/2+1/ℓ)R]
since |c| ≤ R/ℓ. This results in (13)≤ (1/2 + 1/ℓ)R. Bounding (14) is more involved.∥∥∥∥A± − V ∗

±

(
A∓ R

2
I

)
V±

∥∥∥∥ =

∥∥∥∥A± −
(
C± ∓

R

2
I

)∥∥∥∥+

∥∥∥∥(C± ∓
R

2
I

)
− V ∗

±

(
A∓ R

2
I

)
V±

∥∥∥∥ (15)

≤
(
∥C±∥+

R

2

)
u +

∥∥C± − V ∗
±AV±

∥∥ (16)

≤
(
∥C±∥+

R

2

)
u +

∥∥C± −Q∗
±AQ±

∥∥+
∥∥Q∗

±AQ± − V ∗
±AV±

∥∥ . (17)

The first term of (17) can be bounded using

∥C±∥ ≤
∥∥C± −Q∗

±AQ±
∥∥+

∥∥Q∗
±AQ± − V ∗

±AV±
∥∥+

∥∥V ∗
±AV±

∥∥ . (18)

19

Then both the first term of (18) and second term of (17) can be bounded by using the guarantee for MM

twice, ∥∥C± −Q∗
±AQ±

∥∥ ≤ µMM(n) ∥A∥ ∥Q±∥2 (2 + µMM(n)u) · u

≤ µMM(n) ·R · (1 + µQR(n)u)
2 · (2 + µMM(n)u) · u

≤ 3RµMM(n)u.

(19)

Then both the second term of (18) and third term of (17) can be bounded using (12)∥∥Q∗
±AQ± − V±AV±

∥∥ =
∥∥(V± + ηE′

±)∗A(V± + ηE′
±)− V±AV±

∥∥
≤
∥∥V ∗

±AE′
±η + E′

±AV±η + E′
±AE′

±η
2
∥∥

≤ (2 + η)Rη.

(20)

Summing these estimates and rearranging gives

(14) ≤ (17) ≤ [(1 + u) · 3µMM(n) + (3/2)]Ru + (1 + u) · (2 + η)Rη

≤ (2 + 2η)Rη
(21)

and consequently

∥A±∥ ≤ (13) + (14) ≤
(

1

2
+

1

ℓ
+ (2 + η)η

)
R ≤

(
1

2
+

2

ℓ

)
(1− u)R ≤ R′.

Let’s now show that
[
W+ W−

]
is nearly unitary. By (12), we may express Q± = V± + ηE′

± for some∥∥E′
±
∥∥ ≤ 1. By Definition 1.1, we may express

W± = Q±U± + ∥Q±∥ ∥U±∥µMM(n)uE

= V±U± + ηE′
±U± + ∥Q±∥ ∥U±∥µMM(n)uE

(22)

for some ∥E∥ ≤ 1. Set X± = W± − V±U± and note we have the estimate

∥X±∥ ≤ η ∥U±∥+ ∥Q±∥ ∥U±∥µMM(n)u

≤ η(1 + ε′) + (1 + µQR(n)u)(1 + ε′)µMM(n)u

≤ η(1 + 2ε′)

(23)

By construction, we have [
W+ W−

]
=
[
V+ V−

] [U+

U−

]
+
[
X+ X−

]
.

Note that
[
V+ V−

]
is a unitary matrix and that Event III guarantees the singular values of U± lie in

[1− ε′/3, 1 + ε′/3]. So the singular values of
[
W+ W−

]
satisfy

(1− ε′/3)−
√

2 max
±
∥X±∥ ≤ σj

([
W+ W−

])
≤ (1 + ε′/3) +

√
2 max

±
∥X±∥ .

Finally, applying (23) gives

ε′

3
+
√

2 max
±
∥X±∥ =

ε′

3
+
√

2η(1 + 2ε′)

=
(

1 + 3
√

2 · η
ε′
· (1 + 2ε′)

)ε′
3

≤
(

1 +
1

ℓ

)
ε′

3

≤
(

1 +
1

ℓ

)
(1 + u)

(
1− 1

ℓ

)
ε

3

≤ ε/3

20

so each singular value of
[
W+ W−

]
is in the interval [1 − ε/3, 1 + ε/3] as required. Our final task is

showing our output has sufficiently small residual. Let G± = D±± R
2 I and G̃± = fl(G±). The approximate

factorization of A returned in Step 25 is

[
W+ W−

] [G̃+

G̃−

] [
W+ W−

]∗
= W+G̃+W

∗
+ + W−G̃−W

∗
−.

The analogous exact factorization is

A =
[
V+ V−

] [V ∗
+AV+

V ∗
−AV−

] [
V+ V−

]∗
= V+V

∗
+AV+V

∗
+ + V−V

∗
−AV−V

∗
−.

We define two additional factorizations, namely the sums F̃+ + F̃− and F+ + F− for

F̃± := (V±U±)G̃±(V±U±)∗ & F± := (V±U±)G±(V±U±)∗

Then the final residual is bounded by∥∥∥∥∥A− [W+ W−
] [G̃+

G̃−

] [
W+ W−

]∗∥∥∥∥∥ ≤ ∥A− (F+ + F−)∥ (24)

+
∥∥∥(F+ + F−)− (F̃+ + F̃−)

∥∥∥ (25)

+
∥∥∥F̃+ −W+G̃+W

∗
+

∥∥∥+
∥∥∥F̃− −W−G̃−W

∗
−

∥∥∥ (26)

We begin by bounding each term in (26). Event III guarantees
∥∥A± − U±D±U

∗
±
∥∥ ≤ ε′ which implies

∥D±∥ ≤ ∥A±∥+ε′

(1−ε′)2 ≤
R′+ε′

(1−ε′)2 . Then∥∥∥F̃± −W±G̃±W
∗
±

∥∥∥ =
∥∥∥(V±U±)G̃±(V±U±)∗ −W±G̃±W

∗
±

∥∥∥
=
∥∥∥(V±U±)G̃±(V±U±)∗ − (V±U± + X±)G̃±(V±U± + X±)∗

∥∥∥
=
∥∥∥−X±G̃±(V±U±)∗ − (V±U±)G̃±X

∗
± −X±G̃±X

∗
±

∥∥∥
≤ (2 + 2ε′ + ∥X±∥)∥G̃±∥ ∥X±∥

≤ (2 + 2ε′ + (1 + 2ε′)η)

(
R′ + ε′

(1− ε′)2
+

R

2

)
(1 + u) · (1 + 2ε′)η

(27)

Next we bound (25).∥∥∥(F+ + F−)− (F̃+ + F̃−)
∥∥∥ =

∥∥∥[V+ V−
]∗ (

F+ + F− − F̃+ − F̃−

) [
V+ V−

]∥∥∥
=

∥∥∥∥∥
[
U+(G+ − G̃+)U∗

+

U−(G− − G̃−)U∗
−

]∥∥∥∥∥
≤ max

±
∥U±∥2 ∥G±∥u

≤ (1 + ε′/3)2
(

R′ + ε′

(1− ε′)2
+

R

2

)
u

≤ 2Ru

21

Finally, we bound (24). Since
[
V+ V−

]
is unitary, conjugation by it does not change norms.

∥A− (F+ + F−)∥ =
∥∥∥[V+ V−

]∗
(A− (F+ + F−))

[
V+ V−

]∥∥∥
=

∥∥∥∥[V ∗
+AV+

V ∗
−AV−

]
−
[
U+G+U

∗
+

U−G−U
∗
−

]∥∥∥∥
= max

±

∥∥V ∗
±AV± − U±G±U

∗
±
∥∥

= max
±

∥∥∥∥V ∗
±AV± − U±

(
D± ±

R

2
I

)
U∗
±

∥∥∥∥
= max

±

∥∥∥∥V ∗
±AV± − U±D±U

∗
± ∓

R

2
U±U

∗
±

∥∥∥∥
We bound that final expression as the sum of three terms∥∥∥∥V ∗

±AV± − U±D±U
∗
± ∓

R

2
U±U

∗
±

∥∥∥∥ ≤ ∥∥∥∥V ∗
±AV± ∓

R

2
I −A±

∥∥∥∥ (28)

+
∥∥A± − U±D±U

∗
±
∥∥ (29)

+

∥∥∥∥R2 U±U
∗
± −

R

2
I

∥∥∥∥ (30)

We obtained a bound for (28) in (21), which is (2 + 2η)Rη. Event III is exactly that (29) is bounded by
(R′ +R0)ε′ and that (30) is bounded by R

2 [(1 + ε′/3)2− 1] ≤ 0.34ε′R. The final residual then is bounded by
the sum

(28) + (29) + (30) + (25) + (26) ≤ (4 + 10ε)Rη + (29) + (30)

≤ (4 + 10ε)Rη + (R′ + R0)ε′ + 0.34Rε′

≤
(

4 + 10ε

5ℓ
+ (1 + u)

(
1

2
+

2

ℓ

)
+ 0.34

)
Rε′ + R0ε

′

≤ (R + R0)ε′

≤ (R + R0)ε

as required.

Theorem 4.2 (Main guarantee). Let A be an n×n Hermitian matrix, θ ∈ (16ne−7.4n, 1), and ε ∈ (0, 2−15).
Using

lg(1/u) ≥ lg(1/ε) + lg max
(
n1.5µQR(n), n1.5

√
ncN, n

4.5µMM(n)
)

+ 2 lg lg(1/ε) + 1.5 lg(1/θ) + lg lg(n lg(1/ε)/θ) + 23

bits of precision and

O
(

log(1/ε)(log(n) + log(1/θ) + log log(1/ε))TMM(n) + log(1/ε)TQR(n)
)

floating point operations, the function call

[U,D] = EIGH(A, ε, θ) = EIGH-INTERNAL(A, ∥A∥ , ∥A∥ , ε, ⌈lg(1/ε)⌉+ 5, θ/4n)

achieves the following guarantee with probability at least 1− θ. First, ∥A− UDU∗∥ ≤ 2ε ∥A∥ and second, all
the singular values of U lie in the interval [1− ε/3, 1 + ε/3].

22

Proof. Consider the computation tree associated with the recursive structure of this algorithm. It is a binary
tree where each node denotes a call to EIGH-INTERNAL. The number of children of each node is the number
of recursive calls to EIGH-INTERNAL it makes. Let d be the depth of the tree. Let X be the set of all nodes
and XD the set of nodes in which deflate is run. The values of R0 = ∥A∥ and ρ = θ/4n used throughout do
not change, so we may use those variables without ambiguity. For the other parameters, let Rx, εx, ℓx denote
the values of R, ε, ℓ input to node x ∈ X. We omit the subscript when x is the root node. In particular,
R = ∥A∥ and ℓ = ⌈lg(1/ε)⌉ + 5. Set wx = θ ·Rx/(2 · nx · nd). Let βx, tx, ηx be the values as specified by
Lemma 4.1 and EIGH-INTERNAL. Note that for each node, Event III is implied by Events I-III for its children.
Further note Event III is trivially satisfied for leaves. Consequently, it suffices to bound the probabilities of
Events I and II for each node. For x ∈ XD, Lemma 4.1 implies this probability is

1− nxwx

Rx
− 2ρx = 1− θ

2nd
− 2ρ.

For x ∈ X\XD, only Event I is necessary, so the relevant probability is just

1− nxwx

Rx
= 1− θ

2nd
.

Note that XD are the internal nodes of the computational tree with two children. Since this tree has at most
n leaves, this means |XD| = n − 1. The number of nodes at each depth is at most n, so |X| ≤ nd. So by
union bound the failure probability is at most(∑

x∈X

θ

2nd

)
+

(∑
x∈XD

2ρ

)
≤ |X| · θ

2nd
+ |XD| · 2ρ

≤ θ

2
+ (n− 1) · 2 · θ

4n
≤ θ.

We now turn our attention to the number of bits used. If y is a child of x, then ℓy = ℓx + 1 and

Ry ≤ (1 + u)

(
1

2
+

2

ℓx

)
Rx = (1 + u) · 1

2
· ℓx + 4

ℓx
·Rx, (31)

εy ≥ (1− u)

(
1− 1

ℓx

)
εx = (1− u) · ℓx − 1

ℓy − 1
· εx. (32)

In both cases, we obtain a telescoping product for a node y at depth k giving

Ry ≤ (1 + u)k · 2−k · ℓ + k

ℓ
· ℓ + k + 1

ℓ + 1
· ℓ + k + 2

ℓ + 2
· ℓ + k + 3

ℓ + 3
·R, (33)

≤ (1 + u)k · 2−k · (1 + k/ℓ)4 ·R (34)

εy ≥ (1− u)k · ℓ− 1

ℓ + k − 1
· ε. (35)

We claim that the depth of the tree d is no more than ℓ. To see this, note that at depth k = ℓ =
⌈lg(1/ε)⌉ + 5, we have Ry ≤ εR = εR0 which guarantees the algorithm terminates. We therefore obtain
εy ≥ (1− u)ℓ · ℓ−1

2ℓ−1ε ≥ ε/3 and ℓy ≤ 2ℓ for all y ∈ X. We need to bound the constraints on u from Lemma
4.1 at each node. We first compute bounds in terms of βx.

min
x∈X

uDEFLATE(βx, n) = min
x∈X

1

4µQR(n)(nx) + 2
√
ncN(nx) + 2µMM(n)(nx)

· βx

≥ 1

4µQR(n)(n) + 2
√
ncN(n) + 2µMM(n)(n)

·min
x∈X

βx

(36)

23

min
x∈X

uSIGN(βx/2, 2Rx, 2/wx) = min
x∈X

wx

4Rx
· 1

4 max
(
NSCALAR

(
wx

4Rx
, εx
8nx

)
· nxµg(nx, 1.1), n2

x

) · βx

2

=
1

64
min
x∈X

θ

nxnd
· 1

max
(
NSCALAR

(
θ

8nxnd
, εx
8nx

)
· nxµg(nx, 1.1), n2

x

) · βx

≥ θ

64n2d
· 1

max
(
NSCALAR

(
θ

8n2d ,
ε/3
8n

)
· nµg(n, 1.1), n2

) ·min
x∈X

βx

≥ θ

64n3µg(n, 1.1)
· 1

ℓ ·NSCALAR

(
θ

8n2ℓ ,
ε

24n

) ·min
x∈X

βx

≥ θ

64n3µg(n, 1.1)
· 1

ℓ · (2.5 + 2 lg(8n2ℓ/θ) + lg lg(24n/ε))
·min
x∈X

βx

≥ θ

64n3µg(n, 1.1)
· 1

ℓ · lg(363n4ℓ2θ−2 lg(24n/ε))
·min
x∈X

βx

(37)

We now bound minx∈X βx. First note

min
x∈X

ηx = min
x∈X

ε′x
5ℓx
≥ ε/3

10ℓ
. (38)

Then note that

nx · tx = nx · (12
√

2 + 6
√

log(4/ρ)/nx) = 12
√

2nx + 6
√

nx log(16n/θ)

is monotonically increasing in nx, so the maximum is obtained for nx = n. Apply that observation with (38)
and θ ≥ 16ne−7.4n to obtain

min
x∈X

βx = min
x∈X

ρ1/2ηx
3nxtx

=
θ1/2

6n1/2
·min
x∈X

ηx
nxtx

≥ θ1/2

6n1/2
· 1

12
√

2n + 6
√

n log(16n/θ)
min
x∈X

ηx

≥ θ1/2

6n1/2
· 1

12
√

2n + 6
√

n log(16n/θ)
· ε

30ℓ

≥ 1

6000

θ1/2ε

n3/2ℓ
.

(39)

Combining (39) with (36) gives

min
x∈X

uDEFLATE(nx, ηx, ρx) ≥ 2× 10−5 · θ1/2ε

ℓn3/2 max(µMM(n),
√
ncN, µQR(n))

.

Combining (39) with (37) and ug(n, 1.1) ≤ 2µMM(n) for µMM(n) ≥ 10 from Lemma 2.1 gives

min
x∈X

uSIGN(βx/2, 2Rx, 2/wx) ≥ 2.6× 10−6 · θ3/2ε

ℓ2n9/2µg(n, 1.1)
· 1

lg(363n4ℓ2θ−2 lg(24n/ε))

≥ 1.3× 10−6 · θ3/2ε

ℓ2n9/2µMM(n)
· 1

lg(363n4ℓ2θ−2 lg(24n/ε))

(40)

By taking logs, one sees that it suffices to take lg(1/u) to be at least the larger of the following two quantities.

lg(1/u) ≥ lg(1/ε) + lg
(
n3/2 max

(√
ncN, µQR(n)

))
+ lg(ℓ) + 0.5 lg(1/θ) + 15.7,

lg(1/u) ≥ lg(1/ε) + lg(n9/2µMM(n)) + 2 lg(ℓ) + 1.5 lg(1/θ) + lg lg
(
363n4ℓ2 lg(24n/ε)/θ2

)
+ 19.6.

(41)

24

Plugging in ℓ = ⌈lg(1/ε)⌉ + 5 and simplifying gives the final precision result. We conclude with analysis of
the runtime. The number of floating point operations used by SIGN in node x is

O

((
lg

(
Rx

wx

)
+ lg lg

(
nx

εx

))
TMM(nx)

)
= O

((
lg

(
nxnd

θ

)
+ lg lg

(n
ε

))
TMM(nx)

)
= O

((
lg
(n
θ

)
+ lg lg

(
1

ε

))
TMM(nx)

)
=: fSIGN(nx)

(42)

The number of floating point operations used by DEFLATE in node x is

TQR(nx) + TMM(nx) + O(n2) =: fDEFLATE(nx) (43)

The number of floating point operations used by all other steps in the algorithm are dominated by these
terms. Let Xk be the set of nodes at depth k. Then

∑
x∈Xk

nx ≤ n. Note fSIGN and fDEFLATE are convex, so∑
x∈Xk

(fSIGN(nx) + fDEFLATE(nx)) ≤ fSIGN(n) + fDEFLATE(n).

Summing over k = 1, · · · , d = lg⌈1/ε⌉+ 5 gives the final result.

We conclude with a final remark about removing the lg(1/θ) terms from the bit requirement.

Remark 10 (Boosting success probability). One can estimate the residual in O(n2) time by computing

∥(UDU∗ −A)x∥

for randomly selected x. If the residual is too high, one can rerun EIG with fresh randomness. This allows
one to boost the probability of success. If the desired failure probability is θ′, one can take θ = 1/2 and
repeat the call to EIGH lg(1/θ′) times. So at the expense of a longer runtime, one can remove the lg(1/θ)
terms from the precision bound.

25

References

[ABB+18] Diego Armentano, Carlos Beltrán, Peter Bürgisser, Felipe Cucker, and Michael Shub. A stable,
polynomial-time algorithm for the eigenpair problem. Journal of the European Mathematical
Society, 20(6):1375–1437, 2018.

[BD73] A. N. Beavers and E. D. Denman. A computational method for eigenvalues and eigenvectors of
a matrix with real eigenvalues. Numerische Mathematik, 21:389–396, 1973.

[BD74] A.N. Beavers and E.D. Denman. A new similarity transformation method for eigenvalues and
eigenvectors. Mathematical Biosciences, 21(1):143–169, 1974.

[BD93] Zhaojun Bai and James W. Demmel. Design of a parallel nonsymmetric eigenroutine tool-
box, part i. Technical Report UCB/CSD-92-718, EECS Department, University of California,
Berkeley, Feb 1993.

[BDD11] Grey Ballard, James Demmel, and Ioana Dumitriu. Minimizing communication for eigenprob-
lems and the singular value decomposition. Technical Report UCB/EECS-2011-14, Feb 2011.

[BDG97] Zhaojun Bai, James Demmel, and Ming Gu. An inverse free parallel spectral divide and conquer
algorithm for nonsymmetric eigenproblems. Numerische Mathematik, 1997.

[BGVKS20] Jess Banks, Jorge Garza-Vargas, Archit Kulkarni, and Nikhil Srivastava. Pseudospectral shat-
tering, the sign function, and diagonalization in nearly matrix multiplication time. In 2020
IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 529–540,
2020.

[BGVS22] Jess Banks, Jorge Garza-Vargas, and Nikhil Srivastava. Global convergence of hessenberg shifted
qr ii: Numerical stability. arXiv preprent arXiv:2205.06810, 2022.

[BGVS23] Jess Banks, Jorge Garza-Vargas, and Nikhil Srivastava. Global Convergence of Hessenberg
Shifted QR I: Exact Arithmetic. arXiv preprint arXiv:2111.07976, 2023.

[BKMS21] Jess Banks, Archit Kulkarni, Satyaki Mukherjee, and Nikhil Srivastava. Gaussian regularization
of the pseudospectrum and davies’ conjecture. Communications on Pure and Applied Mathe-
matics, 74(10):2114–2131, 2021.

[BX08] Ralph Byers and Hongguo Xu. A new scaling for Newton’s iteration for the polar decomposition
and its backward stability. SIAM Journal on Matrix Analysis and Applications, 30(2):822–843,
2008.

[CCNS14] Jie Chen, Edmond Chow, and The Newton-Schulz. A stable scaling of newton-schulz for im-
proving the sign function computation of a hermitian matrix. 2014.

[DB76] Eugene D. Denman and Alex N. Beavers. The matrix sign function and computations in systems.
Applied Mathematics and Computation, 2(1):63–94, 1976.

[DDH07] James Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear algebra is stable. Numerische
Mathematik, 108(1):59–91, October 2007.

[DDHK07] James Demmel, Ioana Dumitriu, Olga Holtz, and Robert Kleinberg. Fast matrix multiplication
is stable. Numerische Mathematik, 106(2):199–224, February 2007.

[DT71] TJ Dekker and JF Traub. The shifted qr algorithm for hermitian matrices. Linear Algebra
Appl, 4:137–154, 1971.

[Ede88] Alan Edelman. Eigenvalues and condition numbers of random matrices. SIAM Journal on
Matrix Analysis and Applications, 9(4):543–560, 1988.

26

[Fra61] John GF Francis. The QR transformation a unitary analogue to the LR transformation—Part
1. The Computer Journal, 4(3):265–271, 1961.

[Fra62] John GF Francis. The QR transformation—Part 2. The Computer Journal, 4(4):332–345, 1962.

[Gan90] Walter Gander. Algorithms for the polar decomposition. SIAM J. Sci. Comput., 11:1102–1115,
1990.

[HP78] W. Hoffmann and B. N. Parlett. A new proof of global convergence for the tridiagonal ql
algorithm. SIAM Journal on Numerical Analysis, 15(5):929–937, 1978.

[KL95] Charles S. Kenney and Alan J Laub. The matrix sign function. IEEE Transactions on Automatic
Control, 40(8):1330–1348, 1995.

[KZ03] Andrzej Kie lbasiński and Krystyna Zietak. Numerical behaviour of higham’s scaled method for
polar decomposition. Numerical Algorithms, 32:105–140, 2003.

[KZ09] Andrzej Kielbasinski and Krystyna Zietak. Note on ”a new scaling for newton’s iteration for
the polar decomposition and its backward stability” by r. byers and h. xu*. SIAM Journal
on Matrix Analysis and Applications, 31(3):1538–1539, 2009. Copyright - Copyright Society
for Industrial and Applied Mathematics 2009; Document feature - Equations; ; Last updated -
2023-12-04.

[NBG10] Yuji Nakatsukasa, Zhaojun Bai, and François Gygi. Optimizing halley’s iteration for com-
puting the matrix polar decomposition. SIAM Journal on Matrix Analysis and Applications,
31(5):2700–2720, 2010.

[NF16] Yuji Nakatsukasa and Roland W. Freund. Computing fundamental matrix decompositions
accurately via the matrix sign function in two iterations: The power of Zolotarev’s functions.
SIAM Review, 58(3):461–493, 2016.

[NH12] Yuji Nakatsukasa and Nicholas J. Higham. Backward stability of iterations for computing the
polar decomposition. SIAM Journal on Matrix Analysis and Applications, 33(2):460–479, 2012.

[NH13] Yuji Nakatsukasa and Nicholas J. Higham. Stable and efficient spectral divide and conquer
algorithms for the symmetric eigenvalue decomposition and the svd. SIAM Journal on Scientific
Computing, 35(3):A1325–A1349, 2013.

[SML24] Aleksandros Sobczyk, Marko Mladenović, and Mathieu Luisier. Invariant subspaces and pca in
nearly matrix multiplication time, 2024.

[Wil68] J.H. Wilkinson. Global convergene of tridiagonal qr algorithm with origin shifts. Linear Algebra
and its Applications, 1(3):409–420, 1968.

27

	Introduction
	Contributions
	Model of computation
	Subroutines

	Matrix sign function
	Insufficiency of Newton iteration
	Analysis of Newton-Schulz iteration

	Analysis of deflate
	Spectral bisection

